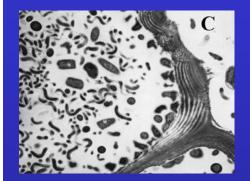
Biofuel / Biomass Feedstock & Conversion Research


Quality Assessment Research Unit Russell Research Center ARS-USDA, Athens, Georgia USA

Outline

- Accomplishments:
 - Cell wall structure of plants
 - Spectroscopic Analysis of feedstocks
 - Near-infrared of barley
 - Near-and mid-infrared of switchgrass
 - Enzymatic conversion (corn leaf, corn fiber and bermudagrass)
 - Analysis of Starch Structure with Gel-State NMR
 - Analysis of Down-Regulation of Lignin in Plants
- Planned Work:
 - Co-products from Flax
 - Microbial fermentation of C-6 & C-5 sugars
 - Spectroscopically assess additional perennial grasses
 - Identify new by-products from grasses
 - Assess structure/composition of lignocellulosic sources using spectroscopic imaging
- Instrumental capabilities
- Funding
- Cooperation

Cell Wall Structure

Rumen microbiology, plant structure, & improved forage use:

- new methods of cell wall analysis and assessment
- cell wall chemistry/structure related to recalcitrance
- methods to overcome recalcitrance, improve fiber nutritive value

Biomass research on agricultural sources re: bioenergy/ bioproducts:

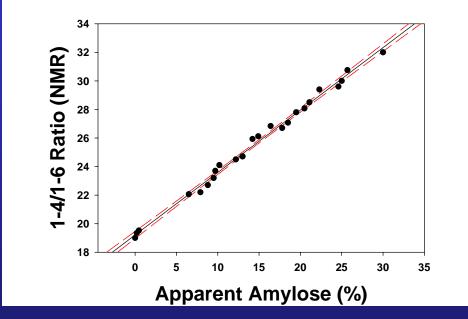
- cell wall analysis and assessment
- cell wall chemistry/structure related to recalcitrance in bioenergy
- identification of lignocellulosic co-products related to bioenergy sources
- evaluation of consistency of materials using spectroscopy and chemometrics

Evaluation Products Using NIR (Prediction Error for Barley Analysis on Multiple Instruments)

Components	FT-NIR	XDS	NIR6500	
Moisture	0.52	0.46	0.42	
Starch	1.85	1.77	<u>1.54</u>	
β-glucan	<u>0.48</u>	0.61	0.57	
Protein	0.48	0.49	0.49	
Oil	0.20	0.20	0.14	
ash	0.14	0.13	0.12	

Evaluation of Switchgrass NIR Chemometric Models (Using Partial Least Squares)

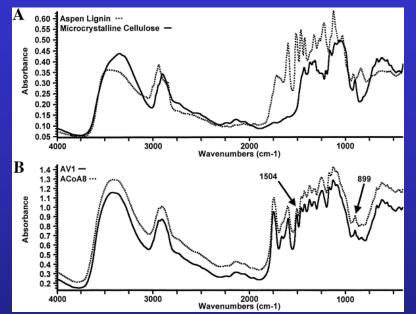
Dispersive NIR (1100-2598 nm &10 nm Res.)


Fourier-transform NIR (10,000-4,000 cm⁻¹ & 4cm⁻¹ Res.)

Components	# of outliers	LV	R ²	RMSECV	Components	# of outliers	LV	R ²	RMSECV
IVDMD	4	5	0.962	2.50	IVDMD	8	5	0.981	1.99
NDF	5	6	0.949	1.62	NDF	4	6	0.968	1.78
ADF	6	5	0.972	1.28	ADF	8	6	0.983	1.24
ADL	6	5	0.894	0.57	ADL	4	4	0.885	0.64
Total-N	6	4	0.985	0.09	Total-N	11	4	0.991	0.08
Fat	8	7	0.912	0.20	Fat	4	8	0.971	0.25
Ash	5	7	0.934	0.54	Ash	8	6	0.960	0.50
Total-C	10	7	0.939	0.22	Total-C	5	6	0.943	0.26

Best results are in red. Samples provided by Ken Vogel & chemical and dispersive NIR data were supplied by Gautam Sarath-ARS, Lincoln, NE.

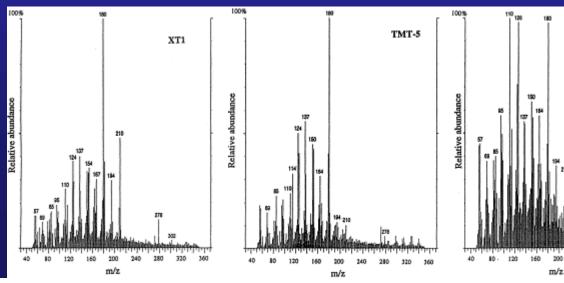
Assessment of Native Starch Structure in Grains Using NMR Spectroscopy


Apparent Amylose (%) versus 1-4/1-6 Integration Ratio

Range=0-30% Amylose R²=0.99 Y intercept=19.2 (Amylopectin branching ratio)

NMR calibrations have been developed for use as instrumental (primary) reference values for rapid analysis (NIR) of raw materials to enable "up-front" enzyme selection for starch digestion process.

Use of MIR and MS to Assess Down-regulation of COMT & CCoAOMT that Reduces Lignin



IR bands at 1508 and 899 cm-1 permitted the quantification of the effects of down-regulation at 56%.

In-source pyrolysis MS indicated the specific reduction of guaiacyl lignin units in transgenic tobacco plants cell walls

TCoA1+9-

TMT-197

Industrial Opportunity for Bioenergy and Co-Products

Schweitzer Mauduit International (SMI)

- headquartered in Alpharetta, GA,
- the only flax fiber producer in NA today
- upgrade fiber for high-value uses
- increased shive as a waste product
- shive is cheap, already collected: bio-energy (thermal, syngas) extractable aromatic for antioxidants etc activated carbons (filtration)

ARS and SMI collaborations on retting, processing, standards work.

Opportunity for bioenergy and co-products.

Funding

- Biomass (\$275,000)
- Biofuels (\$275,000)
- No separately coded projects only sub-coded (primary is NP306)
- 3 GS-15 SYs Akin, Barton & Himmelsbach (@ 0.2-time each)

Spectroscopic Instrumental Analysis Capabilities

Туре	Analysis Function		
Near-infrared (4)	Rapid Composition		
Mid-Infrared (2)	Chemical Fingerprinting		
Raman (1)	Chemical Fingerprinting		
Pyrolysis-GC-MS (1)	Chemical Fingerprinting		
Microscopes (UV, VIS, FL, IR & Raman)	Chemical & Structural		
LC-NMR & solution, solid- state & imaging NMR	Chemical & Structural		

Interactions / Collaborations

- Bill Anderson, ARS- Tifton GA; bermudagrass
- Ken Vogel/Gautam Sarath, ARS-Lincoln, NB; switchgrass
- Kevin Hicks, ERRL, Wyndmoor, PA; corn fiber/stover & barley
- Sevim Erhan, NCAUR, Peoria, IL; resins, chemical analysis
- Mike Cotta/Bruce Dien, NCAUR; enzymes, pretreatments
- Brian Condon, SRRC, New Orleans; enzymes, co-products
- Roy Dodd, Clemson Univ; products and co-products
- Maurice Snook, ARS-RRC; sugar/aromatic analyses
- Joy Peterson, Univ. GA; fermentation, microorganisms
- David Bransby, Auburn Univ; co-firing, thermal
- Enzyme companies: Novozymes, Genencor, Biocatalysts
- DOE Laboratories: NREL, Golden, CO; Idaho National Lab, Idaho Falls