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9.1 INTRODUCTION

The purpose of this chapter isto summarize some information from previous chaptersthat is
integral to the analysis of NAEP data, to summarize the analysis steps used for all subjects, and to
indicate what information isin each of the remaining chapters. The overview of the analyses conducted
on the 1998 NAEP data focuses on the common elements of the analyses used across the subject areas of
the assessment. Some of this information is available only within this chapter. Details by subject area are
provided in Chapters 14 through 24.

The organization of this chapter is as follows:

e Section 9.2 provides a short overview of the NAEP design for 1998. To provide
additional background information, the section also provides a short description of the
samples selected for 1998. Chapters 1 through 7 provide this same information in
much more detail.

e Section 9.3 summarizes the stepsin analysis common to all subject areas. Some of
thisinformation is described in more detail in other chapters. Therest isincluded
only within this chapter. The topics covered are as follows:

+ Section 9.3.1 briefly describes the preparation of the final sampling weights.
Detailed information about the weighting proceduresis given in Chapters 10
and 11. Detailed information about the sampling design isin Chapters 3 and 4.

s Section 9.3.2 provides information about the scoring reliability of
constructed-response items. It provides information about the reliability
measures used with the NAEP data during analysis. Chapter 7 contains
information about the reliability procedures used during the scoring process.

+ Section 9.3.3 summarizes the information provided by the teacher
guestionnaires, and indicates its use during the analysis process.

+ Section 9.3.4 provides adescription of the item properties examined for
background questions and for cognitive items. It includes a description of the
classical item statistics examined for both dichotomously (right versus
wrong) and polytomously (more than two response categories) scored items.
It also includes a description of the item-level results available from
summary data tables. Chapter 13 contains more information about the
conventions used in creating these summary tables. Finally, athorough
description of differential item functioning analysesis provided.

1 Nancy L. Allen, James E. Carlson, and John R. Donoghue were responsible for the psychometric and statistical analysis of the
1998 national and state NAEP data.
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+ Section 9.3.5 summarizes the steps used to scale NAEP data. The steps
include item response theory (IRT) scaling of the items, generating plausible
values to account for measurement error, transforming the results to the final
reporting scale, creating composite scores if necessary, and providing tables
of reported statistics. Details of the theory behind these steps are available in
Chapter 12.

+ Section 9.3.6 provides some information about previous results of
dimensionality analyses.

+ Finaly, Section 9.3.7 gives an introduction to hypothesis testing and
drawing correct conclusions about NAEP data. Specific information about
which hypothesistest procedures were used for different purposesis
provided in Chapter 13.

e Section 9.4 contains a description of the information provided in Chapters 10 through
24 of thisreport.

9.2 SUMMARY OF THE NAEP DESIGN

Asdescribed in Chapter 1, the 1998 NAEP comprised three components. One component
encompassed major assessments in reading, writing, and civics, providing detailed information about
student scale scores at the fourth-, eighth-, and twelfth-grade levels of nonpublic and public schools. The
second major component was the state assessment at the fourth- and eighth-grade levelsin reading and at
the eighth-grade level in writing. In addition to the two major components, special studies—a civics
special trend study, a 50-minute writing study, and a classroom-based study of writing—were conducted.
The results from and procedures used in these specia studies are reported in separate documents.

Results from the analyses described in the following chapters were published in the following
reports:

e The NAEP 1998 Reading Report Card for the Nation and the States (Donahue et
a., 1999), which provides both public- and nonpublic-school datafor major
NAEP reporting subgroups for all of the jurisdictions that participated in the state
assessment program, as well as selected results from the 1998 national reading
assessment.

e The NAEP 1998 Writing Report Card for the Nation and the States (Greenwald et
a., 1999), which provides both public- and nonpublic-school datafor major
NAEP reporting subgroups for all of the jurisdictions that participated in the state
assessment program, as well as selected results from the 1998 national writing
assessment.

e The NAEP 1998 Civics Report Card for the Nation (Lutkus et al., 1999), which
provides both public- and nonpublic-school results for major NAEP reporting
subgroups from the 1998 national civics assessment.

Because the samples of students included in the 1998 NAEP assessment are listed and described
in detail in Chapter 1, only abrief description of these samplesis given here. The 1998 national samples
consisted of the main NAEP samples for reading, writing, and civics, which were based on a common set
of assessment procedures including grade-level samples, and samples for these special studies; a study of
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trends in civics performance (1988-1998); a study in which students were administered a 50-minute
writing assessment; and a study of classroom writing.

Asdescribed in Chapters 1 and 2, for each subject areain the main and state assessments, blocks
of items were used to create alarge number of different assessment booklets according to a focused
design. The 1998 civics assessment used a focused balanced incomplete block (BIB) design. The 1998
reading and writing assessments used focused partially balanced incomplete block (focused PBIB)
designs. In afocused BIB design, each block of cognitive items appears in the same number of booklets.
To balance possible block-position main effects, each block appears an equal number of timesin each
position. In addition, the focused BIB design requires that each block of items be paired in a booklet with
every other block of items. If one of the features that define afocused BIB design is not evident, then the
design is called afocused partialy balanced incomplete block (PBIB) design.

93 ANALYSISSTEPS

Because the analysis methods are not identical across subject areas, a separate analysis chapter
has been included for each major assessment. The procedures used depended on whether assessment
items were scored dichotomously (right versus wrong) or polytomously (more than two categories of
response) and whether links across grade levels were required. Basic procedures common to most or all
of the subject area analyses are summarized here. The order is essentially that in which the procedures
were carried out.

9.3.1 Preparation of Final Sampling Weights

Because NAEP uses a complex sampling design (Chapters 3 and 4) in which studentsin certain
subpopulations have different probabilities of inclusion in the sample, the data collected from each
student must be assigned aweight to be used in analyses. The 1998 NAEP weights were provided by
Westat, the NAEP contractor in charge of sampling. Detailed information about the weighting procedures
isavailablein Chapters 10 and 11 and in Westat’s Sampling Activities and Field Operations for 1998
NAEP (Gray, et a., 2000).

9.3.2 Rdiability of Scoring Constructed-Response Items

A minimum of 25 percent of the responses for reading, writing, and civics itemsinvolved only in
the national assessment and 6 percent of the responses for reading and writing items involved in both the
national and state assessments were scored by a second reader to obtain statistics on interreader
(interrater) reliability. Ranges for percentage of exact agreement for the combined state and national
assessments of reading, writing, and civics can be found in Table 7-2. This reliability information was
also used by the team leaders to monitor the capabilities of all readers and maintain uniformity of scoring
across readers. More information about this use of the reliability information is provided in Chapter 7.

In addition to reliability information cal culated and used during the scoring process, several
additional reliability measures are calculated for constructed-response items after the item response data
has been placed in the NAEP database. They appear in Appendix C. These include afinal percentage
exact agreement, the intraclass correlation, Cohen’s Kappa (Cohen, 1968), and the product-moment
correlation between the scores for the first and second readers. These measures are summarized in Zwick
(1988), Kaplan and Johnson (1992), and Abedi (1996). Each measure has advantages and disadvantages
for use in different situations. In this report, the percentage exact agreement is reported for all
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constructed-response items, Cohen’s Kappa s reported for dichotomously scored constructed-response
items, and the intraclass correlation is reported for polytomously scored constructed-response items.

9.3.3 Teacher Questionnaires

Teachers of assessed students were asked to complete a two-part questionnaire. Thefirst part of
the questionnaire pertained to the teacher’ s background and training. The second part pertained to the
procedures used by the teacher for specific classes containing assessed students. See Chapter 2 for a
description of the teacher questionnaires.

To analyze the data from the teacher questionnaires at grades 4 and 8 with respect to the
students’ data, each teacher’ s questionnaire had to be matched to al of the sampled students who were
taught by that teacher. In the subsequent chapters, two separate match rates for each grade are given. The
first is the percentage of students that could be matched to both the first and second parts of the teacher
guestionnaire. For these students, information is available about the background and training of their
teachers and about the methods used in the particular class they attended. The second match rateisthe
percentage of students that could be matched to the first part of the teacher questionnaire. This match rate
islarger because more students could be matched with information about a teacher than with information
about the particular class they attended. Note that these match rates only reflect the student-level missing
data. They do not reflect the additional missing data due to item-level nonresponse on the part of
teachers. Variables derived from the teacher questionnaires were used as reporting variables at the
student level and as variables that contributed to conditioning for the appropriate samples.

Teachers of students who were in the grade 4 assessment sample were asked to complete a two-
part questionnaire. As with the grade 8 teacher questionnaire, the first part pertained to the teacher’s
background and training. Unlike the grade 8 teacher questionnaire, the second part pertained to only a
single class that the teacher taught. In development of the questionnaires, it was thought that fourth-grade
teachers would teach one class in each subject. In practice, that was found to be untrue for a number of
teachers. A single student-teacher match rate matching students to the first part of the questionnaireis
reported for grade 4 in the following chapters.

