
 

Wastewater Management Fact Sheet 

1 

Membrane Bioreactors 
 
 
 
INTRODUCTION 
The technologies most commonly used for per-
forming secondary treatment of municipal 
wastewater rely on microorganisms suspended in 
the wastewater to treat it. Although these tech-
nologies work well in many situations, they have 
several drawbacks, including the difficulty of 
growing the right types of microorganisms and 
the physical requirement of a large site. The use 
of microfiltration membrane bioreactors 
(MBRs), a technology that has become increas-
ingly used in the past 10 years, overcomes many 
of the limitations of conventional systems. These 
systems have the advantage of combining a sus-
pended growth biological reactor with solids 
removal via filtration. The membranes can be 
designed for and operated in small spaces and 
with high removal efficiency of contaminants 
such as nitrogen, phosphorus, bacteria, bio-
chemical oxygen demand, and total suspended 
solids. The membrane filtration system in effect 
can replace the secondary clarifier and sand fil-
ters in a typical activated sludge treatment 
system. Membrane filtration allows a higher 
biomass concentration to be maintained, thereby 
allowing smaller bioreactors to be used.  

APPLICABILITY 
For new installations, the use of MBR systems 
allows for higher wastewater flow or improved 
treatment performance in a smaller space than a 
conventional design, i.e., a facility using secon-
dary clarifiers and sand filters. Historically, 
membranes have been used for smaller-flow sys-
tems due to the high capital cost of the 
equipment and high operation and maintenance 
(O&M) costs. Today however, they are receiving 
increased use in larger systems. MBR systems 
are also well suited for some industrial and 
commercial applications. The high-quality efflu-
ent produced by MBRs makes them particularly 
applicable to reuse applications and for surface 

water discharge applications requiring extensive 
nutrient (nitrogen and phosphorus) removal. 

ADVANTAGES AND DISADVANTAGES 
The advantages of MBR systems over conven-
tional biological systems include better effluent 
quality, smaller space requirements, and ease of 
automation. Specifically, MBRs operate at 
higher volumetric loading rates which result in 
lower hydraulic retention times. The low reten-
tion times mean that less space is required 
compared to a conventional system. MBRs have 
often been operated with longer solids residence 
times (SRTs), which results in lower sludge pro-
duction; but this is not a requirement, and more 
conventional SRTs have been used (Crawford et 
al. 2000). The effluent from MBRs contains low 
concentrations of bacteria, total suspended solids 
(TSS), biochemical oxygen demand (BOD), and 
phosphorus. This facilitates high-level disinfec-
tion. Effluents are readily discharged to surface 
streams or can be sold for reuse, such as irrig-
tion. 

The primary disadvantage of MBR systems is 
the typically higher capital and operating costs 
than conventional systems for the same through-
put. O&M costs include membrane cleaning and 
fouling control, and eventual membrane re-
placement. Energy costs are also higher because 
of the need for air scouring to control bacterial 
growth on the membranes. In addition, the waste 
sludge from such a system might have a low 
settling rate, resulting in the need for chemicals 
to produce biosolids acceptable for disposal 
(Hermanowicz et al. 2006). Fleischer et al. 2005 
have demonstrated that waste sludges from 
MBRs can be processed using standard tech-
nologies used for activated sludge processes. 



 

2 

MEMBRANE FILTRATION 
Membrane filtration involves the flow of water-
containing pollutants across a membrane. Water 
permeates through the membrane into a separate  

channel for recovery (Figure 1). Because of the 
cross-flow movement of water and the waste 
constituents, materials left behind do not accu-
mulate at the membrane surface but are carried 
out of the system for later recovery or disposal. 
The water passing through the membrane is 
called the permeate, while the water with the 
more-concentrated materials is called the con-
centrate or retentate. 

