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Chapter 9

OVERVIEW OF PART II:
THE ANALYSIS OF 1996 NAEP DATA1

Nancy L. Allen and James E. Carlson
Educational Testing Service

9.1 INTRODUCTION

The purpose of this chapter is to summarize some information from previous chapters that is
integral to the analysis of NAEP data, to summarize the analysis steps used for all subjects, and to
indicate what information is in each of the remaining chapters. The overview of the analyses conducted
on the 1996 NAEP data focuses on the common elements of the analyses used across the subject areas of
the assessment. Some of this information is available only within this chapter. Details by subject area are
provided in Chapters 12 through 17.

The organization of this chapter is as follows:

•  Section 9.2 provides a short overview of the NAEP design for 1996. To provide
additional background information, the section also provides a short description of
the samples selected for 1996. Chapters 1 through 8 provide this same information in
much more detail.

 
•  Section 9.3 summarizes the steps in analysis common to all subject areas. Some of

this information is described in more detail in other chapters. The rest is included
only within this chapter. The topics covered are as follows:

 
•  Section 9.3.1 briefly describes the preparation of the final sampling weights.

Detailed information about the weighting procedures is given in Chapter 10. Detailed
information about the sampling design is in Chapter 3.

 
•  Section 9.3.2 provides information about the scoring reliability of constructed-

response items. It provides information about the reliability measures used with the
NAEP data during analysis. Chapter 7 contains information about the reliability
procedures used during the scoring process.

 
•  Section 9.3.3 summarizes the information provided by the teacher questionnaires,

and indicates its use during the analysis process.
 
•  Section 9.3.4 provides a description of the item properties examined for background

questions and for cognitive items. It includes a description of the classical item
statistics examined for both dichotomously and polytomously scored items.  It also

                                                          
1 Nancy L. Allen was responsible for the psychometric and statistical analyses of national and state NAEP data. James E. Carlson
was responsible for psychometric and statistical analyses relating to special aspects and issues of NAEP. Eugene G. Johnson,
John Mazzeo, Spencer S. Swinton, and Rebecca Zwick also contributed to this chapter.
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includes a description of the item-level results available from summary data tables.
Chapter 18 contains more information about the conventions used in creating these
summary tables. Finally, a thorough description of differential item functioning
analyses is provided.

 
•  Section 9.3.5 summarizes the steps used to scale NAEP data. The steps include IRT

scaling of the items, generation of plausible values (conditioning), transforming the
results to the final reporting scale, creating composite scores if necessary, and
providing tables of reported statistics. Details of the theory behind these steps are
available in Chapter 11.

 
•  Section 9.3.6 provides some information about previous results of dimensionality

analyses.
 
•  Finally, Section 9.3.7 gives an introduction to hypothesis testing and drawing correct

conclusions about NAEP data. Specific information about which hypothesis test
procedures were used for different purposes is provided in Chapter 18.

 
•  Section 9.4 contains a description of the information provided in Chapters 10

through 19 of this report.

9.2 SUMMARY OF THE NAEP DESIGN

As described in Chapter 1, the 1996 NAEP comprised three major components. One component
encompassed major assessments in mathematics and science, providing detailed information about
student proficiency at the fourth-, eighth-, and twelfth-grade levels of nonpublic and public schools.
Long-term trend assessments of science, mathematics, and reading at ages 9, 13, and 17, and the long-
term trend writing assessment for grades 4, 8, and 11, constituted the second component. The third major
component was the State Assessment at the fourth- and eighth-grade levels in mathematics and at the
eighth-grade level in science. Technical details of the State Assessments are not included in this report
but are presented in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics
(Allen, Jenkins, Kulick, & Zelenak, 1997) and the Technical Report of the NAEP 1996 State Assessment
Program in Science (Allen, Swinton, Isham, & Zelenak, 1997).

In addition to the three major components, special studies of advanced mathematics students at
the eighth- and twelfth-grade levels and advanced science students at the twelfth-grade level were
conducted. The results from and procedures used in these special studies are reported in separate
documents. Likewise, results from a study of holistic scores for the long-term trend writing task
responses are reported in a separate document. Results based on primary trait scores for the same writing
tasks are reported in the NAEP 1996 Trends in Academic Progress (Campbell, Voelkl, & Donahue,
1997), and the analyses contributing to those results are described in Chapters 14-17 of this document.
Finally, results for the items associated with specific mathematics themes are reported elsewhere.

Results from the analyses described in the following chapters were reported in the following
reports:

•  The NAEP 1996 Mathematics Report Card for the Nation and the States, which
provides both public- and nonpublic-school data for major NAEP reporting
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subgroups for all of the jurisdictions that participated in the State Assessment program, as
well as selected results from the 1996 national mathematics assessment.

 
•  The NAEP 1996 Science Report Card for the Nation and the States, which provides both

public- and nonpublic-school data for major NAEP reporting subgroups for all of the
jurisdictions that participated in the State Assessment program, as well as selected results
from the 1996 national science assessment.

 
•  The Cross-State Data Compendium for the NAEP 1996 Mathematics Assessment, which

includes jurisdiction-level results for all the demographic, instructional, and experiential
background variables included in the Mathematics Report Card and State Reports.

•  The Cross-State Data Compendium for the NAEP 1996 Science Assessment, which
includes jurisdiction-level results for all the demographic, instructional, and experiential
background variables included in the Science Report Card and State Reports.

•  The NAEP 1996 Trends in Academic Progress, which looks at trends in average
performance over time in the areas of mathematics, science, reading, and writing. [Please
note that a review of the 1996 long-term trend writing assessment data analyses has been
undertaken by NCES. Additional analyses may be required before revised results are
released.]

Because the samples of students included in the 1996 NAEP assessment are listed and described in
detail in Chapter 1, only a brief description of these samples is given here. The 1996 national samples were
of three general types: main NAEP samples, which were based on a common set of assessment procedures,
including grade-level samples; long-term trend samples, the purpose of which was to provide links to
earlier assessments; and special study samples, used to examine results for advanced mathematics and
science students.

To shorten the timetable for reporting results, the period for national main assessment data
collection was shortened in 1992, 1994, and 1996 from the five-month period (January through May) used
in 1990 and earlier assessments to a three-month period in the winter (January through March,
corresponding to the period used for the winter half-sample of the 1990 National Assessment). [Please note
that a review of the 1996 long-term trend writing assessment data analyses has been undertaken by NCES.
Additional analyses may be required before revised results are released.]

The 1996 analyses of long-term trend data extended the trend lines commencing in 1971 in
reading, 1973 in mathematics, 1969 in science, and 1984 in writing.

As described in Chapters 1 and 4, for each subject area in the main assessment, blocks of items
were used to create a large number of different assessment booklets according to a focused design. The
1996 mathematics assessment used a focused balanced incomplete block (focused-BIB) design while the
1996 science assessment used a more complex design due to the inclusion of blocks of items associated
with a specific theme or hands-on performance task. The focused-BIB design provided for booklets that
typically included three blocks of cognitive items in a single subject area, as well as background items. The
blocks of cognitive items for mathematics and science included both multiple-choice and constructed-
response items. In a focused-BIB design, each block of cognitive items appears in the same number of
booklets. To balance possible block position main effects, each block appears an equal number of times in
each position. In addition, the BIB design requires that each block of items be paired in a booklet with
every other block of items exactly once.
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9.3 ANALYSIS STEPS

Because the analysis methods are not identical across subject areas or across major national and
long-term trend samples, a separate analysis chapter has been included for each major assessment and for
each long-term trend assessment. The procedures used depended on whether assessment items were
scored dichotomously (right versus wrong) or polytomously (more than two categories of response) and
whether links across grade levels were required. Basic procedures common to most or all of the subject
area analyses are summarized here. The order is essentially that in which the procedures were carried out.

9.3.1 Preparation of Final Sampling Weights

Because NAEP uses a complex sampling design (Chapter 3) in which students in certain
subpopulations have different probabilities of inclusion in the sample, the data collected from each
student must be assigned a weight to be used in analyses. The 1996 NAEP weights were provided by
Westat, Inc., the NAEP contractor in charge of sampling. Detailed information about the weighting
procedures is available in Chapter 10 and in The 1996 NAEP Sampling and Weighting Report (Wallace &
Rust, 1999).

9.3.2 Reliability of Scoring Constructed-Response Items

A minimum of 25 percent of the responses for science items involved only in the national
assessment and six percent of the responses for mathematics and science items involved in both the
national and state assessments were scored by a second reader to obtain statistics on interreader
(interrater) reliability. Ranges for percentage of exact agreement for state and national assessments,
together, of mathematics and science can be found in Table 9-1. Average percentage of exact agreement
for each booklet type (spiral and advanced) can be found in Tables 7-5 and 7-6 in Chapter 7. This
reliability information was also used by the team leaders to monitor the capabilities of all readers and
maintain uniformity of scoring across readers. More information about this use of the reliability
information is in Chapter 7.

Table 9-1
1996 Mathematics and Science State and National Assessments

Ranges of Percentage Exact Agreement Among Readers

Number of
Unique Items

Number of Items in Percentage
Exact Agreement Range

Assessment Total 70-79% 80-89% Above 90%
Mathematics

4th grade 79 0 11 68
8th grade 98 1 5 92
12th grade 96 1 9 86

Science
4th grade 94 0 13 81
8th grade 125 0 20 105
12th grade 156 0 26 130
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In addition to reliability information calculated and used during the scoring process, several
additional reliability measures are calculated for constructed-response items after the item response data
has been placed on the NAEP database. They appear in Appendix I. These include a final percentage
exact agreement, the intraclass correlation, Cohen’s Kappa (Cohen, 1968), and the product-moment
correlation between the scores for the first and second readers. These measures are summarized in Zwick
(1988), Kaplan and Johnson (1992), and Abedi (1996). Each measure has advantages and disadvantages
for use in different situations. In this report, the percentage exact agreement is reported for all
constructed-response items, Cohen’s Kappa is reported for dichotomously scored constructed-response
items, and the intraclass correlation is reported for polytomously scored constructed-response items.

9.3.3 Teacher Questionnaires

Teachers of students who were in the fourth- and eighth-grade mathematics and science main
assessment samples and twelfth-grade advanced mathematics samples were asked to complete a two-part
questionnaire. The first part of the questionnaire pertained to the teacher’s background and training
(Parts I and IIA in Chapter 2). The second part pertained to the procedures used by the teacher for
specific classes containing assessed students (Part IIB in Chapter 2). See Chapter 2 for a description of
the teacher questionnaires.

To analyze the data from the teacher questionnaires with respect to the students’ data, each
teacher’s questionnaire had to be matched to all of the sampled students who were taught by that teacher.
In the subsequent chapters two separate match rates for each grade are given. The first is the percentage
of students that could be matched to both the first and second parts of the teacher questionnaire. For these
students, information is available not only about the background and training of their teachers, but also
about the methods used in the particular class they attended. The second match rate is the percentage of
students that could be matched to the first part of the teacher questionnaire. This match rate is larger
because more students could be matched with information about a teacher than with information about
the particular class they attended. Note that these match rates only reflect the student-level missing data.
They do not reflect the additional missing data due to item-level nonresponse on the part of teachers.
Variables derived from the teacher questionnaires were used as reporting variables at the student level
and as variables that contributed to conditioning for the appropriate samples.

Teachers of students who were in the grade 4 mathematics main assessment sample were asked
to complete a two-part questionnaire. As with the grade 8 teacher questionnaire, the first part pertained to
the teacher’s background and training. Unlike the grade 8 teacher questionnaire, the second part
pertained to only a single class that the teacher taught. In development of the questionnaires, it was
thought that fourth-grade teachers would teach one class in each subject. In practice, that was found to be
untrue for a number of teachers. A single student-teacher match rate matching students to the first part of
the questionnaire is reported for grade 4 in the following chapters.

9.3.4 Analysis of Item Properties: Background and Cognitive Items

The first step in the analysis of the 1996 data was item-level analysis of all instruments. Item
analyses were performed separately for each grade or age level on each item in each subject area. Each
block of items was analyzed separately, by age or grade, with the total score on the block (including the
analyzed item) used as the criterion score for statistics requiring such a score. In the cases where final
weights were not available, preliminary weights were used in these preliminary analyses. The item
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analysis of cognitive items was repeated after scaling of the items was completed. The results for only
scaled items using final weights are reported in Chapters 12 through 17.

� Background Items

For each NAEP background item, the unweighted and weighted percent of students who gave
each response were examined, as well as the percent of students who omitted the item and the percent
who did not reach the item. The number of respondents was also tabulated. These preliminary analyses
were conducted within age/grade cohorts and within major reporting categories. If unexpected results
were found, the item data and the encoding of responses were rechecked.

� Cognitive Items

All NAEP cognitive items were subjected to analyses of item properties. These analyses included
conventional item analyses and incorporated examinee sampling weights. Item analysis was conducted at
the block level so that the “number-correct” scores for students responding to an item, selecting each
option of an item, omitting an item, or not reaching an item, is the average number of correct responses
for the block containing that item. Because of the inclusion of polytomously scored items in the cognitive
instruments, it was necessary to use special procedures for these items. The resulting statistics are
analogous to those for the dichotomously scored items, as listed below.

Dichotomously Scored Items. These items were analyzed using standard procedures that result
in a report for each item that includes:

� for each option of the item, for examinees omitting and not reaching the item, and for
the total sample of examinees:

⇒  the number of examinees,
 

⇒  the percentage of examinees,
 

⇒  the mean of number-correct scores for the block in which the item appears, and
 

⇒  the standard deviation of number-correct scores for the block in which the item
appears;

•  the percentage of examinees providing a response that was “off-task;”
 
•  p+, the proportion of examinees that received a correct score on the item (ratio of

number correct to number correct plus wrong plus omitted);
 

•  �, the inverse-normally transformed p+ scaled to mean 13 and standard deviation 4;
 

•  the biserial correlation coefficient between the item and the number-correct scores
for the block in which the item appears; and

 
•  the point-biserial correlation coefficient between the item and the number-correct

scores for the block in which the item appears.
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Polytomously Scored Items. Enhanced procedures were employed for polytomously scored
items. Methods parallel to those used for dichotomously scored items resulted in values reported for each
distinct response category for the item. Response categories for each item were defined in two ways, one
based on the original codes for responses as specified in the scoring rubrics used by the scorers (and the
position of the item for which no response was given) and one based on a scoring guide developed by
subject area and measurement experts. For example, a constructed-response item with four response
categories would initially have seven categories (not-reached, omitted, “off-task,” and the four valid
response categories). Another set of statistics resulted from mapping the response categories (excluding
not-reached) into a new set of categories reflecting the scoring guide for the item. A constructed-response
item with ordered categories, for example, would be mapped into a set of integers in a corresponding
order. The scoring guide could result in the collapsing of (combining of) some response categories. The
response categories, based on the final scoring guide developed by subject area and measurement experts,
were used to calculate the polytomously scored item statistics.

The following statistics, analogous to those for dichotomously scored items, were computed:

•  the percentage of examinees providing a response that was “off-task;”
 
•  in place of p+, the ratio of the mean item score to the maximum-possible item score

was used;
 

•  in place of �, the ratio of the mean item score to the maximum-possible item score
underwent the same transformation as that used on p+ to get � for dichotomously
scored items;

 
•  the polyserial correlation coefficient was used in place of the biserial; and

 
•  the Pearson correlation coefficient was used in place of the point-biserial.

� Tables of Item-Level Results

Tables were created of the percentages of students choosing each of the possible responses to
each item within each of the samples administered in 1996. The results for each item were cross-
tabulated against the basic reporting variables such as region, gender, race/ethnicity, public/nonpublic
school, and parental education. All percentages were computed using the sampling weights. These tables
are referred to as the Test Question section of the electronically delivered summary data tables for each
sample (see Chapter 18 for a brief description of summary data tables). In the summary data tables, the
sampling variability of all population estimates was obtained by the jackknife procedure used by ETS in
previous assessments. Details of these procedures are presented in Chapter 10.

� Differential Item Functioning Analysis of Cognitive Items

Differential item functioning (DIF) analysis refers to procedures to assess whether items are
differentially difficult for different groups of examinees. DIF procedures typically control for overall
between-group differences on a criterion, usually by matching examinees from the two groups on overall
test scores. Between-group performance on each item is then compared within sets of examinees having
the same total test scores.
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DIF analyses were conducted for items in the main assessments in mathematics and science that
had not previously been studied for differential item functioning. Each set of analyses involved three
reference group/focal group comparisons: male/female, White/Black, and White/Hispanic.

The DIF analyses of the dichotomous items were based on the Mantel-Haenszel chi-square
procedure, as adapted by Holland and Thayer (1988). The procedure tests the statistical hypothesis that
the odds of correctly answering an item are the same for two groups of examinees that have been
matched on some measure of proficiency (usually referred to as the matching criterion). The DIF
analyses of the polytomous items were based on the Mantel procedure (Mantel, 1963). These procedures
compare proportions of matched examinees from each group in each polytomous item response category.
The groups being compared are often referred to as the focal group (usually a minority or other group of
interest, such as Black examinees or female examinees) and the reference group (usually White
examinees or male examinees).

For both types of analyses, the measure of proficiency used is typically the total item score on
some collection of items. Since, by the nature of the BIB design, booklets comprise different
combinations of blocks, there is no single set of items common to all examinees. Therefore, for each
student, the measure of proficiency used was the total item score on the entire booklet. These scores were
then pooled across booklets for each analysis. This procedure is described by Allen and Donoghue (1994,
1996). In addition, because research results (Zwick & Grima, 1991) strongly suggest that sampling
weights should be used in conducting DIF analyses, the weights were used.

For each dichotomous item in the assessment, an estimate of the Mantel-Haenszel common odds-
ratio, expressed on the ETS delta scale for item difficulty, was produced. The estimates indicate the
difference between reference group and focal group item difficulties (measured in ETS delta scale units),
and typically run between about +3 and -3. Positive values indicate items that are differentially easier for
the focal group than the reference group after making an adjustment for the overall level of proficiency in
the two groups. Similarly, negative values indicate items that are differentially harder for the focal group
than the reference group. It is common practice at ETS to categorize each item into one of three
categories (Petersen, 1988): “A” (items exhibiting no DIF), “B” (items exhibiting a weak indication of
DIF), or “C” (items exhibiting a strong indication of DIF). Items in category “A” have Mantel-Haenszel
common odds ratios on the delta scale that do not differ significantly from 0 at the alpha = .05 level or
are less than 1.0 in absolute value. Category “C” items are those with Mantel-Haenszel values that are
significantly greater than 1 and larger than 1.5 in absolute magnitude. Other items are categorized as “B”
items. A plus sign (+) indicates that items are differentially easier for the focal group; a minus sign (-)
indicates that items are differentially more difficult for the focal group.

The ETS/NAEP DIF procedure for polytomous items uses the Mantel-Haenszel ordinal
procedure. The summary tables of identified polytomous items contain generalizations of the
dichotomous “A,” “B,” and “C” categories: “AA,” “BB,” or “CC.”

All analyses used rescaled sampling weights. A separate rescaled weight was defined for each
comparison as

where the total sample size is the total number of students for the two groups being analyzed (e.g., for the
White/Hispanic comparison, the total number of White and Hispanic examinees in the sample at that
grade), and the sum of the weights is the sum of the sampling weights of all the students in the sample for

Rescaled Weight =  Original Weight x 
Total Sample Size

Sum of the Weights
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the two groups being analyzed. Three rescaled weights were computed for White examinees one for the
gender comparison and two for the race/ethnicity comparisons. Two rescaled overall weights were
computed for the Black and Hispanic examinees��one for the gender comparison and another for the
appropriate race/ethnicity comparison. The rescaled weights were used to ensure that the sum of the
weights for each analysis equaled the number of students in that comparison, thus providing an accurate
basis for significance testing.

In the calculation of total item scores for the matching criterion, both not-reached and omitted
items were considered to be wrong responses. Polytomous items were weighted more heavily in the
formation of the matching criterion, proportional to the number of score categories. For each item,
calculation of the Mantel-Haenszel statistic did not include data from examinees who did not reach the
item in question.

Each DIF analysis was a two-step process. In the initial phase, total item scores were formed, and
the calculation of DIF indices was completed. Before the second phase, the matching criterion was
refined by removing all “C” or “CC” items, if any, from the total item score. The revised score was used
in the final calculation of all DIF indices. Note that when analyzing an item classified as “C” or “CC” in
the initial phase, that item score is added back into the total score for the analysis of that item only.

Following standard practice at ETS for DIF analyses conducted on final forms, all “C” or “CC”
items were reviewed by a committee of trained test developers and subject-matter specialists. Such
committees are charged with making judgments about whether or not the differential difficulty of an item
is unfairly related to group membership. The committee assembled to review NAEP items included both
ETS staff and outside members with expertise in the field. The committee carefully examined each
identified item to determine if either the language or contents would tend to make the item more difficult
for an identified group of examinees. It was the committee’s judgment that none of the “C” or “CC”
items in the national assessment were functioning differentially due to factors irrelevant to test
objectives. Hence, none of the items were removed from scaling due to differential item functioning. As
pointed out by Zieky (1993):

It is important to realize that DIF is not a synonym for bias. The item response theory based
methods, as well as the Mantel-Haenszel and standardization methods of DIF detection, will identify
questions that are not measuring the same dimension(s) as the bulk of the items in the matching
criterion....Therefore, judgment is required to determine whether or not the difference in difficulty
shown by a DIF index is unfairly related to group membership. The judgment of fairness is based on
whether or not the difference in difficulty is believed to be related to the construct being
measured....The fairness of an item depends directly on the purpose for which a test is being used.
For example, a science item that is differentially difficult for women may be judged to be fair in a
test designed for certification of science teachers because the item measures a topic that every entry-
level science teacher should know. However, that same item, with the same DIF value, may be
judged to be unfair in a test of general knowledge designed for all entry-level teachers. (p. 340)

9.3.5 Scaling

Scales based on item response theory (IRT) were derived for each subject area. A single scale
was used for summarizing long-term trends at each age or grade level in each of the subject areas. Five
scales were created for mathematics main assessment data, one for each mathematics content strand, and
three scales were created for science data, one for each field of science. NAEP uses the methodology of
multiple imputations (plausible values) to estimate characteristics of the proficiency distributions.
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Chapter 11 describes in detail the theoretical underpinnings of NAEP’s scaling methods and the required
estimation procedures. The basic analysis steps are outlined here.

1. Use the NAEP-BILOG/PARSCALE computer program (described in Chapter 11) to
estimate the parameters of the item response functions on an arbitrary provisional
scale. This program uses an IRT model incorporating the two- and three-parameter
logistic forms used in previous assessments for dichotomously scored items and the
generalized partial credit form for polytomously scored items. In order to select
starting values for the iterative parameter-estimation procedure for each dataset, the
program is first run to convergence, imposing the condition of a fixed normal prior
distribution of the proficiency variable. Once these starting values are computed, the
main estimation runs model ability as a multinomial distribution. That is, no prior
assumption about the shape of the proficiency distribution is made. In analyses
involving more than one population, estimates of parameters are made with the
overall mean and standard deviation of all subjects’ proficiencies specified to be 0
and 1, respectively.

2. Use a version of the MGROUP program (described in Chapter 11), which
implements the method of Mislevy (see Chapter 11 or Mislevy, 1991) to estimate
predictive proficiency distributions for each student on an arbitrary scale, based on
the item parameter estimates and the student’s responses to cognitive items and
background questions.

3. Use random draws from these predictive proficiency distributions (plausible values,
in NAEP terminology) for computing the statistics of interest, such as mean
proficiencies for demographic groups.

4. Determine the appropriate metric for reporting the results and transform the results
as needed. This includes the linking of current scales to scales from the past or the
selection of the mean and variance of new scales. After proficiency distributions for
the scaling are transformed, composite proficiency distributions are created for the
mathematics and science assessments.

5. Use the jackknife procedure to estimate the standard errors of the mean proficiencies
for the various demographic groups.

As explained in Chapter 11, the plausible values obtained through the IRT approach are not
optimal estimates of individual proficiency; instead, they serve as intermediate values to be used in
estimating subpopulation characteristics. Under the assumptions of the scaling models, these
subpopulation estimates are statistically consistent, which would not be true of subpopulation estimates
obtained by aggregating optimal estimates of individual proficiency.

� Scaling the Cognitive Items

The data from both the trend and the main assessment samples were scaled using IRT models.
For dichotomously scored items two- and three-parameter logistic forms of the model were used, while
for polytomously scored items the generalized partial credit model form was used. These two types of
items and models were combined in the NAEP scales. Item parameter estimates on a provisional scale
were obtained using the NAEP BILOG/PARSCALE program. The fit of the IRT model to the observed
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data was examined within each scale by comparing the empirical item response functions with the
theoretical curves, as described in Chapter 11. Plots of the empirical item response functions and
theoretical curves were compared across assessments for long-term trend assessments. The DIF analyses
previously described provide information related to the model fit across subpopulations.

Long-Term Trend Scaling. Item parameters for science, mathematics, reading, and writing
trends were reestimated, separately for each age or age/grade group using the data from the 1994
assessment as well as data from the 1996 assessment. The resulting scales, based on these reestimated
item parameters, were then linked to the existing long-term trend scales. [Please note that a review of the
1996 long-term trend writing assessment data analyses has been undertaken by NCES. Additional
analyses may be required before revised results are released.]

Main Assessment Scaling. The main assessments of mathematics and science both have special
characteristics that determine the procedures that were followed for the scaling and of each subject. For
mathematics, a key consideration was the degree of similarity between the 1996 assessment and earlier
assessments in terms of the populations assessed and the characteristics of the assessment instrument
used. This was due to the fact that the mathematics scales were linked to existing mathematics scales. For
science, characteristics of items associated with particular themes and hands-on performance tasks were
of concern. The science scales were not linked to any previously defined scales.

The frameworks for the different subject areas dictate differences in the numbers of scales. For
mathematics and science, item parameter estimation was performed separately for each of several scales
defined in their frameworks, using data from each age/grade sample separately.

� Generation of Plausible Values for Each Scale

After the scales were developed, plausible values were drawn from the predictive distribution of
proficiency values for each student (this process is called conditioning). For the long-term trend scales,
the plausible values were computed separately for each age or age/grade group and year, and were based
on the student’s responses to the items going into the scale as well as on the values of a set of background
variables that were important for the reporting of proficiency scores. For the mathematics and science
main scales, vectors of multivariate plausible values were drawn from the joint distribution of
proficiency values for the assessed student. These multivariate plausible values were computed
separately for each grade and reflected the dependency between scale proficiencies by utilizing shared
variation among the scales. All plausible values were later rescaled to the final scale metric using
appropriate linear transformations.

The variables used to calculate plausible values for a given main assessment scale or group of
scales included a broad spectrum of background, attitude, and experiential variables and composites of
such variables. All standard reporting variables were included. To enhance numerical stability for the
main assessment scales, the original background variables were standardized and transformed into a set
of linearly independent variables by extracting principal components from the correlation matrix of the
original contrast variables. The principal components, rather than the original variables, were used as
independent variables to calculate plausible values for those scales. Trend scales used the same or similar
sets of conditioning variables that were used when the scales were originally constructed. Details of the
conditioning process and of the NAEP-BGROUP and NAEP-CGROUP computer programs that
implement the process are presented in Chapter 11.
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� Transformation to the Reporting Metric

Mathematics short-term trend and science, mathematics, reading, and writing long-term trend
scales were linked to previous assessment scales via common population linking procedures described in
the subject-specific data analysis chapters. Essentially, the 1994 and 1996 data were calibrated together.
Data from the two assessments were scaled together in the same BILOG/PARSCALE run, specifying the
samples for each assessment as coming from different populations. For each scale, the mean and standard
deviation of the 1994 data from this joint calibration were matched to the mean and standard deviation of
the 1994 data as previously reported. This then linked the 1996 data to the previously established scale.
New scales were established for the science main assessment. Then the metrics for the newly established
science scales were set to have a mean of 150 and a standard deviation of 35.

The transformations were of the form

�target = A � �calibrated + B
where

�target = scale level in terms of the system of units of the final scale used for
reporting;

�calibrated = scale level in terms of the system of units of the provisional
NAEP-BILOG/PARSCALE scale;

A = SDtarget / SDcalibrated ;

B = Mtarget - A �Mcalibrated ;

SDtarget = the estimated or selected standard deviation of the proficiency
distribution to be matched;

SDcalibrated = the estimated standard deviation of the sample proficiency distribution
on the provisional NAEP-BILOG/PARSCALE scale;

Mtarget = the estimated or selected mean of the proficiency distribution to be
matched; and

Mcalibrated = the estimated mean of the sample proficiency distribution on the
provisional NAEP-BILOG/PARSCALE scale.

After the plausible values were linearly transformed to the new scale, any plausible value less than 0 was
censored to 0. For all 1996 assessments other than the science main assessment, any value greater than
500 was censored to 500; for the science main assessment, any value greater than 300 was censored to
300. Fewer than 1 percent of the students in any sample were censored in this way. The final
transformation coefficients for transforming each provisional scale to the final reporting scale are given
in subsequent chapters.



191

� Definition of Composites for the Multivariate Scales

In addition to the plausible values for each scale, composites of the individual mathematics and
science main assessment scales were created as measures of overall proficiency within these subject
areas. These composites were weighted averages of the plausible values of the individual scales. The
weights reflected the relative importance of the scales and were provided in the frameworks developed
by the subject area committees. The weights are approximately proportional to the number of items in
each scale at a given grade level.

� Tables of Proficiency Means and Other Reported Statistics

Proficiencies and trends in proficiencies were reported by age or grade for a variety of reporting
categories. Additionally, for the main assessments, the percentages of the students within each of the
reporting groups who were at or above achievement levels were reported to provide information about
the distribution of achievement within each subject area. For the long-term trend assessments, the
percentages of the students within each of the reporting groups who were at or above anchor points were
reported for the same reason. All estimates based on proficiency values have reported variances or
standard errors based on proficiency values including the error component due to the latency of
proficiency values of individual students as well as the error component due to sampling variability.
These tables are part of the electronically delivered summary data tables.