9.3.4 Analysisof Item Properties: Background and Cognitive Items

Thefirst step in the analysis of the 1998 data was item-level analysis of all instruments. Item
analyses were performed separately for each grade on each item in each subject area. Each block of items
was analyzed separately by grade, with the total score on the block (including the analyzed item) used as
the criterion score for statistics requiring such a score. In the cases where final weights were not
available, preliminary weights were used in these preliminary analyses. The item analysis of cognitive
items was repeated after scaling of the items was compl eted.

9.3.4.1 Background Items

For each NAEP background item, the unweighted and weighted percent of students who gave
each response were examined, as well as the percent of students who omitted the item and the percent
who did not reach the item. The number of respondents was also tabulated. These preliminary analyses
were conducted within grade cohorts and within major reporting categories. If unexpected results were
found, the item data and the encoding of responses were rechecked.
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9.3.4.2 Cognitive Items

All NAEP cognitive items were subjected to analyses of item properties. These analyses included
conventional item analyses and incorporated examinee sampling weights. Item analysis was conducted at
the block level so that the “number correct” scores for students responding to an item, selecting each
option of an item, omitting an item, or not reaching an item, is the average number of correct responses
for the block containing that item. Because of the inclusion of polytomously scored items in the cognitive
instruments, it was necessary to use special procedures for these items. The resulting statistics are
analogous to those for the dichotomously scored items, as listed below.

Dichotomously Scored Items. These items were analyzed using standard procedures that result
in areport for each item that includes:

e for each option of the item, for examinees omitting and not reaching the item, and for
the total sample of examinees:

the number of examinees,

the percentage of examinees,

the mean of number-correct scores for the block in which the item appears, and
the standard deviation of number-correct scores for the block in which the item

appears,

* & o o

o the percentage of examinees providing aresponse that was “ off-task”;

e p+, the proportion of examinees who received a correct score on the item (ratio of
number correct to number correct plus wrong plus omitted);

e A, theinverse-normally transformed p+ scaled to mean 13 and standard deviation 4;

e thebiseria correlation coefficient between the item and the number-correct scores
for the block in which the item appears; and

e thepoint-biserial correlation coefficient between the item and the number-correct
scores for the block in which the item appears.

Polytomously Scored I tems. Enhanced procedures were employed for polytomously scored
items. Methods parallel to those used for dichotomously scored items resulted in values reported for each
distinct response category for the item. Response categories for each item were defined in two ways—
one based on the original codes for responses as specified in the scoring rubrics used by the scorers, and
one used in defining the item response theory (IRT) model scales. The latter was based on a scoring
guide developed by subject-area and measurement experts and it defined the treatment of each response
category in scaling. For example, a constructed-response item with four response categories would
initially have seven categories (not-reached, omitted, off-task, and the four valid response categories).
Another set of statistics resulted from mapping the response categories (excluding not-reached) into a
new set of categories reflecting the scoring guide for the items as scaled. A constructed-response item
with ordered categories, for example, would be mapped into a set of integersin a corresponding order.
The scoring guide could result in the collapsing of (combining of) some response categories. The
response categories, based on the final scoring guide devel oped by subject-area and measurement
experts, were used to calculate the polytomously scored item statistics.

The following statistics, analogous to those for dichotomously scored items, were computed:

e The percentage of examinees providing a response that was “ off-task.”
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e Inplaceof p+, theratio of the mean item score to the maximum-possible item score
was used.

e Inplaceof A, theinverse-normally transformed ratio of the mean item score to the
maximum-possible item score scaled to mean 13 and standard deviation 4.

e The polyseria correlation coefficient was used in place of the biserial.

e The Pearson correlation coefficient, or R-polyserial was used in place of the point-
biserial.

9.3.4.3 Tablesof |tem-Level Results

Tables were created of the percentages of students choosing each of the possible responses to
each item within each of the samples administered in 1998. The results for each item were cross-
tabulated against the basic reporting variables such as region, gender, race/ethnicity, public/nonpublic
school, and parental education. All percentages were computed using the sampling weights. These tables
are referred to as the test question section of the electronically available summary data tables for each
sample. In the summary data tables, the sampling variability of all population estimates was obtained by
the jackknife procedure used by ETS in previous assessments.

9.3.4.4 Tables of Block-Level Results

Tables summarizing the item statistics for all of the items within each block are provided in
Chapters 16, 17, 20, 21, and 24. These tables contain statistics cal culated using student weights to
account for NAEP's complex sampling of students, as well as the unweighted sample size. Weighted
summary statistics estimate the results for the whole population of studentsin the NAEP sampling frame.

e Theunweighted sample sizeisthe number of studentsin the reporting sample who receive
each block in the assessment. It is the number of students contributing to the other statistics
presented in the tables.

e Theweighted average item score for the block is the average, over items, of the score
means for each individual weighted itemsin the block. Missing responses to polytomous
items before the last observed response in ablock are also considered intentional omissions
and scored so that the response isin the lowest category. Occasionally, extended constructed-
response items are the last item in ablock of items. Because considerably more effort is
required of the student to answer these items, nonresponse to an extended constructed-
response item at the end of a block is considered an intentional omission (and scored as the
lowest category) unless the student also did not respond to the item immediately preceding
that item. In that case, the extended constructed-response item is considered not reached and
treated asif it had not been presented to the student. In the case of the main and state writing
assessment, there is a single constructed-response item in each separately-timed block. In the
writing assessment when a student does not respond to the item or when the student provides
an off-task response, the responseis also treated as if the item had not been administered.
Scaling areas in NAEP are determined a priori by grouping items into content areas for
which overall performance is deemed to be of interest, as defined by the frameworks
developed by the National Assessment Governing Board (NAGB). A scale score y is
defined apriori by the collection of items representing that scale. What isimportant,
therefore, is that the models capture salient information in the response data to effectively
summarize the overall performance on the content area of the populations and
subpopul ations being assessed in the content areas.
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e Theweighted average R-polyserial correlation isthe average, over items, of the item-level
R-polyserial correlations (R-biserial for dichotomous items) between the item and the
number-correct block score. For each item-level R-polyserial, total block number-correct
score (including the item in question, and with students receiving zero points for all not-
reached items) was used as the criterion variable for the correlation. The number-correct
score was the sum of the item scores for a student where correct dichotomous items are
assigned 1 and correct polytomous (or multiple-category) items are assigned the score
category for the response. Data from students classified as not reaching the item were
omitted from the calculation of the statistic.

e Theweighted alpha reliability isthe average of the polyserial correlations for polytomous
items and the biserial correlation for the dichotomous items within a block. Asfor the weighted
average R-polyseria correlations, the total block number-count score was used as the criterion.

e Theweighted proportion of students attempting the last item of ablock (or, equivalently,
one minus the proportion of students not reaching the last item) is often used as an index of
the degree of speededness associated with the administration of that block of items. Mislevy
and Wu (1988) discussed these conversions.

9.3.4.5 Differential Item Functioning Analysis of Cognitive Items

Differentia item functioning (DIF) analysis refers to procedures that assess whether items are
differentially difficult for different groups of examinees. DIF procedures typically control for overall
between-group differences on a criterion, usually test scores. Between-group performance on each itemis
then compared within sets of examinees having the same total test scores.

DIF analyses were conducted for itemsin the national main assessments in reading, writing, and
civics that had not previously been studied for differential item functioning. Each set of analyses
involved three reference group/focal group comparisons: male/female, White/Black, and White/Hispanic.

The Mantel-Haenszel Procedure. The DIF analyses of the dichotomous items were based on the
Mantel-Haenszel chi-sguare procedure (Mantel & Haenszel, 1959), as adapted by Holland and Thayer
(1988). The procedure tests the statistical hypothesis that the odds of correctly answering an item are the
same for two groups of examinees that have been matched on some measure of proficiency (usually
referred to as the matching criterion). The DIF analyses of the polytomous items were completed using
the Mantel-Haenszel ordinal procedure which is based on the Mantel procedure (Mantel, 1963), (Mantel
& Haenszel, 1959). These procedures compare proportions of matched examinees from each group in
each polytomous item-response category.

For both types of analyses, the measure of proficiency used istypically the total item score on
some collection of items. Since, by the nature of the BIB or PBIB design, booklets comprise different
combinations of blocks, there is no single set of items common to all examinees. Therefore, for each
student, the measure of proficiency used was the total item score on the entire booklet. These scores were
then pooled across booklets for each analysis. This procedure is described by Allen and Donoghue (1994,
1996). In addition, because research results (Zwick & Grima, 1991) strongly suggest that sampling
weights should be used in conducting DIF analyses, the weights were used.