 
Figure 1.    Membrane filtration process 
(Image from Siemens/U.S. Filter) 

Membranes are constructed of cellulose or other 
polymer material, with a maximum pore size set 
during the manufacturing process. The require-

ment is that the membranes prevent passage of 
particles the size of microorganisms, or about 1 
micron (0.001 millimeters), so that they remain 
in the system. This means that MBR systems are 
good for removing solid material, but the re-
moval of dissolved wastewater components must 
be facilitated by using additional treatment steps. 

Membranes can be configured in a number of 
ways. For MBR applications, the two configura-
tions most often used are hollow fibers grouped 
in bundles, as shown in Figure 2, or as flat 
plates. The hollow fiber bundles are connected by 
manifolds in units that are designed for easy 
changing and servicing. 

 
Figure 2.     Hollow-fiber membranes (Image 
from GE/Zenon) 

DESIGN CONSIDERATIONS 
Designers of MBR systems require only basic 
information about the wastewater characteristics, 
(e.g., influent characteristics, effluent require-
ments, flow data) to design an MBR system. 
Depending on effluent requirements, certain 
supplementary options can be included with the 
MBR system. For example, chemical addition (at 
various places in the treatment chain, including: 
before the primary settling tank; before the sec-
ondary settling tank [clarifier]; and before the 
MBR or final filters) for phosphorus removal can 
be included in an MBR system if needed to 
achieve low phosphorus concentrations in the 
effluent. 

MBR systems historically have been used for 
small-scale treatment applications when portions 
of the treatment system were shut down and the 
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wastewater routed around (or bypassed) during 
maintenance periods. 

However, MBR systems are now often used in 
full-treatment applications. In these instances, it 
is recommended that the installation include one 
additional membrane tank/unit beyond what the 
design would nominally call for. This “N plus 1” 
concept is a blend between conventional acti-
vated sludge and membrane process design. It is 
especially important to consider both operations 
and maintenance requirements when selecting 
the number of units for MBRs.  The inclusion of 
an extra unit gives operators flexibility and en-
sures that sufficient operating capacity will be 
available (Wallis-Lage et al. 2006). For example, 
bioreactor sizing is often limited by oxygen 
transfer, rather than the volume required to 
achieve the required SRT—a factor that signifi-
cantly affects bioreactor numbers and sizing 
(Crawford et al. 2000). 

Although MBR systems provide operational 
flexibility with respect to flow rates, as well as 
the ability to readily add or subtract units as con-
ditions dictate, that flexibility has limits. 
Membranes typically require that the water sur-
face be maintained above a minimum elevation 
so that the membranes remain wet during opera-
tion. Throughput limitations are dictated by the 
physical properties of the membrane, and the 
result is that peak design flows should be no 

more than 1.5 to 2 times the average design flow. 
If peak flows exceed that limit, either additional 
membranes are needed simply to process the 
peak flow, or equalization should be included in 
the overall design. The equalization is done by 
including a separate basin (external equalization) 
or by maintaining water in the aeration and 
membrane tanks at depths higher than those re-
quired and then removing that water to 
accommodate higher flows when necessary (in-
ternal equalization).  

DESIGN FEATURES 
Pretreatment 
To reduce the chances of membrane damage, 
wastewater should undergo a high level of debris 
removal prior to the MBR. Primary treatment is 
often provided in larger installations, although 
not in most small to medium sized installations, 
and is not a requirement. In addition, all MBR 
systems require 1- to 3-mm-cutoff fine screens 
immediately before the membranes, depending 
on the MBR manufacturer. These screens require 
frequent cleaning. Alternatives for reducing the 
amount of material reaching the screens include 
using two stages of screening and locating the 
screens after primary settling. 

Membrane Location 
MBR systems are configured with the mem-
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Figure 3.    Immersed membrane system configuration (Image from GE/Zenon) 
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Figure 4.   External membrane system configuration (Image from Siemens/U.S. Filter)

branes actually immersed in the biological reac-
tor or, as an alternative, in a separate vessel 
through which mixed liquor from the biological 
reactor is circulated. The former configuration is 
shown in Figure 3; the latter, in Figure 4. 