9.3.6 Dimensionality Analysis

Over the years a number of studies have been conducted in order to seek answers to the question
of how many dimensions underlie the various NAEP assessment instruments, and whether there is a
sufficiently strong first dimension to support inferences about a composite scale in subjects such as
mathematics, science, and reading. In addition, for the 1992 mathematics and reading assessments, a
study was conducted (Carlson, 1993) to determine whether the increasing emphasis on extended
constructed-response items that are scored polytomously has any effect on the dimensionality. It was
determined that for the 1992 NAEP data, item type was not related to any of the dimensions identified.

� Previous Dimensionality Analyses of NAEP Data

In an early study, NAEP reading assessment data collected during the 1983-84 academic year
was examined for dimensionality by Zwick (1986, 1987). Zwick also studied simulated data designed to
mirror the NAEP reading item-response data but having known dimensionality. Analysis of the simulated
datasets allowed her to determine whether the BIB spiraling design artificially increases dimensionality.
Zwick found substantial agreement among various statistical procedures, and that the results using BIB
spiraling were similar to results for complete datasets. Overall she concluded that “it is not unreasonable
to treat the data as unidimensional (1987, p. 306).”

Rock (1991) studied the dimensionality of the NAEP mathematics and science tests from the
1990 assessment using confirmatory factor analysis. His conclusion was that there was little evidence for
discriminant validity except for the geometry scale at the eighth-grade level, and that “we are doing little
damage in using a composite score in mathematics and science (p. 2).”
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A second-order factor model was used by Muth�n (1991) in a further analysis of Rock’s
mathematics data, to examine subgroup differences in dimensionality. Evidence of content-specific
variation within subgroups was found, but the average (across seven booklets) percentages of such
variation was very small, ranging from essentially 0 to 22, and two-thirds of these percentages were
smaller than 10.

Carlson and Jirele (1992) examined 1990 NAEP mathematics data. Analyses of simulated one-
dimensional data were also conducted, and the fit to these data was slightly better than that to the real
NAEP data. Although there was some evidence suggesting more than one dimension in the NAEP data,
the strength of the first dimension led the authors to conclude that the data “are sufficiently unidimen-
sional to support the use of a composite scale for describing the NAEP mathematics data, but that there is
evidence that two dimensions would better fit the data than one (p. 31).”

Carlson (1993) studied the dimensionality of the 1992 mathematics and reading assessments. The
relative sizes of fit statistics for simulated as compared to actual data suggested that lack of fit may be
more due to the BIB spiraling design of NAEP than the number of dimensions fitted. Kaplan (1995)
similarly found that the chi-squared goodness of fit statistic in the maximum likelihood factor analysis
model was inflated when data were generated using a BIB design. The sizes of the fit statistics for incom-
plete simulation conditions (a BIB design as in the actual NAEP assessment) were more like those of the
real data than were those of the case of simulation of a complete data matrix. Consistent with findings of
Zwick (1986, 1987), however, the incomplete design for data collection used in NAEP does not appear to
be artificially inflating the number of dimensions identified using these procedures.

9.3.7 Drawing Inferences from the Results

Drawing correct inferences from the results of the assessments depends on several components.
First, the hypothesis of no difference between groups must be tested statistically. For the 1996
assessment, the use of t-tests was introduced for most comparisons. These tests are more appropriate than
z-tests based on normal distribution approximations when the statistics that are being compared are from
distributions with thicker tails than those from the normal distribution. The statistical significance tests
used in NAEP are described in detail in Chapter 18.

A second component contributing to drawing correct inferences is the way in which error rates
are controlled when multiple comparisons are made. If we wish to make a number of comparisons in the
same analysis, say White students versus Black, Hispanic, Asian/Pacific Island, and American Indian
students, the probability of finding “significance” by chance for at least one comparison increases with
the family size or number of comparisons. By the Bonferroni inequality, for a family size of 4, for
example, the probability of a false positive (Type I error) using α = .05 is less than or equal to 4 � .05
=.20, larger than most decision-makers would accept.

One general method for controlling error rates in multiple comparisons is based on the
Bonferroni inequality. In this method, the Bonferroni inequality is applied and α is divided by the family
size, n. Now α�= .05/4 = .0125, and using α, the combined probability of one or more errors in the four
comparisons remains controlled at less than or equal to .05. Note that dividing the probability by n is not
the same as multiplying the critical value or the confidence band by n. Indeed, in moving from a family
size of 1 to 4, we increase the critical value only from 1.960 to 2.498, a 27.4 percent increase. Doubling
the family size again, to 8, increases the critical value to 2.735, an additional 9.5 percent increase. To
double the initial critical value to 3.92, the family size would have to be increased to 564.
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The power of the tests thus depends on the number of comparisons planned. There may be cases
for which, before the data are seen, it is determined that only certain comparisons will be conducted. As
an example, with the five groups above, interest might lie only in comparing the first group with each of
the others (family size 4), rather than comparing all possible pairs of groups (family size 10). This means
that some possibly significant differences will not be found or discussed, but the planned comparisons
will have greater power to identify real differences when they occur.

In 1996, several other methods were used to increase the power of statistical tests. For cases
where comparisons of statistics in 2 × 2 tables were made, an adapted Bonferroni procedure varying the
family size for each consecutive test was used (Hochberg, 1988). For a very large number of
comparisons, as when comparing results for every state to the nation, a different criterion was used to
control the error rates due to the large number of comparisons. This criterion, the False Discovery Rate
(FDR), as described by Benjamini and Hochberg (1994), contrasts with the Familywise Error Rate
(FWE) criterion used in the Bonferroni method. For trends extending over several administrations, power
is gained by testing least-squares fitted linear and quadratic trends, rather than individual pairs of data
points. For example, if the linear regression coefficient is significantly greater than 0, and the quadratic
coefficient is not different from 0, the trend over time is positive, even though the Bonferroni test might
declare no individual pair of points significantly different. These ways to control error rates in multiple
comparisons are described in Chapter 18.

A third component contributing to drawing correct inferences is the limitation of comparisons to
those for which there are adequate data. In NAEP reports and data summaries, estimates of quantities
such as composite and content area proficiency means, percentages of students at or above the
achievement levels, and percentages of students indicating particular levels of background variables (as
measured in the student, teacher, and school questionnaires) are reported for the total population as well
as for key subgroups determined by the background variables. In some cases, sample sizes were not large
enough to permit accurate estimation of proficiency and/or background variable results for one or more
of the categories of these variables.

For results to be reported for any subgroup, a minimum sample size of 62 was required. This
number was arrived at by determining the sample size required to detect an effect size of 0.5 with a
probability of .8 or greater.2 The effect size of 0.5 pertains to the “true” difference in mean proficiency
between the subgroup in question and the total population, divided by the standard deviation of
proficiency in the total population. In addition, subgroup members must represent at least five primary
sampling units (PSUs).

A fourth component contributing to drawing correct inferences is the limitation of comparisons
to those comparing statistics with standard errors that are estimated well. Standard errors of mean
proficiencies, proportions, and percentiles play an important role in interpreting subgroup results and
comparing the performances of two or more subgroups. The jackknife standard errors reported by NAEP
are statistics whose quality depends on certain features of the sample from which the estimate is
obtained. In certain cases, typically when the number of students upon which the standard error is based
is small or when this group of students all come from a small number of participating schools, the mean
squared error associated with the estimated standard errors may be quite large. In the summary reports,
estimated standard errors subject to large mean squared errors are followed by the symbol �!�.

                                                          
2 A design effect of 2 was assumed for this purpose, implying a sample design-based variance twice that of simple random
sampling. This is consistent with previous NAEP experience (Johnson & Rust, 1992).
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The magnitude of the mean squared error associated with an estimated standard error for the
mean or proportion of a group depends on the coefficient of variation (CV) of the estimated size of the
population group, denoted as N. This coefficient of variation is estimated by:

where �N  is a point estimate of N and SE N�� � is the jackknife standard error of �N .

Experience with previous NAEP assessments suggests that when this coefficient exceeds 0.2, the
mean squared error of the estimated standard errors of means and proportions based on samples for this
group may be quite large. Therefore, the standard errors of means and proportions for all subgroups for
which the coefficient of variation of the population size exceeds 0.2 are followed by �!� in the tables of
all summary reports. These standard errors, and any confidence intervals or significance tests involving
these standard errors, should be interpreted with caution. (Further discussion of this issue can be found in
Johnson & Rust, 1992.)

A final component contributing to drawing correct inferences pertains to comparisons
involving extreme proportions. When proportions are close to zero or one, their distributions differ
greatly from t- or z-distributions. For this reason, hypothesis tests of the sort used by NAEP are not
appropriate in these cases. Under these conditions, no test is made. Chapter 18 includes the specific
definition of extreme proportion used in the analysis of 1996 data.

9.4 OVERVIEW OF CHAPTERS 10 THROUGH 19

The remaining chapters in Part II of this report are as follows:

Chapter 10: The 1996 National Assessment used a stratified multistage probability sampling
design that provided for sampling certain subpopulations at higher rates (see Chapter 3). Because
probabilities of selection are not the same for all assessed students, sampling weights must be used in the
analysis of NAEP data. Also, in NAEP’s complex sample, observations are not independent. As a result,
conventional formulas for estimating the sampling variance of statistics are inappropriate. Chapter 10
describes the weighting procedures and methods for estimating sampling variance that are necessitated
by NAEP’s sample design. Further detail on sampling and weighting procedures is provided in The 1996
NAEP Sampling and Weighting Report, published in 1999 by Westat, Inc., the NAEP contractor in
charge of sampling.

Chapter 11: A major NAEP innovation introduced by ETS is the reporting of subject-area results
in terms of IRT-based scales. Scaling methods can be used to summarize results even when students
answer different subsets of items. For purposes of summarizing item responses, NAEP developed a
scaling technique that has its roots in IRT and in the theories of imputation of missing data. Chapter 11
describes this scaling technique, the underlying theory, and the application of these methods to 1996
NAEP data. The final section of Chapter 11 gives an overview of the NAEP scales that were developed
for the 1996 assessment.

Chapter 12: The main short-term trend component of the 1996 mathematics analysis is described
in this chapter. A detailed analysis of the main assessment of mathematics was conducted for grades 4, 8,
and 12, including a study of the association between mathematics proficiency and student background

CV(N) =
SE(N)

N
�

�

�
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variables. The results from this component of the analysis can be compared with results from the 1992
mathematics analysis to examine short-term trends. At grades 8 and 12, background information and data
on instructional methods were collected from teachers and the relation of these variables to mathematics
proficiency was examined. The main assessment analyses are reported in NAEP 1996 Mathematics
Report Card for the Nation and the States (Reese, Miller, Mazzeo, & Dossey, 1997). A special study of
advanced eighth- and twelfth-grade mathematics students was conducted, and cognitive item responses
associated with specific mathematics themes for the main mathematics samples was studied.

Chapter 13: The main assessment analysis of the science data is detailed in Chapter 13. This
analysis included a study of the association of science knowledge with instructional techniques and
student background variables. At grade 8, background information and data on instructional methods
were collected from teachers and the relation of these variables to science proficiency was examined. The
science results appear in NAEP 1996 Science Report Card for the Nation and the States (O’Sullivan,
Reese, & Mazzeo, 1997). A special study of advanced twelfth-grade science students was also conducted.

Chapter 14: The reading trend results for the years 1971 through 1994 were extended to include
1996 at ages 9, 13, and 17. The results of the reading trend analysis, which include the percentages of
students at or above the reading scale anchor points established in 1984, are reported in NAEP 1996
Trends in Academic Progress: Achievement of U.S. Students in Science, 1969 to 1996; Mathematics,
1973 to 1996; Reading, 1971 to 1996; and Writing, 1984 to 1996 (Campbell, Voelkl, & Donahue, 1997).

Chapter 15: The long-term trend assessment analysis of the mathematics data is detailed in
Chapter 15. The results of the trend analysis, which provided links from 1973 through 1996 for ages 9,
13, and 17, are reported in NAEP 1996 Trends in Academic Progress: Achievement of U.S. Students in
Science, 1969 to 1996; Mathematics, 1973 to 1996; Reading, 1971 to 1996; and Writing, 1984 to 1996
(Campbell, Voelkl, & Donahue, 1997).

Chapter 16: The long-term trend assessment analysis of the science data is described in Chapter
16. The science trend results, which provide a link to 1970, 1973, 1977, 1982, 1986, 1990, 1992, and
1994 are reported in NAEP 1996 Trends in Academic Progress: Achievement of U.S. Students in Science,
1969 to 1996; Mathematics, 1973 to 1996; Reading, 1971 to 1996; and Writing, 1984 to 1996
(Campbell, Voelkl, & Donahue, 1997).

Chapter 17: [This chapter is intended to provide information about the 1996 long-term trend
assessment in writing; however, the data from this assessment are currently under review. After
additional examination and analyses, this chapter will be included in a revised web version of the
complete report.]

Chapter 18: The 1996 assessment analyses included changes in the methods, procedures, and
conventions used in making group comparisons. Chapter 18 highlights these changes and provides details
about which results were reported.

Chapter 19: This chapter presents basic data from the 1996 assessment, including the properties
of the measuring instruments and characteristics of the sample.
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Chapter 10

WEIGHTING PROCEDURES AND ESTIMATION
OF SAMPLING VARIANCE1

Eugene G. Johnson and Jiahe Qian
Educational Testing Service

Leslie Wallace and Keith F. Rust
Westat, Inc.

10.1 INTRODUCTION

As was the case in previous assessments, the 1996 national assessment used a complex sample
design with the goal of securing a sample from which estimates of population and subpopulation
characteristics could be obtained with reasonably high precision (as measured by low sampling
variability). At the same time, it was necessary that the sample be economically and operationally feasible
to obtain. The resulting sample had certain properties that had to be taken into account to ensure valid
analyses of the data from the assessment.

The 1996 NAEP sample was obtained through a stratified multistage probability sampling design
that included provisions for sampling certain subpopulations at higher rates (see Chapter 3). To account for
the differential probabilities of selection, and to allow for adjustments for nonresponse, each student was
assigned a sampling weight. Section 10.2 discusses the procedures used to derive these sampling weights.

Another consequence of the NAEP sample design is its effect on the estimation of sampling
variability. Because of the effects of cluster selection (students within schools, schools within primary
sampling units) and because of the effects of certain adjustments to the sampling weights (nonresponse
adjustment and poststratification), observations made on different students cannot be assumed to be
independent of one another. In particular, as a result of clustering, ordinary formulas for the estimation of
the variance of sample statistics, based on assumptions of independence, will tend to underestimate the
true sampling variability. Section 10.3 discusses the jackknife technique used by NAEP to estimate
sampling variability. (The estimation of variability due to imperfect measurement of individual proficiency
is discussed in Chapter 11.)

The jackknife technique provides good quality estimates of sampling variability but requires
considerable computations. Section 10.4 suggests the use of design effects, combined with conventional
variance estimation formulas, as a simple approximation to sampling variability estimation.

Since the sample design determines the derivation of the sampling weights and the estimation of
sampling variability, it will be helpful to note the key features of the 1996 NAEP sample design. A
description of the design appears in Chapter 3, and the various assessment instruments are detailed in
Chapter 4.

                                                          
1 Keith F. Rust, and Leslie Wallace were responsible for the design and implementation of the weighting process for the 1996
NAEP assessments. Previous versions of this chapter were created with the significant contributions of Eugene Johnson,
Educational Testing Service. Jiahe Qian of Educational Testing Service made significant contributions to the sampling variability
sections of this chapter. The statistical programming for this chapter was overseen by Bruce Kaplan and provided by Phillip Leung.
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The 1996 sample was a multistage probability sample consisting of four stages of selection for the
long-term trend samples and five stages of selection for the main samples. The first stage of selection, the
primary sampling units (PSUs), consisted of counties or groups of counties. The second stage of selection
consisted of elementary and secondary schools. For the long-term trend assessment, the assignment of
sessions to sampled schools comprised the third stage of sampling, and the fourth stage involved the
selection of students within schools and their assignment to sessions. For the main assessment, the
assignment of schools to sample type (see Chapter 3) comprised the third stage of sampling, the
assignment of sessions to sampled schools comprised the fourth stage of sampling, and the fifth stage
involved the selection of students within schools and their assignment to sessions.

The probabilities of selection of the first-stage sampling units were proportional to measures of
their size, while the probabilities for subsequent stages of selection were such that the overall probabilities
of selection of students were approximately uniform, with exceptions for certain subpopulations that were
oversampled by design. For the main assessment, schools with relatively high concentrations of Black
students and/or Hispanic students were deliberately sampled at twice the normal rate to obtain larger
samples of respondents from those subpopulations, in order to increase the precision in the estimation of
the characteristics of these subpopulations. Also for the main assessment, nonpublic school students were
sampled at three times the normal rate, again to increase the precision of estimates for this population
subgroup. For all assessment components, students from schools with smaller numbers of eligibles
received lower probabilities of selection, as a means of enhancing the cost efficiency of the sample.

The 1996 main assessment includes three student cohorts: students in grades 4, 8, and 12. The
main assessment of all grades was conducted in the spring of 1996 to provide a cross-sectional view of
students’ abilities in mathematics and science.

The 1996 assessment also included a number of additional samples that used the age definitions,
times of testing, and modes of administration used in previous assessments. These are referred to as long-
term trend samples. The purpose of these samples was to provide the statistical linkage between the 1996
data and data from previous assessments. The long-term trend assessment represents two overlapping
samples of students, the first of specified grades (of any age) and the second of specified ages (in any
grade). Students were age-eligible if they were born in the appropriate year (1986, 1982, or October 1978
to September 1979). The corresponding grades for the long-term trend assessment were 4, 8, and 11. Each
student cohort is called an “age class.”

The full 1996 NAEP assessment thus includes a number of different samples from several
populations. Each of these samples has its own set of weights that are to be used to produce estimates of
the characteristics of the population addressed by the sample (the target population). Each main sample has
an additional set of weights to accommodate the reporting requirements. The various samples and their
target populations are as follows:

The Main Samples of Students. The target population for each of these samples (one for each
grade) consisted of all students who were in the specified grade and were deemed assessable by their
school. There were four distinct session types at grade 4 (mathematics, science, mathematics estimation,
and mathematics theme), five at grade 8 (mathematics, science, mathematics estimation, mathematics
theme, advanced mathematics), and six at grade 12 (mathematics, science, mathematics estimation,
mathematics theme, advanced mathematics, and advanced science). Each session type was conducted as
one or more distinct sessions within a school. Administration of each session type was always conducted
separately from other session types.

To facilitate analyses, two kinds of weights were produced. “Reporting weights” were produced
separately by grade and assessment type for analyses of the reporting samples that were defined for each
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assessment. Several of the reporting samples included students from multiple sample types. “Modular
weights” were produced separately by grade, assessment type, and sample type, for analyses involving any
one sample type, or for comparing one sample type with another. Thus in total, across grades, session
types, and sample types, there were 15 sets of reporting weights and 32 sets of modular weights for
students in the main assessment.

Long-Term Trend Samples for Reading and Writing. These consist of samples comparable to the
1984 main assessment and address the subject areas of reading and writing. The samples were collected by
grade and age for age 9/grade 4, age 13/grade 8, and age 17/grade 11, using the age definitions and time of
testing from 1984. As in that assessment, print administration was used. Six assessment booklets were
administered at each age class. The respondents to the combined set of assigned booklets at a given age
class constitute a representative sample of the population of students who were in the specified grade or of
the specified age. The respondents to any one of the booklets also constitute a representative sample.

Long-Term Trend Samples for Mathematics and Science. These consist of samples comparable
to those used for the measurement of trends in 1986. The samples were collected by age only and using the
same age definitions and time of testing as in the long-term trend assessment in 1986. As in that
assessment, the administration of mathematics and science questions was paced with an audiotape. For
ages 9 and 13, three assessment booklets were administered to each age group while two booklets were
administered at age 17. The respondents to any one of the booklets assigned to a given age constitute a
representative sample of the population of all students of that age. Each booklet was administered in a
separate assessment session, but the booklets were combined for weighting and reporting.

For purposes of sampling and weighting, the assessment samples are categorized as “tape-
administered” or “print-administered” according to if paced audiotapes were used in the administration:

1. Tape-administered samples are samples that required audiotape pacing in the
assessment (the long-term trend assessments in mathematics and science). For these
samples, all students within a particular assessment session received the same booklet
and were paced through at least part of the booklet with an audiotape.

 
2. Print-administered samples are all main assessment samples and the long-term trend

assessments of reading and writing. For these samples, no audiotape pacing was
employed and the assessment booklets were spiraled through each assessment session
(that is, the different booklets that were part of a given session type were
systematically interspersed and assigned for testing in that order).

10.2 DERIVATION OF THE SAMPLE WEIGHTS

As indicated previously, NAEP uses differential sampling rates, deliberately oversampling certain
subpopulations to obtain larger samples of respondents from those subgroups, thereby enhancing the
precision of estimates of characteristics of these oversampled subgroups. As a result of the oversampling,
these subpopulations, corresponding to students from schools with high concentrations of Black and/or
Hispanic students, and from nonpublic schools, are overrepresented in the sample. Lower sampling rates
were introduced also for very small schools (those schools with only 1 to 19 eligible students). This
reduced level of sampling from small schools was undertaken in an approximately optimum manner as a
means of reducing variances per unit of cost (since it is relatively costly to administer assessments in these
small schools). Appropriate estimation of population characteristics must take disproportionate
representation into account. This is accomplished by assigning a weight to each respondent, where the
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weights approximately account for the sample design and reflect the appropriate proportional
representation of the various types of individuals in the population.

Two sets of weights were computed for the 1996 main samples for each session type. “Modular
weights” were computed for analyses involving students in one sample type, or for comparing results
between sample types. Each assessment type by grade and sample type weights up separately to the target
population. “Reporting weights” were computed for analyses of the reporting samples defined in Table 10-
1. Many of the reporting samples include students from more than one sample type. For reporting samples
that include only one sample type (i.e., science), the reporting weights are identical to the modular weights.
The steps for computing these two sets of weights are identical, up to and including the step of “trimming”
the weights. The trimmed weights were poststratified separately by sample type to create the modular
weights. In a parallel procedure, the trimmed weights were scaled back using a “reporting factor” so that
the sample types included in each reporting sample, when combined, would weight up to the target
population. The resulting weights were poststratified (but not separately by sample type) to create the
reporting weights.

Table 10-1
Reporting Samples for the 1996 Main NAEP Samples

Assessment Type Grade Reporting Sample1

Mathematics All A1 + A2 + B1

Science All A2 + B2

Mathematics Estimation 4 or 8
12

A1 + B12

A1 + A2 + B12

Mathematics Theme All A2 + B23

Advanced Mathematics 8
12

A2 + A3 + B2
A3 + B3

Advanced Science 12 A2 + B2
1 A indicates assessed non SD/LEP students, B indicates assessed SD/LEP students; and 1, 2,
or 3 indicates the sample type (see Chapter 3).
2 In the actual data analysis, the 1996 Mathematics Estimation used the reporting samples of
A1 + A3 + B1 for 4th and 8th grades, and the reporting samples of A1 + A2 + A3 + B1 + B2
for 12th grade. The weights used in the data analysis were adjusted based on the information
of the target population of the non-SD/LEP and SD/LEP students separately.
3 In the actual data analysis, the 1996 Mathematics Theme used reporting samples of A2 + A3
+ B2. The weights used in the data analysis were adjusted based on the information of the
target population of the non-SD/LEP and SD/LEP students separately.

The weighting procedures for 1996 included computing the student’s base weight, the reciprocal
of the probability that the student was selected for a particular session type. Such weights are those
appropriate for deriving estimates from probability samples via the standard Horvitz-Thompson estimator
(see Cochran, 1977). These base weights were adjusted for nonresponse and then subjected to a trimming
algorithm to reduce a few excessively large weights. The weights were further adjusted by a student-level
poststratification procedure to reduce the sampling error. This poststratification was performed by
adjusting the weights of the sampled students so that the resulting estimates of the total number of students
in a set of specified subgroups of the population corresponded to population totals based on information
from the Current Population Survey and U.S. Census Bureau estimates of the population. The
subpopulations were defined in terms of race, ethnicity, geographic region, grade, and age relative to
grade.
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In addition, the weights at grade 8 were poststratified at the school level in an effort to correct an
imbalance in the school sample that was observed after the assessments were complete. This procedure has
not been used in prior NAEP assessments, and was introduced because at grade 8, the three sample types
contained relatively different proportions of schools with large numbers of Black and Hispanic students
(termed “high minority” schools). The different school distributions became apparent by reviewing student
distributions by sample type and race/ethnicity for the mathematics assessment. In mathematics at grade 8,
sample type 2 contained a larger proportion of Black students than sample type 1. Investigation revealed
that the differences in student distributions were due to different school distributions by percent minority
enrollment. Although the different proportions were within sampling error, a decision was made to adjust
the weights at grade 8 for each of the sample types separately so that in each case the resulting estimates of
number of schools by percent minority enrollment corresponded to totals based on information from the
sampling frame of schools.

The following sections provide an overview of the procedures used to derive the sampling weights.
Further details in the derivation of these weights can be found in The 1996 NAEP Sampling and Weighting
Report (Wallace & Rust, 1999).

10.2.1 Derivation of Reporting Weights for the Main Samples

Separate weights were computed for each assessment in the main samples (mathematics, science,
mathematics theme, mathematics estimation, advanced mathematics, and advanced science). In earlier
NAEP assessments, excluded students from all subjects were weighted together, separately from assessed
students. In 1996, excluded students were weighted with assessed students for each assessment. This
change in procedures was adopted because evidence indicated that exclusion rates may not be independent
of session type, and because this change simplified the weighting procedures, when accounting for sample
type. Reporting weights for the main samples were derived according to the steps outlined below.

10.2.1.1 Student Base Weight

The base weight assigned to a student is the reciprocal of the probability that the student was
selected for a particular assessment. That probability is the product of five factors:

1. the probability that the PSU was selected;
 
2. the conditional probability, given the PSU, that the school was selected;
 
3. the conditional probability, given the sample of schools in a PSU, that the school was

assigned the specified sample type;
 
4. the conditional probability, given the sample of schools in a PSU, that the school was

allocated the specified session type; and
 
5. the conditional probability, given the school, that the student was selected for the

specified session type.
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Thus, the base weight for a student may be expressed as the product

WB = PSUWT • SCHWT • SMPTYPWT • SESSWT • STUSCHW

where PSUWT, SCHWT, SMPTYPWT, SESSWT, and STUSCHW are, respectively, the reciprocals of the
preceding probabilities.

Variations across the various 1996 assessments in probabilities of selection, and consequently of
weights, were introduced by design, either to increase the effectiveness of the sample in achieving its goals
of reporting for various subpopulations, or to achieve increased efficiency per unit of cost.

10.2.1.2 Session Nonresponse Adjustment (SESNRF)

Sessions were assigned to schools before cooperation status was final. The session nonresponse
adjustment was intended to compensate for session type nonresponse due to refusing schools or individual
session types not conducted. The first three digits of PSU stratum, called subuniverse (formed by crossing
the PSU major stratum and the first socioeconomic characteristic used to define the final PSU stratum; see
Section 3.2 for more detail) were used in calculating nonresponse adjustments. The adjustment factors
were computed separately within classes formed by subuniverse within sample type for mathematics and
science, and by subuniverse for the other assessment types. Occasionally, additional collapsing of classes
was necessary to improve the stability of the adjustment factors, especially for the smaller assessment
components. Most classes needing collapsing contained small numbers of cooperating schools.
Occasionally, classes with low response rates were collapsed.

In subuniverse s in session type h, the session nonresponse adjustment factor SESNRFhs was given
by

SESNRF
PSUWT SCHWT SMPTYPWT SESSWT G

PSUWT SCHWT SMPTYPWT SESSWT G
hs

i i i hi i

i B

i C

i i i hi i

hs

hs

=
• • • •

• • • •
∈

∈

∑
∑

where

PSUWTi = the PSU weight for the PSU containing school i;

SCHWTi = the school weight for school i;

SMPTYPWTi = the sample type weight for school i;

SESSWThi = the session allocation weight for session type h in school i;

Gi = the estimated number of grade-eligible students in school i (the values of
Gi were based on QED data);

set Bhs = consists of all in-scope originally sampled schools allocated to session
type h in subuniverse s (excluding substitutes); and

set Chs = consists of all schools allocated to session type h in subuniverse s that
ultimately participated (including substitutes).
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It should be noted that the nonresponse adjustments assume that nonresponse occurs at random
within the categories within which adjustments are made (see Little & Rubin, 1987). Some degree of bias
could result to the extent that this assumption is false.

10.2.1.3 School-Level Poststratification Adjustment at Grade 8 (SCHPSF)

As discussed earlier, the weights at grade 8 were poststratified so that the resulting estimates of
number of public schools by percent minority enrollment corresponded to totals based on information from
the sampling frame of schools.

Poststratification adjustments were calculated separately by sample type within assessment type.
For the descriptions of the information for stratification, see Section 3.3. Control totals were calculated as
the total estimated number of grade-eligible students (based on QED data) in public schools, by percent
minority enrollment category. The percent minority enrollment categories used to form adjustment cells
were 0-4, 5-14, 15-29, 30-36, 37-44, 45-54, 55-79, 80-94, and 95-100 for mathematics and science sample
type 2, and 0-4, 5-14, 15-29, 30-44, 45-79, and 80-100 for all other assessment type/sample type
combinations. The smaller sample sizes in the latter group did not support using more categories. The
poststratification factor for each class c and session type h is computed by

SCHPSF
TOTAL

PSUWT SCHWT SMPTYPWT SESSWT SESNRF G
hc

c

i i i hi hs i

i Dhc

=
• • • • •

∈
∑

where

TOTALc = the total number of grade-eligible students in class c, from the sampling
frame;

PSUWTi = the PSU weight for the PSU containing school i;

SCHWTi = the school weight for school i;

SMPTYPWTi = the sample type weight for school i;

SESSWThi = the session allocation weight for session type h in school i;

SESNRFhs = the session nonresponse adjustment factor for subuniverse s in session
type h;

Gi = the estimated number of grade-eligible students in school i (the values of
Gi were based on QED data); and

Set Dhc = consists of the public schools in class c that participated in session type h.