For each dichotomous item in the assessment, an estimate of the Mantel-Haenszel common odds
ratio, oy , expressed on the ETS delta scale for item difficulty, was produced. The estimates indicate the
difference between reference group and focal-group item difficulties (measured in ETS delta scale units),
and typically run between about +3 and -3. Positive values indicate items that are differentially easier for
the focal group than the reference group after making an adjustment for the overall level of proficiency in
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the two groups. Similarly, negative values indicate items that are differentially harder for the focal group
than the reference group. It is common practice at ET S to categorize each item into one of three
categories (Petersen, 1988): “A” (items exhibiting no DIF), “B” (items exhibiting a weak indication of
DIF), or “C” (items exhibiting a strong indication of DIF). Itemsin category “A” have Mantel-Haenszel
common odds ratios on the delta scale that do not differ significantly from O at the alpha = .05 level or
are lessthan 1.0 in absolute value. Category “C” items are those with Mantel-Haenszel values that are
significantly greater than 1 and larger than 1.5 in absolute magnitude. Other items are categorized as “B”
items. A plussign (+) indicates that items are differentially easier for the focal group; aminussign (-)
indicates that items are differentially more difficult for the focal group.

The ETS/NAEP DIF procedure for polytomous items uses the Mantel-Haenszel ordinal
procedure (Mantel & Haenszel, 1959). The summary tables of identified polytomous items contain
generalizations of the dichotomous A, B, and C categories: “AA,” “BB,” or “CC.”

SIBTEST Procedure. For the first time in the 1998 assessment, ETS introduced the SIBTEST
(Shealy & Stout, 1993) DIF procedure into the analyses of NAEP items. All items new in 1998 were
examined using both Mantel-Haenszel and SIBTEST procedures for DIF. Like the Mantel-Haenszel
procedure, SIBTEST seeks to compare the performance of the focal and reference group members of
similar ability. The Mantel-Haenszel procedure uses matching on total score to establish comparability;
SIBTEST uses alinear "regression correction” (see [Shealy & Stout, 1993] for details) to obtain more
accurate matching of the groups. Simulation results (Chang, et a., 1995; Roussos & Stout, 1996) indicate
that the Mantel-Haenszel procedure and SIBTEST function similarly for most items, although SIBTEST
maintains better Type | error control for items with extreme discrimination IRT (a-parameters).

Like the Mantel-Haenszel procedure, SIBTEST analyses used the entire booklet score in forming
the matching variable. These results were then pooled across the bookl ets using a procedure described by
Chang, et al. (1995) and implemented by Donoghue (1998b). Sampling weights were used for SIBTEST
analyses.

The SIBTEST measure of DIF, £, isinthe metric of Dorans and Kulick’s (1986) standardized

mean difference (SMD). As an effect size measure, the SMD divided by the item standard deviation was
used (as was done for polytomous items with the Mantel procedure). For an item to receive the
designation C (dichotomous items) or CC (polytomous items), two criteria had to be met: (a) the estimate
of £ had to be significantly different from zero, and (b) the absolute value of the effect size (SMD/std.

dev.) had to be at least .25.

In 1998, results for the SIBTEST procedure were quite similar to those for the Mantel-Haenszel
procedure. All but 1 C or CC item identified by the Mantel-Haenszel procedure was also identified by
SIBTEST. No C or CC items were uniquely identified by SIBTEST. All C or CC items identified by
either procedure were referred to DIF committees (described below).

Standardization Method. In standard DIF analyses such as Mantel-Haenszel and SIBTEST, itis
well established that a moderately long matching test is required for the procedures to be valid (i.e.,
identify DIF in items unconfounded by other irrelevant factors[e.g., Donoghue, Holland, & Thayer,
1993]). In the main and state NAEP writing assessments, the booklets contain two 25-minute blocks, with
one writing prompt per block. Thus, each examinee has (at most) two responses on six-category prompts.
Thisistoo little information for the test statistics associated with Mantel (1963) or SIBTEST (Shealy &
Stout, 1993) procedures to function effectively. Thus, standard DIF approaches based on statistical tests
of items are likely to function poorly, and so were not used in the writing assessment analysis.
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In the writing assessment, the standardization method of Dorans and Kulick (1986) was used to
produce descriptive statistics. The matching variable was the total score on the booklet. Asin other
NAEP DIF analyses, the statistics were computed based on pooled booklet matching; the results are
accumul ated over the booklets in which a given item appears (e.g., Allen & Donoghue, 1996). This
analysis was accomplished using the standard NAEP DIF program NDIF that also cal culates the Mantel -
Haenszel statistic. The statistic of interest appears under the label SMD for "standardized mean
difference.” First, differencesin the item score between the two comparison groups are calculated for
each level of the booklet score. Then, the SMD for the item is the average of these differences divided by
their standard deviation.

Significance testing was not performed, due to the low reliability of the matching variable.
Instead, the standardized mean difference values were used descriptively, to identify those items that
demonstrate the most evidence of DIF. A rough criterion used in the past to describe DIF for polytomous
items has been to create the ratio of the SMD to theitem’s standard deviation and flag any item with a
ratio of at least .25. A criteriaof at least .10 could also be arbitrarily used to identify items with the most
evidence of DIF.

All NAEP DIF Procedures. All NAEP DIF analyses used rescaled sampling weights. A separate
rescaled weight was defined for each comparison as

Total Sample Sze

Rescaled Weight = Original Weight e :
Sumof theWeights

where the total sample sizeis the total number of students for the two groups being analyzed (e.g., for the
White/Hispanic comparison, the total number of White and Hispanic examinees in the sample at that
grade), and the sum of the weights is the sum of the sampling weights of all the students in the sample for
the two groups being analyzed. Three rescal ed weights were computed for White examinees—one for the
gender comparison and two for the race/ethnicity comparisons. Two rescaled overall weights were
computed for the Black and Hispanic examinees—one for the gender comparison and another for the
appropriate race/ethnicity comparison. The rescaled weights were used to ensure that the sum of the
weights for each analysis equaled the number of studentsin that comparison, thus providing an accurate
basis for significance testing.

In the calculation of total item scores for the matching criterion, not-reached, off-task, and
omitted items were considered to be wrong responses. Polytomous items were weighted more heavily in
the formation of the matching criterion, proportional to the number of score categories. For each item,
calculation of the Mantel-Haenszel statistic did not include data from examinees who did not reach the
item in question.

Each DIF analysis was a two-step process. In the initial phase, total item scores were formed and
the calculation of DIF indices was completed. Before the second phase, the matching criterion was
refined by removing all identified C or CC items, if any, from the total item score. The revised score was
used in the final calculation of al DIF indices. Note that when analyzing an item classified as C or CCin
theinitial phase, that item score is added back into the total score for the analysis of that item only.

Following standard practice at ETS for DIF analyses conducted on final forms, al C or CC items
were reviewed by a committee of trained test developers and subject-matter specialists. Such committees
are charged with making judgments about whether or not the differential difficulty of anitemisunfairly
related to group membership. The committees assembled to review NAEP items include both ETS staff
and outside members with expertise in the field. The committees carefully examine each identified item
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to determineif either the language or contents would tend to make the item more difficult for an
identified group of examinees. As pointed out by Zieky (1993):

It isimportant to realize that DIF is not a synonym for bias. The item response
theory based methods, as well as the Mantel-Haenszel and standardization
methods of DIF detection, will identify questions that are not measuring the same
dimension(s) as the bulk of the itemsin the matching criterion . . . .Therefore,
judgment is required to determine whether or not the difference in difficulty
shown by aDIF index isunfairly related to group membership. The judgment of
fairnessis based on whether or not the difference in difficulty is believed to be
related to the construct being measured . . . .The fairness of an item depends
directly on the purpose for which atest is being used. For example, a science item
that is differentially difficult for women may be judged to be fair in atest
designed for certification of science teachers because the item measures atopic
that every entry-level science teacher should know. However, that same item,
with the same DIF value, may be judged to be unfair in atest of general
knowledge designed for al entry-level teachers. (p. 340)

9.35 Scaling

Scales based on item response theory (IRT) were derived for each subject area. Three scales
were created for national main reading grade 8 and grade 12 assessment data, one for each purpose for
reading. Only two of these scales—Reading for Literary Experience and Reading to Gain Information—
were assessed at grade 4. A single scale was created for national main writing assessment data, and one
scale was created for national main civics assessment data. NAEP uses the methodology of multiple
imputations (plausible values) to estimate characteristics of the scale score distributions. Chapter 12
describesin detail the theoretical underpinnings of NAEP' s scaling methods and the required estimation
procedures. The basic analysis steps are outlined here.