Membrane Configuration 
MBR manufacturers employ membranes in two 
basic configurations: hollow fiber bundles and 
plate membranes. Siemens/U.S.Filter’s Memjet 
and Memcor systems, GE/Zenon’s ZeeWeed and 
ZenoGem systems, and GE/Ionics’ system use 
hollow-fiber, tubular membranes configured in 
bundles. A number of bundles are connected by 
manifolds into units that can be readily changed 
for maintenance or replacement. The other con-
figuration, such as those provided by 
Kubota/Enviroquip, employ membranes in a flat-
plate configuration, again with manifolds to al-
low a number of membranes to be connected in 
readily changed units. Screening requirements 
for both systems differ: hollow-fiber membranes 
typically require 1- to 2-mm screening, while 

plate membranes require 2- to 3-mm screening 
(Wallis-Lage et al. 2006). 

System Operation 
All MBR systems require some degree of pump-
ing to force the water flowing through the 
membrane. While other membrane systems use a 
pressurized system to push the water through the 
membranes, the major systems used in MBRs 
draw a vacuum through the membranes so that 
the water outside is at ambient pressure. The 
advantage of the vacuum is that it is gentler to 
the membranes; the advantage of the pressure is 
that throughput can be controlled. All systems 
also include techniques for continually cleaning 
the system to maintain membrane life and keep 
the system operational for as long as possible. 
All the principal membrane systems used in 
MBRs use an air scour technique to reduce 
buildup of material on the membranes. This is 
done by blowing air around the membranes out 
of the manifolds. The GE/Zenon systems use air 
scour, as well as a back-pulsing technique, in 
which permeate is occasionally pumped back 
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into the membranes to keep the pores cleared 
out. Back-pulsing is typically done on a timer, 
with the time of pulsing accounting for 1 to 5 
percent of the total operating time. 

Downstream Treatment 
The permeate from an MBR has low levels of 
suspended solids, meaning the levels of bacteria, 
BOD, nitrogen, and phosphorus are also low. 
Disinfection is easy and might not be required, 
depending on permit requirements.. 

The solids retained by the membrane are recy-
cled to the biological reactor and build up in the 
system. As in conventional biological systems, 
periodic sludge wasting eliminates sludge 
buildup and controls the SRT within the MBR 
system. The waste sludge from MBRs goes 
through standard solids-handling technologies 
for thickening, dewatering, and ultimate dis-
posal. Hermanowicz et al. (2006) reported a 
decreased ability to settle in waste MBR sludges 
due to increased amounts of colloidal-size parti-
cles and filamentous bacteria. Chemical addition 
increased the ability of the sludges to settle. As 
more MBR facilities are built and operated, a 
more definitive understanding of the characteris-
tics of the resulting biosolids will be achieved. 
However, experience to date indicates that con-
ventional biosolids processing unit operations 
are also applicable to the waste sludge from 
MBRs. 

Membrane Care 
The key to the cost-effectiveness of an MBR 
system is membrane life. If membrane life is 
curtailed such that frequent replacement is re-
quired, costs will significantly increase. 
Membrane life can be increased in the following 
ways: 

- Good screening of larger solids before the 
membranes to protect the membranes from 
physical damage. 

- Throughput rates that are not excessive, i.e., 
that do not push the system to the limits of 
the design. Such rates reduce the amount of 
material that is forced into the membrane and 
thereby reduce the amount that has to be re-

moved by cleaners or that will cause eventual 
membrane deterioration. 

- Regular use of mild cleaners. Cleaning so-
lutions most often used with MBRs include 
regular bleach (sodium) and citric acid. The 
cleaning should be in accord with manufac-
turer-recommended maintenance protocols. 