For some sample types in advanced mathematics and mathematics estimation, two or more
poststratification classes were collapsed into one to improve the stability of the adjustment factors. Private
schools and new schools (those schools added to the sample through the new school sampling procedure,
and so not included on the sampling frame) received school-level poststratification factors of 1.0.
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10.2.1.4 Student Nonresponse Adjustment (STUNRF)

Student nonresponse adjustment factors were computed separately for each session type. For
students in the main samples, the adjustment classes were based on sample type (for mathematics and
science), subuniverse, modal age status, and race class (White or Asian/Pacific Islander, other). In some
cases, two or more nonresponse classes were collapsed into one to improve the stability of the adjustment
factors. For each class c in session type h, the student nonresponse adjustment factor STUNRFhc is
computed by

∑
∑

∈

∈

••••••

••••••
=

hc

hc

Bj
hjhjhjjjj

Aj
hjhjhjjjj

hc STUSCHWSESNRFSESSWTSMPTYPWTSCHPSFjSCHWTPSUWT

STUSCHWSESNRFSESSWTSMPTYPWTSCHPSFjSCHWTPSUWT

STUNRF

where

PSUWTj = the PSU weight for the PSU containing student j;

SCHWTj = the school weight for the school containing student j;

SCHPSFj = for grade 8, the school poststratification factor for the school containing
student j (set to 1.0 for grades 4 and 12);

SMPTYPWTj = the sample type weight for the school containing student j;

SESSWThj = the session allocation weight for the school containing student j in session
type h;

SESNRFhj = the session nonresponse adjustment factor for the school containing
student j in session type h;

STUSCHWhj = the within-school student weight for student j in session type h;

Set Ahc = consists of the students in class c who were sampled for session type h and
not excluded; and

Set Bhc = consists of the students in class c who were assessed in session type h.

Excluded students received nonresponse adjustments of 1.0.

10.2.1.5 Trimming of Weights

In a number of cases, students were assigned relatively large weights. One cause of large weights
was underestimation of the number of eligible students in some schools leading to inappropriately low
probabilities of selection for those schools. A second major cause is the presence of large schools (high
schools in particular) in PSUs with small selection probabilities. In such cases, the maximum permissible
within-school sampling rate (determined by the maximum sample size allowed per school see
Chapter 3) could well be smaller than the desired overall within-PSU sampling rate for students. Large



205

weights arose also because very small schools were, by design, sampled with low probabilities. Other
large weights arose as the result of high levels of nonresponse coupled with low to moderate probabilities
of selection, and the compounding of nonresponse adjustments at various levels.

Students with notably large weights have an unusually large impact on estimates such as weighted
means. Since, under some simplifying assumptions, the variability in weights contributes to the variance of
an overall estimate by an approximate factor 1 + V2, where V2 is the relative variance of the weights, an
occasional unusually large weight is likely to produce large sampling variances of the statistics of interest,
especially when the large weights are associated with students with atypical performance characteristics.

To reduce this problem, a procedure of trimming a few of the more extreme weights to values
somewhat closer to the mean weight was applied. This trimming can increase the accuracy of the resulting
survey estimates, substantially reducing V2 and hence the sampling variance, while introducing a small
bias. The trimming algorithm was identical to that used since 1984, and had the effect of trimming the
weights of students from any school that contributed more than a specified proportion, ζ, to the estimated
variance of the estimated number of students eligible for assessment. The trimming was done separately
within sample type for mathematics and science, and overall for mathematics estimation and mathematics
theme. Trimming was not done for the advanced mathematics or advanced science assessments because
advanced students were expected to be concentrated in certain schools, so that the trimming algorithm was
not appropriate in these cases. In each case, the value of the proportion ζ was chosen to be 10/K, where K
was the number of schools in which a specified assessment was conducted. The number of schools where
weights were trimmed was no more than seven in any one assessment. The most extreme trimming factors
applied were of the order of 0.65; trimming affects the weights of only a very small proportion of the
assessed and excluded students.

Table 10-2 shows the distributions of eligible students based on the trimmed weights of assessed
students for the science samples in sample type 2 (the reporting population) for each grade. The
distributions are similar to those before trimming shown in Tables 10-6, 10-7, and 10-8. To the extent that
the characteristics in the table are related to student performance on the science assessment, there is a
small bias introduced in the assessment by trimming.
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Table 10-2
Distribution of Populations of Eligible Students Based on Trimmed Weights of Assessed Students

in Participating Schools, 1996 Main NAEP Science Sample, Sample Type 2

Population Grade 4 Grade 8 Grade 12

Total population 3,389,669 3,365,499 2,491,555

Age category
At modal age or younger
Older than modal age

64.6%
35.4%

57.9%
42.1%

64.5%
35.5%

Race/ethnicity category
White
Black
Hispanic
Other

61.0%
14.3%
16.9%
 7.8%

64.2%
15.7%
13.6%
 6.6%

69.1%
12.3%
11.1%
 7.5%

Gender1

Male
Female

49.6%
 50.2%

50.2%
49.6%

48.3%
51.7%

SD
Yes
No

 5.2%
94.8%

 5.7%
94.3%

 3.1%
96.9%

LEP
Yes
No

 3.0%
97.0%

 1.9%
98.1%

 2.2%
97.8%

SD, LEP
SD yes, LEP yes
SD yes, LEP no
SD no, LEP yes
SD no, LEP no

 0.1%
 5.1%
 3.0%

91.8%

 0.1%
 5.6%
 1.8%

92.5%

 0.0%
 3.0%
 2.1%

94.8%
1 For a very small percentage of students at grades 4 and 8, gender is unknown.

10.2.1.6 Reporting Factor

Each set of trimmed weights for a given sample type sums to the target population. Reporting
factors were assigned to students in order to scale back the trimmed weights so that final student
(reporting) weights within each reporting population (which may combine students from different sample
types) sum to the target population. The reporting factors assigned to students are specific to the reporting
populations defined in Table 10-1. Each assessed and excluded student in the reporting population
received a reporting factor as shown in Table 10-3 on the following page.
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Table 10-3
Reporting Factors for Assessed and Excluded Students

Non-SD/LEP Students SD/LEP Students
———Sample Type——— ———Sample Type———

1 2 3 1 2 3

Grade 4
Mathematics 0.5 0.5 — 1 — —
Science — 1 — — 1 —
Mathematics theme — 1 — — 1 —
Mathematics estimation 1 — — 1 — —

Grade 8
Mathematics 0.5 0.5 — 1 — —
Science — 1 — — 1 —
Mathematics theme — 1 — — 1 —
Mathematics estimation 1 — — 1 — —
Advanced mathematics (B) — 0.35 0.65 — 1 —

Grade 12
Mathematics 0.5 0.5 — 1 — —
Science — 1 — — 1 —
Mathematics theme — 1 — — 1 —
Mathematics estimation 0.6667 0.3333 — 1 — —
Advanced mathematics (B) — — 1 — — 1
Advanced science (C) — 1 — — 1 —

10.2.1.7 Student-Level Poststratification

As in most sample surveys, the respondent weights are random variables that are subject to
sampling variability. Even if there were no nonresponse, the respondent weights would at best provide
unbiased estimates of the various subgroup proportions. However, since unbiasedness refers to average
performance over a conceptually infinite number of replications of the sampling, it is unlikely that any
given estimate, based on the achieved sample, will exactly equal the population value. Furthermore, the
respondent weights have been adjusted for nonresponse and a few extreme weights have been reduced in
size.

To reduce the mean squared error of estimates using the sampling weights, these weights were
further adjusted so that estimated population totals for a number of specified subgroups of the population,
based on the sum of weights of students of the specified type, were the same as presumably better
estimates based on composites of estimates from the 1993 and 1994 Current Population Survey and 1996
population projections made by the U.S. Census Bureau. This adjustment, called poststratification, is
intended especially to reduce the mean squared error of estimates relating to student populations that span
several subgroups of the population, and thus also to reduce the variance of measures of changes over time
for such student populations.

The poststratification in 1996 was done for the mathematics, science, mathematics estimation, and
mathematics theme assessments in each grade. The advanced mathematics and advanced science
assessments were not poststratified. Within each grade and assessment type group, poststratification
adjustment cells were defined in terms of race, ethnicity, and Census region as shown in Table 10-4. Note
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that NAEP region was used in previous years instead of Census region. This change was made because the
data from the Current Population Survey and Census Projections are more reliable for Census regions than
for NAEP regions.

Table 10-4
Major Subgroups for Poststratification in 1996

Subgroup Race Ethnicity Census Region1

1
2
3
4
5
6
7

White
White
White
White
Any
Black
Other

Not Hispanic
Not Hispanic
Not Hispanic
Not Hispanic
Hispanic
Not Hispanic
Not Hispanic

Northeast
Midwest
South
West
Any
Any
Any

1 Census region is the same as the NAEP region in Table 3-2 used for stratification and
reporting, except that DE, DC, and MD moved from the Northeast to the South, OK and
TX moved from the West to the South, Central is called Midwest, and Southeast is called
South.

These subgroups were used as adjustment cells at grade 12. Each of these cells accounts for
between 5 percent (Subgroup 7) and 21 percent (Subgroup 3) of the population. For grades 4 and 8, each of
the seven subgroups was further divided into two eligibility classes: of modal age and not of modal age.

The procedure used at grade 12 was adopted because the independent estimates of the numbers of
students in the population did not provide consistent data on the numbers of twelfth grade students by age.
Specifically, the counts of twelfth grade students age 17 and older are not reliable because they include
adult education students. This procedure has been used since 1988. (See Rust, Bethel, Burke, & Hansen,
1990, and Rust, Burke, & Fahimi, 1992, for further details.)

Thus, there were 7 or 14 cells for poststratification. The poststratified weight for each student
within a particular cell was the student’s base weight, with adjustments for nonresponse and trimming, and
the reporting factor from Section 10.2.1.6, times a poststratification factor. The poststratification factor for
student j in session type h and poststratification adjustment class c is given by

∑
∈

•••••
=

hcCj
jjjjjBj

c
hc RPTFCTRTRIMFCTRSTUNRFSCHPSFSESNRFW

TOTAL
PSFCTR

where

WBj = the base weight for student j (see Section 10.2.1.1);

TOTALc = the total number of grade-eligible students in class c, from the October
1993 and 1994 Current Population Surveys and 1996 population
projections;

SESNRFj = the session nonresponse adjustment factor for the school containing
student j in session type h;
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SCHPSFj = for grade 8, the school poststratification factor for the school containing
student j (set to one for grades 4 and 12);

STUNRFj = the student nonresponse adjustment for student j;

TRIMFCTRj = the trimming factor for student j;

RPTFCTRj = the reporting factor for student j;

Set Chc = consists of the students in class c who were assessed in session type h,
except those at grade 12 who were age 17 or older.

Note that students at grade 12 who were age 17 or older received the poststratification factor according to
their adjustment class and session type even though they were not used in calculating the factor. Details of
the procedures used to obtain totals in the numerator of the adjustment factor are provided in Wallace and
Rust (1999).

10.2.1.8 The Final Student Reporting Weights

The final weight assigned to a student is the student full-sample reporting weight. This weight is
the student’s base weight after the application of the various adjustments described above. The student
full-sample reporting weight was used to derive all estimates of population and subpopulation
characteristics that have been presented in the various NAEP reports, including simple estimates such as
the proportion of students of a specified type who would respond in a certain way to an item and more
complex estimates such as mean proficiency levels. The distributions of the final student reporting weights
are given in Table 10-5.

As indicated earlier, under some simplifying assumptions the factor 1 + V2 indicates the
approximate relative increase in variance of estimates resulting from the variability in the weights. The
factor V2 for each sample is readily derivable from Table 10-5 by squaring the ratio of the standard
deviation to the mean weight. These factors, resulting from the combined effect of the variations in
weights introduced by design and from other causes, are discussed in Section 10.2.3.

10.2.2 Evaluation of Potential for Bias Resulting from School and Student Nonparticipation

Although school and student nonresponse adjustments are intended to reduce the potential for
nonparticipation to bias the assessment results, they cannot completely eliminate this potential bias with
certainty. The extent of bias remains unknown, of course, since there are no assessment data for the
nonparticipating schools and students.

Some insight can be gained about the potential for residual nonresponse bias, however, by
examining the weighted school- and student-level distributions of characteristics known for both
participants and nonparticipants, especially for those characteristics known or thought likely to be related
to achievement on the assessment. If the distributions for the full sample of schools (or students) without
the use of nonresponse adjustments are close to those for the participants with nonresponse adjustments
applied, there is reason to be confident that the bias from nonparticipation is small.
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Table 10-5
Distribution of Final Student Reporting Weights, 1996 Main Samples

Sample
Number
of Cases Mean

Standard
Deviation Minimum

25th
Percentile Median

75th
Percentile Maximum

 Grade 4
 Mathematics 6831 577.41 380.69 92.57 315.28 486.57 729.48 3887.53
 Science 8061 489.35 324.35 65.04 275.04 399.02 598.53 4872.34
 Mathematics Theme 2072 1903.80 1163.23 576.00 1133.85 1587.94 2276.41 10676.50
 Mathematics Estimation 1130 3409.86 2052.49 685.71 1935.01 3010.68 4316.83 12843.05

 Grade 8
 Mathematics 7312 510.55 389.16 62.92 247.63 389.41 652.26 5027.91
 Science 8200 455.26 388.04 75.47 219.81 313.58 562.02 3605.79
 Mathematics Theme 2177 1714.81 1124.20 388.72 921.25 1258.58 2321.66 8720.24
 Mathematics Estimation 1255 2974.61 1906.19 338.54 1398.58 2574.86 3952.75 9812.97
 Advanced Mathematics 2339 346.90 246.57 100.98 184.65 234.99 407.26 1545.58

 Grade 12
 Mathematics 7020 415.75 257.34 64.39 226.94 337.48 539.29 2313.01

Science 7963 380.19 222.13 64.80 226.82 302.07 500.33 1759.55
 Mathematics Theme 2097 1442.96 862.82 313.34 879.14 1117.08 1789.78 5171.06
 Mathematics Estimation 1472 1949.24 1050.36 488.10 1170.72 1743.95 2523.71 8484.11
 Advanced Mathematics 2972 235.55 127.79 77.16 142.67 182.49 324.65 911.09
 Advanced Science 2436 241.49 137.63 58.23 134.85 190.13 323.81 978.81
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There are several school-level characteristics available for both participating and nonparticipating
schools. The tables below show the combined impact of nonresponse and of the nonresponse adjustments
on the distributions of schools (weighted by the estimated number of eligible students enrolled) and
students, by the type of school (public, Catholic, other nonpublic) the size of the school as measured by the
estimated number of eligible students enrolled, and the urban/rural nature of the place where the school is
located. Three size classes have been defined for each grade. The data are for the science assessment,
sample type 2 (the reporting population). Science from sample type 2 was chosen because it is the largest
assessment at each grade. It is assumed that other large assessments would behave similarly.

Several student-level characteristics are available for both absent and assessed students. The tables
that follow show the impact of school nonresponse and nonresponse adjustments, and student nonresponse
and nonresponse adjustments on the distributions of eligible students for each grade. This discussion also
focuses on the science assessment for sample type 2, since it is the largest. The distributions are presented
by age category (at or below modal age, and above modal age), race category (White, Black, Hispanic, and
other), gender, SD, and LEP.

Table 10-6 shows the weighted marginal distributions of students for each of the three
classification variables for each grade, using weighted eligible schools. The distributions before school
nonresponse adjustments are based on the full sample of in-scope schools for science--those participating,
plus those refusals for which no substitute participated. The distributions after school nonresponse
adjustments are based only on participating schools for science, with school nonresponse adjustments
applied to them.

It can be seen from the tables that, even though the level of school nonparticipation is as high as
22.6 percent for grade 12 (see Table 3-11) and somewhat lower for the other grades, for the most part, the
distributions for the three characteristics considered remain similar. Exceptions may be medium and large
schools, and midsize cities and urban fringe of large cities at grade 12; and urban fringe of large cities and
rural nonMSAs at grade 4.
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Table 10-6
Distribution of Populations of Eligible Students Based on Full Weighted Sample of Eligible Schools,

Before and After School Nonresponse Adjustments, 1996 Main NAEP Science Samples, Sample Type 2

Grade 4 Grade 8 Grade 12
Population Before After Before After Before After

Total population 3,777,554 3,777,554 3,198,390 3,198,390 2,762,448 2,762,448

School type
Catholic
Other Nonpublic
Public

 5.7%
 5.6%
88.7%

 7.2%
 4.3%
88.5%

 6.0%
 4.7%
89.3%

 6.8%
 4.6%
88.7%

 5.5%
 4.2%
90.3%

 5.9%
 3.4%
90.7%

School size1

1
2
3

18.8%
46.4%
34.8%

19.8%
47.2%
33.0%

10.8%
55.7%
33.5%

11.6%
55.8%
32.6%

 5.0%
70.5%
24.5%

 4.7%
67.0%
28.3%

School location
Large city
Midsize city
Urban fringe/large city
Urban fringe/midsize city
Large town
Small town
Rural MSA
Rural nonMSA

18.3%
19.4%
23.9%
13.7%
 0.3%
10.5%
 2.3%
11.5%

19.9%
19.7%
24.0%
11.9%
 0.5%
 8.8%
 1.8%
13.5%

17.7%
18.1%
23.1%
15.8%
 0.7%
 9.9%
 5.1%
 9.6%

17.9%
18.1%
21.8%
16.7%
 0.7%
 8.8%
 6.1%
 9.9%

15.4%
16.3%
23.3%
15.3%
 1.5%
14.4%
 3.7%
10.2%

16.8%
18.3%
21.2%
14.4%
 0.9%
15.5%
 3.7%
 9.5%

1 Distributions by school size are not comparable to previous assessments, since students were eligible by grade only (instead of by grade
or age) in 1996. School size = number of eligible students enrolled:

1 2 3
Grade 4 1-49 50-99 100 +
Grade 8 1-49 50-299 300 +
Grade 12 1-49 50-399 400 +

Table 10-7 shows the distributions of the same three classification variables, plus additional
distributions of student-level characteristics, using weighted eligible students. The distributions before
student nonresponse adjustments are based on assessed and absent science students (with base weights
adjusted for school nonparticipation). The distributions after student nonresponse adjustments are based on
assessed science students only, with the student nonresponse adjustments also applied to them.
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Table 10-7
Distribution of Populations of Eligible Students Before and After Student Nonresponse Adjustments

1996 Main NAEP Science Samples, Sample Type 2

Grade 4 Grade 8 Grade 12
Population Before After Before After Before After

Total population 3,419,493 3,419,493 3,428,867 3,428,867 2,496,241 2,496,241

School type
Catholic
Other Nonpublic
Public

 7.7%
 4.5%
87.8%

 7.8%
 4.6%
87.6%

 6.1%
 4.3%
89.6%

 6.3%
4.4%

89.3%

 6.4%
 3.6%
90.0%

 8.1%
 4.2%
87.6%

School location
Large city
Midsize city
Urban fringe/large city
Urban fringe/midsize city
Large town
Small town
Rural MSA
Rural nonMSA

18.9%
19.2%
25.2%
12.1%

0.5%
8.9%
1.8%

13.3%

18.9%
19.3%
25.2%
12.0%
0.5%
9.0%
1.8%

13.3%

13.2%
15.9%
20.8%
19.3%
 0.5%
11.6%
 7.1%
11.6%

13.2%
15.9%
20.8%
19.4%
 0.5%
11.5%
 7.1%
11.7%

17.0%
18.2%
21.4%
13.6%
 1.0%
15.5%
 3.9%
 9.4%

16.9%
16.9%
21.7%
14.8%
 1.0%
15.2%
 4.1%
 9.6%

Age category
At modal age or younger
Older than modal age

64.6%
35.4%

64.5%
35.5%

57.5%
42.5%

57.6%
42.4%

64.3%
35.7%

64.5%
35.5%

Race/ethnicity category
White
Black
Hispanic
Other

61.4%
14.4%
16.6%
 7.6%

61.2%
14.2%
16.8%
 7.8%

64.9%
15.7%
13.0%
 6.4%

64.7%
15.4%
13.3%
 6.5%

69.4%
12.6%
11.0%
 7.1%

69.1%
12.2%
11.1%
 7.5%

Gender1

Male
Female

49.6%
50.2%

49.6%
50.2%

50.3%
49.4%

49.6%
50.1%

48.7%
51.2%

48.4%
51.6%

SD
Yes
No

 5.3%
94.7%

 5.3%
94.7%

 6.1%
93.9%

 5.8%
94.2%

 3.4%
96.6%

 3.0%
97.0%

LEP
Yes
No

 3.0%
97.0%

 3.0%
97.0%

 1.9%
98.1%

 1.9%
98.1%

 2.1%
97.9%

 2.2%
97.8%

SD, LEP
SD yes, LEP yes
SD yes, LEP no
SD no, LEP yes
SD no, LEP no

 0.1%
 5.2%
 2.9%
91.8%

 0.1%
 5.2%
 2.9%
91.8%

 0.1%
 6.0%
 1.8%
92.1%

 0.1%
 5.7%
 1.8%
92.5%

 0.1%
 3.3%
 2.1%
94.6%

 0.0%
 3.0%
 2.1%
94.8%

1 Gender is unknown for a small percentage of students.

The rates of student nonparticipation were 5.1 percent for grade 4, 6.9 percent for grade 8, and
22.5 percent for grade 12 (see Table 3-11). The table shows that with one exception at grade 12, for the
distributions of type of school attended and place where the school is located, the combined effect of
student nonparticipation and the subsequent nonresponse adjustments have resulted in very little change in
distribution. The changes in the distribution of school type at grade 12 reflect the relatively high
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nonresponse rate of grade 12 public school students (22.7 percent versus 8.5 percent for nonpublic school
students; see Table 3-9).

Table 10-8 shows the weighted distributions of eligible students in participating schools, using the
base weights of assessed and absent students unadjusted for school-level nonresponse. Tables 10-7 and 10-
8 show that both school and student-level nonresponse and nonresponse adjustments have little effect on
the distributions of eligible students by age, race/ethnicity, gender, SD and LEP. All of the distributions in
the tables are similar.

Table 10-8
Distribution of Populations of Eligible Students Before School and Student Nonresponse Adjustments

 1996 Main NAEP Science Samples, Sample Type 2

Population Grade 4 Grade 8 Grade 12

Total population 2,635,218 2,743,713 1,935,174

Age category
At modal age or younger
Older than modal age

64.3%
35.7%

56.3%
43.7%

63.9%
36.1%

Race/ethnicity category
White
Black
Hispanic
Other

60.8%
14.6%
16.9%
 7.7%

66.6%
14.0%
13.0%
6.5%

70.3%
12.4%
10.3%
 6.9%

Gender1

Male
Female

49.7%
50.1%

50.3%
49.5%

48.8%
51.2%

SD
Yes
No

 5.3%
94.7%

 6.2%
93.8%

 3.4%
96.6%

LEP
Yes
No

 3.2%
96.8%

 2.0%
98.8%

 2.0%
98.0%

SD, LEP
SD yes, LEP yes
SD yes, LEP no
SD no, LEP yes
SD no, LEP no

 0.1%
 5.2%
 3.1%
91.7%

 0.1%
 6.1%
 1.9%
91.9%

 0.1%
 3.3%
 1.9%
94.7%

1 Gender is unknown for a small percentage of students.

When comparing the distributions in Table 10-7 before and after student nonresponse adjustments,
we expect the distributions by age category and race/ethnicity to be similar because these variables were
used to determine student nonresponse adjustment classes. However, the distributions by gender, SD, and
LEP are also similar. To the extent that nonrespondents would perform like respondents with the same
characteristics (defined by the classification variables in the tables), the bias in the assessment data is
small.

Further information about potential nonresponse bias can be gained by studying the absent
students. NAEP proficiency estimates are biased to the extent that assessed and absent students within the
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same weighting class differ in their distribution of proficiency. It seems likely that the assumption that
absent students are similar in proficiency to assessed students is reasonable for some absent
students namely, those whose absence can be characterized as random. Conversely, it seems likely that
students with longer and more consistent patterns of absenteeism such as truants, dropouts, near
dropouts, and the chronically ill are unlikely to be as proficient as their assessed counterparts.

In the 1996 assessments, schools were asked to classify each absent student into one of nine
categories. The results of this classification for the science assessment are shown in Table 10-9. The
discussion focuses on the science assessment because it is the largest. It is assumed that the other large
assessments would behave similarly.

Table 10-9 shows that, as anticipated, the majority of absence from the assessment was the result
of an absence from school of a temporary and unscheduled nature. The table shows that absence among
twelfth graders occurs at about four times the rate of absence among fourth or eighth graders. The
proportion of absence classified as temporary differs somewhat by grade, but is of the same magnitude for
grades 8 and 12. These two facts taken together suggest strongly that a substantial proportion of the
temporary absences among twelfth grade students is not a result of illness, because such absences are
occurring at almost three times the rate that they do among fourth or eighth grade students. Whereas it
might be reasonable to regard temporary absence due to illness as independent of proficiency, for other
temporary absences, this appears less tenable. The data in the table give support to the contention that, at
grade 4, student absences are unlikely to introduce any significant bias into NAEP estimates. The absentee
rate is low; most absences are temporary, and three quarters of the remaining absences are a result of
parental refusal.

Table 10-9
Weighted Distribution of Absent Students by Nature of Absenteeism for All Grades

1996 Science Assessment, Sample Type 2

Nature of Absenteeism Grade 4 Grade 8 Grade 12

Temporary absence1 78.2% 68.0% 63.6%
Long-term absence2  1.6%  1.4%  0.8%
Chronic truant  0.2%  2.7%  1.4%
Suspended or expelled  0.7%  6.4%  0.4%
Parent refusal 16.4%  13.1%  9.2%
Student refusal  0.0%  3.2%  12.0%
In school, did not attend session  0.0%  3.0%  7.0%
In school, not invited3  0.0%  0.8%  0.0%
Other  0.3%  0.9%  3.9%
Missing  2.6%  0.4%  1.8%
Total absentee sample  384  569  2,269
Total sample size 7,689 8,343 9,807
Overall absentee rate  5.0%  6.8% 23.1%

1 Absent less than two weeks due to illness, disability, or excused absence.
2 Absent more than two weeks due to illness or disability.
3 In school, but not invited to assessment session due to disruptive behavior.

At grades 8 and 12, however, a significant component of absenteeism is not temporary or due to
parental refusal. Chronic truants, those suspended, and those in school but not invited, constitute the
obvious candidates for potential bias. These groups comprise 12.1 percent of absent students at grade 8 (or
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0.8 percent of the total sample) and 8.8 percent of absent students at grade 12 (or 2.0 percent of the total
sample). Thus their potential for introducing significant bias under the current procedures is minor.

10.2.3 Derivation of Modular Weights for the Main Samples

As discussed earlier, modular weights were computed to facilitate analyses involving students
from a single sample type. The same procedures were used to derive modular and reporting weights up
through the weight trimming step described in Section 10.2.1.5. After trimming, weighting continued in
two parallel processes. Final student reporting weights were the result of one of these processes, and
modular weights were the result of the other.

Modular weights differ from reporting weights in two ways. First, they do not contain the
reporting factor described in Section 10.2.1.6. The second difference lies in the manner in which the
weights were poststratified. The modular weights were poststratified as described in Section 10.2.1.7,
except that each sample type within each grade and session was poststratified separately. The same initial
adjustment cells were used: 7 cells based on race/region for each session/sample type combination at grade
12, and 14 cells based on race/region and eligibility class (of modal age, not of modal age) for each
session/ sample type combination at grades 4 and 8. Some adjustment factors are quite variable for the
same adjustment cell across different sample types for the same grade and session. This indicates that the
individual samples by sample type may not be particularly stable, especially for the smaller sessions of
mathematics theme and mathematics estimation.

The modular weight is the student’s base weight after the application of the various adjustments
described in Section 10.2.1, except for the reporting factor, and with the new poststratification factor
described above. The distributions of the modular weights are given in Table 10-10. Note that modular
weights are identical to reporting weights for a particular grade/session/sample type combination when that
sample type is the only one included in the reporting population for that grade and session.

10.2.4 Derivation of Student Weights for the Long-Term Trend Samples

Final student weights were derived for the long-term trend samples in a manner similar to that used
in 1994. The procedure was identical to that used to derive reporting weights, described in Section 10.2.1,
except as noted below.

As in 1994, excluded students for all subjects in the long-term trend samples were weighted
together, separately from assessed students.

Base weight. A student’s base weight is the reciprocal of the product of four factors all of the
factors used for reporting weights except sample type weight (SMPTYPWT).

