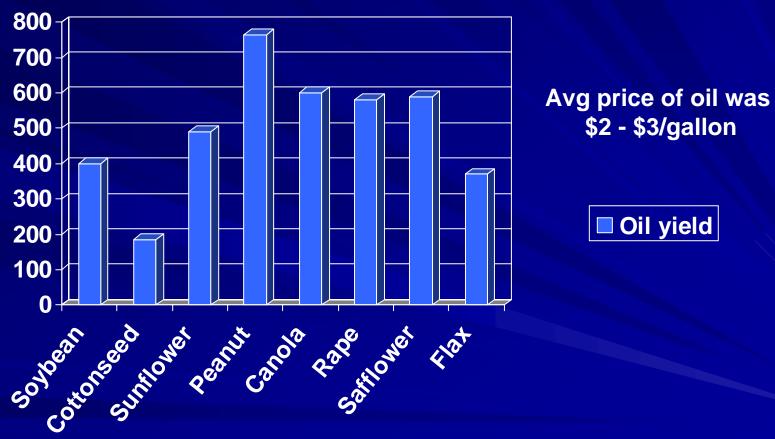


Crop Genetics and Breeding Research Unit — Tifton, GA Crop Improvement for Bio-fuels



Bio-diesel feedstocks

- Oil-seed crops
 - Soybean (18 22% oil)
 - Cotton seed (18 22% oil)
 - Canola (38 45% oil)
 - Peanut (46 48% oil)
 - Dr. Corley Holbrook (Peanut Geneticist)
 - ■Increase of oil content, (ARS Raleigh: Sanders), disease resistance, lower cost of production (U. of Georgia), residues for forage use.

Oil yields of Crops 1991-95 (Avg.)

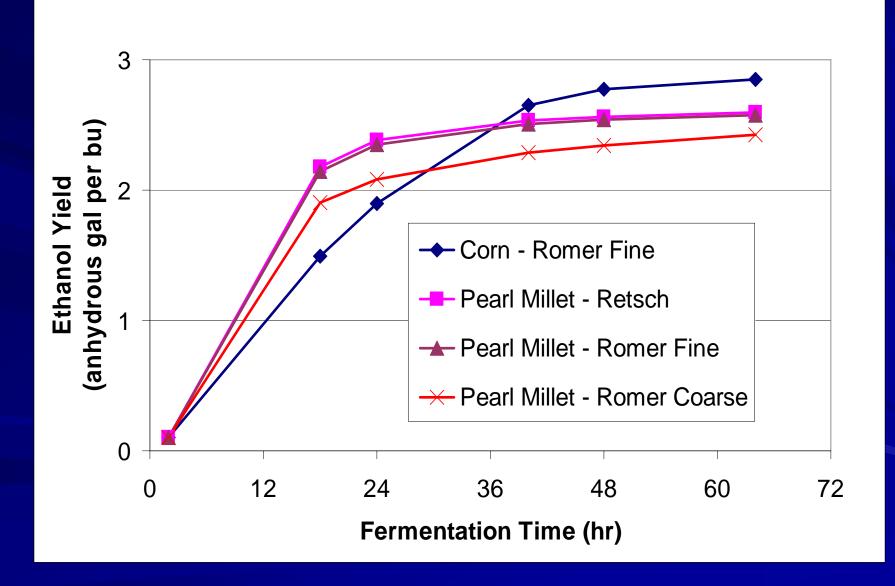
Pounds of oil per acre

Source: USDA, NASS, Crop Production Summaries, 1994-96

Ethanol from Corn

- Average yield in Georgia 1996-2005 was 113 bushels/acre (national avg. 138)
 - Aflatoxin concerns for animal feed use of DDGs
- Maize breeding research –USDA/ARS Tifton (Krakowsky, Ni)
 - Reduce aflatoxin, fall army worm resistance, reduce input needs with higher yields