Membrane Guarantees 
The length of the guarantee provided by the 
membrane system provider is also important in 
determining the cost-effectiveness of the system. 
For municipal wastewater treatment, longer 
guarantees might be more readily available com-
pared to those available for industrial systems. 
Zenon offers a 10-year guarantee; others range 
from 3 to 5 years. Some guarantees include cost 
prorating if replacement is needed after a certain 
service time. Guarantees are typically negotiated 
during the purchasing process. Some manufac-
turers’ guarantees are tied directly to screen size: 
longer membrane warranties are granted when 
smaller screens are used (Wallis-Lage et al. 
2006). Appropriate membrane life guarantees 
can be secured using appropriate membrane pro-
curement strategies (Crawford et al. 2002). 

SYSTEM PERFORMANCE 
Siemens/U.S. Filter Systems 
Siemens/U.S.Filter offers MBR systems under 
the Memcor and Memjet brands. Data provided 
by U.S. Filter for its Calls Creek (Georgia) facil-
ity are summarized below. The system, as Calls 
Creek retrofitted it, is shown in Figure 5. In es-
sence, the membrane filters were used to replace 
secondary clarifiers downstream of an Orbal 
oxidation ditch. The system includes a fine 
screen (2-mm cutoff) for inert solids removal just 
before the membranes. 

The facility has an average flow of 0.35 million 
gallons per day (mgd) and a design flow of 0.67 
mgd. The system has 2 modules, each containing 
400 units, and each unit consists of a cassette 
with manifold-connected membranes. As shown 
in Table 1, removal of BOD, TSS, and ammonia-
nitrogen is excellent; BOD and TSS in the efflu-
ent are around the detection limit. Phosphorus is 
also removed well in the system, and the effluent 
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has very low turbidity. The effluent has consis-
tently met discharge limits. 

Zenon Systems 
General Electric/Zenon provides systems under 
the ZenoGem and ZeeWeed brands. The Zee-
Weed brand refers to the membrane, while 
ZenoGem is the process that uses ZeeWeed. 

Performance data for two installed systems are 
shown below. 

Cauley Creek, Georgia. The Cauley Creek fa-
cility in Fulton County, Georgia, is a 5-mgd 
wastewater reclamation plant. The system  
includes biological phosphorus removal, mixed 
liquor surface wasting, and sludge thickening 
using a ZeeWeed system to minimize the re-
quired volume of the aerobic digester, according 
to information provided by GE. Ultraviolet disin-
fection is employed to meet regulatory limits. 
Table 2 shows that the removal for all parame-

Table 1.  
Calls Creek results 2005 

Parameter Influent Effluent 
 Average Average Max Month Min Month 
Flow (mgd) 0.35 -- 0.44 0.26 
BOD (mg/L) 145 1 1 1 
TSS (mg/L) 248 1 1 1 
Ammonia-N (mg/L) 14.8 0.21 0.72 0.10 
P (mg/L) 0.88 0.28 0.55 0.12 
Fecal coliforms (#/100 mL) -- 14.2 20 0 
Turbidity (NTU) -- 0.30 1.31 0.01 

 

Figure 5.    Calls Creek flow diagram (courtesy of Siemens/U.S. Filter) 
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Table 2.  
Cauley Creek, Georgia, system performance 

Parameter Influent Effluent 

 Average Average Max Month Min Month 
Flow (mgd) 4.27 -- 4.66 3.72 
BOD (mg/L) 182 2.0 2.0 2.0 
COD (mg/L) 398 12 22 5 
TSS (mg/L) 174 3.2 5 3 
TKN (mg/L) 33.0 1.9 2.9 1.4 
Ammonia-N (mg/L) 24.8 0.21 0.29 0.10 
TP (mg/L) 5.0 0.1 0.13 0.06 
Fecal coliforms (#/100 mL) -- 2 2 2 
NO3-N (mg/L) -- 2.8   

ters is over 90 percent. The effluent meets all 
permit limits, and is reused for irrigation and 
lawn watering. 