Session nonresponse adjustments. Session nonresponse adjustments were calculated separately at
each age class for the spiral assessment, the tape assessment, and excluded students, within classes formed
by subuniverse. The formula for the adjustment does not contain sample type weight (SMPTYPWT), and
for excluded students, it does not contain session allocation weight (SESSWT). Gi is the estimated number
of age- plus grade-eligible students in the school for the spiral assessment and excluded students, and the
estimated number of age-eligible students for the tape assessment. For excluded students, Sets B and C are
not specific to any particular session.
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Table 10-10
Distribution of Modular Weights, Main Samples

Grade/Session/
Sample Type

Number of
Cases Mean

Standard
Deviation Minimum

25th
Percentile Median

75th
Percentile Maximum

Grade 4
Mathematics/1 3808 1035.39 615.46 163.33 579.23 903.43 1366.37 3812.67
Mathematics/2 3691 1068.73 626.06 207.26 637.04 930.71 1305.99 4446.43
Mathematics/3 4077 967.54 670.28 211.91 513.62 759.53 1208.03 6569.06
Science/2 8061 489.35 324.35 65.04 275.04 399.02 598.53 4872.34
Science/3 4600 857.54 591.01 108.77 463.61 646.17 1032.26 4642.09
Mathematics Theme/2 2072 1903.80 1163.23 576.00 1133.85 1587.94 2276.80 10676.50
Mathematics Theme/3 2239 1761.80 1061.66 178.33 1063.45 1373.85 2247.80 9972.62
Mathematics Estimation/1 1130 3490.86 2052.49 685.71 1935.45 3010.68 4316.83 12843.05
Mathematics Estimation/3 1109 3556.97 2235.80 1006.89 2080.57 2916.57 4161.25 13829.45

Grade 8
Mathematics/1 4107 908.97 620.95 106.84 405.18 770.50 1241.29 4313.67
Mathematics/2 4004 932.35 802.10 146.84 465.54 637.59 1098.33 6675.87
Mathematics/3 4128 904.35 571.76 165.42 505.73 704.53 1175.81 5003.16
Science/2 8200 455.26 388.04 75.47 219.81 313.58 562.02 3605.79
Science/3 4520 825.92 634.43 113.78 386.38 611.60 1026.86 4287.45
Mathematics Theme/2 2177 1714.81 1124.20 388.72 921.25 1258.58 2321.66 8720.24
Mathematics Theme/3 2264 1648.91 1050.29 459.90 889.19 1384.34 2006.79 6131.34
Mathematics Estimation/1 1255 2974.61 1906.19 338.54 1398.58 2574.86 3952.75 9812.97
Mathematics Estimation/3 1097 3403.04 1856.24 663.36 1873.01 3079.88 4303.41 13067.90
Advanced Mathematics/2 805 890.46 661.32 288.53 511.84 645.93 891.71 3849.92
Advanced Mathematics/3 1562 557.79 386.61 185.10 286.90 385.01 684.21 2377.82

Grade 12
Mathematics/1 3732 789.88 495.08 119.49 415.49 600.65 1100.18 3508.86
Mathematics/2 3913 750.91 451.42 103.41 434.29 614.34 1036.98 4104.76
Mathematics/3 3672 828.88 521.21 65.20 467.94 683.04 1071.83 2884.61
Science/2 7963 380.19 222.13 64.80 226.82 302.07 500.33 1759.55
Science/3 4179 718.80 465.56 66.96 406.63 587.94 884.80 3559.46
Mathematics Theme/2 2097 1442.96 862.82 313.34 879.14 1117.08 1789.78 5171.06
Mathematics Theme/3 1944 1524.34 789.35 434.13 922.15 1248.22 1991.56 6331.79
Mathematics Estimation/1 1090 2616.75 1353.39 667.28 1641.53 2331.77 3387.79 7581.54
Mathematics Estimation/2 431 6810.82 3947.11 2181.87 4076.82 5516.38 8886.82 19094.18
Mathematics Estimation/3 458 6384.23 4477.96 2416.15 3611.22 4792.51 6366.71 23079.02
Advanced Mathematics/3 2972 235.55 127.79 77.16 142.67 182.49 324.65 911.09
Advanced Science/2 2436 241.49 137.63 58.23 134.85 190.13 323.81 978.81
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School-level poststratification. There was no school-level poststratification for the long-term trend
assessments.

Student nonresponse adjustments. Student nonresponse adjustments were calculated separately at
each age class for the spiral assessment and the tape assessment within classes formed by subuniverse and
modal grade status (at or above modal grade, below modal grade). For excluded students at each age class,
the adjustments were calculated within classes formed by subuniverse. The formula for the adjustment does
not contain sample type weight (SMPTYPWT) or the school-level poststratification factor (SCHPSF), and for
excluded students, it does not contain session allocation weight (SESSWT). For excluded students, Set A
consists of all excluded students in class C, and Set B consists of the excluded students in class C for whom
an excluded student questionnaire was completed.

Trimming. Trimming was done separately for the spiral assessment, the tape assessment, and
excluded students at each age class.

Reporting factor: There was no reporting factor for the long-term trend assessments.

Student-level poststratification. Poststratification adjustments were calculated separately at each
age class for the spiral assessment, the tape assessment, and excluded students. Adjustment cells were
formed by race/region (as described in Section 10.2.1.7) and eligibility class (eligible by grade and of modal
age, eligible by age only, and eligible by grade but not of modal age). Thus 21 cells were used for the spiral
assessment and excluded students at each age class. Seven cells (by race/region only) were used for the tape
assessment at each age class. For each cell the poststratification factor is a ratio whose denominator is the
sum of weights (after adjustments for nonresponse and trimming) of assessed and excluded students, and
whose numerator is an adjusted estimate of the total number of students in the population who are members
of the cell.

Final student weights. The final weight assigned to each student is the student’s base weight after
application of the various adjustments described above. The distributions of the final student weights for the
long-term trend samples are given in Table 10-11.

10.2.5 Other Weights

Special weighting adjustments were developed for certain subsets of the fourth-grade and eighth-
grade students assessed in the main samples. The weights for these subsets, with these adjustments applied,
were used in equating the results of the national and state assessments for subjects they had in common.
Also, weights appropriate for analyzing school-level data files were developed.

10.2.5.1 Weights for Equating National and State-by-State Samples

Weights for Equating National and State-by-State Assessments. The fourth-grade mathematics and
eighth-grade mathematics and science assessments conducted in February 1996 in the NAEP 1996 State
Assessment consisted of identical assessment material to that administered in the corresponding national
main sample sessions. Technical details of the NAEP 1996 State Assessments are given in Allen, Jenkins,
Kulick, and Zelenak (1997) and Allen, Swinton, Isham, and Zelenak (1998). The national and state-by-state
assessments were equated so that state and national results could be reported on a common scale. The
equating was achieved by using from each assessment that part of the sample representing a common
population. For the national samples, this consisted of those fourth-grade or eighth-grade public-school
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Table 10-11
Distribution of Final Student Weights, Long-Term Trend Samples

Sample
Number
of Cases Mean

Standard
Deviation Minimum

25th
Percentile Median

75th
Percentile Maximum

Age Class 9
Reading/Writing 5019 923.09 442.60 227.42 599.94 827.79 1140.65 4314.81
Mathematics/Science 5414 613.85 288.34 189.55 420.00 562.09 696.40 2736.30
Excluded Students 1117 431.66 359.05 121.12 231.89 327.31 448.31 3049.25

Age Class 13
Reading/Writing 5493 855.31 369.72 54.00 840.26 840.26 1073.19 3655.57
Mathematics/Science 5658 594.48 284.74 461.32 516.88 516.88 670.97 3038.10
Excluded Students 933 465.54 347.50 38.77 342.48 342.48 482.85 2909.37

Age Class 17
Reading/Writing 4669 944.55 546.50 203.58 796.32 796.32 1207.55 3814.59
Mathematics/Science 3539 900.51 453.46 287.24 782.92 782.92 1022.00 3505.95
Excluded Students 713 549.66 338.57 160.95 471.56 471.56 621.88 2364.01
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students from a participating state (including the District of Columbia) who were assessed in the main
sample mathematics or (for grade 8) science assessment reporting samples.

Although each sample of students received appropriate weights from the weighting procedure used
for the national assessment, in an effort to increase the precision of the equating process, an additional
weighting adjustment was developed and applied to each subsample by grade and subject, solely for use in
equating. For each subsample, the distributions of the main sample reporting weights for three categorical
variables were adjusted to agree closely with those obtained from the weighted aggregate sample from the
state assessments from the participating states. The first two variables were NAEP region (Northeast,
Southeast, Central, and West) and race/ethnicity (White nonHispanic, Black nonHispanic, Hispanic, and
other). For fourth-grade mathematics, the third variable was mathematics skill (good, not sure, other). For
eighth-grade mathematics, the third variable was the student’s mathematics course (eighth-grade
mathematics, pre-algebra, algebra, other). For eighth-grade science, the third variable was the student’s
science course (earth science only, physical science only or only earth science and physical science, other).
The categorical variables and control totals for each of the assessed grades and subjects are presented in
Tables 10-12 and 10-13.

Table 10-12
First and Second Categorical Variables Used for Raking1

Raking
Dimensions

Fourth Grade Mathematics
Control Total

Eighth Grade Mathematics
Control Total

Eighth Grade Science
Control Total

First Dimension
NAEP Region

1. Northeast 631,451 480,785 475,079
2. Southeast 733,191 723,032 726,322
3. Central 427,577 433,541 432,580
4. West 932,339 904,369 915,815
Total 2,724,558 2,541,727 2,549,797

Second Dimension
Race/Ethnicity

1. White nonHispanic 1,690,310 1,596,274 1,590,164
2. Black nonHispanic 408,725 377,660 372,715
3. Hispanic 454,883 408,197 419,467
4. Other 170,641 159,595 167,451
Total 2,724,558 2,541,727 2,549,797

1 Numbers may not add up exactly due to rounding.

The equating of each weight distribution was achieved using a procedure known as iterative
proportional fitting (described by Little & Rubin, 1987). At the end of the fitting, adjustment factors were
derived and multiplied to the main sample weights for each subgroup to force their distribution to agree
with that from the aggregated state samples, for each of these three variables in turn. This process was then
repeated, and the final set of adjusted weights was compared with the state sample weights on all three
distributions, and found to be in very close agreement. Table 10-14 shows the distribution of the
adjustment factors for each of the grades and subjects assessed.
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Table 10-13
Third Categorical Variable Used for Raking1

Control Totals

Grade 4
Mathematics Skill

1. Good 1,734,093
2. Not sure 634,732
3. Other 355,733
Total 2,724,558

Grade 8
Mathematics Type Course

1. Eight Grade Mathematics 1,018,743
2. Pre-Algebra 714,925
3. Algebra 639,393
4. Other 168,665
Total 2,541,727

Science Type Course
1. Earth Sciences only 737,898
2. Physical Sciences only or Earth Science and Physical Science 525,048
3. Other 1,286,851
Total 2,549,797

1 Numbers may not add up exactly due to rounding.

Table 10-14
Percentiles of Raking Adjustments

Distribution Grade 4 Mathematics Grade 8 Mathematics Grade 8 Science

Minimum 0.587 0.708 0.721
10th Percentile 0.699 0.741 0.810
25th Percentile 0.777 0.837 0.847
Median 0.891 0.958 0.983
75th Percentile 1.025 1.074 1.161
90th Percentile 1.119 1.230 1.409
Maximum 1.524 1.728 2.355

10.2.5.2 School Weights

The sampling procedures used to obtain national probability samples of assessed students also
gave rise indirectly to several national probability samples of schools (from which the students were
subsequently sampled). So that the school samples can be utilized for making national estimates about
schools, appropriate nonresponse adjusted survey weights have been developed.

For the first time in 1996, the school weights for the main assessments were computed separately
by subject within grade. The school weights were a direct byproduct of the student weighting process. The
weight for school i in session h is given by

Whi = PSUWTi • SCHWTi • SESSWThi • SESNRFhi • SCHPSFhi
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where PSUWTi, SCHWTi, SESSWThi, SESNRFhi, and SCHPSFhi are defined in Section 10.2.1.

The school weights for the long-term trend assessments in 1996 were computed using the same
procedures used in earlier years. The weights were computed separately by age class. The school base
weight was the product of PSUWT and SCHWT. School nonresponse adjustments were then applied to
these base weights. The values of the adjustment factors are not subject specific. In fact, they are identical
to the school nonresponse adjustment factors used for excluded students. Schools that did not participate in
any of the sessions that they were assigned were treated as nonrespondents, but schools that conducted at
least one of their assigned sessions were treated as respondents.

Fifteen samples of schools were weighted to be nationally representative in the main assessments,
and three samples were weighted to be nationally representative in the long-term trend assessments. In the
main samples, the population of schools represented is that of schools with grade 4 (for the grade 4
assessments), grade 8 (for the grade 8 assessments), or grade 12 (for the grade 12 assessments). In the
long-term trend samples, the school population at age class 9 is that of schools having eligible students and
at least one of the grades 2 through 5, the school population at age class 13 is that of schools having
eligible students and at least one of the grades 6 through 9, while the school population at age class 17 is
that of schools having eligible students and at least one of the grades 9 through 12.

10.2.5.3 Jackknife Replicate Weights

In addition to the weights that were used to derive all estimates of population and subpopulation
characteristics, other sets of weights, called jackknife replicate weights, were derived to facilitate the
estimation of sampling variability by the jackknife variance estimation technique. These weights and the
jackknife estimator are discussed in the next section.

10.3 PROCEDURES USED BY NAEP TO ESTIMATE SAMPLING VARIABILITY

A major source of uncertainty in the estimation of the value in the population of a variable of
interest exists because information about the variable is obtained on only a sample from the population. To
reflect this fact, it is important to attach to any statistic (e.g., a mean) an estimate of the sampling
variability to be expected for that statistic. Estimates of sampling variability provide information about
how much the value of a given statistic would be likely to change if the statistic had been based on another,
equivalent, sample of individuals drawn in exactly the same manner as the achieved sample.

Another important source of variability is that due to imprecision in the measurement of individual
proficiencies. For the 1996 assessment, proficiencies in all subject areas were summarized through item
response theory (IRT) models, but not in the way that these models are used in standard applications where
each person responds to enough items to allow for precise estimation of that person’s proficiency. In
NAEP, each individual responds to relatively few items so that individual proficiency values are not well
determined. Consequently, the variance of any statistic based on proficiency values has a component due
to the imprecision in the measurement of the proficiencies of the sampled individuals in addition to a
component measuring sampling variability. The estimation of the component of variability due to
measurement imprecision and its effect on the total variability of statistics based on proficiency values are
discussed in Chapter 11.
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The estimation of the sampling variability of any statistic must take into account the sample
design. In particular, because of the effects of cluster selection (students within schools, schools within
PSUs) and because of effects of nonresponse and poststratification adjustments, observations made on
different students cannot be assumed to be independent of each other (and are, in fact, generally positively
correlated). Furthermore, to account for the differential probabilities of selection (and the various
adjustments), each student has an associated sampling weight, which should be used in the computation of
any statistic and which is itself subject to sampling variability. Ignoring the special characteristics of the
sample design and treating the data as if the observations were independent and identically distributed, will
generally produce underestimates of the true sampling variability, due to the clustering and unequal
sampling weights.

The proper estimation of the sampling variability of a statistic based on the NAEP data is
complicated and requires techniques beyond those commonly available in standard statistical packages.
Fortunately, the jackknife procedure (see, e.g., Wolter, 1985; Kish & Frankel, 1974; Rust, 1985) provides
good quality estimates of the sampling variability of most statistics, at the expense of increased
computation, and can be used in concert with standard statistical packages to obtain a proper estimate of
sampling variability.

The jackknife procedure used by NAEP has a number of properties that make it particularly suited
for the analysis of NAEP data. When properly applied, a jackknife estimate of the variability of a linear
estimator (such as a total) will be the same as the standard textbook variance estimate specified for the
sample design (if the first-stage units were sampled with replacement and approximately so otherwise).
Additionally, if the finite sampling corrections for the first stage units can be ignored, the jackknife
produces asymptotically consistent variance estimates for statistics such as ratios, regression estimates or
weighted means and for any other nonlinear statistic that can be expressed as a smooth function of
estimated totals of one or more variables (Krewski & Rao, 1981).

Through the creation of student replicate weights (defined below), the jackknife procedure allows
the measurement of variability attributable to the use of poststratification and other weight adjustment
factors that are dependent upon the observed sample data. Once these replicate weights are derived, it is a
straightforward matter to obtain the jackknife variance estimate of any statistic.

The jackknife procedure in this application is based upon the development of a set of jackknife
replicate weights for each assessed student (or excluded student, or school depending upon the file
involved). The replicate weights are developed in such a way that, when utilized as described below,
approximately unbiased estimates of the sampling variance of an estimate result, with an adequate number
of degrees of freedom to be useful for purposes of making inferences about the parameter of interest.

The estimated sampling variance of a parameter estimator t is the sum of M squared differences
(where M is the number of replicate weights developed):

�Var t t ti
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where ti denotes the estimator of the parameter of interest, obtained using the ith set of replicate weights,
SRWTi, in place of the original sample of full sample estimates WT.

For each of the three sample types (see Section 3.4 and Chapter 5 for a description of the three
sample types) in the main assessment samples, 62 replicate weights were developed using the procedures
outlined below. Similar procedures were followed for the long term trend samples. However, since those
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samples were based on fewer PSUs (52 rather than 94), the long-term trend samples have fewer replicate
weights (36 instead of 62). Full details of the generation of replicate weights for all samples are given in
Wallace and Rust (1999).

Of the 62 replicate weights formed for each record from a main assessment sample, 36 act to
reflect the amount of sampling variance contributed by the noncertainty strata of PSUs, with the remaining
26 replicate weights reflecting the variance contribution of the certainty PSU samples.

The derivation of the 36 replicate weights reflecting the variance of the noncertainty PSUs
involves first defining pairs of PSUs in a manner that models the design as one in which two PSUs are
drawn with replacement per stratum. This definition of pairs is undertaken in a manner closely reflective of
the actual design, in that PSUs are pairs that are drawn from strata within the same subuniverse, and with
similar stratum characteristics. The same definition of pairs was used for each of the age/grade classes in
the main assessment, since all were drawn from the same sample of noncertainty PSUs. The 72
noncertainty PSUs, drawn one from each of 72 strata, were formed into 36 pairs of PSUs, where the pairs
were composed of PSUs from adjacent strata within each subuniverse (thus the strata were relatively
similar on socioeconomic characteristics such as proportion minority population, population change since
1980, per capita income, educational attainment, and unemployment rate). Whereas the actual sample
design was to select one PSU with probability proportional to size from each of 72 strata, for variance
estimation purposes the design is regarded as calling for the selection of two PSUs with probability
proportional to size with replacement from each of 36 strata. This procedure likely gives a small positive
bias to estimates of sampling error.

The student replicate weight for the ith pair of noncertainty PSUs, for the 36 pairs corresponding to
values of i from 1 to 36, is computed as follows:

1. Let WB be the base weight of a student, as described in Section 10.2.1, which accounts
for the various components of the selection probability for the student.

 
2. At random, one PSU in each pair is denoted as PSU number 1, while the other is

denoted as PSU number 2. The ith replicate base weight Wbi is given by:
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if the student belongs to PSU number 1 of pair 

if the student belongs to PSU number 2 of pair 

if the student is from neither PSU in pair 

*

3. The ith student replicate weight SRWTi is obtained by applying the various school and
student nonresponse adjustments, the weight trimming, and the poststratification to the
ith set of replicate base weights, using procedures identical to those used to obtain the
final student weights WT from the set of base weights WB.

In brief, the procedure for deriving the sets of Wbi values from the WB values reflects the sampling
of PSUs, schools, sessions, and students. By repeating the various weight adjustment procedures in each
set of replicate base weights, the impact of these procedures on the sampling variance of the estimator, t, is
appropriately reflected in the variance estimator Var t� � �  defined above.

The procedure for obtaining the 26 sets of replicate weights to estimate the sampling variance from
the certainty PSUs is analogous, but somewhat more complex. The first stage of sampling in this case is at
the school level, and the derivation of replicate weights must reflect appropriately the sampling of schools
within certainty PSUs. Since each of the three grade classes in the main assessment involved different
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samples of schools, the procedure for forming replicate base weights was individualized to each of these
sample components. In common across these three samples were the 22 certainty PSUs used, and the fact
that 26 replicate weights were formed in each case.

For a given sample, the 22 certainty PSUs constituted strata, with a sample of schools drawn
systematically within each. Using the schools listed in order of sample selection within each stratum,
successive schools were paired or formed into triples. These pairs and triples numbered more than 26, so
that each replicate weight was in general formed by perturbing the weights of students from more than a
single pair or triple. These aggregates of pairs and triples were in general assigned in proportion to the size
of the PSU. Thus generally speaking, the largest PSUs were assigned three replicates each, the next largest
were assigned two replicates each, and the remaining self-representing PSUs were assigned one replicate
each. When splitting the larger PSUs, the schools were split into groups of (as close as possible) equal size,
based on the ordering at the time of sample selection. One group was assigned to each replicate. Within
each PSU (or partial PSU in the case of the large split PSUs) schools were alternately numbered 1 or 2
starting randomly. If, however, there were exactly three schools sampled in the PSU the schools were
randomly numbered 1, 2, or 3. The method of forming replicate base weights in strata where there were not
exactly three schools was the same as for the noncertainty strata (except that members of a pair, i, could
come from more than a single “stratum”).

When a stratum contained three schools, students in these schools had their weights perturbed for
two sets of replicates, say i1 and i2, as follows:
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The actual pattern of replicate base weight assignment used for each of the samples is given in
Wallace and Rust (1999).

The nonresponse, trimming, and poststratification adjustments were applied to each set of replicate
base weights to derive the final replicate weights in each case, exactly as in the noncertainty PSUs. In fact
these procedures were applied to the full set of weights from all parts of the given sample together, just as
for the full sample weights. That is, for example, poststratification factors were derived from the full set of
data for each replicate, not separately for certainty and noncertainty PSUs.

This estimation technique was used by NAEP to estimate all sampling errors presented in the
various reports. A further discussion of the variance estimation procedure used by NAEP, including a
discussion of alternative jackknife estimators that were also considered, appears in Johnson (1989).

We noted above (as discussed in Chapter 11) that a separate estimate of the contribution to
variance due to the imprecision in the measure of individual proficiencies is made and added to the
jackknife estimate of variance. That variance component could have been approximately reflected in the
jackknife variance estimates simply by separately applying the IRT computations to each jackknife
replicate. Because of the heavier IRT computational load, this was not done. Less work was involved by
the simple procedure of making separate estimates of this component to be added to the jackknife variance
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estimates. Also, a separate measure of this component of variance is then available, which would not be so
if it were reflected in the jackknife variance estimate.

10.4 APPROXIMATING THE SAMPLING VARIANCE USING DESIGN EFFECTS

In practical terms, the major expenditure of resources in the computation of a jackknife variance
estimate occurs in the preparation of estimates for each of the pseudoreplicates. In the 1996 assessment,
this implies that the statistic of interest has to be recomputed up to 63 times, once for the overall estimate t,
and once for each of the up to 62 pseudoreplicates ti. Because this is a considerable increase in the amount
of computation required, relative to a conventional variance estimate, it is of interest to see how much the
jackknife variance estimates differ from their less computationally intensive, simple random sampling
based, analogues.

The comparison of the conventional and the jackknife methods of variance estimation will be in
terms of a statistic called the design effect, which was developed by Kish (1965) and extended by Kish and
Frankel (1974). The design effect for a statistic is the ratio of the actual variance of the statistic (taking the
sample design into account) over the conventional variance estimate based on a simple random sample
with the same number of elements. The design effect is the inflation factor to be applied to the
conventional variance estimate in order to adjust error estimates based on simple random sampling
assumptions to account approximately for the effect of the sample design. The value of the design effect
depends on the type of statistic computed and the variables considered in a particular analysis as well as
the combined clustering, stratification, and weighting effects occurring among sampled elements. While
stratification drives down the sampling variance, the effects of clustering and weighting that drive
variances up are generally sufficient to produce variance estimates that are larger than variances based on
simple random sampling assumptions. Consequently, the design effects will be greater than one. In NAEP,
the underestimates are the result of ignoring the effects of clustering and unequal probabilities of selection
in the variance calculations.

Since most of the analyses conducted by NAEP are based on the results of scaling models that
summarize performance of students across a learning area, we consider the design effects to be expected
for analyses based on these scale scores. For reasons given in Chapter 11, NAEP provides each individual
with a set of “plausible values,” each of which is a random draw from the distribution of the potential scale
scores for that individual. Since our current interest is on the effect of the sampling design on estimation
and inference, we will restrict our attention to a single measure of an individual’s proficiency, the first
plausible value of the individual’s scale score.

A key statistic of interest is the estimated mean proficiency of a subgroup of the population. An
estimate of the subgroup mean proficiency is the weighted mean of the first plausible values of proficiency

of the sampled individuals who belong to the subpopulation of interest. Let Y  be the weighted mean of the
plausible values of the sampled members of the subpopulation. The conventional estimate of the variance

of Y  is
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where N is the total number of sampled individuals in the subpopulation for which plausible values are
available, wi is the weight of the ith individual, yi is a plausible value from the distribution of potential
proficiencies for that individual, and W+ is the sum of the weights across the N individuals.
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The design effect for the subgroup mean proficiency estimate is

deff Y Var Y Var YJK con� � � � � �= /

where VARJK(Y ) is the jackknife variance of Y . (As has been pointed out previously, VARJK(Y ) as
computed does not measure the variability of Y  due to imprecision in the measurement of the proficiencies
of the sampled individuals. The estimation of this very important source of variability is discussed in
Chapter 11.) Of the factors that determine deff(Y ), the effects of stratification are usually less than one,
which means the efficiency of a stratified sampling is better than a simple random sampling; whereas the
clustering effects are always larger than one. The clustering effects can be approximated by

1 1+ −m� �ρ ,

where m  is the average cluster size and ρ  is the intracluster correlation (Cochran, 1977). Therefore, the
large cluster size or large intracluster correlation will inflate the clustering effects.

Values of the design effects for subgroup mean proficiencies are displayed, by grade, in Tables 10-
15 and 10-19 for the 1996 main assessments of mathematics and science respectively. Design effects are
shown for the population as a whole (Total) as well as for a variety of demographic subgroups: gender;
race/ethnicity (White, Black, Hispanic, Asian/Pacific Islander, other); type of location (Central City, Urban
Fringe/Large Town, Rural/Small Town); parental education (did not graduate high school, graduated high
school, post-high school, graduated college, unknown); and type of school (public, nonpublic). These
particular demographic variables were selected because (1) they are major variables in NAEP reports and
(2) they reflect different types of divisions of the population that might have different levels of sampling
variability. Note that the tables of the design effects provided in the NAEP Technical Reports previous to
1994 are computed for the mean item scores, proportion-correct statistics, which can not be compared with
the design effects for proficiency scale scores directly.

The 1996 main mathematics assessment contains the three sample types S1, S2 and S3 (see
Section 5.3). To conserve trend in the main mathematics assessment, the reporting samples were made up
of A1 and B1 portions in S1 samples and A2 in S2 samples (see Table 10-1). The advantage of including
A2 in the reporting samples is to obtain more accurate scale scores, yet a trade-off is that the clustering
effects for the reporting samples becomes lager than the clustering effects for only sample S1.

The larger intracluster correlation in A1 and A2 and larger cluster sizes in sample type S1 are two
factors that contribute to the increase in clustering effects. First, the reporting sample for the main
mathematics assessment from sample type S2 has only non-SD/LEP students, A2. Compared with the
SD/LEP students, the non-SD/LEP students are relative homogenous in scale scores. The high
homogeneity in clusters implies a large intracluster correlation, ρ1. Given other conditions, the large
clustering effects that are due to a large intracluster correlation expand the design effects in the reporting
samples. To check this conclusion, the design effects for subsamples of A1, A2, and B1 were calculated
separately and are displayed in Tables 10-16, 10-17 and 10-18. The estimated design effects for
subsamples of A1 and A2 are much larger than those for subsample B1 that contains SD/LEP students in
sample type S1. Secondly, the cluster sizes tended to be larger in sample type S1 because the schools in
sample type S1 only provided samples for the main mathematics assessment, whereas the schools in
sample type S2 provided samples for both the main mathematics and science assessments. Therefore, the
design effects in A1 are found to be larger than the design effects in A2 and both subsamples of A1 and A2
contributed students to the reporting samples.
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Tables 10-20 and 10-21 provide equivalent information for the long-term trend samples. Table 10-20
provides, for each age class and demographic subgroup, the average of the design effects for mean reading
and writing proficiencies for the students selected for the long-term trend assessments of reading and
writing. Table 10-21 provides the average of the design effects for the mean mathematics and science
proficiencies for the students selected for the long-term trend assessments of mathematics and science.

Finally, for comparison with the national mathematics and science results, Table 10-22 shows the
average design effects for state-level mean mathematics proficiency, averaged across all jurisdictions
participating in the grade 4 and grade 8 1996 State Assessment in mathematics. The results in Table 10-23
are the average design effects for state-level mean science proficiency, averaged across all jurisdictions
participating in the grade 8 1996 State Assessment in science.

The tables show that the design effects are predominantly larger than 1, indicating that standard variance
estimation formulas will be generally too small, usually markedly so. Although the design effects appear
somewhat different for certain subgroups of the population, they are, perhaps, similar enough (at least within
a subject and grade) to select an overall composite value that is adequate for most purposes. In choosing a
composite design effect, some consideration must be made about the relative consequences of
overestimating the variance as opposed to underestimating the variance. For example, if an overestimate of
the variance is viewed as severe an error as an underestimate, the composite design effect should be near to
the center of the distributions of the design effects. Possible composites of this type are the mean and
median design effects across the combined distribution of all design effects. Larger design effects should be
used if it is felt that it is a graver error to underestimate the variability of a statistic than to overestimate it.
For example, Johnson and King (1987) examine estimation of variances using design effects (among other
techniques) under the assumption that the consequences of an underestimate are three times as severe as
those of an overestimate of the same magnitude. Adopting a loss function that is a weighted sum of absolute
values of the deviations of predicted from actual with underestimates receiving three times the weight of
overestimates, produces the upper quartile of the design effects as the composite value. This assumes that
the distribution of design effects is roughly independent of the jackknife estimates of variance, so that the
size of a design effect does not depend on the size of the variance.