Multiple Insect Resistance


Ethanol from Pearl Millet

- Production = 1.5 2 tons/acre
- Very drought tolerant
- Use in double or triple cropping - low inputs and can be planted after corn
- Ethanol/ton similar to corn faster fermentation
- DDG higher quality more protein
- No aflatoxin problems

USDA/ARS - Crop Breeding and Genetics Research Unit - Tifton

Ethanol Yield vs. Time

DDGS Composition (% dry basis)

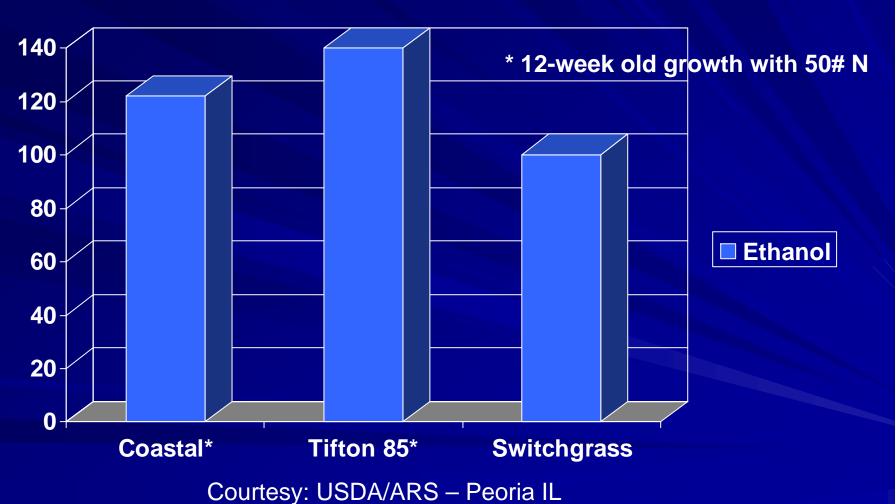
	Corn	Pearl millet	Difference
Protein	26.2	30.5	+16%
Fat	10.7	16.4	+53%
Crude fiber	7.3	5.9	-19%
Ash	3.8	5.5	+45%

Ethanol Feedstocks - Cellulosic sources (Anderson, Maas)

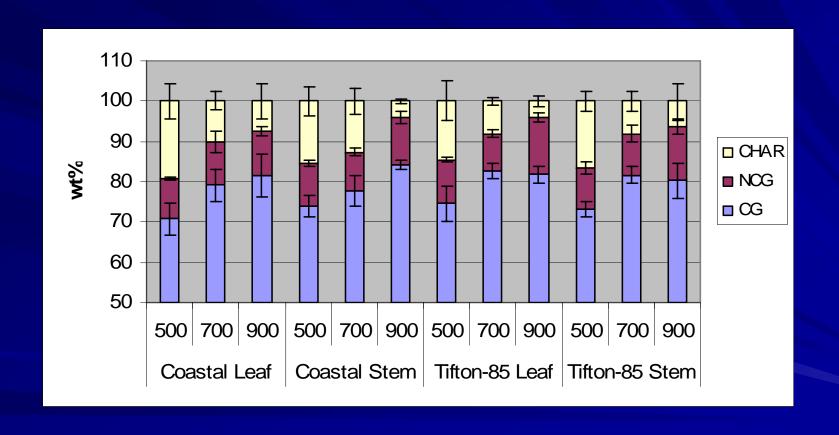
- Bermudagrass
- Napiergrass
- Testing of perennial grass and legume feedstocks
- Annual crops forage millet, sweet sorghum

Bermudagrass

- 600 + Forage bermudagrass PI collection
- Assessed and reestablished
- Developed core collection (168 PIs) for further analysis


Core Assessment

- In vitro Dry Matter Digestibility (IVDMD), NDF, ADF, ADL, – Develop NIRS calibrations for further use (ARS – Athens RRC – Barton
- Fall armyworm resistance (ARS Tifton Ni)
- Genetic relatedness (AFLP) lead to Marker-Assisted Breeding efforts
- Seed rates and viabilities