Traverse City, Michigan. The Traverse City 
Wastewater Treatment Plant (WWTP) went 
through an upgrade to increase plant capacity 
and produce a higher-quality effluent, all within 
the facility’s existing plant footprint (Crawford 
et al. 2005). With the ZeeWeed system, the facil-
ity was able to achieve those goals. As of 2006, 
the plant is the largest-capacity MBR facility in 
North America. It has a design average annual 
flow of 7.1 mgd, maximum monthly flow of 8.5 
mgd, and peak hourly flow of 17 mgd. The 
membrane system consists of a 450,000-gallon 
tank with eight compartments of equal size. Sec-
ondary sludge is distributed evenly to the 
compartments. Blowers for air scouring, as well 
as permeate and back-pulse pumps, are housed in 
a nearby building. 

Table 3 presents a summary of plant results over 
a 12-month period. The facility provides excel-
lent removal of BOD, TSS, ammonia-nitrogen, 
and phosphorus. Figure 6 shows the influent, 
effluent, and flow data for the year. 

Operating data for the Traverse City WWTP 
were obtained for the same period. The mixed 
liquor suspended solids over the period January 
to August averaged 6,400 mg/L, while the mixed 
liquor volatile suspended solids averaged 4,400 
mg/L. The energy use for the air-scouring blow-

ers averaged 1,800 kW-hr/million gallons (MG) 
treated. 

COSTS 
Capital Costs 
Capital costs for MBR systems historically have 
tended to be higher than those for conventional 
systems with comparable throughput because of 
the initial costs of the membranes. In certain 
situations, however, including retrofits, MBR 
systems can have lower or competitive capital 
costs compared with alternatives because MBRs 
have lower land requirements and use smaller 
tanks, which can reduce the costs for concrete. 
U.S. Filter/Siemen’s Memcor package plants 
have installed costs of $7–$20/gallon treated. 

Fleischer et al. (2005) reported on a cost com-
parison of technologies for a 12-MGD design in 
Loudoun County, Virginia. Because of a chemi-
cal oxygen demand limit, activated carbon 
adsorption was included with the MBR system. 
It was found that the capital cost for MBR plus 
granular activated carbon at $12/gallon treated 
was on the same order of magnitude as alterna-
tive processes, including multiple-point alum 
addition, high lime treatment, and post-
secondary membrane filtration. 

Operating Costs 
Operating costs for MBR systems are typically 
higher than those for comparable conventional 
systems. This is because of the higher energy 
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Table 3.  
Summary of Traverse City, Michigan, Performance Results 

Parameter Influent Effluent 

 Average Average Max Month Min Month 
Flow (mgd) 4.3 -- 5.1 3.6 
BOD (mg/L) 280 < 2 < 2 < 2 
TSS (mg/L) 248 < 1 < 1 < 1 
Ammonia-N (mg/L) 27.9 < 0.08 < 0.23 < 0.03 
TP (mg/L) 6.9 0.7 0.95 0.41 
Temperature (deg C) 17.2 -- 23.5 11.5 
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Figure 6.   Performance of the Traverse City plant 

costs if air scouring is used to reduce membrane 
fouling. The amount of air needed for the scour-
ing has been reported to be twice that needed to 
maintain aeration in a conventional activated 
sludge system (Scott Blair, personal communica-
tion, 2006). These higher operating costs are 
often partially offset by the lower costs for 
sludge disposal associated with running at longer 
sludge residence times and with membrane 
thickening/dewatering of wasted sludge. 

Fleischer et al. (2005) compared operating costs. 
They estimated the operating costs of an MBR 
system including activated carbon adsorption at 
$1.77 per 1,000 gallons treated. These costs were 

of the same order of magnitude as those of alter-
native processes, and they compared favorably to 
those of processes that are chemical-intensive, 
such as lime treatment. 
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