Table 10-24 gives the values of these potential composites, by grade, for the mathematics and
science assessments, and across those assessments. Tables 10-25 and 10-26 gives composite values for the
1996 State Assessment of mathematics (grades 4 and 8), and the 1996 State Assessment of science (grade 8),
respectively. Table 10-27 shows composite values for the 1996 State Assessment of mathematics and the
1996 State Assessment of science, combined. The state assessments tend to have smaller design effects than
the matching national assessment, due to the lesser degree of clustering in the state assessment samples (i.e.,
the average cluster size of m  is smaller). Table 10-28 gives the values of the composites for the two long-
term trend samples.

We note that the Var Ycon� � as defined above is an estimate of S2/N where S2 represents the unit

variance for a simple random sample for the population of students from which the sample is drawn. This is
an appropriate estimate of the increase in variance over simple random sampling from that population due to
the effects of weighting. However, the computer packages used for estimating the variance may not reflect
the weights in estimating the unit variance, as given above, but instead may provide an estimate of a unit
variance of the form

y Y

N
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N
−

=∑ � �2
1

2
.

In this case, the unweighted estimate of unit variance would be appropriate for the denominator of a design
effect measure of the increase in variance over the unit variance as estimated by the computer package. If
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there is no correlation between the wi and yi, there would be little difference between the two.

Table 10-15
Design Effects by Demographic Subgroup and Grade

for Mean Mathematics Proficiencies1

Subgroup Grade 4 Grade 8 Grade 12

Total 5.00 5.82 6.50
Male 3.28 4.48 3.50
Female 3.19 3.13 4.56
White 4.74 5.92 5.14
Black 6.32 3.89 5.95
Hispanic 4.04 2.72 2.42
Asian/Pacific Islander 3.86 4.45 6.21
Other race/ethnicity 1.46 1.09 15.38
Urban 9.29 7.27 11.53
Suburban 7.10 10.50 6.36
Rural 6.09 5.92 8.00
PARED < HS 1.54 1.33 1.59
PARED = HS 2.12 1.89 2.28
PARED > HS 1.18 2.34 1.31
PARED = College 4.76 5.05 5.17
PARED = Unknown 4.36 1.13 1.06
Public school 5.24 5.87 4.42
Nonpublic school 7.00 8.53 18.24

1Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.

Table 10-16
Design Effects of Subsample A1 by Demographic Subgroup and Grade

for Mean Mathematics Proficiencies1

Subgroup Grade 4 Grade 8 Grade 12

Total 9.38 7.33 7.48
Male 5.61 5.04 4.62
Female 4.95 4.13 4.14
White 5.13 6.89 5.21
Black 15.14 3.93 7.63
Hispanic 2.08 2.86 1.91
Asian/Pacific Islander 2.46 7.96 4.54
Other race/ethnicity 1.12 0.96 30.13
Urban 16.94 6.13 12.20
Suburban 6.84 15.34 5.72
Rural 8.25 8.01 13.42
PARED < HS 1.28 1.55 1.03
PARED = HS 2.70 1.76 2.74
PARED > HS 1.32 2.28 1.57
PARED = College 7.92 7.96 5.88
2PARED = Unknown   
Public school 9.49 7.07 5.43
Nonpublic school 12.24 9.18 20.54
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.
2 Insufficient data to compute design effects
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Table 10-17
Design Effects of Subsample A2 by Demographic Subgroup and Grade

for Mean Mathematics Proficiencies1

Subgroup Grade 4 Grade 8 Grade 12

Total 7.95 3.98 5.98
Male 4.75 3.50 3.19
Female 4.78 2.02 5.32
White 4.39 3.95 3.50
Black 3.43 1.80 1.92
Hispanic 3.26 2.31 3.00
Asian/Pacific Islander 3.92 2.07 1.61
Other race/ethnicity 0.60 1.41 2.05
Urban 7.25 6.77 5.53
Suburban 13.77 4.80 5.36
Rural 4.24 4.25 3.94
PARED < HS 1.44 1.52 1.76
PARED = HS 1.81 2.18 1.41
PARED > HS 1.19 0.92 1.89
PARED = College 5.55 2.10 3.27
2PARED = Unknown   
Public school 7.79 4.02 5.08
Nonpublic school 5.99 7.58 6.08
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.
2 Insufficient data to compute design effects

Table 10-18
Design Effects of Subsample B1 by Demographic Subgroup and Grade

for Mean Mathematics Proficiencies1

Subgroup Grade 4 Grade 8 Grade 12

Total 2.88 1.23 1.77
Male 2.42 1.38 1.38
Female 1.31 1.15 1.98
White 1.95 1.54 1.10
Black 1.60 0.98 1.77
Hispanic 3.73 0.81 0.78
Asian/Pacific Islander 1.90 0.80 8.32
Other race/ethnicity 0.87 1.13 13.01
Urban 3.96 1.26 1.91
Suburban 2.76 1.55 1.19
Rural 1.67 1.27 1.86
PARED < HS 1.38 0.69 1.46
PARED = HS 1.46 0.98 0.89
PARED > HS 1.21 0.98 1.21
PARED = College 1.45 2.00 0.72
2PARED = Unknown   
Public school 2.85 1.10 1.49
Nonpublic school 0.31 0.35 5.99
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.
2 Insufficient data to compute design effects
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Table 10-19
Design Effects by Demographic Subgroup and Grade

for Mean Science Proficiencies1

Subgroup Grade 4 Grade 8 Grade 12

Total 3.83 4.98 4.80
Male 2.43 3.35 3.77
Female 2.43 4.23 3.25
White 3.71 5.09 4.73
Black 4.17 2.01 2.79
Hispanic 3.08 3.57 4.60
Asian/Pacific Islander 4.00 3.07 2.81
Other race/ethnicity 2.45 2.38 2.18
Urban 11.40 7.17 11.86
Suburban 13.97 8.51 8.60
Rural 6.17 6.66 5.07
PARED < HS 1.23 1.75 1.91
PARED = HS 1.79 2.35 3.11
PARED > HS 1.16 1.66 2.43
PARED = College 2.64 4.50 2.95
PARED = Unknown 2.77 3.72 1.74
Public school 3.97 4.43 4.94
Nonpublic school 5.23 9.31 6.96
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.

Table 10-20
Design Effects by Demographic Subgroup and Age Averaged Over Mean

Reading and Writing Proficiencies for the Reading and Writing Long-Term Trend Samples1

Subgroup Age 9 Age 13 Age 17

Total 1.86 2.13 2.13
Male 1.08 1.81 1.79
Female 2.00 1.85 2.08
White 1.51 1.24 1.84
Black 1.31 3.93 2.48
Hispanic 2.17 1.98 1.21
Asian/Pacific Islander 1.53 1.78 2.22
Other race/ethnicity 1.23 1.75 3.75
Urban 2.16 6.65 2.58
Suburban 3.37 4.35 2.08
Rural 3.74 3.33 8.14
PARED < HS 0.89 1.66 1.06
PARED = HS 1.68 1.09 1.03
PARED > HS 1.12 1.22 1.86
PARED = College 1.21 2.09 1.42
PARED = Unknown 2.08 2.04 0.68
Public school 2.05 1.89 2.41
Nonpublic school 1.96 2.28 2.16
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.
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Table 10-21
Design Effects by Demographic Subgroup and Age Averaged Over Mean

Mathematics and Science Proficiencies for the Mathematics and Science Long-Term Trend Samples1

Subgroup Age 9 Age 13 Age 17

Total 3.02 3.54 2.04
Male 2.88 1.76 1.86
Female 1.37 2.83 1.45
White 2.49 3.95 2.04
Black 2.83 1.79 1.17
Hispanic 2.06 2.06 1.75
Asian/Pacific Islander 2.29 2.72 1.71
Other race/ethnicity 1.79 2.18 1.8
Urban 4.42 6.18 5.16
Suburban 4.36 7.73 2.42
Rural 6.32 8.52 6.35
PARED < HS 0.84 2.09 1.8
PARED = HS 1.51 1.79 2.39
PARED > HS 1.88 1.08 1.7
PARED = College 2.67 2.14 1.77
PARED = Unknown 0.71 1.86 1.47
Public school 2.72 3.57 1.86
Nonpublic school 4.36 10.89 4.74
1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of proficiency.

Table 10-22
Average Design Effects by Demographic Subgroup for Mean

State Mathematics Proficiencies Averaged Across State Samples1

Subgroup Grade 4 Grade 8

Total 4.15 3.45
Male 2.65 2.36
Female 2.66 2.36
White 3.06 2.56
Black 1.98 1.93
Hispanic 1.84 1.59
Asian/Pacific Islander 1.57 1.40
Other race/ethnicity 1.63 1.76
Urban 5.99 4.88
Suburban 4.23 3.59
Rural 4.19 3.08
PARED < HS 1.37 1.26
PARED = HS 1.65 1.79
PARED > HS 1.37 1.44
PARED = College 2.89 2.37
PARED = Unknown 2.13 1.47
Public school 4.02 3.42
Nonpublic school 7.06 5.60
1 Design effects are based on the conventional and jackknife variances of subgroup means
of the first plausible values of proficiency.
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Table 10-23
Average Design Effects by Demographic Subgroup for Mean
State Science Proficiencies Averaged Across State Samples1

Subgroup Grade 8

Total 3.53
Male 2.43
Female 2.33
White 2.55
Black 1.92
Hispanic 1.63
Asian/Pacific Islander 1.34
Other race/ethnicity 1.70
Urban 5.13
Suburban 3.52
Rural 2.99
PARED < HS 1.34
PARED = HS 1.75
PARED > HS 1.45
PARED = College 2.26
PARED = Unknown 1.51
Public school 3.41
Nonpublic school 6.50

1 Design effects are based on the conventional and jackknife variances of
subgroup means of the first plausible values of proficiency.

Table 10-24
Within-Grade Mean, Median, and Upper Quartile of the Distribution of Design Effects

for National Main Assessments by Subject Area and Across Subject Areas

Statistic Grade 4 Grade 8 Grade 12

Mean Mathematics Proficiencies
(Distribution Across Demographics Subgroups)

Upper Quartile 6.09 5.92 6.50
Mean 4.48 4.52 6.09
Median 4.88 5.44 6.08

Mean Science Proficiencies
(Distribution Across Demographics Subgroups)

Upper Quartile 4.17 5.09 4.94
Mean 4.25 4.37 4.36
Median 3.90 4.47 4.67

Across Subject Areas
(Distribution Across Subject Areas and Demographic Subgroups)

Upper Quartile 5.24 5.92 6.36
Mean 4.36 4.45 5.23
Median 3.92 4.33 4.58
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Table 10-25
Mean, Median, and Upper Quartile of the Across-State Average Design Effects

for Mean State Mathematics Proficiency (Distribution Across Demographic Subgroups)

Statistics Grade 4 Grade 8

Upper Quartile 4.15 3.42
Mean 3.02 2.57
Median 2.66 2.36

Table 10-26
Mean, Median, and Upper Quartile of the Across-State Average Design Effects

for Mean State Science Proficiency (Distribution Across Demographic Subgroups)

Statistics Grade 8

Upper Quartile 3.41
Mean 2.63
Median 2.30

Table 10-27
Mean, Median, and Upper Quartile of the Across-State Average Design Effects

for Mean State Proficiency (Distribution Across Demographic Subgroups and Across Subjects)

Statistics Grade 4 Grade 8

Upper Quartile 4.15 3.42
Mean 3.02 2.60
Median 2.66 2.35

Table 10-28
Mean, Median, and Upper Quartile of the Distribution of Design Effects

for the Long-Term Trend Samples1

Statistic Age 9 Age 13 Age 17

Reading and Writing Long-Term Trend
(Distribution Across Demographic Subgroups of Average
of Design Effects for Reading and Writing Mean Proficiencies)

Upper Quartile 2.08 3.09 2.48
Mean 1.81 2.44 2.40
Median 1.67 1.94 2.08

Mathematics and Science Long-Term Trend
(Distribution Across Demographic Subgroups of Average
of Design Effects for Mathematics and Science Mean Proficiencies)

Upper Quartile 3.02 3.95 2.39
Mean 2.70 3.70 2.42
Median 2.58 2.45 1.83

1 Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of
proficiency.
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Chapter 11

SCALING PROCEDURES1

Nancy L. Allen, Eugene G. Johnson, Robert J. Mislevy, and Neal Thomas
Educational Testing Service

11.1 INTRODUCTION

The primary method by which results from the 1996 National Assessment of Educational
Progress (NAEP) were disseminated was scale-score reporting. With scaling methods, the performance
of a sample of students in a subject area or subarea can be summarized on a single scale or series of
scales even when different students have been administered different items. This chapter presents an
overview of the scaling methodologies employed in the analyses of the data from NAEP surveys in
general and from the 1996 assessment in particular. Details of the scaling procedures specific to the
subject areas of science, mathematics, reading, and writing are presented in Chapters 12 through 17.

11.2 BACKGROUND

The basic information from an assessment consists of the responses of students to the items
presented in the assessment. For NAEP, these items are constructed to measure performance on sets of
objectives developed by nationally representative panels of learning area specialists, educators, and
concerned citizens. Satisfying the objectives of the assessment and ensuring that the tasks selected to
measure each goal cover a range of difficulty levels typically require many items. For example, the
mathematics assessment required 164 items at grade 8. Depending on the subject areas, a mixture of
multiple-choice, short constructed-response, and extended constructed-response items were used.
Multiple-choice and short constructed-response items were used in all assessments but writing. Extended
constructed-response items, scored on a multipoint scale, were presented in the main mathematics and
science assessments and in the long-term trend writing assessment. To reduce student burden, each
assessed student was presented only a fraction of the full pool of items through multiple matrix sampling
procedures.

The most direct manner of presenting the assessment results is to report separate statistics for
each item. However, because of the vast amount of information, having separate results for each of the
items in the assessment pool hinders the comparison of the general performance of subgroups of the
population. Item-by-item reporting masks similarities in trends and subgroup comparisons that are
common across items.

An obvious summary of performance across a collection of items is the average of the separate
item scores. The advantage of averaging is that it tends to cancel out the effects of peculiarities in items

                                                          
1 Nancy L. Allen is responsible for the psychometric and statistical analysis of national and state NAEP data. Eugene G. Johnson
is a senior psychometrician, contributing to the design of NAEP and to discussions of sampling issues. Previously he was
responsible for the psychometric and statistical analysis of NAEP data. Robert J. Mislevy is a technical consultant contributing in
the area of item response theory. Neal Thomas was a technical consultant to the NAEP analysis staff, contributing in the area of
imputed values.
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that can affect item difficulty in unpredictable ways. Furthermore, averaging makes it possible to
compare more easily the general performances of subpopulations.

Despite their advantages, there are a number of significant problems with average item scores.
First, the interpretation of these results depends on the selection of the items; the selection of easy or
difficult items could make student performance appear to be overly high or low. Second, the average
score is related to the particular items comprising the average, so that direct comparisons in performance
between subpopulations require that those subpopulations have been administered the same set of items.
Third, because this approach limits comparisons to average scores on specific sets of items, it provides
no simple way to report trends over time when the item pool changes. Finally, direct estimates of
parameters or quantities such as the proportion of students who would achieve a certain score across the
items in the pool are not possible when every student is administered only a fraction of the item pool.
While the average score across all items in the pool can be readily obtained (as the average of the
individual item scores), statistics that provide distributional information, such as quantiles of the
distribution of scores across the full set of items, cannot be readily obtained without additional
assumptions.

These limitations can be overcome by the use of response scaling methods. If several items
require similar skills, the regularities observed in response patterns can often be exploited to characterize
both respondents and items in terms of a relatively small number of variables. These variables include a
respondent-specific variable, called proficiency, which quantifies a respondent’s tendency to answer
items correctly (or, for multipoint items, to achieve a certain score) and item-specific variables that
indicate characteristics of the item such as its difficulty, effectiveness in distinguishing between
individuals with different levels of proficiency, and the chances of a very low proficiency respondent
correctly answering a multiple-choice item. (These variables are discussed in more detail in the next
section.) When combined through appropriate mathematical formulas, these variables capture the
dominant features of the data. Furthermore, all students can be placed on a common scale, even though
none of the respondents takes all of the items within the pool. Using the common scale, it becomes
possible to discuss distributions of proficiency in a population or subpopulation and to estimate the
relationships between proficiency and background variables.

It is important to point out that any procedure of aggregation, from a simple average to a complex
multidimensional scaling model, highlights certain patterns at the expense of other potentially interesting
patterns that may reside within the data. Every item in a NAEP survey is of interest and can provide
useful information about what young Americans know and can do. The choice of an aggregation
procedure must be driven by a conception of just which patterns are salient for a particular purpose.

The scaling for the main assessments in mathematics and science was carried out separately
within the content strands or fields specified in the frameworks for those subjects, respectively. This
scaling within subareas was done because it was anticipated that different patterns of performance or
different trends over time might exist for these essential subdivisions of the subject areas. By creating a
separate scale for each of these content areas, potential differences in subpopulation performance
between the content areas are preserved.

The creation of a series of separate scales to describe performance within a subject area does not
preclude the reporting of a single index of overall performance in the subject area��that is, an overall
subject area composite. A composite is computed as the weighted average of the content area scales,
where the weights correspond to the relative importance given to each content area as defined by the
framework. The composite provides a global measure of performance within the subject area, while the
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constituent content area scales allow the measurement of important interactions within educationally
relevant subdivisions of the subject area.

11.3 SCALING METHODOLOGY

This section reviews the scaling models employed in the analyses of data of the 1996 assessment,
and the multiple imputation or “plausible values” methodology that allows such models to be used with
NAEP’s sparse item-sampling design. The reader is referred to Mislevy (1991) for an introduction to
plausible values methods and a comparison with standard psychometric analyses, to Donoghue (1994),
Mislevy, Johnson and Muraki (1992), and Beaton and Johnson (1992) for additional information on how
the models are used in NAEP, and to Rubin (1987) for the theoretical underpinnings of the approach. It
should be noted that the imputation procedure used by NAEP is a mechanism for providing plausible
values for the unobserved proficiencies and not for filling in blank responses to background or cognitive
variables.

While the NAEP procedures were developed explicitly to handle the characteristics of NAEP
data, they build on other research, and are paralleled by other researchers. See, for example Dempster,
Laird, and Rubin (1977); Little and Rubin (1983, 1987); Andersen (1980); Engelen (1987); Hoijtink
(1991); Laird (1978); Lindsey, Clogg, and Grego (1991); Zwinderman (1991); Tanner and Wong (1987);
and Rubin (1987, 1991).

11.3.1 The Scaling Models

Three distinct scaling models, depending on item type and scoring procedure, were used in the
analysis of the data from the 1996 assessment. Each of the models is based on item response theory (IRT;
e.g., Lord, 1980). Each is a “latent variable” model, defined separately for each of the scales, which
expresses respondent’s tendencies to achieve certain scores (such as correct/incorrect) on the items
contributing to a scale as a function of a parameter that is not directly observed, called proficiency on the
scale.

A three-parameter logistic (3PL) model was used for the multiple-choice items (which were
scored correct/incorrect). The fundamental equation of the 3PL model is the probability that a person
whose proficiency on scale k is characterized by the unobservable variable �k will respond correctly to
item j:
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where

xj is the response to item j, 1 if correct and 0 if not;

aj where aj>0, is the slope parameter of item j, characterizing its sensitivity to
proficiency;

bj is the threshold parameter of item j, characterizing its difficulty; and

cj where 0�cj<1, is the lower asymptote parameter of item j, reflecting the chances of
students of very low proficiency selecting the correct option.
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Further define the probability of an incorrect response to the item as

P P x a b c Pj j k j j j j k0 10 1� � � �� �, , , .� � � � (11.2)

A two-parameter logistic (2PL) model was used for the short constructed-response items that
were scored correct or incorrect. The form of the 2PL model is the same as Equations (11.1) and (11.2)
with the cj parameter fixed at zero.

In addition to the multiple-choice and short constructed-response items, a number of extended
constructed-response items were presented in the assessments of mathematics and science; and only
extended constructed-response items were presented in the long-term trend writing assessment. Each of
these items was scored on a multipoint scale with potential scores ranging from 0 to 3 or from 0 to 4.
Some short constructed-response items were scored on a three-point scale (0-2). Items that are scored on
a multipoint scale are referred to as polytomous items, in contrast with the multiple-choice and short
constructed-response items, which are scored correct or incorrect and referred to as dichotomous items.

The polytomous items were scaled using a generalized partial credit model (Muraki, 1992). The
fundamental equation of this model is the probability that a person with proficiency �k on scale k will
have, for the jth item, a response xj that is scored in the ith of mj ordered score categories:

P x i a b d d

a b d

a b d

Pj k j j j j m

j k j j v

v

i

j k j j v

v

g

g

m ji kj j
� �

� ��
��

�
	


� ��
��

�
	

�

-

=

==

-

�

��
�

�

�
�, , , , ,..., ,

exp . ,

exp . ,
1 1

0

00

1

1 7

1 7
� �

� �

� �
� � (11.3)

where

mj is the number of categories in the response to item j

xj is the response to item j, with possibilities 0,1,...,mj-1

aj is the slope parameter;

bj is the item location parameter characterizing overall difficulty; and

dj,i is the category i threshold parameter (see below).

Indeterminacies in the parameters of the above model are resolved by setting dj,0 = 0 and setting

dj i

i

mj

, .�
=

-

� 0
1

1

 Muraki (1992) points out that bj - dj,i is the point on the �k scale at which the plots of Pj,i-1(�k)

and Pji(�k) intersect and so characterizes the point on the �k scale at which the response to item j has
equal probability of falling in response category i-1 and falling in response category i.

When mj = 2, so that there are two score categories (0,1), it can be shown that Pji(�k) of Equation
(11.3) for i=0,1 corresponds respectively to Pj0(�k) and Pj1(�k) of the 2PL model (Equations (11.1) and
(11.2) with cj=0).
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Close examination of the 3PL and generalized partial credit models indicate that both models
have a linear indeterminacy of the theta scale. In other words, if the item parameters were estimated in a
different metric, the value of �k could be transformed to make (11.1) and (11.3) true. For the purposes of
reporting item parameter estimates and other intermediary estimates, the linear indeterminacies apparent
in (11.1) and (11.3) may be resolved by an arbitrary choice of the origin and unit size in a given scale. In
most cases, a provisional scale standardizing the theta distribution to have mean 0 and standard deviation
1 is employed. Final results for each content area were linearly transformed from the � scale to a 0-to-
500 (for mathematics) or a 0-to-300 scale (for science), as described in the subject area chapters in this
report.

A basic assumption of item response theory is the conditional independence of the responses by
an individual to a set of items, given the individual’s proficiency. That is, conditional on the
individual’s��k, the joint probability of a particular response pattern x = (x1,...,xn) across a set of n items
is simply the product of terms based on (11.1), (11.2), and (11.3):
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where Pji(�k) is of the form appropriate to the type of item (dichotomous or polytomous), mj is equal to 2
for the dichotomously scored items, and uji is an indicator variable defined by

u
if response x is incategoryi

otherwise
ji

j
� 
��

1

0

It is also typically assumed that response probabilities are conditionally independent of
background variables (y), given �k, or

P x item parameters y p x item parametersk k� �, , , .� � � �� (11.5)

After x has been observed, equation 11.4 can be viewed as a likelihood function, and provides a
basis for inference about �k or about item parameters. Estimates of item parameters were obtained by the
NAEP BILOG/PARSCALE program, which combines Mislevy and Bock’s (1982) BILOG and Muraki
and Bock’s (1991) PARSCALE computer programs2, and which concurrently estimates parameters for all
items (dichotomous and polytomous). Donoghue (1994) reports on the effect of having both dichotomous
and polytomous items within a scale. The item parameters are then treated as known in subsequent
calculations. In subject areas with multiple scales (main mathematics and science), the parameters of the
items constituting each of the separate scales were estimated independently of the parameters of the other
scales. Once items have been calibrated in this manner, a likelihood function for the proficiency �k is
induced by a vector of responses to any subset of calibrated items, thus allowing �k-based inferences
from matrix samples. The likelihood function for the proficiency �k is called the posterior distribution of
the thetas for each student.

In almost all NAEP IRT analyses, missing responses at the end of each block of items a student
was administered were considered “not reached,” and treated as if they had not been presented to the
respondent. Missing responses to dichotomous items before the last observed response in a block were
considered intentional omissions, and treated as fractionally correct at the value of the reciprocal of the

                                                          
2 See Muraki and Bock (1997) for the current version of PARSCALE.
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number of response alternatives, if the item was a multiple-choice item. These conventions are discussed
by Mislevy and Wu (1988). With regard to the handling of not-reached items, Mislevy and Wu found that
ignoring not-reached items introduces slight biases into item parameter estimation when not-reached
items are present and speed is correlated with ability. With regard to omissions, they found that the
method described above provides consistent limited-information maximum likelihood estimates of item
and ability parameters under the assumption that respondents omit only if they can do no better than
responding randomly.

Occasionally, extended constructed-response items were the last item in a block of items.
Because considerably more effort was required of the student to answer these items, nonresponse to an
extended constructed-response item at the end of a block was considered an intentional omission (and
scored as the lowest category, 0) unless the student also did not respond to the item immediately
preceding that item. In that case, the extended constructed-response item was considered not reached and
treated as if it had not been presented to the student.

Although the IRT models are employed in NAEP only to summarize performance, a number of
checks are made to detect serious violations of the assumptions underlying the models. Checks are made
to detect multidimensionality of the construct being measured and certain condition dependencies. DIF
analyses are used to examine issues of dimensionality, and what are called �2 statistics in the IRT
literature are used to flag responses with serious departures from the IRT model. The latter statistics
might better be called item fit statistics since they do not really have �2 distributions. These checks
include comparisons of empirical and theoretical item response functions to identify items for which the
IRT model may provide a poor fit to the data. When warranted, remedial efforts, such as collapsing
categories of polytomous items or combining items into a single item, are made to mitigate the effects of
such violations on inferences.

Scaling areas in NAEP are determined a priori by grouping items into content areas for which
overall performance is deemed to be of interest, as defined by the frameworks developed by the National
Assessment Governing Board (NAGB). A proficiency scale �k is defined a priori by the collection of
items representing that scale. What is important, therefore, is that the models capture salient information
in the response data to effectively summarize the overall performance on the content area of the
populations and subpopulations being assessed in the content areas. NAEP has routinely conducted
differential item functioning (DIF) analyses to guard against potential biases in making subpopulation
comparisons based on the proficiency distributions.

The local independence assumption embodied in Equation (11.4) implies that item response
probabilities depend only on � and the specified item parameters, and not on the position of the item in
the booklet, the content of items around an item of interest, or the test-administration and timing
conditions. However, these effects are certainly present in any application. The practical question is
whether inferences concerning aggregate performance in the scaling area that are based on the IRT
probabilities obtained via (11.4) are robust with respect to the ideal assumptions underlying the IRT
model. Our experience with the 1986 NAEP reading anomaly (Beaton & Zwick, 1990) has shown that for
measuring small changes over time, changes in item context and speededness conditions can lead to
unacceptably large random error components. These can be avoided by presenting items used to measure
change in identical test forms, with identical timings and administration conditions. Thus, we do not
maintain that the item parameter estimates obtained in any particular booklet configuration are
appropriate for other conceivable configurations. Rather, we assume that the parameter estimates are
context-bound. This is the reason that the long-term trend booklets and administration procedures have
not changed since the early 1980s and only a limited number of blocks of items are released after each
main assessment cycle. It was also the reason we prefer common population equating to common item
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equating whenever equivalent random samples are available for linking. In common item equating, items
are assumed to be measuring exactly the same thing for two or more populations, despite any differences
in context or administration. In common population equating, results for two or more samples from the
same population are matched to one another when linking the scales. Therefore, the data from the State
Assessment were calibrated separately from the national NAEP data. In this case, the administration
procedures differed somewhat between the State Assessment and the national NAEP.

In practice, PARSCALE item fit statistics are used as a way to identify items that need further
examination. Most of the statistics of this type that are available for use in this setting have distributions
that are unknown. Therefore, they cannot be used for final decisions about the fit of the items to the IRT
model. Because of the lack of statistical tests for IRT model fit, the fit of the IRT models to the observed
data was examined within each scale by comparing the empirical item response functions (IRFs) with the
theoretical curves. The primary means of accomplishing this is to generate plots of empirical versus
theoretical item response curves. The theoretical curves are plots of the response functions based on the
estimates of the item parameters. The empirical proportions are calculated from the posterior
distributions of the thetas for each student who received the item. For dichotomous items, the sum of the
values of the posterior distributions at a point on the theta scale for each student who answered an item
correctly plus the sum of a fractional portion of the values of the posterior distribution at that point on the
theta scale for each student who omitted the item is parallel in meaning to the number of students who
actually answered the item correctly plus a fraction of the number of students who omitted the item. The
sum of the values of the posterior distributions for all students receiving the item at each point on the
theta scale is parallel in meaning to the empirical number of students at that point on the theta scale who
received the item. The plotted values are sums of these individual posteriors at each point on the theta
scale for those who got the item correct plus a fraction of the omitters divided by the sum of the
posteriors of those administered the item, in the case of dichotomous items, and for those who scored in
the category of interest over the sum for those who received the item, in the case of polytomous items.

Figure 11-1 contains a plot of the empirical and theoretical IRFs for a dichotomous item. In the
plot, the horizontal axis represents the theta (proficiency) scale, the vertical axis represents the
probability of a correct response. The solid curve is the theoretical IRF based on the item parameter
estimates and Equation (11.1). The centers of the diamonds represent the empirical proportions correct as
described above. The size of the diamonds are proportional to the sum of the posteriors at each point on
the theta scale for all of those who received the item; this is related to the number of students
contributing to the estimation of that empirical proportion correct.