1. Usethe NAEP BILOG/PARSCALE computer program (described in Chapter 12) to estimate
the parameters of the item response functions on an arbitrary provisional scale. This program
uses an IRT model incorporating the two- and three-parameter |ogistic forms for
dichotomously scored items and the generalized partial-credit form for polytomously scored
items. In order to select starting values for the iterative parameter-estimation procedure for
each dataset, the programisfirst run to convergence, imposing the condition of afixed
normal prior distribution of the scale score variable. Once these starting values are computed,
the main estimation runs model examinee scale score ability as amultinomial distribution.
That is, no prior assumption about the shape of the scale score distribution is made. In
analyses involving more than one population, estimates of parameters are made with the
overall mean and standard deviation of al subjects’ proficiencies specified to be 0 and 1,
respectively.

2. Useaversion of the MGROUP program (described in Chapter 12), which implements the
method of Mislevy (see Chapter 10 or Mislevy, 1991) to estimate predictive scale score
distributions for each respondent on an arbitrary scale, based on the item parameter estimates
and the responses to cognitive items and background questions.

3. Userandom draws from these predictive scale score distributions (plausible values, in NAEP

terminology) for computing the statistics of interest, such as mean proficiencies for
demographic groups.
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4. Determine the appropriate metric for reporting the results and transform the results as
needed. Thisincludes the linking of current scales to scales from the past or the selection of
the mean and variance of new scales. After scale score distributions for the scaling are
transformed, composite scale score distributions are created for the reading, writing, and
CiViCs assessments.

5. Usethejackknife procedure to estimate the standard errors of the mean proficiencies for the
various demographic groups.

Asexplained in Chapter 10, the plausible values obtained through the IRT approach are not
optimal estimates of individual scale score; instead, they serve as intermediate values to be used in
estimating subpopulation characteristics. Under the assumptions of the scaling models, these
subpopul ation estimates are statistically consistent, which would not be true of subpopulation estimates
obtained by aggregating optimal estimates of individual scale score.

9.3.5.1 Scaling the Cognitive Items

The data from the national main assessment samples were scaled using IRT models. For
dichotomously scored items two- and three-parameter logistic forms of the model were used, while for
polytomously scored items the generalized partial-credit model form was used. These two types of items
and models were combined in the NAEP scales. Item parameter estimates on a provisional scale were
obtained using the NAEP BILOG/PARSCALE program. Thefit of the IRT model to the observed data
was examined within each scale by comparing the empirical item response functions with the theoretical
curves, as described in Chapter 12. Plots of the empirical item response functions and theoretical curves
were compared across assessments for items in the reading trend assessment. The DIF analyses
previously described also provide information related to the model fit across subpopulations.

The national main assessments of reading, writing, and civics each have special characteristics
that determine the procedures that were followed for the scaling of each subject. For reading, a key
consideration was the degree of similarity between the 1998 assessment and earlier assessmentsin terms
of the populations assessed and the characteristics of the assessment instrument used. The civics and
writing scales were not linked to any previously defined scales.

The frameworks for the different subject areas dictate differences in the numbers of scales. For
reading, item parameter estimation was performed separately for each of three scales defined in its
framework, using data from each grade sample separately.

9.3.5.2 Generation of Plausible Valuesfor Each Scale

After the scales were developed, plausible values were drawn from the predictive distribution of
scale score values for each student (this processis called conditioning). For the writing and civics scales,
plausible values were drawn separately for each grade. For the reading scale, vectors of multivariate
plausible values were drawn from the joint distribution of scale score values for the assessed student. The
scales within an assessment are correlated. Multivariate generation utilizes this shared variation among
the scales in generating the plausible values. This procedure properly reflects the dependency between
the scale proficiencies. Multivariate plausible values were computed separately for each grade. All
plausible values were later rescaled to the final scale metric using appropriate linear transformations.

The variables used to calculate plausible values for a given national main assessment scale or

group of scalesincluded a broad spectrum of background, attitude, and experiential variables and
composites of such variables. All standard reporting variables were included. To enhance numerical
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stability for the national main assessment scales, the original background variables were standardized and
transformed into a set of linearly independent variables by extracting principal components from the
correlation matrix of the original contrast variables. The principal components, rather than the original
variables, were used as independent variables to calculate plausible values for those scales. Details of the
conditioning process and of the NAEP BGROUP and NAEP CGROUP (Thomas, 1994) computer
programs that implement the process are presented in Chapter 12. The variables used in conditioning are
listed in Appendix F.

9.3.5.3 Transformation to the Reporting Metric

Reading short-term trend scal es were linked to previous assessment scales via common
population linking procedures described in the subject-specific data analysis chapters. Essentialy, the
1994 and 1998 data were calibrated together. Data from the two assessments were scaled together in the
same BILOG/PARSCALE run, specifying the samples for each assessment as coming from different
populations. For each scale, the mean and standard deviation of the 1994 data from this joint calibration
were matched to the mean and standard deviation of the 1994 data as previously reported. Thisthen
linked the 1998 data to the previously established scale. New scales were established for the writing and
civics national main assessment. Then the metrics for the newly established scales were set to have a
mean of 150 and a standard deviation of 35.

The transformations were of the form

etarget = A @ Ocalibraed + B

where
BOtarget = scaelevel interms of the system of units of the final scale used for
reporting;
Ocalibrated = scaelevel interms of the system of units of the provisional

NAEP-BILOG/PARSCALE scale;

A = SDrtarget / SDcalibrated ;
B = Muge- A ® Maibrated ;
SDtarget = the estimated or selected standard deviation of the scale score

distribution to be matched;

SDaibraed =  the estimated standard deviation of the sample scale score distribution
on the provisional NAEP-BILOG/PARSCALE scale;

Marget = the estimated or selected mean of the scale score distribution to be
matched; and
Mainaed = the estimated mean of the sample scale score distribution on the

provisional NAEP-BILOG/PARSCALE scale.

After the plausible values were linearly transformed to the new scale, any plausible value less than 0 was
censored to 0. For the reading assessment, any value greater than 500 was censored to 500; for the
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writing and civics assessments, any value greater than 300 was censored to 300. Fewer than 1 percent of
the students in any sample were censored in thisway. The final transformation coefficients for
transforming each provisional scale to the final reporting scale are given in subsequent chapters.

9.3.5.4 Definition of Composites for the Multivariate Scalesin Reading

In addition to the plausible values for each scale, a composite of the individual reading
assessment scales was created as a measure of overall proficiency. The composite scale score was a
weighted average of the plausible values of the individual scales. The weights reflected the relative
importance of the scales and were provided in the framework devel oped by the subject-area committee.
The weights are approximately proportional to the number of itemsin each scale at a given grade level.

9.3.5.5 Tables of Scale Score Means and Other Reported Statistics

Scale scores and trends in scale scores were reported by grade for a variety of reporting
categories. Additionally, the percentages of the students within each of the reporting groups who were at
or above achievement levels were reported to provide information about the distribution of achievement
within each subject area. All estimates based on scal e score values have reported variances or standard
errors based on scale score values, including the error component due to the latency of scale score values
of individual students aswell asthe error component due to sampling variability. These tables are part of
the electronically delivered summary data tables.

9.3.6 Dimensionality Analysis

Over the years a number of studies have been conducted in order to seek answers to the question
of how many dimensions underlie the various NAEP assessment instruments, and whether thereisa
sufficiently strong first dimension to support inferences about a composite scale in subjects such as
reading. For the 1992 mathematics and reading assessments, a study was conducted (Carlson, 1993) to
determine whether the increasing emphasis on extended constructed-response items that are scored
polytomously has any effect on the dimensionality. It was determined that for the 1992 NAEP data, item
type was not related to any of the dimensions identified.

9.3.6.1 Previous Dimensionality Analyses of NAEP Data

In an early study, the dimensionality of NAEP reading assessment data collected during the
1983-84 academic year was examined by Zwick (1986, 1987). Zwick also studied simulated data
designed to mirror the NAEP reading item response data but having known dimensionality. Analysis of
the simulated datasets allowed her to determine whether the BIB spiraling design artificially increases
dimensionality. Zwick found substantial agreement among various statistical procedures, and that the
results using BIB spiraling were similar to results for complete datasets. Overall she concluded that “it is
not unreasonabl e to treat the data as unidimensional” (1987, p. 306).

Rock (1991) studied the dimensionality of the NAEP mathematics and science tests from the
1990 assessment using confirmatory factor analysis. His conclusion was that there was little evidence for
discriminant validity except for the geometry scale at the eighth-grade level, and that “we are doing little
damage in using a composite score in mathematics and science” (p. 2).