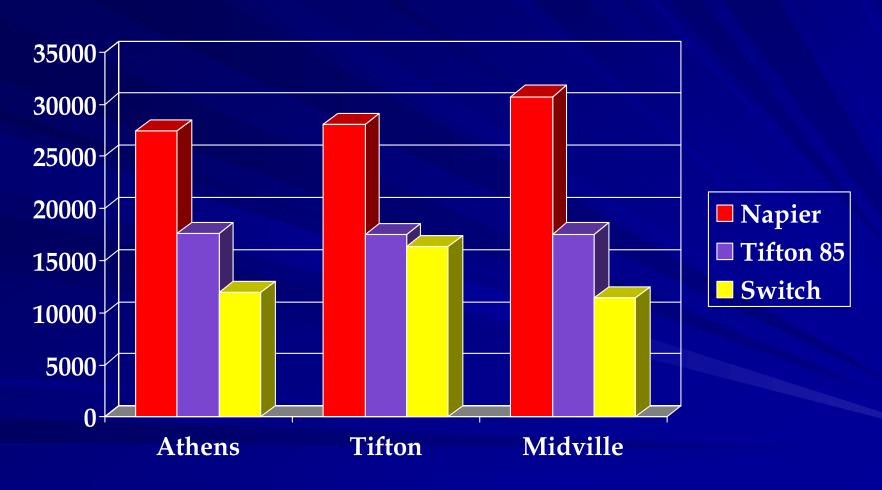

Evaluation for ethanol production

- Pre-treatments for improved conversion
 - Esterase/cellulase treatment (Athens, GA Akin)
 - Hot water treatments (University of Georgia -Peterson)
- Evaluate diversity of germplasm for ethanol production (Peoria – Dien)
- Calibration of NIRS with traits associated with ethanol production (Athens - Barton)
- Specific cell-wall chemistry and structural traits related to recalcitrance (Athens – Himmelsbach)

Ethanol yield comparison g/kg biomass

Pyrolysis of Bermudagrass – ARS – Wyndmoor (Boateng, Phillips)

Potential Dedicated Bio-energy Feedstocks


Napiergrass (Elephantgrass)

Grass Yields – 5 year average (kg/ha) 1997-2001 (J. Bouton)

Conversion comparisons

Material	Digestibility (IVDMD%)	% Lignin (ADL)	Ethanol (g/kg DW)
Tifton 85 bermuda	50	2.9 – 4.0	140
Napier Leaf	58	2.9 – 3.2	107
Napier Stem	43	6.0 - 7.6	95
Giant Reed leaf	54	3.6 – 4.4	105
Giant Reed stem	25	8.4 – 9.9	47

Multiple Species Biomass Test

July 2006

Biomass Test After One Year November 22, 2006

Other ARS Units – Tifton, GA

- USDA-ARS Southeast Watershed Research Laboratory
 - Effects of energy crops on soil and water aspects
- USDA-ARS Crop Protection and Management Research Unit
 - Pest management on intensive bio-energy crop production

Future work

- Bermudagrass
 - Continue to assess variability (Genetic, chemical make-up) (ARS)
 - With high digestible lines test pretreatment enzymes, microbes (ARS and UGA – Athens)
 - Develop seeded varieties
 - Develop molecular marker assisted breeding program for stress resistance/tolerance and quality traits (UGA)
 - Develop NIR equations for degradation and chemical components (ARS)

Future work

- Napiergrass
 - Assess variability in leaf and stem chemistry
 - Perform crosses and assess progeny for yield and 5 and 6 carbon sugar releases after pretreatments
 - Genetic analysis (AFLPs) MAS for degradable lines
- Other crops
 - Perform regional trials for dedicated biomass crops with ARS and State Cooperators