Figure 11-2 contains a plot of the empirical and theoretical IRFs for a polytomous item from the
1997 Arts (Theatre) National Assessment. As for the dichotomous item plot in Figure 11-1, the
horizontal axis represents the proficiency scale, but the vertical axis represents the probability of having
a response fall in each category. The solid curves are the theoretical IRFs based on the item parameter
estimates and Equation (11.3). The centers of the diamonds represent the empirical proportions of
students with responses in each category and are proportional to the sum of the posteriors at each point
on the theta scale for the students who received the item.

For good fitting items, the empirical and theoretical curves are close together. Therefore, items
for which this is not true are examined carefully. Examples of plots for specific items are provided in the
subject-area chapters. When the same items are presented in two assessment years, the empirical curves
for the two years can be compared. Normally, these curves differ somewhat due to the sampling of
students for each of the two years. Figure 12-1 contains a plot for an item with curves of this type. When
the empirical curves differ dramatically, one cause might be a change in the meaning of the item due to
instructional or societal changes across the years. This type of item is ordinarily treated as two different
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items—one for each of the assessment years. Figure 12-4 contains the plot for an item that has been
treated in this way.

To summarize, using current methodologies in psychometrics, assumption of conditional
independence and the assumption that the data fit the models in Equations 11.1 and 11.3 are examined
and controlled in NAEP in several ways. They are examined by considering tests of DIF, item fit
statistics, and plots of empirical and theoretical IRFs. They are controlled by treating missing and “not
reached” responses in reasonable ways, maintaining the context and administration of items across
assessments, collapsing categories of polytomous items when appropriate, combining items into a single
item, or making decisions about the inclusion or exclusion of an item in a scale based on data. The
identification and amelioration of violations of IRT assumptions is an area of ongoing research in
educational measurement.

Figure 11-1
Example Cross-Sectional Dichotomous Item (R016102, Age 13/Grade 8)

Exhibiting Good Model Fit*

*Note: The plot compares empirical and model-based estimates of the item response function
(IRF). The smooth curve represents the model-based estimate at each provisional proficiency
level. The diamonds represent the empirical proportion of 1994 age 13/grade 8 students
answering correctly at each point on the theta scale.
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Figure 11-2
Example Polytomous Item (HC00004, Grade 8) Exhibiting Good Model Fit*

*Note: The plot compares empirical and model-based estimates of the item category
response functions (ICRFs). The smooth curve represents the model-based estimate at
each provisional proficiency level. The diamonds represent the empirical proportion of
1997 grade 8 students with responses in each category at each point on the theta scale.

11.3.2 An Overview of Plausible Values Methodology

Item response theory was developed in the context of measuring individual examinees’ abilities.
In that setting, each individual is administered enough items (often 60 or more) to permit precise

estimation of his or her �, as a maximum likelihood estimate, �� , for example. Because the uncertainty
associated with each � is negligible, the distribution of �, or the joint distribution of � with other

variables, can then be approximated using an individual’s ��  values as if they were � values.

This approach breaks down in the assessment setting when, in order to provide broader content
coverage in limited testing time, each respondent is administered relatively few items in a subject area
scale. A first problem is that the uncertainty associated with individual �s is too large to ignore, and the

features of the ��  distribution can be seriously biased as estimates of the � distribution. (The failure of
this approach was verified in early analyses of the 1984 NAEP reading survey; see Wingersky, Kaplan,
& Beaton, 1987.) A second problem, occurring even with test lengths of 60, arises when test forms vary
across and within assessments as to the numbers, formats, and content of the test items. The measurement

error distributions thus differ even if underlying � distributions do not, causing ��  distributions to exhibit
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spurious changes and comparisons in apparent population distributions��easily greater than actual
differences over time or across groups. Although this latter problem is avoided in traditional standardized
testing by presenting students with parallel test forms, controlled tightly across time and groups, the same
constraints cannot be imposed in the design and data-collection phases of the present NAEP. Plausible
values were developed as a way to estimate key population features consistently, and approximate others
no worse than standard IRT procedures would, even when item booklet composition, format, and content
balances change over time. A detailed development of plausible values methodology is given in Mislevy
(1991). Along with theoretical justifications, that paper presents comparisons with standard procedures,
discussions of biases that arise in some secondary analyses, and numerical examples.

The following provides a brief overview of the plausible values approach, focusing on its
implementation in the 1996 NAEP analyses.

Let y represent the responses of all sampled examinees to background and attitude questions,
along with variables based on the sampling design such as the school where the student is enrolled, and
let � represent the vector of proficiency values. If � were known for all sampled examinees, it would be
possible to compute a statistic t(�,y), such as a scale or composite subpopulation sample mean, a sample
percentile point, or a sample regression coefficient, to estimate a corresponding population quantity T. A
function U(�,y)��e.g., a jackknife estimate—would be used to gauge sampling uncertainty, as the
variance of t around T in repeated samples from the population.

Because the scaling models are latent variable models, however, � values are not observed even
for sampled students. To overcome this problem, we follow Rubin (1987) by considering � as “missing
data,” and approximate t(�,y) by its expectation given (x,y), the data that actually were observed, as
follows:

t x y t y x y

t y p x y d
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�

� �
� �
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(11.6)

It is possible to approximate t* using random draws from the predictive conditional distribution
of the scale proficiencies given the item responses xi, background variables yi, and model parameters for
sampled student i. These values are referred to as imputations in the sampling literature, and plausible
values in NAEP. The value of � for any respondent that would enter into the computation of t is thus
replaced by a randomly selected value from the respondent’s conditional distribution. Rubin (1987)
proposes that this process be carried out several times��multiple imputations��so that the uncertainty
associated with imputation can be quantified. The average of the results of, for example, M estimates of t,
each computed from a different set of plausible values, is a Monte Carlo approximation of (11.6); the
variance among them, B, reflects uncertainty due to not observing �, and must be added to the estimated
expectation of U(�,y), which reflects uncertainty due to testing only a sample of students from the
population. Section 11.5 explains how plausible values are used in subsequent analyses.

It cannot be emphasized too strongly that plausible values are not test scores for individuals in
the usual sense. Plausible values are offered only as intermediary computations for calculating integrals
of the form of Equation (11.6), in order to estimate population characteristics. When the underlying
model is correctly specified, plausible values will provide consistent estimates of population
characteristics, even though they are not generally unbiased estimates of the proficiencies of the
individuals with whom they are associated. The key idea lies in the contrast between plausible values and
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the more familiar estimates of proficiency (e.g., maximum likelihood estimate or Bayes estimate) that are
in some sense optimal for each examinee: Point estimates that are optimal for individual examinees have
distributions that can produce decidedly nonoptimal (specifically, inconsistent) estimates of population
characteristics (Little & Rubin, 1983). Plausible values, on the other hand, are constructed explicitly to
provide consistent estimates of population effects. For further discussion see Mislevy, Beaton, Kaplan,
and Sheehan (1992).

11.3.3 Computing Plausible Values in IRT-Based Scales

Plausible values for each respondent r are drawn from the predictive conditional distribution
p(�r|xr,yr,�,�), where � and � are regression model parameters defined in this subsection. This
subsection describes how, in IRT-based scales, these conditional distributions are characterized, and how
the draws are taken. An application of Bayes’ theorem with the IRT assumption of conditional
independence produces

p x yr r r� , ,� �,� � �	 P x yr r r� , ,�,� � �p yr r� , �,� � � � �� P x p yr r r r� � ,�,� � (11.7)

where, for vector-valued �r, P(xr|�r) is the product over scales of the independent likelihoods induced by
responses to items within each scale, and p(�r|yr, �,�) is the multivariate��and generally
nonindependent��joint density of proficiencies for the scales, conditional on the observed value yr of
background responses, and the parameters � and �. The provisional scales are determined by the item
parameter estimates that constrain the population mean to zero and standard deviation to one. The item
parameter estimates are fixed and regarded as population values in the computation described in this
subsection.

In the analyses of the data from the main assessments, a normal (Gaussian) form was assumed for
p(�r|yr,�,�), with a common variance-covariance matrix, �, and with a mean given by a linear model
with slope parameters, �, based on the first approximately 200 principal components of several hundred
selected main-effects and two-way interactions of the complete vector of background variables. The
included principal components will be referred to as the conditioning variables, and will be denoted yc.
(The complete set of original background variables used in the analyses of each subject area are listed in
Appendix C.) The following model was fit to the data within each subject area:

�  = � ’yc � 
 (11.8)

where  is multivariately normally distributed with mean zero and variance-covariance matrix �. The
number of principal components of the background variables used for each sample was sufficient to
account for 90 percent of the total variance of the full set of background variables (after standardizing
each variable). As in regression analysis, � is a matrix each of whose columns is the effects for one scale
and � is the matrix variance-covariance of residuals between scales.

A model similar to (11.8) was used for the long-term trend assessments, with the difference that
yc consisted of main effects and interactions from the smaller set of background variables (rather than
principal components of those variables) available in the long-term trend assessments.
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Maximum likelihood estimates of � and �, denoted by ��  and �� , are obtained with extensions
of Sheehan’s (1985) MGROUP computer program using the EM algorithm described in Mislevy (1985).
The EM algorithm requires the computation of the mean, �r , and variance-covariance matrix, � p

r , of the
predictive conditional distribution in (11.7) for respondent r when there are p scales within a subject
area. For subject areas with multiple scales, the CGROUP version of the MGROUP program was used to
compute the moments using higher order asymptotic corrections to a normal approximation (Thomas,
1993). For the long-term trend assessments, each of which have a single scale, the more precise but
computationally intensive BGROUP version of MGROUP was used. BGROUP uses numeric quadrature
to evaluate the predictive conditional distribution moments required by the E-step of the EM algorithm
for one- and two-dimensional applications (Thomas, 1993). For estimation of group means on a single
scale, CGROUP and BGROUP results will be nearly identical to those from the original MGROUP
program. CGROUP and BGROUP yield better estimates of correlations between scales, and hence better
estimates of composite scale means. BGROUP will, theoretically, yield better estimates than CGROUP,
but because of the heavy computational demands of the methodology used, its function is limited to
bivariate scales. Hence CGROUP is used for assessments involving more than two scales.

After completion of the EM algorithm, the plausible values for all sampled respondents is drawn
in the following three-step process. First, a value of � is drawn from a normal distribution with mean

being ��  and variance being the variance of � .�  Second, conditional on the generated value of � and the

fixed value of � = � ,�  the predictive conditional distribution mean �r  and the predictive conditional
distribution variance �

 r of respondent r are computed from Equation 11.7 using the EM algorithm (see
Thomas, 1993). Finally, the �r  are drawn independently from a multivariate normal distribution with

mean �r  and variance � r approximating the distribution in (11.7). These three steps are repeated five

times producing five sets of imputation values for all sampled respondents.

11.4 INFERENCES ABOUT PROFICIENCIES

When survey variables are observed without error from every respondent, usual variance
estimators quantify the uncertainty associated with sample statistics from the only source of uncertainty,
namely the sampling of respondents. Item-level statistics for NAEP cognitive items meet this
requirement, but proficiency values do not. The IRT models used in their construction posit an
unobservable proficiency variable � to summarize performance on the items in the subarea. The fact that
� values are not observed even for the respondents in the sample requires additional statistical analyses
to draw inferences about � distributions and to quantify the uncertainty associated with those inferences.
As described above, Rubin’s (1987) multiple imputations procedures were adapted to the context of
latent variable models to produce the plausible values upon which many analyses of the data from the
1996 assessment were based. This section describes how plausible values were employed in subsequent
analyses to yield inferences about population and subpopulation distributions of proficiencies.

11.4.1 Computational Procedures

Even though one does not observe the � value of respondent r, one does observe variables that
are related to it: xr, the respondent’s answers to the cognitive items he or she was administered in the area
of interest, and yr, the respondent’s answers to demographic and background variables. Suppose one
wishes to draw inferences about a number T(�,Y) that could be calculated explicitly if the � and y values
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of each member of the population were known. Suppose further that if � values were observable, we
would be able to estimate T from a sample of N pairs of � and y values by the statistic t(�,y) [where
(�,y) � (�1,y1,...,�N,yN)], and that we could estimate the variance in t around T due to sampling
respondents by the function U(�,y). Given that observations consist of (xr,yr) rather than (�r,yr), we can
approximate t by its expected value conditional on (x,y), or

t* (x,y) = E[t(�,y)|x,y] = � t(�,y) p(� |x,y) d� .

It is possible to approximate t* with random draws from the conditional distributions p(�i|xi,yi),

which are obtained for all respondents by the method described in Section 11.3.3. Let ��m  be the mth such
vector of plausible values, consisting of a multidimensional value for the latent variable of each
respondent. This vector is a plausible representation of what the true � vector might have been, had we
been able to observe it.

The following steps describe how an estimate of a scalar statistic t(�,y) and its sampling variance
can be obtained from M (>1) such sets of plausible values. (Five sets of plausible values are used in
NAEP analyses.)

1. Using each set of plausible values ��m  in turn, evaluate t as if the plausible values

were true values of �. Denote the results �tm , for m=1,...,M.
 
2. Using the jackknife variance estimator defined in Chapter 10, compute the estimated

sampling variance of �tm , denoting the result Um.

3. The final estimate of t is
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4. Compute the average sampling variance over the M sets of plausible values, to

approximate uncertainty due to sampling respondents
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5. Compute the variance among the M estimates �tm , to approximate the between-
imputation variance
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6. The final estimate of the variance of t* is the sum of two components

V U M B� � � -* .1 1� �
In this equation, (1+M-1)B is the estimate of variance due to the latency of . Due to the
excessive computation that would be required, NAEP analyses did not compute and
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average jackknife variances over all five sets of plausible values, but only on the first set.
Thus, in NAEP reports, U* is approximated by U1.

11.4.2 Statistical Tests

The variance described in Section 11.4.1 is used to make statistical tests comparing NAEP
results. This section describes the relationships between these tests and the variance components
described above. Chapter 18 contains details of the hypothesis tests used in this assessment.

Suppose that if � values were observed for sampled students, the statistic (t - T)/U1/2 would
follow a t-distribution with d degrees of freedom. Then the incomplete-data statistic (t* - T)/V1/2 is
approximately t-distributed, with degrees of freedom (Satterthwaite, 1941; Johnson & Rust, 1993)
given by

v
f

M

f

d

�

�
�

�
1

1

12 2� �

where f is the proportion of total variance due to not observing � values:

f M B V� � -1 1� � / .

When B is small relative to U*, the reference distribution for incomplete-data statistics differs
little from the reference distribution for the corresponding complete-data statistics. This is the case with
main NAEP reporting variables. If, in addition, d is large, the normal approximation can be used to flag
“significant” results.

For k-dimensional t, such as the k coefficients in a multiple regression analysis, each Um and U*

is a covariance matrix, and B is an average of squares and cross-products rather than simply an average of
squares. In this case, the quantity (T-t*) V -1 (T-t*), is approximately F distributed, with degrees of
freedom equal to k and �, with � defined as above but with a matrix generalization of f:

f = (1+M-1) Trace (BV-1)/k . 

By the same reasoning as used for the normal approximation for scalar t, a chi-square distribution on k
degrees of freedom often suffices for multivariate t.

11.4.3 Biases in Secondary Analyses

Statistics t* that involve proficiencies in a scaled content area and variables included in the
conditioning variables yc are consistent estimates of the corresponding population values T. This includes
interrelationships among scales within a content area that have been treated in the multivariate manner
described above in Section 11.3.3. Statistics involving background variables y that were not conditioned
on, or relationships among proficiencies from different content strands or fields, are subject to asymptotic
biases whose magnitudes depend on the type of statistic and the strength of the relationships of the
nonconditioned background variables to the variables that were conditioned on and to the proficiency of
interest. That is, the large sample expectations of certain sample statistics need not equal the true
population parameters.
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The direction of the bias is typically to underestimate the effect of nonconditioned variables. For
details and derivations see Beaton and Johnson (1990), Mislevy (1991), and Mislevy and Sheehan (1987,
Section 10.3.5). For a given statistic t* involving one content area and one or more nonconditioned
background variables, the magnitude of the bias is related to the extent to which observed responses x
account for the latent variable �, and the degree to which the nonconditioned background variables are
explained by conditioning background variables. The first factor��conceptually related to test
reliability��acts consistently in that greater measurement precision reduces biases in all secondary
analyses. The second factor acts to reduce biases in certain analyses but increase it in others. In
particular,

•  High shared variance between conditioned and nonconditioned background variables
mitigates biases in analyses that involve only proficiency and nonconditioned
variables, such as marginal means or regressions.

 
•  High shared variance exacerbates biases in regression coefficients of conditional

effects for nonconditioned variables, when nonconditioned and conditioned
background variables are analyzed jointly as in multiple regression.

The large number of background variables that have been included in the conditioning vectors for the
1996 assessments allows a large number of secondary analyses to be carried out with little or no bias, and
mitigates biases in analyses of the marginal distributions of � in nonconditioned variables. Kaplan and
Nelson’s analysis of the 1988 NAEP reading data (some results of which are summarized in Mislevy,
1991), which had a similar design and fewer conditioning variables, indicates that the potential bias for
nonconditioned variables in multiple regression analyses is below 10 percent, and biases in simple
regression of such variables is below five percent. Additional research (summarized in Mislevy, 1990)
indicates that most of the bias reduction obtainable from conditioning on a large number of variables can
be captured by instead conditioning on the first several principal components of the matrix of all original
conditioning variables. This procedure was adopted for the 1992, 1994, and 1996 main assessments by
replacing the conditioning effects by the first K principal components, where K was selected so that 90
percent of the total variance of the full set of conditioning variables (after standardization) was captured.
Mislevy (1990) shows that this puts an upper bound of 10 percent on the average bias for all analyses
involving the original conditioning variables.

11.4.4 A Numerical Example

To illustrate how plausible values are used in subsequent analyses, this subsection gives some of the
steps in the calculation of the 1992 grade 4 reading composite mean and its estimation-error variance.
This illustration is an example of the calculation of NAEP means and variances and can be used to
understand their calculation for any NAEP assessment.

The weighted mean of the first plausible values of the reading composite for the grade 4 students
in the sample is 217.79, and the jackknife variance of these values is 0.833. Were these values true �
values, then 217.79 would be the estimate of the mean and 0.833 would be the estimation-error variance.
The weighted mean of the second plausible values of the same students, however, is 217.62; the third,
fourth, and fifth plausible values give weighted means of 217.74, 218.24, and 218.05. Since all of these
figures are based on precisely the same sample of students, the variation among them is due to
uncertainty about the students’ �s, having observed their item responses and background variables.
Consequently, our best estimate of the mean for grade 4 students is the average of the five plausible
values: 217.89. Taking the jackknife variance estimate from the first plausible value, 0.833, as our
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estimate U* of sampling variance, and the variance among the five weighted means, .063, as our estimate
B of uncertainty due to not observing �, we obtain as the final estimate V of total error variance 0.833 +
(1+5-1) .063 = 0.908.

It is also possible to partition the estimation error variance of a statistic using these same
variance components. The proportion of error variance due to sampling students from the population is
U*/V, and the proportion due to the latent nature of � is (1+M-1)B/V. The results are shown in Table 11-1.
The value of U*/V roughly corresponds to reliability in classical test theory and indicates the amount of
information about an average individual’s � present in the observed responses of the individual. It should
be recalled again that the objective of NAEP is not to estimate and compare values of individual
examinees, the accuracy of which is gauged by reliability coefficients. The objective of NAEP, rather, is
to estimate population and subpopulation characteristics, and the marginal estimation methods described
above have been designed to do so consistently regardless of the values of reliability coefficients.

Table 11-1
Estimation Error Variance and Related Coefficients for the 1992 Grade 4 Reading Composite

(Based on Five Plausible Values)

Proportion of Variance Due to...

U* (1+5-1)B V

Student
Sampling:

U*/V
Latency of �:

(1+5-1)B/V

0.833  0.076 0.908 0.92 0.08

Chapters 12 through 17 and Appendix E provide values of the proportion of variance due to
sampling and due to the latent nature of � for all 1996 scales and composites for the populations as a
whole and, in the appendix, for selected subpopulations. It will be seen that the proportion of variance
due to the latency of � varies somewhat among subject areas, tending to be largest for the long-term trend
writing assessment, where there is low correlation between tasks and each student responded to only one
or at most two tasks. The proportion of variance due to latency of � is smallest for the composites of the
main assessment subjects, where the number of items per student is largest. Essentially, the variance due
to the latent nature of � is largest when there is less information about a student’s proficiency. (Note the
distinction between estimation error variance of a parameter estimate and the estimate of the variance of
the � distribution. The former depends on the accuracy of measurement; the large-sample model-based
expected value of the latter does not.) Given fixed assessment time, this decrease in information will
occur whenever the amount of information per unit time decreases as can happen when many short
constructed-response or multiple-choice items are replaced by a few extended constructed-response
items.

11.5 DESCRIBING STUDENT PERFORMANCE

Since its beginning, a goal of NAEP has been to inform the public about what students in
American schools know and can do. While the NAEP scales provide information about the distributions
of proficiency for the various subpopulations, they do not directly provide information about the meaning
of various points on the scale. Traditionally, meaning has been attached to educational scales by norm-
referencing��that is, by comparing students at a particular scale level to other students. In contrast,
NAEP achievement levels and scale anchors describe selected points on the scale in terms of the types of
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skills that are likely to be exhibited by students scoring at that level. The achievement level process was
applied to the science composite. Scale anchoring of certain percentiles of the student proficiency
distribution was applied to the long-term trend assessment composite using the 1996 data. The
achievement level process for mathematics was completed for the 1990 assessment when the NAEP
mathematics framework was revised, so the results were directly applied to the 1996 results. In addition,
each item was mapped to a point on the scale in which it belonged, so that the content of each item
provides information about what students at each score level can do in a probabistic sense.

11.5.1 Achievement Levels

NAGB has determined that achievement levels shall be the first and primary way of reporting
NAEP results. Setting achievement levels is a method for setting standards on the NAEP assessment that
identify what students should know and be able to do at various points on the composite. For each grade
of each subject, three levels were defined��basic, proficient, and advanced. Based on initial policy
definitions of these levels, panelists were asked to determine operational descriptions of the levels
appropriate with the content and skills assessed in the assessment. With these descriptions in mind, the
panelists were then asked to rate the assessment items in terms of the expected performance of
marginally acceptable examinees at each of these three levels. These ratings were then mapped onto the
NAEP scale to obtain the achievement level cutpoints for reporting. Further details of the achievement
level-setting process for science appear in Appendix G.

11.5.2 Performance Descriptions Based on Composite Scales

A procedure known as scale anchoring was used to develop descriptions of student performance
at selected points on the composite scales. The scale points that were selected for anchoring reflect three
levels of knowledge and abilities corresponding to lower-, middle-, and higher-performing students for
each subject.

Around each percentile point, a band was built to define a range of scale scores. Students
described as being at a particular level were within a five percentile point range on either side of the
specified scale point. For example, the 50th percentile was defined as the region between the 45th and
55th percentile points on the scale. A question was identified as anchoring at a percentile point on the
scale if it was answered successfully by at least 65 percent of the students within that percentile band.
(The criterion was set at 74 percent for multiple-choice questions to correct for the possibility of
answering correctly by guessing.)

After defining the bands of the scale to be anchored, the next step in the process was to identify:
(1) questions answered correctly for dichotomously scored questions, or (2) questions answered at a
particular score level for partial credit constructed-response questions. Because the extended
constructed-response questions were scored according to four levels of performance, each extended
constructed-response question was treated as three distinct questions corresponding to scores of Partial or
better, Essential or better, and Extensive. These distinct score levels were then analyzed in the same
manner as questions scored dichotomously, as either correct or incorrect. Thus, for example, an extended
constructed-response question might anchor at the 50th percentile for Partial or better responses and at
the 90th percentile for Essential or better responses.

A committee of subject area experts, including teachers for the grades involved, college
professors, state curriculum supervisors, and researchers, was assembled to review the sets of questions
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identified for each percentile band. The committee was divided into three groups, one for each grade.
Each group examined and analyzed questions that anchored at the 25th, 50th, and 90th percentiles to
determine the specific knowledge and abilities associated with each question.

Committee members were also provided with the sets of questions at each grade that “did not
anchor” to inform their decisions about what students could do by seeing examples of what they could
not do. Drawing on their knowledge of the subject area, committee members were asked to summarize
student performance by describing the knowledge, skills, and abilities demonstrated by students in each
of the score bands.

The performance descriptions are cumulative; that is, the abilities described for the lower
performing students are considered to be among the abilities of students performing at higher points on
the scale. Therefore, the full description of student’s knowledge and abilities in the middle scale band
would include those abilities described at the lower band. Similarly, the abilities of students performing
at the higher scale band include the abilities described for students at the middle and lower bands.

11.5.3 Item Mapping Procedures

In order to map items (questions) to particular points on each subject area scale, a response
probability convention had to be adopted that would divide those who had a higher probability of success
from those who had a lower probability. Establishing a response probability convention has an impact on
the mapping of assessment items onto the scales. A lower boundary convention maps the items at lower
points along the scales, and a higher boundary convention maps the same items at higher points along the
scales. The underlying distribution of skills in the population does not change, but the choice of a
response probability convention does have an impact on the proportion of the student population that is
reported as “able to do” the items on the scales.

There is no obvious choice of a point along the probability scale that is clearly superior to any
other point. If the convention were set with a boundary at 50 percent, those above the boundary would be
more likely to get an item right than get it wrong, while those below that boundary would be more likely
to get the item wrong than right. While this convention has some intuitive appeal, it was rejected on the
grounds that having a 50/50 chance of getting the item right shows an insufficient degree of mastery. If
the convention were set with a boundary at 80 percent, students above the criterion would have a high
probability of success with an item. However, many of the students below this criterion show some level
of achievement that would be ignored by such a stringent criterion. In particular, those in the range
between 50 and 80 percent correct would be more likely to get the item right than wrong, yet would not
be in the group described as “able to do” the item.

In a compromise between the 50 percent and the 80 percent conventions, NAEP has adopted two
related response probability conventions: 74 percent for multiple-choice items (to correct for the
possibility of answering correctly by guessing), and 65 percent for constructed-response items (where
guessing is not a factor). These probability conventions were established, in part, based on an intuitive
judgment that they would provide the best picture of students’ knowledge and skills.

Some additional support for the dual conventions adopted by NAEP was provided by Huynh
(1998, 1994). He examined the IRT information provided by items, according to the IRT model used in
scaling NAEP items. Following Bock (1972), Huynh decomposed the item information into that provided
by a correct response [Pji (�) *Ij (�)] and that provided by an incorrect response [(1-P (�)) *I (�)]. Huynh
showed that the item information provided by a correct response to a constructed-response item is
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maximized at the point along the scale at which two-thirds of the students get the item correct (for
multiple-choice items with four options, information is maximized at the point at which 75 percent get
the item correct). Maximizing the item information, I (�), rather than the information provided by a
correct response [P (�) * I (�)], would imply an item mapping criterion closer to 50 percent. Maximizing
the item information, I (�), takes into account both responses that are correct and those that are incorrect,
however.

For dichotomously scored items the information function as defined by Birnbaum (1968, p. 463)
is defined for the jth item as
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where the notation is the same as that used in Equations (11.1) and (11.2). The item information function
was defined by Samejima (1969) in general for polytomously scored items, and has been derived for
items scaled by the generalized partial credit model (Muraki, 1993; Donoghue, 1994) as (in a slightly
different, but equivalent form)
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11.6 OVERVIEW OF THE 1996 NAEP SCALES

The following IRT scale-score analyses were carried out for the 1996 NAEP assessment:

•  Mathematics: Five IRT scales linked back to the 1990 and 1992 main assessment of
mathematics and one unidimensional IRT mathematics scale linking 1996 results to results
from mathematics assessments in 1973, 1976, 1982, 1986, 1990, 1992, and 1994. The first
five scales, along with a composite scale, are associated with the 1996 main assessment,
while the unidimensional scale is associated with the 1996 long-term trend assessment.

 
•  Science: Three newly developed IRT scales for the main assessment of science and one

unidimensional scale linking 1996 results to results from science assessments in 1969, 1973,
1977, 1982, 1986, 1990, 1992, and 1994. The first three scales, along with a composite scale,
are associated with the 1996 main assessment, while the unidimensional scale is associated
with the 1996 long-term trend assessment.

 
•  Long-Term Trend Reading: One IRT scale linking 1996 results to results from reading

assessments in 1971, 1975, 1979, 1984, 1988, 1990, 1992, and 1994. This scale is associated
with the 1996 long-term trend assessment.

 
•  Long-Term Trend Writing: One polytomous item scale linking 1996 writing results to the

1984, 1988, 1990, 1992, and 1994 assessments. This scale is associated with the 1996 long-
term trend assessment. [Please note that a review of the 1996 long-term trend writing
assessment data analyses has been undertaken by NCES. Additional analyses may be
required before revised results are released.]

Details follow in Chapters 12 through 17.
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Chapter 12

DATA ANALYSIS FOR THE MATHEMATICS ASSESSMENT1

Frank Jenkins, Hua-Hua Chang, and Edward Kulick
Educational Testing Service

12.1 INTRODUCTION

This chapter describes the analyses performed on the responses to the cognitive and background
items in the 1996 mathematics assessment. This chapter focuses on the methods and procedures used to
estimate IRT-based scale score distributions for subgroups of students. This includes a wide array of
topics, such as the scoring of constructed-response items, classical item characteristics, item
responsetheory (IRT) analysis of mathematics scales, and estimation of subgroup means by the
imputation of plausible values. The statistical bases of the IRT and plausible values methodology
described in this chapter are given in Chapter 11. These analyses led to the results presented in NAEP
1996 Mathematics Report Card for the Nation and the States (Reese, Miller, Mazzeo, & Dossey, 1997).
For a description of the state analyses, see the Technical Report of the NAEP 1996 State Assessment
Program in Mathematics (Allen, Jenkins, Kulick, & Zelenak, 1997).