A second-order factor model was used by Muthén (1991) in afurther analysis of Rock’s

mathematics data, to examine subgroup differences in dimensionality. Evidence of content-specific
variation within subgroups was found, but the average (across seven booklets) percentages of such
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variation was very small, ranging from essentially O to 22, and two-thirds of these percentages were
smaller than 10.

Carlson and Jirele (1992) examined 1990 NAEP mathematics data. Analyses of simulated one-
dimensional data were also conducted, and the fit to these data was slightly better than that to the real
NAEP data. Although there was some evidence suggesting more than one dimension in the NAEP data,
the strength of the first dimension led the authors to conclude that the data “ are sufficiently
unidimensional to support the use of a composite scale for describing the NAEP mathematics data, but
that there is evidence that two dimensions would better fit the data than one” (p. 31).

Carlson (1993) studied the dimensionality of the 1992 mathematics and reading assessments. The
relative sizes of fit statistics for simulated as compared to actual data suggested that lack of fit may be
more due to the BIB spiraling design of NAEP than the number of dimensionsfitted. Kaplan (1995)
similarly found that the chi-squared goodness of fit statistic in the maximum likelihood factor analysis
model was inflated when data were generated using a BIB design. The sizes of thefit statistics for
incomplete simulation conditions (a BIB design as in the actual NAEP assessment) were more like those
of the real data than were those of the case of simulation of a complete data matrix. Consistent with
findings of Zwick (1986, 1987), however, the incomplete design for data collection used in NAEP does
not appear to be artificially inflating the number of dimensions identified using these procedures.

9.3.7 Drawing Inferencesfrom the Results

Drawing correct inferences from the results of the assessments depends on several components.
First, the hypothesis of no difference between groups must be tested statistically. For the 1998
assessment, the use of t-tests was introduced for most comparisons. These tests are more appropriate than
Z-tests based on normal distribution approximations when the statistics that are being compared are from
distributions with thicker tails than those from the normal distribution. The statistical significance tests
used in NAEP are described in detail in Chapter 13.

A second component contributing to drawing correct inferences is the way in which error rates
are controlled when multiple comparisons are made. If we wish to make a number of comparisonsin the
same analysis, say White students versus Black, Hispanic, Asian/Pacific Island, and American Indian
students, the probability of finding “significance” by chance for at least one comparison increases with
the family size or number of comparisons. By the Bonferroni inequality, for afamily size of 4, for
example, the probability of afalse positive (Type error) using o = 0.05 isless than or equal to 4 x 0.05
= 0.20, larger than most decision makers would accept.

One genera method for controlling error rates in multiple comparisons is based on the
Bonferroni inequality. In this method, the Bonferroni inequality is applied and o is divided by the family
size, n. Now o, =.05/4 =.0125, and using o, the combined probability of one or more errorsin the four
comparisons remains controlled at less than or equal to .05. Note that dividing the probability by nis not
the same as multiplying the critical value or the confidence band by n. Indeed, in moving from afamily
size of 1to 4, we increase the critical value only from 1.960 to 2.498, a 27.4 percent increase. Doubling
the family size again, to 8, increases the critical value to 2.735, an additional 9.5 percent increase. To
double theinitial critical value to 3.92, the family size would have to be increased to 564.

The power of the tests thus depends on the number of comparisons planned. There may be cases
for which, before the data are seen, it is determined that only certain comparisons will be conducted. As
an example, with the five groups above, interest might lie only in comparing the first group with each of
the others (family size 4), rather than comparing all possible pairs of groups (family size 10). This means
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that some possibly significant differences will not be found or discussed, but the planned comparisons
will have greater power to identify real differences when they occur.

In 1998, a different criterion was used to increase the power of statistical testsin NAEP. Unlike
other multiple-comparison procedures (e.g., the Bonferroni procedure) that control the familywise error
rate (i.e., the probability of making even one false rejection in the set of comparisons), the fal se discovery
rate (FDR) controls the expected proportion of falsely rejected hypotheses. So, if an o of .05 is selected,
about 95 percent of the hypothesis tests made rejected or accepted the hypothesis correctly, while about 5
percent of the hypothesis tests made rejected or accepted the hypothesis incorrectly. Familywise
procedures are considered conservative for large families of comparisons. Therefore, the FDR procedure
is more suitable for multiple comparisons in NAEP than other procedures (Williams, Jones, & Tukey,
1999). The FDR procedure used in NAEP has been described by Benjamini and Hochberg (1994). These
methods for controlling error rates in multiple comparisons are described in Chapter 13.

A third component contributing to drawing correct inferences is limiting comparisons to those
for which there are adequate data. In NAEP reports and data summaries, estimates of quantities such as
composite and content area scale score means, percentages of students at or above the achievement
levels, and percentages of students indicating particular levels of background variables (as measured in
the student, teacher, and school questionnaires) are reported for the total population as well asfor key
subgroups determined by the background variables. In some cases, sample sizes were not large enough to
permit accurate estimation of scale score or background variable results for one or more of the categories
of these variables.

For results to be reported for any subgroup in NAEP, a minimum sample size of 62 isrequired.
This number was arrived at by determining the sample size required to detect an effect size of 0.5 witha
probability of .8 or greater. The effect size of 0.5 pertains to the “true” difference in mean scale score
between the subgroup in question and the total population, divided by the standard deviation of scale
score in the total population. In addition, subgroup members must represent at least five primary
sampling units (PSUs).

A fourth component contributing to drawing correct inferences is limiting comparisons to those
comparing statistics with standard errors that are estimated well. Standard errors of mean proficiencies,
proportions, and percentiles play an important role in interpreting subgroup results and comparing the
performances of two or more subgroups. The jackknife standard errors reported by NAEP are statistics
whose quality depends on certain features of the sample from which the estimate is obtained. In certain
cases, typically when the number of students upon which the standard error is based is small or when this
group of students all come from a small number of participating schools, the mean squared error
associated with the estimated standard errors may be quite large. In the summary reports, estimated
standard errors subject to large mean squared errors are followed by the symbol "!".

The magnitude of the mean squared error associated with an estimated standard error for the
mean or proportion of a group depends on the coefficient of variation (CV) of the estimated size of the
population group, denoted as N. The coefficient of variation is estimated by:

CV(N)= SEI\%N)

where N isapoint estimate of N and SE(N) is the jackknife standard error of N .

Experience with previous NAEP assessments suggests that when this coefficient exceeds 0.2, the
mean squared error of the estimated standard errors of means and proportions based on samples for this
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group may be quite large. Therefore, the standard errors of means and proportions for all subgroups for
which the coefficient of variation of the population size exceeds 0.2 are followed by "!" in the tables of
al summary reports. These standard errors, and any confidence intervals or significance tests involving
them, should be interpreted with caution. (Further discussion of thisissue can be found in Johnson &
Rust, 1993.)

A final component contributing to drawing correct inferences pertains to comparisons involving
extreme proportions. When proportions are close to zero or one, their distributions differ greatly from t-
or z-distributions. For this reason, hypothesis tests of the sort used by NAEP are not appropriate in these
cases. Under these conditions, no test is made. Chapter 13 includes the specific definition of extreme
proportion used in the analysis of 1998 data.

94 OVERVIEW OF CHAPTERS 10 THROUGH 24
The remaining chapters of thisreport are as follows:

Chapters 10 and 11: The 1998 national assessment used a stratified multistage probability
sampling design that provided for sampling certain subpopulations at higher rates (see Chapters 3 and 4).
Because probabilities of selection are not the same for al assessed students, sampling weights must be
used in the analysis of NAEP data. Also, in NAEP' s complex sample, observations are not independent.
Asaresult, conventional formulas for estimating the sampling variance of statistics are inappropriate.
Chapters 10 and 11 describe the weighting procedures and methods for estimating sampling variance that
are necessitated by NAEP' s sample design. Further detail on sampling and weighting proceduresis
provided in the NAEP 1994 Sampling and Weighting Report (Wallace & Rust, 1996), published by
Westat, the NAEP contractor in charge of sampling.

Chapter 12: A major NAEP innovation introduced by ETS isthe reporting of subject-area results
in terms of IRT-based scales. Scaling methods can be used to summarize results even when students
answer different subsets of items. For purposes of summarizing item responses, NAEP developed a
scaling technique that hasits roots in IRT and in the theories of imputation of missing data. Chapter 12
describes this scaling technique, the underlying theory, and the application of these methods to 1998
NAEP data. The final section of Chapter 12 gives an overview of the NAEP scal es that were devel oped
for the 1998 assessment.

Chapter 13: The 1998 assessment analyses included changes in the methods, procedures, and
conventions used in making group comparisons. Chapter 13 highlights these changes and provides details
about which results were reported.

Chapter 14: The 1998 reading assessment was based on a framework developed by the National
Assessment Governing Board for the 1992 reading assessment. This framework was used in the 1994 and
1998 assessments. Chapter 14 discusses the framework and assessment instruments used in the 1998
assessment.

Chapters 15, 16, and 17 describe analyses of the reading data for national and state assessments.
This analysisincluded a study of the cognitive variables and student background variables. At grades 4
and 8, background information and data on instructional methods were collected from teachers, and the
relation of these variables to reading scale scores was examined. The reading results appear in the NAEP
1998 Reading Report Card for the Nation and the States (Donahue et al., 1999).
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Chapter 18: The 1998 writing assessment was based on a new framework devel oped by the
National Assessment Governing Board for the 1998 assessment. Chapter 18 discusses the framework and
assessment instruments used in the 1998 assessment.

Chapters 19, 20, and 21 describe analyses of the writing data for national and state assessments.
Thisanalysisincluded a study of the cognitive variables and student background variables. At grade 8,
background information and data on instructional methods were collected from teachers and the relation
of these variables to writing data was examined. The writing results appear in the NAEP 1998 Writing
Report Card for the Nation and the States (Greenwald et al., 1999).

Chapter 22: The 1998 civics assessment was based on a new framework developed by the
National Assessment Governing Board for the 1998 assessment. Chapter 22 discusses the framework and
assessment instruments used in the 1998 assessment.

Chapters 23 and 24 describe analyses of the civics assessment. This analysisincluded a study of
the cognitive variables and student background variables. At grades 4 and 8, background information and
data on instructional methods were collected from teachers and the relation of these variablesto civics
scale scores was examined. The civics results appear in the NAEP 1998 Civics Report Card for the
Nation (Lutkus et al., 1999).
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Chapter 10

WEIGHTING PROCEDURESAND ESTIMATION OF
SAMPLING VARIANCE FOR THE NATIONAL ASSESSMENT*

Jiahe Qian, Bruce A. Kaplan, and Eugene G. Johnson
Educational Testing Service

Tom Krenzke and Keith F. Rust
Westat

101 INTRODUCTION

Asin previous assessments, the 1998 national assessment used a complex sample design with the
goal of securing a sample from which estimates of population and subpopulation characteristics could be
obtained with reasonably high precision (as measured by low sampling variability). At the sametime, it
was necessary that the sample be economically and practically feasible to obtain. The resulting sample
had certain properties that had to be taken into account to ensure valid analyses of the datafrom the
assessment.

The 1998 NAEP sample was obtained through a stratified multistage probability sampling design
that included provisions for sampling certain subpopul ations at higher rates (see Chapter 3). To account
for the differential probabilities of selection, and to alow for adjustments for nonresponse, each student
was assigned a sampling weight. Section 10.2 discusses the procedures used to derive these sampling
weights.

Section 10.3 discusses other weighting procedures in the NAEP samples. These procedures
include generating modular weights, which would allow analysts to compare results between sample
types. National linking (NL)? weights were generated so that national and state-by-state assessments
could be equated for national and state results to be reported on a common scale. School weights were
created so that school-level data could be analyzed. Also, reporting weights for samples with
accommodations were processed for possible use in 2002 when reporting trend from 1998. Section 10.4
discusses the potentia bias due to nonresponse.

Another consequence of the NAEP sample design isits effect on the estimation of sampling
variability. Because of the effects of cluster selection (cluster of elements: students within schools,
schools within primary sampling units) and because of the effects of certain adjustments to the sampling
weights (nonresponse adjustment and poststratification), observations made on different students cannot
be assumed to be independent of one another. In particular, as aresult of clustering, ordinary formulas
for the estimation of the variance of sample statistics based on assumptions of independence will tend to
underestimate the true sampling variability. Section 10.5 discusses the jackknife technique used by
NAEP to estimate sampling variability.

1Keith F. Rust and Tom Krenzke were responsible for the design and implementation of the weighting process for the 1998
NAEP national assessment. Jiahe Qian, with the assistance of Bruce Kaplan and in consultation with Eugene G. Johnson, was
responsible for the planning, specification, and coordination of the national weighting at ETS.

2 Note that in previous NAEP state assessments, the weights for national linking samples were called the state aggregate comparison,
or SAC, weights. Many people thought this was easy to confuse with state weights, so theterm ‘nationa linking’ will be used in this
report.
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10.2 WEIGHTING PROCEDURES FOR ASSESSED AND EXCLUDED
STUDENTSIN THE NATIONAL SAMPLES

Since the sample design determines the derivation of the sampling weights and the estimation of
sampling variability, it will be helpful to note the key features of the 1998 national sample design. A
description of the design appearsin the first four sections of this report.

The 1998 sample was a multistage probability sample consisting of four stages. The first stage of
selection, the primary sampling units (PSUs), consisted of counties or groups of counties. The second
stage of selection consisted of elementary and secondary schools. The assignment of sessions and sample
types to sampled schools (see Chapter 3) comprised the third stage of sampling, and the fourth stage
involved the selection of students within schools and their assignment to sessions.

The probabilities of selection of the first-stage sampling units were proportional to measures of
their size, while the probabilities for subsequent stages of selection were such that the overall
probabilities of selection of students were approximately uniform, with exceptions for certain
subpopul ations that were oversampled by design. Schools with relatively high concentrations of Black
students, Hispanic students, or both, were deliberately sampled at a higher than normal rate to obtain
larger samples of respondents from those subpopulations, in order to increase the precision in the
estimation of the characteristics of these subpopulations. Nonpublic-school students were sampled at
three times the normal rate, again to increase the precision of estimates for this population subgroup. For
all assessment components, students from schools with smaller numbers of eligible students received
lower probabilities of selection, as a means of enhancing the cost efficiency of the sample.

The 1998 national assessment includes three student cohorts: studentsin grades 4, 8, and 12. The
national assessment of all grades was conducted in the spring of 1998 to provide a cross-sectional view
of students’ abilities in reading, writing, and civics.

The full 1998 national assessment thus includes a number of different samples from several
populations. Each of these samples has its own set of weights that are to be used to produce estimates of
the characteristics of the population addressed by the sample (the target population). Each sample has an
additional set of weights to accommodate the reporting requirements. The various samples and their
target populations are as follows. The target population for each of these samples (one for each grade)
consisted of all students who were in the specified grade and were deemed assessabl e by their school.
There were three distinct session types at each grade: writing/civics, reading, and civics special trend.
Each session type was conducted as one or more distinct sessions within a school. Administration of each
session type was always conducted separately from other session types. Within the writing/civics
sessions, students in grade 4 received either a 25-minute writing booklet or a civics booklet, whilein
grades 8 and 12 students received a 25-minute writing booklet, a 50-minute writing booklet, or a civics
booklet.

To facilitate analyses, two kinds of weights were produced. “ Reporting weights’ were produced
separately by grade and assessment type for analyses of the reporting samples that were defined for each
assessment. Several of the reporting samples included students from multiple sample types. “Modular
weights,” as discussed in Section 10.3.1, were produced separately by grade and sample type for the
reading assessment. They are applied for analyses involving any one sample type, or for comparing one
sample type with another. Thus, across grades, session types, and sample types, there were 14 sets of
reporting weights, and there were 6 sets of modular weights for students in reading assessments.
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10.2.1 Base Weights

Asindicated earlier, to enhance the precision of estimates of characteristics of these oversampled
subgroups, NAEP deliberately oversampled certain subpopulations to abtain larger samples of
respondents from those subgroups by using differential sampling rates. Because of the oversampling
public schools with high concentrations of Black and/or Hispanic students and the oversampling of
nonpublic schools, these subpopulations are overrepresented. As aresult of oversampling students,
subpopulations to Black and/or Hispanic students from public schools with low concentrations of Black
and/or Hispanics, and corresponding to SD/L EP students in schools assigned reading sessions, are al'so
overrepresented in the sample. Lower sampling rates were introduced also for very small schools (those
schoolswith only 1 to 19 eligible students). This reduced level of sampling from small schools was
undertaken in anear optima manner as a means of reducing variances per unit of cost (sinceit is
relatively costly to administer assessments in these small schools). Appropriate estimation of population
characteristics must take disproportionate representation into account. Thisis accomplished by assigning
aweight to each respondent, where the weights approximately account for the sample design and reflect
the appropriate proportional representation of the various types of individualsin the population.