The student samples that were administered mathematics items in the 1996 national assessment
are shown in Table 12-1. (See Chapters 1 and 3 for descriptions of the target populations and the sample
design used for the assessment.). These samples were defined only by grade (4, 8, or 12) and not by age
of the student. Data from the Math Main samples comprised the spiraled balanced incomplete block
(BIB) design. The present chapter contains information about the scaling of data from these samples. The
long-term trend analyses are presented in a separate chapter (see Chapter 15). The other samples (Math-
Estimation, Math-Theme, and Math-Advanced) will be analyzed and presented in separate focus reports.
A brief description of the analyses of these samples is presented in Section 12.3. Technical
documentation detailing the analyses of the 1996 State Assessment of mathematics is provided in the
Technical Report of the NAEP 1996 State Assessment Program in Mathematics (Allen, Jenkins, Kulick,
& Zelenak, 1997).

                                                
1 Frank Jenkins was the primary person responsible for the planning, specifications, and coordination of the national mathematics
analyses. He was assisted by Hua-Hua Chang. Data analysis and scaling were coordinated by Ed Kulick with help from Steve Wang
and Xiaohui Wang and additional assistance from David Freund.
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Table 12-1
NAEP 1996 Mathematics Student Samples

Sample
Booklet
Number Mode

Cohort
Assessed Time of Testing1

Number
Assessed

 4 [Math Main]
 8 [Math Main]
12 [Math Main]

 1-26
 1-26
 1-26

Print
Print
Print

Grade 4
Grade 8

Grade 12

1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)

6,627
7,146
6,904

4 [Math-Estimation]
8 [Math-Estimation]
12 [Math-Estimation]

127
127
127

Tape
Tape
Tape

Grade 4
Grade 8

Grade 12

1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)

2,023
2,183
1,849

4 [Math-Theme]
8 [Math-Theme]
12 [Math-Theme]

128,129
128,129
128,129

Print
Print
Print

Grade 4
Grade 8

Grade 12

1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)

3,790
4,027
3,735

8 [Math-Advanced]
12 [Math-Advanced]

130
130

Print
Print

Grade 8
Grade 12

1/3/96 - 3/29/96 (Winter)
1/3/96 - 3/29/96 (Winter)

2,337
2,965

1 Final makeup sessions were held April 1-5, 1996.

LEGEND:

Math Mathematics Print Printed administration
Main Main spiral BIB assessment Tape Audiotape administration
Estimation Main estimation assessment Theme Assessment with theme booklets
Advanced Assessment with advanced booklets

12.2 DESCRIPTION OF STUDENT SAMPLE, ITEMS, AND ASSESSMENT
BOOKLETS

The data from the main BIB mathematics assessment (from samples 4[Math Main], 8 [Math
Main], and 12[Math Main]) were used for main analyses comparing the levels of mathematics
achievement for various subgroups of the 1996 target populations. In previous assessments the
mathematics samples were defined as age/grade cohorts (e.g., students who were either in the fourth
grade or 9 years old). Starting with the 1996 assessment, cohorts were defined solely by grade. The
sampled students in each of these three grade cohorts were assessed in the winter. The samples in the
main assessment are presented in Table 12-1.

The pool of items used in the 1996 mathematics assessment contained a range of constructed-
response and multiple-choice questions measuring performance on sets of objectives (National
Assessment Governing Board, 1994). The framework for the objectives is described in Chapter 2. A total
of 360 distinct mathematics items addressing these objectives were scaled (see Table 12-2). The number
of items per grade was 144, 164, and 165 respectively for grades 4, 8, and 12 (before scaling). Tables 12-
3, 12-5, and 12-7 give, for each grade, the numbers of items by item type and block (before scaling). For
item counts after scaling, taking into account items that were dropped or collapsed, see Tables 12-4, 12-
6, and 12-8. These tables indicate that there was a nearly fourfold increase in the number of
polytomously-scored constructed-response items over the numbers presented in the 1992 assessment. In
1996, the number of items was 30 in grade 4, 30 in grade 8, and 33 in grade 12. The items were classified
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into five content strands: numbers and operations; measurement; geometry; data analysis, statistics, and
probability; and algebra and functions. These five content strands (renamed number sense, properties,
and operations; measurement; geometry and spatial sense; data analysis, statistics, and probability; and
algebra and functions in the 1996 analysis) constituted the scales used in 1996 reporting.2 The items
were partitioned into 13 blocks and these blocks were then assigned to 26 booklets according to a BIB
design. Each booklet contained relatively few items from each of the five categories.

Table 12-2
National Main BIB: Numbers of Scaled Mathematics Items

Common Across Grade Levels, by Content Strand Scale

Grade(s)

Number Sense,
Properties,

and
Operations Measurement

Geometry
and

Spatial
Sense

Data Analysis,
Statistics,

and
Probability

Algebra
and

Functions Total

4 only 40 20 12 11 8 91
8 only 20 13 12 10 18 73
12 only 23 11 17 22 32 105
4 and 8 10 2 9 3 7 31
8 and 12 8 9 6 9 6 38
4 and 12 0 0 0 0 0 0
4, 8, and 12 9 3 4 3 3 22
Total Grade 4 59 25 25 17 18 144
Total Grade 8 47 27 31 25 34 164
Total Grade 12 40 23 27 34 41 165
Total 110 58 60 58 74 360

In the main samples, each student was administered a booklet containing three blocks of
mathematics cognitive items, a block of background questions common to all booklets for a particular
grade level, and a block of mathematics-related background questions common to all mathematics
booklets for a particular grade level. At the end of each booklet there was a short block consisting of five
questions concerning the student’s motivation and his or her perception of the difficulty of the cognitive
items. The BIB design by which the 13 blocks of mathematics cognitive items were assigned to the 26
booklets for each grade level is discussed in Chapter 4. The 13 blocks were not intended to be parallel
measuring instruments. For example, several blocks contained only the items designed for calculator
usage, and some blocks contained items for ruler and protractor usage. In addition, the proportion of
items sampled from the five categories were not exactly the same among the 13 blocks.

The 360 unique items were constructed according to several formats, some traditional and some
more innovative: multiple-choice items, constructed-response items scored dichotomously, constructed-
response items scored polytomously, and cluster items.3 The multiple-choice items conformed to the
familiar format of a stem followed by several possible answers, with only one answer being correct.

                                                
2 The content strand number sense, properties, and operations was called numbers and operations in the 1990 and 1992
assessments. The content strand geometry and spatial sense was called geometry in the 1990 and 1992 assessments.
3 A cluster item is an aggregation of a group of items (in the case of NAEP mathematics, typically three to five items) that are
related to a single content strand, topic, or stimulus, and are developed and scored as a single unit (see Wainer & Kiely, 1987, for
further details and examples of different types of cluster items).
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Constructed-response items that were scored dichotomously were questions that required an open-ended
response (e.g., explaining why the previous question was answered as it was). These questions were read
by raters who determined whether or not the response was correct. Constructed-response items that were
scored polytomously were open-ended questions that required several stages of reasoning or problem
solving. They were also read by raters but were given a score reflecting degree of correctness rather than
simply judged right or wrong. Cluster items were derived from a set of three to five multiple-choice items
that related to the same basic stem. The cluster score was the number of constituent cluster items that the
respondent answered correctly.

As Table 12-3 indicates, of the 144 items at grade 4, 79 were multiple-choice items, 16 were
constructed response items that were scored dichotomously, 48 were constructed-response items that
were scored polytomously, and 1 was a cluster item. As shown in Table 12-5, of 163 items at grade 8, 91
were multiple-choice items, 21 were constructed-response items that were scored dichotomously, 48
were constructed-response items that were scored polytomously, and 3 were cluster items. For grade 12,
Table 12-7 indicates that of the 166 items administered, 92 were multiple-choice items, 21 were
constructed-response items that were scored dichotomously, 50 were constructed-response items that
were scored polytomously, and 3 were cluster items.

Tables 12-4, 12-6, and 12-8 show comparable information for each grade after the scaling was
carried out.

Table 12-3
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade 4, As Defined Before Scaling

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 9 4 0 0 0 0 13
M4 14 0 0 0 0 0 14
M5 4 0 5 0 1 0 10
M6 0 7 2 2 0 0 11
M7 3 0 4 0 1 0 8
M8 14 0 1 0 0 0 15
M9 6 2 0 0 1 1 10

M10 0 1 4 1 0 0 6
M11 11 0 0 2 3 0 16
M12 5 0 3 0 1 0 9
M13 6 1 2 2 1 0 12
M14 4 0 5 0 1 0 10
M15 3 1 5 0 1 0 10
Total 79 16 31 7 10 1 144
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Table 12-4
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade 4, As Defined After Scaling*

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 9 4 0 0 0 0 13
M4 14 0 0 0 0 0 14
M5 4 0 5 0 1 0 10
M6 0 7 2 2 0 0 11
M7 3 2 2 0 1 0 8
M8 14 0 1 0 0 0 15
M9 6 2 0 1 0 1 10

M10 0 1 4 1 0 0 6
M11 11 0 0 2 3 0 16
M12 5 0 3 0 1 0 9
M13 6 1 2 2 1 0 12
M14 4 0 5 1 0 0 10
M15 3 2 4 0 1 0 10
Total 79 19 28 9 8 1 144

* Counts reflect items that were dropped and collapsed.

Table 12-5
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade, As Defined Before Scaling

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 8 2 0 1 1 1 13
M4 21 0 0 0 0 0 21
M5 6 0 4 0 1 0 11
M6 0 11 4 1 0 0 16
M7 4 0 5 0 1 0 10
M8 16 1 0 1 0 0 18
M9 5 3 0 0 1 0 9

M10 0 1 5 1 0 0 7
M11 13 0 1 2 3 0 19
M12 4 0 4 1 0 0 9
M13 6 3 1 0 1 0 11
M14 5 0 3 0 1 1 10
M15 3 0 4 0 1 1 9
Total 91 21 31 7 10 3 163
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Table 12-6
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade 8, As Defined After Scaling*

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 8 2 0 2 0 1 13
M4 21 0 0 0 0 0 21
M5 6 1 4 0 0 0 11
M6 0 11 4 1 0 0 16
M7 4 1 5 0 0 0 10
M8 16 1 0 1 0 0 18
M9 5 3 0 1 0 0 9

M10 0 1 5 1 0 0 7
M11 13 0 1 2 3 0 19
M12 4 2 3 0 0 0 9
M13 6 3 1 1 0 0 11
M14 5 1 1 1 0 1 9
M15 3 0 4 1 0 1 9
Total 91 26 28 11 3 3 162

* Counts reflect items that were dropped and collapsed.

Table 12-7
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade 12, As Defined Before Scaling

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 10 3 1 0 0 0 14
M4 22 0 0 0 0 0 22
M5 4 0 5 0 1 0 10
M6 0 13 2 2 0 0 17
M7 3 0 4 0 1 1 9
M8 17 2 1 1 0 0 21
M9 6 2 0 1 0 0 9

M10 3 0 5 1 1 0 10
M11 11 1 2 0 0 0 14
M12 4 0 4 0 1 1 10
M13 3 0 0 3 3 0 9
M14 5 0 4 0 1 1 11
M15 4 0 5 0 1 0 10
Total 92 21 33 8 9 3 166
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Table 12-8
1996 NAEP Mathematics Block Composition by Content Strand

and Item Type, Grade 12, As Defined After Scaling*

Multiple-
Choice

Constructed-Response Items Scored
Polytomously Cluster Total

Block Items 2-category 3-category 4-category 5-category Items Items

M3 10 3 1 0 0 0 14
M4 22 0 0 0 0 0 22
M5 4 0 6 0 0 0 10
M6 0 13 2 2 0 0 17
M7 3 0 4 1 0 1 9
M8 17 2 1 1 0 0 21
M9 6 2 0 1 0 0 9

M10 3 0 5 2 0 0 10
M11 11 1 2 0 0 0 14
M12 4 0 4 1 0 1 10
M13 3 0 0 4 2 0 9
M14 4 1 3 1 0 1 10
M15 4 1 5 0 0 0 10
Total 91 23 33 13 2 3 165

* Counts reflect items that were dropped and collapsed.

12.3 SPECIAL MATHEMATICS ASSESSMENTS

There were three special studies in the 1996 NAEP assessment—estimation, theme, and advanced
studies. The block structure of the special study booklets is provided only in Table 12-9. The estimation and
the two theme blocks have a linking BIB block, M4, in the first position. This structure held for all three
grades, but the actual items in the blocks varied over grades. In addition to the cognitive blocks, each of the
special study booklets included three blocks in common with the main assessment:

 a general student background block (BM1),
 a mathematics background block (MB1), and
 a motivation block (M2).

Table 12-9
Block Structure of the Special Study Booklets

Study Booklet Cognitive Blocks

Estimation 127 M4, M16, M17
Theme 128 M4, M21
Theme 129 M4, M22

Advanced Mathematics1 130 M20, M18, M19
1 Grades 8 and 12 only
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The cognitive portion of the estimation booklet was administered in two sections: first there was a regular
mathematics block in common with the main assessment that was self-paced; and second, there were two
estimation blocks (M16 and M17) in which items were administered by a paced audio tape. The theme and
advanced booklets were self-paced. Note that the theme booklets contained a single non-theme block (M4)
in common with the main assessment.

The special studies were not part of the main assessment; analysis for these booklets will appear
in separate focus reports. The major findings for these studies will be derived from an analysis of the
‘reporting’ samples, which are subsamples of the assessment’s total sample. The nonreporting segments
of the total samples were added to the assessments in order to study the effects of changing inclusion
rules and accommodations for students of limited English proficiency (LEP) and students with
disabilities (SD) (See Section 12.4).

The estimation and theme samples were drawn from the same population as the main assessment.
The grades 8 and 12 advanced booklets were drawn from a population of students considered to be high
mathematics achievers. Students for the grade 8 study of advanced mathematics were sampled from a
population of students who were enrolled in an advanced class (defined as algebra 1 or beyond) during
the 1995-96 school year. For grade 12, the advanced study students were also sampled from a population
of students who took an advanced course during the school year. Grade 12 advanced courses were;
Algebra 3, Pre-calculus, Calculus and Analytical Geometry, Calculus, and AP Calculus. Table 12-10 lists
the number of items in the special assessment blocks in the three grades. More detail is available in the
procedural appendices of reports on the estimation, theme and advanced analyses.

Table 12-10
Number of Cognitive Items in the

1996 Special Mathematics Assessment Blocks

Estimation
Blocks

Theme
Blocks

Advanced
Blocks

M16 M17 M21 M22 M20 M18 M19

 Grade 4 20 14 8 6 —1 —1 —1

 Grade 8 22 16 12 15 13 10 12
 Grade 12 22 16 11 7 15 11 11

1 There were no advanced blocks administered to grade 4 students.

12.4 ASSESSING THE EFFECT OF CHANGING INCLUSION CRITERION AND
ACCOMMODATIONS FOR SD/LEP STUDENTS

NAEP samples include SD/LEP students in at least the same percentages in which they are found
in the general school population. Although a substantial percentage of these students are included in the
assessment, schools are allowed to exclude some of these students from NAEP when the students are
judged to be incapable of meaningfully participating in a large scale assessment. To facilitate the
consistent implementation of NAEP’s intention to include as many students as possible, NAEP provides
specific criteria that staff in sampled schools can use to determine who should be included in the
assessment.
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In the 1996 assessment, procedures for dealing with SD and LEP students were modified, based
on recommendations from the U.S. Department of Education. First, inclusion criteria were revised with
the intention of making them clearer, more inclusive, and more likely to be applied consistently across
schools. Second, a variety of assessment accommodations and adaptations were offered to

 students with disabilities whose individualized education programs (IEPs)
specified such accommodations, and

 LEP students who were unable to take the assessment in English.
 
 In order to assess the impact of new inclusion criteria and accommodations, a three-sample
design was instituted at all three grades. The first sample comprised students who were subject to the
1994 inclusion rules and, as was the case in past NAEP assessments, were offered no accommodations.
Students in the second sample were subject to the 1996 inclusion rules but the SD/LEP students were
offered no accommodations. The third sample had students who were comprised students who were
assessed under conditions that will probably be used for future NAEP assessments—new inclusion rules
and some accommodations being offered to the included SD/LEP students. See Chapter 3, Sections 3.4 to
3.8, for more details.
 
 Results of this study can be found in the focus report dealing with the comparison of the three
accommodation samples.
 
 
 12.5 ITEM ANALYSIS
 
 This section contains a detailed description of the item analysis performed using the national
main BIB sample data. The analysis examines items within blocks. In preparation for this analysis,
constructed-response items with more than two categories and cluster items were polytomously scored,
two-category constructed-response items were dichotomously scored, and derived background variables
were calculated. Item statistics such as mean percent correct, average score, item to total score
correlations and percent responding in each item category were calculated.
 
 Tables 12-11, 12-12, and 12-13 show the number of items, mean proportion correct, mean item to
total score correlation, and alpha reliability for each block administered at each grade level for the main
assessment. These values were calculated within block only for those items used in the scaling process.
The table also gives the number of students who were administered the block and the percent not
reaching the last item in the block. Student weights were used, except for reporting the sample sizes. The
results for the blocks administered at each grade level indicated that the blocks differ in number of items,
average difficulty, reliability, and percent not reaching the last item.
 
 Tables 12-11 through 12-13 show the item analyses by block position within a booklet. Each
booklet had three cognitive blocks, and each block appeared in three different booklets—once in the first,
once in the second, and once in the third position. In some past assessments (e.g., 1992 science), students
responded differently to the items depending on the block position. The IA tables evidence few
systematic differences in item summary statistics as a function of block position. For grade 4 (Table 12-
11) the weighted average item score had a slight tendency to be higher when a block was in the first
rather than the third position. For grades 8 and 12 no systematic difference can be seen.
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Table 12-11
Descriptive Statistics for Item Blocks by Position Within Test Booklet and Overall
Occurrences for the Mathematics Main Sample, Grade 4, As Defined After Scaling

Block Block
Statistic Position M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Number of scale items
Total 13 14 10 11 8 15 13 6 16 9 12 10 10
Multiple choice 9 14 4 0 3 14 9 0 11 5 6 4 3
Constructed response (dichotomous) 4 0 0 11 2 1 2 6 5 0 5 0 2
Constructed response (polytomous) 0 0 6 0 3 0 2 0 0 4 1 6 5

Unweighted sample size 1 502 498 516 511 509 501 525 497 519 506 494 507 529

2 515 515 501 494 519 509 510 516 518 503 520 499 499
3 522 497 516 509 493 499 511 497 495 517 525 516 511

ALL 1539 1510 1533 1514 1521 1509 1546 1510 1532 1526 1539 1522 1539

Weighted average item score 1  .51  .46  .45  .45  .38  .58  .48  .43  .50  .47  .53  .45  .45

2  .49  .45  .47  .43  .38  .59  .46  .41  .51  .49  .53  .46  .45
3  .49  .44  .44  .42  .38  .61  .46  .40  .49  .46  .55  .45  .42

ALL  .50  .45  .46  .44  .38  .59  .47  .41  .50  .47  .54  .45  .44

Weighted alpha reliability 1  .67  .63  .75  .69  .70  .71  .67  .61  .75  .71  .67  .68  .75

2  .70  .66  .74  .71  .72  .74  .68  .63  .74  .71  .68  .69  .75
3  .72  .61  .75  .72  .63  .75  .64  .66  .77  .72  .71  .70  .77

ALL  .69  .63  .75  .71  .69  .74  .66  .63  .75  .71  .69  .69  .76

Weighted average r-polyserial 1  .59  .52  .68  .65  .70  .55  .64  .81  .59  .67  .64  .67  .67

2  .61  .55  .68  .67  .73  .58  .65  .81  .59  .66  .63  .67  .66
3  .63  .53  .67  .68  .64  .58  .61  .83  .60  .68  .68  .66  .69

ALL  .61  .53  .68  .66  .69  .57  .63  .82  .59  .67  .65  .67  .67

Weighted proportion of students 1  .81  .91  .88  .81  .81  .79  .98  .85  .84  .81  .93  .62  .87

Reaching the last item 2  .79  .91  .89  .87  .87  .80  .96  .91  .90  .85  .96  .73  .89
3  .81  .91  .89  .79  .82  .82  .99  .90  .90  .87  .95  .73  .94

ALL  .81  .91  .89  .82  .83  .81  .98  .89  .88  .85  .95  .69  .90
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Table 12-12
Descriptive Statistics for Item Blocks by Position Within Test Booklet and Overall
Occurrences for the Mathematics Main Sample, Grade 8, As Defined After Scaling

Block Block
Statistic Position M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Number of scale items
Total 17 21 12 16 10 18 9 7 19 9 11 14 12
Multiple choice 12 21 7 0 4 16 5 0 13 4 6 10 6
Constructed response (dichotomous) 3 0 1 16 1 2 3 7 6 2 4 1 0
Constructed response (polytomous) 2 0 4 0 5 0 1 0 0 3 1 3 6

Unweighted sample size 1 558 556 543 571 555 541 546 543 538 547 543 550 539

2 535 558 548 556 561 566 542 534 551 530 544 546 551
3 544 538 554 542 554 540 548 568 569 542 549 543 528

ALL 1637 1652 1645 1669 1670 1647 1636 1645 1658 1619 1636 1639 1618

Weighted average item score 1  .51  .58  .55  .59  .56  .50  .36  .56  .63  .34  .51  .41  .46

2  .50  .60  .54  .61  .56  .53  .35  .55  .65  .33  .51  .42  .45
3  .51  .58  .53  .62  .54  .50  .37  .55  .64  .34  .51  .41  .44

ALL  .51  .59  .54  .61  .55  .51  .36  .55  .64  .34  .51  .41  .45

Weighted alpha reliability 1  .75  .76  .72  .82  .68  .79  .56  .65  .76  .60  .67  .58  .76

2  .75  .74  .70  .85  .66  .80  .63  .54  .79  .66  .68  .63  .72
3  .74  .78  .69  .82  .71  .76  .64  .58  .80  .68  .65  .64  .70

ALL  .75  .76  .70  .83  .68  .79  .61  .59  .79  .64  .67  .61  .72

Weighted average r-polyserial 1  .66  .55  .63  .67  .66  .63  .58  .82  .62  .65  .62  .55  .70

2  .66  .53  .61  .73  .63  .63  .64  .76  .64  .68  .63  .56  .67
3  .66  .56  .61  .67  .70  .60  .64  .78  .65  .68  .62  .56  .65

ALL  .66  .55  .62  .69  .66  .62  .62  .79  .64  .67  .62  .56  .67

Weighted proportion of students 1  .98  .87  .97  .90  .78  .72  .96  .90  .90  .81  .98  .76  .83

Reaching the last item 2  .93  .86  .96  .93  .76  .71  .94  .89  .87  .82  .96  .76  .85
3  .95  .88  .94  .92  .84  .75  .96  .92  .93  .85  .98  .80  .88

ALL  .95  .87  .96  .91  .79  .72  .95  .90  .90  .83  .97  .77  .85
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Table 12-13
Descriptive Statistics for Item Blocks by Position Within Test Booklet and Overall

Occurrences for the Mathematics Main Sample, Grade 12, As Defined After Scaling

Block Block
Statistics Position M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Number of scaled items
Total 14 22 10 17 9 21 9 10 14 10 9 14 10
Multiple choice 10 22 4 0 3 17 6 3 11 4 3 8 4
Constructed response (dichotomous) 4 0 0 17 0 4 2 6 3 0 5 1 1
Constructed response (polytomous) 0 0 6 0 6 0 1 1 0 6 1 5 5

Unweighted sample size 1 525 530 519 536 539 548 530 526 523 540 532 526 516

2 515 519 539 523 525 529 545 547 524 516 536 544 518
3 530 534 522 520 511 535 527 540 523 525 535 535 532

ALL 1570 1583 1580 1579 1576 1612 1602 1613 1570 1590 1603 1605 1566

Weighted average item score 1  .43  .70  .36  .55  .45  .55  .52  .47  .48  .41  .44  .47  .31

2  .43  .70  .37  .56  .43  .55  .49  .45  .51  .42  .41  .48  .31
3  .45  .70  .39  .56  .44  .56  .48  .43  .49  .41  .42  .48  .33

ALL  .44  .70  .37  .56  .41  .55  .49  .45  .49  .40  .42  .48  .31

Weighted alpha reliability 1  .74  .76  .73  .83  .75  .80  .63  .52  .72  .70  .64  .76  .70

2  .69  .77  .71  .81  .74  .82  .59  .58  .69  .70  .66  .76  .70
3  .76  .75  .72  .81  .77  .80  .58  .62  .72  .68  .68  .80  .70

ALL  .73  .76  .72  .82  .77  .81  .60  .58  .71  .76  .66  .78  .70

Weighted average r-polyserial 1  .69  .61  .72  .71  .70  .63  .65  .57  .63  .63  .67  .70  .72

2  .64  .61  .70  .68  .70  .63  .63  .61  .61  .60  .69  .69  .71
3  .70  .59  .70  .66  .73  .63  .60  .63  .63  .60  .70  .74  .69

ALL  .68  .60  .71  .69  .74  .63  .63  .61  .63  .63  .69  .71  .71

Weighted proportion of students 1  .65  .84  .70  .78  .86  .48  .96  .88  .68  .78  .91  .78  .82

Reaching the last item 2  .67  .81  .70  .74  .86  .45  .94  .88  .70  .77  .90  .78  .81
3  .69  .78  .76  .65  .84  .50  .92  .87  .67  .83  .90  .77  .82

ALL  .67  .81  .72  .72  .85  .48  .94  .88  .68  .79  .90  .78  .82
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 As described in Chapter 9, in NAEP analyses (both conventional and IRT-based), a distinction is
made between missing responses at the end of each block (not-reached) and missing responses prior to
the last completed response (omitted). Not-reached items are those occurring after the last item the
student completed in a block. Items that were not reached are treated as if they had not been presented to
the examinee, while omitted items are regarded as incorrect. The proportion of students attempting the
last item of a block (or, equivalently, 1 minus the proportion not reaching the last item) is often used as
an index of the degree of speededness of the block of items.
 
 Standard practice at ETS is to treat all students who did not respond to the last item as if they had
not reached that item. For multiple-choice and short constructed-response items, this convention
produced a reasonable pattern of results, in that the proportion of students reaching the last item does not
differ markedly from the proportion attempting the next-to-last item. However, for the blocks that ended
with extended constructed-response items, this convention resulted in an implausibly large drop in the
number of students attempting the final item (see Koretz et al., 1993). Therefore, for blocks that ended
with an extended constructed-response item, students who attempted the next-to-last item but did not
respond to the last item were classified as having intentionally omitted that item.

Tables 12-11 to 12-13 also contain information about the effect of the position of blocks within
booklets on the average percent correct for items within each block presented to the BIB samples for
each grade. The averages for the grade-only portion of the focused-BIB samples show that the order of
blocks within booklets did not have a large or consistent effect on scale scores in the mathematics
focused-BIB assessment.

12.5.1 Constructed-Response Items

As indicated in Tables 12-3 to 12-8, over 40 percent of the mathematics items were constructed-
response. Constructed-response items that were scored dichotomously were given a right/wrong scoring.
The categories of responses for the items and the number of responses that were rescored for each item
are indicated in Appendix I. The percent agreement for the raters and Cohen’s Kappa, a reliability
estimate appropriate for items that are dichotomized, are also given in the tables. The sample sizes listed
in the tables correspond to the samples used in calculating the rater reliability.

In general, the rater reliability of the scoring for dichotomized responses was quite high. Cohen’s
Kappa reliabilities ranged over items from 0.76 to 1.00 for grade 4, from 0.90 to 1.00 for grade 8, and
from 0.67 to 1.00 for grade 12.

Chapter 7 discusses the definition of the item ratings and describes the process by which teams
of raters scored the constructed-response items. This discussion includes the rating definitions for short
and extended constructed-response items as well as the range of interrater reliabilities that occurred.
Extended constructed-response items were scored on a scale from 1 to 5 to reflect degrees of knowledge.
In scaling, this scale is shifted to 0 to 4. Rating information on extended constructed-response items can
be found in Appendix I, which lists the sample sizes, percent agreement, and Cohen’s Kappa reliability
index.
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12.5.2 Differential Item Function Analysis

A differential item functioning (DIF) analysis of the main-assessment mathematics items was
done in order to guide committees in identifying biased items that should be examined more closely for
possible bias. Sample sizes were large enough to compare male and female students, White and Black
students, and White and Hispanic students.

The DIF analyses of the dichotomous items were based on the Mantel-Haenszel chi-square
procedure, as adapted by Holland and Thayer (1988), which is described in Chapter 9. The procedure
tests the statistical hypothesis that the odds of correctly answering an item are the same for two groups of
examinees that have been matched on some measure of mathematics ability (usually referred to as the
matching criterion). The DIF analyses of the polytomous items were based on the Mantel procedure
(1963) and the Somes (1986) chi-square test (see also Chapter 9). These procedures compare proportions
of matched examinees from each group in each polytomous item response category. The groups being
compared are often referred to as the focal group (usually a minority or other group of interest, such as
Black examinees or female examinees) and the reference group (usually White examinees or male
examinees).