Two sets of weights were computed for the 1998 samples. “Modular weights” were computed for
analysesinvolving students of reading assessments in one sample type, or for comparing results between
sample types. Each reading assessment type, by grade and sample type, weights up separately to the
target population. “ Reporting weights” were computed for analyses of the reporting samples defined in
Table 10-1. The reading reporting samples include students from more than one sample type. For
reporting samples that include only one sample type (i.e., writing/civics and civics special trend), the
reporting weights are identical to the modular weights. The steps for computing these two sets of weights
areidentical, up to and including the step of “trimming” the weights. The trimmed weights were
poststratified separately by sample type to create the modular weights. In a parallel procedure, the
trimmed weights were scaled back using a*reporting factor” so that the sample typesincluded in each
reporting sample, when combined, would weight up to the target population. The resulting weights were
poststratified (but not separately by sample type) to create the reporting weights.

Table 10-1
Reporting Samples for 1998 National Assessments
Subject Grade Assessed Reporting Samples
Civics 4,8,12 A3+B3
Civics Specia Trend 4,8, 12 A3+B3
Reading 4,8, 12 A2+A3+B2
25-Minute Writing 4,8, 12 A3+B3

“ A indicates assessed non SD/LEP students; B indicates assessed SD/LEP
students; and 2 or 3 indicates the sample type.

The weighting procedures for 1998 included computing the student’ s base weight, the reciprocal
of the probability that the student was selected for a particular subject type. Such weights are those
appropriate for deriving estimates from probability samples via the standard Horvitz-Thompson estimator
(see Cochran, 1977). These base weights were adjusted for nonresponse and then subjected to atrimming
algorithm to reduce afew excessively large weights. The weights were further adjusted by a student-level
poststratification procedure to reduce the sampling error. The poststratification was performed by
adjusting the weights of the sampled students so that the resulting estimates of the total number of
studentsin a set of specified subgroups of the population corresponded to population totals, which were
based on information from the Current Population Survey and U.S. Census Bureau estimates of the
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population. The subpopul ations were defined in terms of race, ethnicity, geographic region, grade, and
agerelative to grade. The distribution of the various weighting factorsis presented in Westat’s report
entitled Sampling Activities and Field Operations for 1998 NAEP (Gray, et a ., 2000).

The base weight assigned to a student is the reciprocal of the probability that the student was
selected for a particular assessment. That probability is the product of six factors:

1. The probability that the PSU was selected

2. Theprobability that a Catholic, religious-affiliated, or other nonpublic school was selected
for the PSSfile

3. Theconditional probahility, given the PSU, that the school was selected

4. The conditiona probability, given the sample of schoolsin a PSU, that the school was
alocated to the specified session type

5. Theconditional probahility, given the sample of schoolsin a PSU, that the sample type was
assigned to the school

6. The conditiona praobability, given the school, that the student was selected for the specified
subject type

Thus, the base weight for a student may be expressed as the product
We = PSUWGT_M ¢ QSCHWT e SCH_WT e STYWT ¢ SA WT e STUSA WT

where PSUWGT_M, QSCHWT, SCH_WT, STYWT, SA WT, and STUSA WT are, respectively,
the reciprocal s of the preceding probabilities.

Variations across the various 1998 assessments in probabilities of selection, and consequently of
weights, were introduced by design, either to increase the effectiveness of the sample in achieving its
goals of reporting for various subpopulations, or to achieve increased efficiency per unit of cost.

The PSU weight, PSUWGT _M, isthe reciprocal of the probability of selection for the PSU. Of
the 94 PSUs selected, 22 were certainty PSUs and have a PSU weight of 1.0. For the remaining 72 PSUs,
the probability of selection was cal culated to account for the initial selection of one PSU per stratum.

The PSS weight, QSCHWT, isthe reciprocal of the probability of selection of the Catholic,
religious-affiliated, and other nonpublic schools from the PSS area frame. QSCHWT= 1 for schools on
the PSS list frame. See Section 3.2.4.1 for more information about the PSS list and area frames.

The school weight, SCH_WT, isthe reciprocal of the probability of selection of the school
conditional on the PSU.

The session allocation weight, SA WT, is the reciprocal of the probability that the particular
session was allocated to the school. Thisisafunction of the session type and the number of sessions
alocated to the school. Session allocation weights were cal culated separately for each session type. The
values for the session allocation weights are summarized in Table 10-2. The session allocation weights
were adjusted for smaller-than-expected schools to account for one or more session types that were
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dropped. The adjustment factor was computed as the number of sessions assigned divided by the number
of retained sessions assigned for the session type.

Table 10-2
Session Allocation Weights Used in the 1998 National Assessment
Writing/Civics Reading Civics Special Trend
Session Number of Session Number of Session Number of
Allocation Sessions Allocation Sessions Allocation Sessions
Grade Weight Assigned Weight Assigned Weight Assigned
4 18/13 1 18/4 1 18 1
1 2 18/8 2 18/2 2
1 3 18/12 3 18/3 3
1 4 18/16 4 18/4 4
8 47/34 1 47/11 1 4712 1
1 2 47/22 2 4714 2
1 3 47/33 3 47/6 3
1 4 47/44 4 47/8 4
1 5 1 5 47/10 5
12 49/34 1 49/13 1 49/2 1
1 2 49/26 2 49/4 2
1 3 49/39 3 49/6 3
1 4 49/45 4 49/8 4
1 5 49/47 5 49/10 5

The sample type weight, STYWT, isthe reciprocal of the probability that the sample type was
assigned to the school. For reading, the weight is 2, and for other sessions the weight was set to 1.

Cooperating substitute schools received the values of the following weighting components from
the original sampled school that it replaced: PSUWGT_M, QSCHWT, SCH_WT, SA_WT, STYWT.

For assessed students, the student weight, STUSA_WT, isthe reciprocal of the probability that
the student was selected for the particular session to which he or she was assigned. This probability is the
product of the within-school sampling rate; the proportion of the relevant eligible students assigned to the
particular session type within the school, as prescribed by the sampling allocation factor; the proportion
of students in the session given a subject-specific assessment booklet (see Table 10-3 for the subject
factors); and afactor that adjusts for students in year-round schools that are not in school at the time of
assessment. Special attention was given to the writing sample allocation factors for accommodated
SD/LEP students and nonaccommodated students. The SD/L EP students in 50-minute writing that were
accommodated were given 25-minute writing booklets. Therefore, the accommodated students have a
higher chance of being assigned the 25-minute writing booklet than the nonaccommodated students. A
special poststratification procedure was done for the 50-minute writing sample, as described in
Section 10.2.5.1.

Excluded students were weighted with assessed students for each assessment. This was done

because the exclusion criteria did not depend on session type. For excluded students, STUSA_WT is
computed the same way as assessed and absent students.
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Table 10-3
1998 National Assessment Writing and Civics Sample Allocation

Subject Grade4 Grade8 Grade 12
25-Minute Writing Nonaccommodated 13/10 17/10 17/10
25-Minute Writing Accommodated 13/10 17/13 17/13
50-Minute Writing N/A 17/3 17/3
Civics 13/3 17/4 17/4

10.2.2 Adjustment of the Base Weightsfor Nonresponse

The base weight for a student was adjusted by two nonresponse factors: SF_WT, to adjust for
noncooperating schools and schools that did not conduct all of their assigned sessions (i.e., asession
nonresponse); and STUNRADJ, to adjust for students who were invited to the assessment but did not
appear either in the scheduled or a makeup session. Thus the nonresponse adjusted weight for a student
was of the form:

STUAWT = PSUWGT_M e QSCHWT SCH_WT e SA_WT e STYWT e STUSA_WT e
SF_WT ¢ STUNRADJ

The nonresponse adjustment factors were computed as described below.

10.2.2.1 Session Nonresponse Adjustment (SESNRF)

Sessions were assigned to school s before cooperation status was final. The session nonresponse
adjustment was intended to compensate for session type nonresponse due to refusing schools or
individual session types not conducted. The first three digits of PSU stratum, called subuniverse (formed
by crossing the PSU major stratum and the first socioeconomic characteristic used to define the final
PSU stratum; see Chapter 3 for more detail) were used in calculating nonresponse adjustments. The
adjustment factors were computed separately within classes formed by subuniverse within sample type
for reading, and by subuniverse for the other assessment types. Occasionally, additional collapsing of
classes was necessary to improve the stability of the adjustment factors, especially for the smaller
assessment components. Most classes heeding collapsing contained small numbers of cooperating
schools. Occasionally, classes with low-response rates were collapsed.