For each dichotomous item in the assessment, an estimate was produced of the Mantel-Haenszel
common-odds ratio, expressed on the ETS delta scale for item difficulty. The estimates indicate the
difference between reference group and focal group item difficulties (measured in ETS delta scale units),
and typically run between about +3 and -3. Positive values indicate items that are differentially easier for
the focal group than the reference group after making an adjustment for the overall level of mathematics
ability in the two groups. Similarly, negative values indicate items that are differentially harder for the
focal group than the reference group. It is common practice at ETS to categorize each item into one of
three categories (Peterson, 1988): “A” (items exhibiting no DIF), “B” (items exhibiting a weak indication
of DIF), or “C” (items exhibiting a strong indication of DIF). Items in category “A” have Mantel-
Haenszel common-odds ratios on the delta scale that do not differ significantly from 0 at the alpha = 0.05
level or are less than 1.0 in absolute value. Category “C” items are those with Mantel-Haenszel values
that are significantly greater than 1 and larger than 1.5 in absolute magnitude. Other items are categorized
as B items. A plus sign (+) indicates that items are differentially easier for the focal group; a minus sign
(- ) indicates that items are differentially more difficult for the focal group.

The ETS/NAEP DIF procedure for polytomous items incorporates both the MH ordinal
procedure and the generalized MH statistic. The summary tables of identified polytomous items contain
generalizations of the dichotomous “A,” “B,” and “C” categories namely “AA,” “BB,” and “CC”
respectively. Analogous to the dichotomous case, only the “CC” items are considered to have a strong
indication of DIF and are flagged for scrutiny by the subject matter committee

For each block of items at each grade four DIF comparisons were made: male/female,
White/Asian American, White/Black, and White/Hispanic. The first subgroup in each comparison is the
reference group; the second subgroup is the focal group.

Following standard practice at ETS for DIF analyses conducted on final test forms, all
“C” and “CC” items were reviewed by a committee of trained test developers and subject-matter
specialists. As indicated by Tables 12-14 and 12-15, two dichotomous items and five polytomous
items met the criteria to be considered by the DIF committee. Such committees are charged with
making judgments about whether or not the differential difficulty of an item is unfairly related to
group membership. See Appendix J for a list of the “C” and “CC” items.
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The committee assembled to review NAEP items included both ETS staff and outside members
with expertise in the field. It was the committee’s judgment that none of the “C” or “CC” items for the
national data were functioning differentially due to factors irrelevant to test objectives. In other words, all
of the items that were classified as “C” or “CC” items measured concepts in the assessment framework
and specifications that could not be measured in another way. Hence, none of the items were removed
from scaling due to differential item functioning.

Table 12-14
DIF Category by Grade for Dichotomous Items

DIF Analysis
Grade Category1 Male/Female White/Black White/Hispanic

 4 C-
B-
A-
A+
B+
C+

0
1

11
7
1
0

0
2
9
5
4
0

    0
0

10
9
1
0

 8 C-
B-
A-
A+
B+
C+

  0
2

13
9
0
0

0
0
7

15
2
0

    0
0

13
8
3
0

12 C-
B-
A-
A+
B+
C+

0
3

14
5
0
0

0
1
8

12
0
1

    0
0

11
10
0
1

1 Positive values of the index indicate items that are differentially easier for the focal group (female,
Black, or Hispanic students) than for the reference groups (male or White students). “A+” or “A-”
means no indication of DIF, “B+” means a weak indication of DIF in favor of the focal group, “B-“
means a weak indication of DIF in favor of the reference group and “C+” or “C-” means a strong
indication of DIF.



270

Table 12-15
DIF Category by Grade for Polytomous Items

DIF Analysis
Grade Category1 Male/Female White/Black White/Hispanic

 4 CC-
BB-
AA-
AA+
BB+
CC+

0
1

13
10
3
0

0
1

14
11
1
0

0
0

12
15
0
0

 8 CC-
BB-
AA-
AA+
BB+
CC+

0
0

10
16
1
0

3
2

14
7
1
0

1
2

13
10
1
0

12 CC-
BB-
AA-
AA+
BB+
CC+

0
2
9

18
1
0

0
3

14
10
2
1

0
1

15
12
2
0

1 Positive values of the index indicate items that are differentially easier for the focal group (female,
Black, or Hispanic students) than for the reference groups (male or White students). “A+” or “A-”
means no indication of DIF, “B+” means a weak indication of DIF in favor of the focal group, “B-“
means a weak indication of DIF in favor of the reference group and “C+” or “C-” means a strong
indication of DIF.

12.5.3 Estimation of Item Parameters

The BILOG/PARSCALE computer program was used to estimate the item parameters for the main
assessment and for the special estimation study. For dichotomous multiple-choice and dichotomized
constructed-response items, a three-parameter IRT model was used. Extended constructed-response and
cluster items were polytomously scored and were analyzed with a generalized partial credit model (Muraki,
1992).

Recall from section 12.5 that for calibration, items that were missing prior to the last completed
item in a block were considered omitted and scored as wrong. Also, items that were not reached were
treated as if they were not presented to the examinees (and not counted as wrong.) However, there is an
exception for blocks that end with an extended constructed-response item. In these blocks, students who
respond to the next-to-last item but do not respond to the last item are classified as having omitted the last
item (i.e., the last item is counted as wrong). Responses to extended constructed-response items that were
off-task were also treated as omitted. The multi-category constructed-response items had two, three, four or
five categories of partial credit. Scoring levels were labeled as listed in Table 12-16.
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Table 12-16
Labels for Score Levels of Polytomous Items

Score 3-Category Item 4-Category Item 5-Category Item
4 Correct
3 Correct 4th Category
2 Correct 3rd Category 3rd Category
1 2nd Category 2nd Category 2nd Category
0 Incorrect, off-task, or

omitted
Incorrect, off-task, or
omitted

Incorrect, off-task, or
omitted

Note that the categories falling between “incorrect” and “correct” represent increasing levels of a partially
correct response.

The item parameter estimation was done separately within grade, but the final mathematics scale
estimates were transformed to conform with the cross-grade scales of the 1990 and 1992 assessments.
Within each grade, items were scaled using the grade-only sample of students available from the 1992 and
the 1996 assessments. The 1992 data were included at the scaling step of the analysis to assure that
parameter estimates for items administered at both time points would not drift drastically between
assessments. Item parameters were estimated separately for each of the five content strands and the
mathematics scale means and variances for samples from the two assessment years were allowed to be
different. In the final BILOG/PARSCALE run, the prior distributions of the population abilities were free to
be estimated and the overall distribution was centered at zero. In general, if an item was common to both
assessment years, identical item parameters were used for both assessments. The appropriateness of the use
of the identical parameters across assessments was examined by comparing the fit of the empirical item
response functions against the estimated IRT item response functions. If IRT parameters did not fit the data,
parameters specific to the assessment year were used. (See Chapter 11 for further descriptions of the scaling
process.) The calibration was based on student weights that were rescaled so that the their sum equaled the
unweighted sample size of the 1996 sample. Also, weights for the 1992 data were restandardized to give
equal weight to the two assessment years included in the scaling (see Appendix K).

Items that received special treatment in the scaling procedure are listed in Table 12-17, along with
the reason for special treatment. Items were dropped, combined into clusters, split between assessment years
and collapsed. If items had empirical item response functions that were nonmonotonic, they were dropped.
If several items had highly correlated responses (conditional on theta) they were combined into a single
polytomous item called a cluster item. If items were administered in both 1992 and 1996 but showed
evidence of having a distinct item response functions for each assessment year, the item is treated as two
separate items and parameters estimated separately for each assessment year. If polytomous items had
sparse or nonmonotonic responses in one or more categories, the items were collapsed so that some
response categories were combined into a single category. Only about ten percent of the total scaled items
were given special treatment.
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Table 12-17
Items from the 1996 Assessment in Mathematics Receiving Special Treatment

Grade
NAEP

ID Block
Content
Strand Treatment

4 M010531 M8 1 1992 and 1996 responses split into items
M010531Y and M010531Z

4 M040801 M9 2 1992 and 1996 responses split into items
M040801Y and M040801Z

4 M041001 M9 2 1992 and 1996 responses split into items
M041001Y and M041001Z

4 M041201 M9 3 1992 and 1996 responses split into items
M041201Y and M041201Z
Categories in both items collapsed: 0,1,2,3,4 becomes
0,1,2,3,3,

4 M068001 M7 1 Collapsed categories: 0,1,2 becomes 0,0,1

4 M068003 M7 3 Collapsed categories: 0,1,2 becomes 0,0,1

4 M072701 M14 5 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

4 M074701 M15 1 Collapsed categories: 0,1,2 becomes 0,0,1

8 M013531 M8 1 1992 and 1996 responses split into items
M013531Y and M013531Z

8 M018201 M4 1 1992 and 1996 responses split into items
M018201Y and M018201Z

8 M018901 M4 4 1992 and 1996 responses split into items
M018901Y and M018901Z

8 M045901 1992 3 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3
1992 only

8 M050261 M3 4 Collapsed categories: 0,1,2,3,4 becomes 0,0,0,1,2

8 M051001 M3 3 1992 and 1996 responses split into items
M051001Y and M051001Z

8 M051101 M3 1 1992 and 1996 responses split into items
M051101Y and M051101Z
Categories in both items collapsed: 0,1,2,3,4 becomes
0,1,2,3,3

8 M051201 M13 1 1992 and 1996 responses split into items
M051201Y and M051201Z

8 M052201 M13 2 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

8 M053101 M9 4 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,2,3

8 M054301 1992 5 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3
1992 only
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Table 12-17 (continued)
Items from the 1996 Assessment in Mathematics Receiving Special Treatment

Grade
NAEP

ID Block
Content
Strand Treatment

8 M055501 1992 1 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3
1992 only

8 M066301 M5 5 Collapsed categories: 0,1,2 becomes 0,1,1

8 M067501 M5 4 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,2,2

8 M068201 M7 3 Collapsed categories: 0,1,2,3,4 becomes 0,0,1,1,1

8 M069301 M12 5 Collapsed categories: 0,1,2 becomes 0,1,1

8 M069601 M12 1 Collapsed categories: 0,1,2 becomes 0,1,1

8 M070001 M12 4 Collapsed categories: 0,1,2,3 becomes 0,1,2,2

8 M0732CL M14 4 Collapsed categories: 0,1,2,3,4 becomes 0,0,1,2,3

8 M073401 M14 1 Dropped due to bad item fit

8 M073501 M14 4 Collapsed categories: 0,1,2 becomes 0,1,1

8 M073601 M14 1 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

8 M0757CL M15 5 Collapsed categories: 0,1,2,3 becomes 0,0,1,2

8 M076001 M15 2 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

12 M073402 M14 1 Dropped

12 M025301 M5 1 Dropped 1992 only

12 M024901 M5 2 Dropped 1992 only

12 M070501,
M070502

M12 4 Combined into cluster item M0705CL

12 M071701,
M071702

M7 5 Combined into cluster item M0717CL

12 M071401 M5 1 Collapsed: 0,1,2,3,4 becomes 0,1,1,1,2

12 M056601 M3 1 1992 and 1996 responses split into items
M056601Y and M056601Z

12 M062401 M10 3 1992 and 1996 responses split into items
M062401Y and M062401Z
Both items collapsed: 0,1,2,3,4 becomes 0,1,2,3,3

12 M073901 M14 3 Collapsed categories: 0,1,2 becomes 0,1,1

12 M012731 M8 3 1992 and 1996 responses split into items
M012731Y and M012731Z

12 M058701 M11 3 1992 and 1996 responses split into items
M058701Y and M058791Z

12 M071801 M7 4 Collapsed categories: 0,1,2,3,4 becomes 0,1,1,2,3
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Table 12-17 (continued)
Items from the 1996 Assessment in Mathematics Receiving Special Treatment

Grade
NAEP

ID Block
Content
Strand Treatment

12 M070601 M12 4 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

12 M0732CL M14 4 Collapsed categories: 0,1,2,3,4 becomes 0,0,1,2,3

12 M018901 M4 4 1992 and 1996 responses split into items
M018901Y and M018901Z

12 M021501 M6 4 1992 and 1996 responses split into items
M021501Y and M021501Z

12 M013131 M8 4 1992 and 1996 responses split into items
M013131Y and M013131Z

12 M053401 M9 4 1992 and 1996 responses split into items
M053401Y and M053401Z

12 M061905 M10 4 1992 and 1996 responses split into items
M061905Y and M061905Z

12 M060701 M13 5 1992 and 1996 responses split into items
M060701Y and M060701Z
Both items collapsed: 0,1,2,3,4 becomes 0,1,2,3,3

12 M074101 M14 5 Collapsed categories: 0,1,2,3,4 becomes 0,1,2,3,3

12 M077001 M15 5 Collapsed categories: 0,1,2,3,4 becomes 0,1,1,1,1

12 M021601 M6 5 1992 and 1996 responses split into items
M021601Y and M021601Z

12 M021602 M6 5 1992 and 1996 responses split into items
M021602Y and M021602Z

12.5.4 Evaluating the Fit of the IRT Model

During the course of estimating an IRT model, individual items were evaluated to determine how
well the item response model fit the data. This was done by visual inspection of plots comparing
empirically based and theoretical item response functions. Specifically, for dichotomous items these plots
consisted of nonmodel-based estimates of the expected proportion correct for each level of mathematics
ability compared to the proportion correct for each level of mathematics ability as predicted by the
theoretical item response function. For polytomous extended constructed-response items, similar plots
were produced for each item category response function (see Chapter 9 for a fuller explanation of these
plots).

In making decisions about excluding items from the final scales, a balance was sought between
being too stringent, hence deleting too many items and possibly damaging the content representativeness
of the pool of scaled items, and being too lenient, hence including items with model fit poor enough to
endanger the types of model-based inferences made from NAEP results. Items that clearly did not fit the
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model were not included in the final scales; however, a certain degree of misfit was tolerated for a
number of items included in the final scales.

For most items, the model fit well. In a few cases, poor fit with the data led to special treatment
or deletion of the item. Figures 12-1, 12-4, 12-5 and 12-6 give item response plots of dichotomous items.
In the plots, the x-axis depicts scale score, and the y-axis the probability of a correct response. The solid
line is the logistic model prediction, and the symbols (usually a circle or diamond) are the nonmodel-
based predicted proportions. The size of the symbols are proportional to the estimated number of students
at a particular scale score level. The symbols are ordinarily larger in the middle of the theta scale, where
most students’ scale scores fall. The item parameter values are also included in the plot.

Item response plots for polytomously scored items are given in Figures 12-2, 12-3, 12-7, and
12-8. These are similar to the plots for dichotomous items except that there are several solid lines, one for
each item category, with each line indicating the probability of responding in the respective item
category. As before, the circles or diamonds indicate the empirical response function, with the size of the
circles and diamonds proportional to the estimated number of students at a scale score level.

In the plots good fit of the model to the data is indicated when the model-based functions (solid
lines) coincide with the empirical functions (circles, diamonds, or other symbols).When the empirical
plot is far away from the model based line, there is poor fit of the model to the data.

Four examples of fit are illustrated. First there is good model fit which is shown by Figure 12-1
for a dichotomous item and Figure 12-2 for a polytomous item. In both cases empirical and theoretical
lines coincide.

Second is an example of an item that displayed non-logistic empirical functions and was
dropped. Figure 12-3 shows a polytomous item that was dropped from the assessment.

Third is an example of an item that changed function from one assess year to another. Figure 12-
4 shows that the empirical item functions for two assessment years (diamonds for 1992 and circles for
1996) are distinctly different. Figures 12-5 and 12-6 show the result of estimating item parameters
separately for the two years. This ‘splitting’ of the item across years results in quite good fit for each
year.

The fourth example is of a poor fitting polytomous item that was modified by collapsing
categories. Figure 12-7 shows a 5-category item which evidences poor fit mostly in the upper category,
due in large part to a low number of respondents. As a result, the upper two categories were collapsed
resulting in a 4-category item which, as Figure 12-8 illustrates, fits satisfactorily.
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Figure 12-1
Dichotomous Item Exhibiting Good Model Fit*

*Circles (1996 data) and diamonds (1992 data) indicate estimated conditional probabilities obtained without assuming a logistic
form; the solid curve indicates estimated item response function assuming a logistic form.
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Figure 12-2
Polytomous Item Exhibiting Good Model Fit*

a= 0.5634
b= 0.6933
d1= 1.9463
d2= -0.3616
d3= -1.0074
d4= -0.5773
fit= 3.55

a = 0.5634
b = 0.6933
d1 = 1.9463
d2 = -0.3616
d3 = -1.0074
d4 = -0.5773

*Circles indicate estimated conditional probabilities obtained without assuming a model-based form; the solid curves indicate
estimated item response function assuming a model-based form.
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Figure 12-3
Polytomous Item Exhibiting Bad Model Fit That

Was Deleted from the Assessment*

a= 0.6338
b= 1.7533
d1= 0.1185
d2= -01185
fit= 78.73

a = 0.6338
b = 1.7533
d1 = 0.1185
d2 = -0.1185

*Circles indicate estimated conditional probabilities obtained without assuming a model-based form; the solid curves indicate
estimated item response function assuming a model-based form.
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Figure 12-4
Dichotomous Item Exhibiting Different Empirical Item Functions for Different Assessment Years*

*Diamonds represent 1992 data; circles represent 1996 data. Circles and diamonds indicate estimated conditional probabilities
obtained without assuming a logistic form; the solid curve indicates estimated item response function assuming a logistic form.
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Figure 12-5
Dichotomous Item Fit Separately to the 1992 Data and Exhibiting Good Model Fit*

*Diamonds indicate estimated conditional probabilities obtained without assuming a logistic form; the solid curve indicates
estimated item response function assuming a logistic form.
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Figure 12-6
Dichotomous Item Fit Separately to the 1996 Data and Exhibiting Good Model Fit*

*Circles indicate estimated conditional probabilities obtained without assuming a logistic form; the solid curve indicates
estimated item response function assuming a logistic form.
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Figure 12-7
Polytomous Item Exhibiting Poor Model Fit in the Upper Category*

a = 0.3692
b = 2.2569
d1 = 2.6374
d2 = 1.9363
d3 = 0.0322
d4 = -4.6059

*Circles indicate estimated conditional probabilities obtained without assuming a model-based form; the solid curves indicate
estimated item response function assuming a model-based form.
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Figure 12-8
Polytomous Item With the Upper Two Categories Collapsed, Now Exhibiting Good Model Fit*

a= 0.3824
b= 0.6994
d1= 1.0777
d2= 0.3514
d3= -1.4291
fit= 3.15

a = 0.3824
b = 0.6994
d1 = 1.0777
d2 = 0.3514
d3 = -1.4291

*Circles indicate estimated conditional probabilities obtained without assuming a model-based form; the solid curves indicate
estimated item response function assuming a model-based form.

12.5.5 Derived Background Variables

Derived variables are variables which use information from more than one background question.
They were used for two purposes: as conditioning variables and as reporting variables used to define
subgroups. Some of these variables are common to all the subject areas; others are specific to the 1996
mathematics assessment. Derived variables used for conditioning and reporting are described in Appendix C.



284

12.5.6 Generation of Plausible Values

For the entire sample, multivariate plausible values for content strand scales were generated for
each grade group separately using the multivariate conditioning program CGROUP as revised by Thomas
(1993). As with the scaling, student weights were used at this stage of the analysis. Instead of using selected
background variables for conditioning variables (as had been done prior to the 1990 assessment), principal
components of the background variables were used. The principal components used accounted for 90
percent of the variance of the original conditioning variables. Principal components were employed to
remedy problems of extreme collinearity among some of the original conditioning variables.

Research based on data from the 1990 Trial State Assessment in mathematics suggests that results
obtained using the 90 percent subset of components will differ only slightly from those obtained using the
full set (Mazzeo, Johnson, Bowker, & Fong, 1992). Table 12-18 lists the number of principal components
included in conditioning, as well as the proportion of variance accounted for by the conditioning model for
each grade.

Table 12-18
Proportion of Scale Score Variance Accounted for by the Conditioning Model

for the Mathematics Main Assessment

Proportion of Scale Score Variance

Grade

Number of
Conditioning

Contrasts

Number of
Principal

Components

Number
Sense,

Properties,
and

Operations Measurement

Geometry
and

Spatial
Sense

Data
Analysis,
Statistics,

and
Probability

Algebra
and

Functions

 4 895 321 .70 .71 .61 .75 .69

 8 1,027 362 .71 .75 .68 .77 .73

12 812 314 .76 .79 .81 .70 .83

The codings of the original mathematics-specific conditioning variables, before principal
components were calculated, are presented in Appendix C. The CGROUP program estimates distributions
of scale scores by combining information from item responses of individuals and information from linear
regression of scale score on conditioning variables. For each individual, five plausible values are randomly
drawn from their predictive conditional distribution.

The proportion of variance of each original conditioning variable accounted for by the principal
components included in the conditioning model is listed in Appendix F. The estimated conditioning effects
for the principal components of the three samples defined by the three grade groups are also given in
Appendix C. The values of the conditioning effects are expressed in the metrics of the original calibration
scale. Definitions of derived conditioning variables are given in Appendix B.
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12.5.7 The Transformation of the Mathematics Calibration Scale for Reporting
and the Formation of the Composite Scale

Like all IRT scales, the mathematics content strand scales have a linear indeterminacy that may be
resolved by an arbitrary choice of the origin and unit-size in each given content strand. In 1990 the NAEP
mathematics data were scaled across grades separately for each scale. The linear indeterminacies among the
scales were resolved by transforming the scale means and variances of three grade samples combined
together to the 250.5 4, 50.0 metric using a transformation of the form,

θtarget = A •  θcalibrated + B,

where A and B are linear transformation constants.

As a result, all of the scales that spanned all three grade samples were on a common scale. By
contrast, the 1992 and 1996 data were scaled within grade. It was necessary, therefore, to transform data
from both assessments to the 1990 cross-grade scale. This was accomplished first in the 1992 assessment,
when the 1992 data were linked to the 1990 scale in a two-stage process. In the next assessment, the 1996
data were linked to the 1992 transformed scale, which in effect put the 1996 data on the 1990 cross-grade
scale. The procedure for transforming the 1996 data will be described below. The similar procedure for
transforming the 1992 data was presented in The NAEP 1992 Technical Report (Johnson and Carlson,
1994).

The 1996 data were put on the 1992 reporting metric by using a linear transformation that converts
the 1996 thetas to the 1992 reporting scale. This linear transformation was created by the following
procedure. The 1992 thetas were reconditioned using CGROUP with the 1996 item parameters. This
analysis resulted in 1992 scores which were in the 1996 theta metric. We then transformed the new 1992
thetas (in the 1996 metric) to the 1992 reporting metric (in the 1992 metric) by a linear transformation
which created scores having the same mean and variance as the 1992 reporting scale. This is a common
population equating procedure. The linear constants of this transformation were then used to transform the
1996 thetas to the 1992 reporting metric. The transformation constants used for the five content strand
scales and for the estimation scale are given in Table 12-19.

While scores in five content strands provide useful insights into the relationships among
subpopulations, a single index to summarize overall performance is a useful tool for a compact overview of
subpopulation trends. For that reason, a composite score was defined as a weighted average of the five
mathematics content strands. The weight given to each content strand is a direct reflection of the relative
testing time intended for that content strand in the assessment, as defined in the Mathematics Framework
for the 1996 National Assessment of Educational Progress (National Assessment Governing Board, 1994).
Since the emphasis given to each content strand was different across grades, the weights assigned to each
strand in the composite also differed across grades.

                                                
4 The function RPs = 250 + 50(θs) would have been preferable. Holland and Zwick (1986) have noted that the values actually
used correspond to the bi varying from –5.00 to +4.98 in steps of .02 instead of –4.99 to +4.99 as intended. The result is that the
RP scores are a half-point higher than appropriate for the hypothetical test.
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Table 12-19
Coefficients of the Linear Transformations that Transform the Five Content Strand Scales

from the 1996 Calibration Metric to the 1992 Reporting Metric

Grade Coefficient

Number Sense,
Properties,

and
Operations Measurement

Geometry
and Spatial

Sense

Data Analysis,
Statistics, and

Probability
Algebra and

Functions

4 B
A

220.32
33.13

226.02
 32.22

224.70
 28.04

223.38
 30.86

223.63
 29.47

8 B
A

273.44
 35.12

269.33
 43.65

266.83
 33.54

270.97
 41.00

271.13
 35.52

12 B
A

300.43
 32.48

300.85
 35.71

304.67
 36.05

301.03
 34.58

303.42
 35.95

The definition of weights for the composite in each grade is given in Table 12-20. The mean and
standard deviations of the composite scales for all three grades is given in Table 12-21. Note that this
composite can be compared with the 1990 and 1992 composite scores since all three scales are on the 1990
cross-grade scale (as defined in the beginning of this section).

Table 12-20
Weights for the Mathematics Composite by Grade

Scale Grade 4 Grade 8 Grade 12

Number Sense, Properties, and Operations

Measurement

Geometry and Spatial Sense

Data Analysis, Statistics, and Probability

Algebra and Functions

.40

.20

.15

.10

.15

.25

.15

.20

.15

.25

.20

.15

.20

.20

.25

Table 12-21
Means and Standard Deviations on the Mathematics Composite Scale

All Five Plausible Values
Grade Mean S. D.

4 223.9 31.2

8 272.0 36.4

12 304.0 32.2
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12.5.8 Partitioning of the Estimation Error Variance

For each scale within each grade, the error variance of the reporting scale means was partitioned
according to the procedure described in Chapter 11. The variance is partitioned into two parts; the
proportion of error variance due to sampling students (sampling variance) and the proportion of error
variance due to the fact that scale score, θ, is a latent variable that is estimated rather than observed. Table
12-22 contains estimates of the total error variance, the proportion of error variance due to sampling
students and the proportion of error variance due to the latent nature of θ (for stability, the estimates of the
between-imputation variance, B, in Equation 11.9). More detailed information by gender and race/ethnicity
is presented in Appendix E.

Table 12-22
Estimation Error Variance and Related Coefficients for the Mathematics Main Assessment

Total
Proportion of

Variance Due to...

Grade Scale
Estimation

Error Variance
Student

Sampling
Latency

of θ

4 Number Sense, Properties, and Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and Probability
Algebra and Functions
Composite

.88
1.25
.77

1.28
.99
.78

.91

.84

.82

.87

.83

.95

.09

.16

.18

.13

.17

.05

8 Number Sense, Properties, and Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and Probability
Algebra and Functions
Composite

1.18
2.06
1.10
2.31
1.19
1.13

.91

.87

.91

.92

.89

.96

.09

.13

.09

.08

.11

.04

12 Number Sense, Properties, and Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and Probability
Algebra and Functions
Composite

1.27
1.25
1.12
.99

1.33
.99

.93

.84

.88

.91

.93

.98

.07

.16

.12

.09

.07

.02

12.5.9 Mathematics Teacher Questionnaire

Teachers of fourth- and eighth-grade students assessed in mathematics were surveyed. Variables
derived from the questionnaire were used in the conditioning models for the grade 4 and the grade 8
samples, along with a variable that indicated whether a student record had been matched with a teacher
record, so that means for subgroups defined by these variables could be compared with no bias. Of the 6,612
fourth-grade students in the main sample, 6,105 (92%) were matched with both parts of the teacher
questionnaire and 99 (1.5%) were matched with only the first part of the questionnaire. Of the 7,146 eighth-
grade students in the main sample, 6,144 (86%) were matched with both parts of the teacher questionnaire
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and 49 (less than 1%) were matched with only the first part of the questionnaire. Thus, 92 percent of the
fourth graders and 86 percent of the eighth graders were matched with at least the background information
about their mathematics teachers.

12.5.10  Analysis of Dimensionality

Plausible values are drawn from the set of five correlated content strands (see Section 12.5.6). For this
reason, it is useful to inspect the correlations among the content strands for evidence of multidimensionality.
Tables 12-23 and 12-24 give conditional and marginal correlations for the five scales for the three grades.
Conditional correlations are analogous to pooled-within groups correlations when the groups are the grouping
variables used to condition the data with CGROUP. They are obtained from the error correlations of a
CGROUP analysis. The conditional correlations are quite high, averaging .85 for grade 4, .91 for grade 8, and
.85 for grade 12. The marginal correlations are the average correlations of the five plausible values of each
scale. In this case they average .86 for grade 4, .88 for grade 8, and .87 for grade 12. Although it is of
substantive interest to analyze the scales separately, the correlations indicate that they are highly redundant.

Table 12-23
Conditional Correlations from Conditioning (CGROUP)

Grade Scale

Number Sense,
Properties,

and
Operations Measurement

Geometry
and

Spatial
Sense

Data Analysis,
Statistics,

and
Probability

Algebra
and

Functions
4 Number Sense, Properties, and

Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .89
 .80

 .
96
 .94

1.00
 .78

.90
 .85

1.00

.75
 .78

1.00
 .89 1.00

8 Number Sense, Properties, and
Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .92
 .79

.96
 .97

1.00
 .92

.95
 .95

1.00

.86
 .84

1.00
 .96 1.00

12 Number Sense, Properties, and
Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .96
 .90

.84
 .91

1.00
 .94

.80
 .89

1.00

.67
 .88

1.00
 .66 1.00
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Table 12-24
Marginal Correlations of Science Scales1

Grade Scale

Number Sense,
Properties,

and
Operations Measurement

Geometry
and

Spatial
Sense

Data Analysis,
Statistics,

and
Probability

Algebra
and

Functions
4 Number Sense, Properties, and

Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .89
 .84

 .91
 .92

1.00
 .83

.86
 .86

1.00

.81
 .82

1.00
 .86 1.00

8 Number Sense, Properties, and
Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .89
 .84

.91

.92

1.00
 .89

.89
 .89

1.00

.85
 .86

1.00
 .90 1.00

12 Number Sense, Properties, and
Operations
Measurement
Geometry and Spatial Sense
Data Analysis, Statistics, and
Probability
Algebra and Functions

1.00
 .90
 .90

.88
 .90

1.00
 .90

.86
 .87

1.00

.81
 .90

1.00
 .80 1.00

1 Tabled values were obtained by computing a separate Pearson correlation coefficient for each plausible value, computing Fisher’s z-transformation
for each value, computing the average of the transformed values, and computing the inverse transformation of the average.
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