In subuniverse sin session type h, the session nonresponse adjustment factor SF WT,s was
given by

S PSUWGT _M, e QSCHWT, ¢ SCH _WT, ¢ SA_WT,, ¢ STYWT, ¢ G

SF_WrT, ="
3 PSUWGT _M, e QSCHWT,  SCH _\WT, e SA_WT,, e STYWT,, «G

Chs

where

PSUWGT M the PSU weight for the PSU containing schooal i,

QSCHWT;

the PSS school weight for school i,
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SCH_WT, = the school weight for schooal i,

SA WT, = the session allocation weight for session type h in school i,
STYWT, = the sample type weight for school i,
G = the estimated number of grade-eligible students in school i (the values of

G; were based on QED or PSS data or updated grade enrollment values
from field operations),

set By = consists of all in-scope originally sampled schools allocated to session
type h in subuniverse s (excluding substitutes), and

set Cpe = consists of all schools allocated to session type h in subuniverse s that
ultimately participated (including substitutes).

It should be noted that the nonresponse adjustments assume that nonresponse occurs at random
within the categories within which adjustments are made (see Little & Rubin, 1987). Some degree of bias
could result to the extent that this assumption isfalse. It should aso be noted that the adjustment
accounts for the difference between the substitute’s estimated grade enrollment and its corresponding
original school’s estimated grade enrollment. For the state assessments, a separate weighting factor is
used to account for the difference in estimated grade enrollments (see Section 11.2.4).

10.2.2.2 Student Nonresponse Adjustment (STUNRADJ)

Student nonresponse adjustment factors were computed separately for each subject type. The
adjustment classes were based on sample type (for reading only), subuniverse, modal age status, and race
class (White or Asian/Pacific Islander, other). In some cases, two or more honresponse classes were
collapsed into one to improve the stability of the adjustment factors. For each class ¢ in subject typek,
the student nonresponse adjustment factor STUNRADJ,. is computed by

3 PSUWGT _M,; ¢ QSCHWT,  SCH _WT, e SA_WT,, @ STYWT,, » S-_WT,, e STUSA_WT,
STUNRADJ, =2

> PSUWGT _M, ¢ QSCHWT, ¢ SCH _WT, » SA_WT, « STYWT, « SF _WT, » STUSA_WT,

By

where,

PSUWGT_M; = the PSU weight for the PSU containing student j,

QSCHWT, = the PSS school weight for school containing student j,

SCH_WT, = the school weight for the school containing student j,

SA WT,, = the session allocation weight for the school containing student j in
session type h,

STYWT, = the sample type weight for the school containing student j in
session type h,

167



SF_WT, = the session nonresponse adjustment factor for the school containing
student j in session type h,

STUSA WT;, = the within-school student weight for student j in subject type k,

Sat A = consists of the studentsin class ¢ who were sampled for subject
type k and not excluded, and

Set B, = consists of the studentsin class ¢ who were assessed in subject type k.

Excluded students received nonresponse adjustments of 1.0.

10.2.3 Variation in Weights

As mentioned earlier, the basic sampling design was to select students with uniform selection
probability except for planned oversampling in certain types of schools to improve estimates for certain
subgroups. However, additional variation in weights was caused by a number of factors. Variation arose
from undersampling schools with fewer than six expected students eligible for the grade category.
Variation also arose from limiting the number of students selected from large schools. Inaccurate school
measures of size also contributed to variability. When the measures of size were off by more than 20
percent, within-school sampling intervals were changed in order to meet the target sample sizein the
school. In these cases the self-weighting sample design was abandoned in order to meet the target sample
size. In addition, the process of session assignment added variability to the weights. The number of
sessions was assigned to the school first, and then specific session types were assigned. Thus, the number
of sessions of any one type assigned to a school was a random variable. More oversampling within
schools, as discussed in Chapter 3, than in 1996 may have caused an increased variation in weights.
Finally, adjustment for nonresponse at the school and student levels added to the variation in weights.

Such variability in weights contributed to the variance of overall estimates from the survey by
approximately afactor of F =1+ VW2 , Where VW2 denotes the coefficient of variation of the student
weights. The calculated factors are displayed in Table 10-4.

By design, the use of poststratification factors, to be discussed in Section 10.2.5, also added to
weight variation. However, poststratification presumably reduced the variance of overall estimates by

reducing the variability in the relative contribution to the overall estimates of subclasses that respond
differently.
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Table 10-4
Value of Factor F for Sample Subjects
Used in the 1998 National Assessment

Grade Subject F
4 Reading 141
25-Minute Writing 141
Civics 141
Civics Special Trend 1.25
8 Reading 1.42
25-Minute Writing 1.37
50-Minute Writing 1.36
Civics 1.38
Civics Specia Trend 131
12 Reading 1.45
25-Minute Writing 1.34
50-Minute Writing 1.34
Civics 1.36
Civics Specia Trend 1.32

10.2.3.1 Trimming the Weightsfor Outliers

In anumber of cases, students were assigned relatively large weights®. One cause of large
weights was underestimation of the number of eligible studentsin some schools, leading to
inappropriately low probabilities of selection for those schools. A second major cause is the presence of
large schools (high schoolsin particular) in PSUs with small selection probabilities. In such cases, the
maximum permissible within-school sampling rate (determined by the maximum sample size allowed per
school—see Chapter 3) could well be smaller than the desired overall within-PSU sampling rate for
students. Large weights arose al so because very small schools were, by design, sampled with low
probabilities. Other large weights arose as the result of high levels of nonresponse coupled with low to
moderate probabilities of selection, and the compounding of nonresponse adjustments at various levels.

Students with notably large weights have an unusually large impact on estimates such as
weighted means. As discussed in the previous section, the variability in weights contributes to the

variance of an overall estimate by an approximate factor (1+ VW2 ), where V,, isthe coefficient of

variation of the weights. An occasional unusually large weight is likely to produce large sampling
variances of the statistics of interest, especially when the large weights are associated with students with
atypical performance characteristics.

To reduce the effect of large contributions to variance from a small set of sample schools, the
weights of such schools were reduced, that is, trimmed. The trimming procedure introduces abias but is
expected to reduce the mean square error of sample estimates.

3 Trimming of small weights was not an issuein national and state NAEP assessments. The distribution of weights for NAEP
assessment samples is usually positively skewed. The size of the student groups with relatively small weightsis usually relatively
large. Thus small weights are usually not outliers and would not contribute to alarge coefficient of variation of weights.
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The trimming algorithm was identical to that used since 1996 and had the effect, approximately,
of trimming the weight of any school that contributed more than a specified proportion, 6, to the
estimated variance of the estimated number of students eligible for assessment. The details of the
algorithm of trimming weights are given in Westat’ s Sampling Activities and Field Operations for 1998
NAEP (Gray, €t a., 2000).

The trimming procedure was done separately within sample type for reading, and overall for
25-minute writing, 50-minute writing, civics, and civics specia trend. The number of schools where
weights were trimmed was no more than 13 in any one assessment. The most extreme trimming factors
applied were of the order of 0.41; trimming affects the weights of only avery small proportion of the
assessed and excluded students.

Table 10-5 shows the distributions of eigible students based on the trimmed weights of assessed
students for the 25-minute writing samples for each grade. The distributions are similar to those before
trimming shown later in the section. To the extent that the characteristics in the table are related to
student performance on the 25-minute writing assessment, there is a small bias introduced in the
assessment by trimming.

Table 10-5
Distribution of Populations of Eligible Sudents Based on Trimmed Weights
of Assessed Students in Participating Schools, 1998 National 25-Minute Writing Samples

Population Grade4 Grade8 Grade 12
Total Population 3,430,090 3,440,089 2,533,413
Age Category

At modal age or younger 63.8 59.4 64.1

Older than modal age 36.2 40.6 35.9
Race/Ethnicity Category

White 58.9 62.1 67.6

Black 13.8 13.1 11.3

Hispanic 20.1 185 13.7

Other 7.2 6.4 74
Gender”

Male 50.6 50.0 47.9

Female 49.4 50.0 52.0
SD

Yes 75 7.0 4.3

No 925 93.0 95.7
LEP

Yes 35 2.7 22

No 96.5 97.3 97.8
SD, LEP

SD yes, LEP yes 0.2 0.3 0.1

SD yes, LEP no 7.3 6.8 4.2

SD no, LEP yes 3.3 25 21

SD no, LEP no 89.2 90.5 93.6

" For avery small percentage of students at grades 4, 8, and 12, gender is unknown.
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10.2.4 Reporting Factors

Each set of trimmed weights for a given sample type in the reading assessment sums to the target
population. Reporting factors were assigned to studentsin order to scale back the trimmed weights so
that final student (reporting) weights within each reporting sample (which may combine students from
different sample types) sum to the target population. The reporting factors assigned to students are
specific to the reporting samples defined in Table 10-1. Each assessed and excluded student in the
reporting sample for reading assessment received a reporting factor as shown in Table 10-6. Students that
were assessed or excluded in 25-minute writing, 50-minute writing, civics, and civics special trend, were
assigned a reporting factor equal to 1.0, since all students are part of the reporting sample.

Table 10-6
1998 National Reading Assessment
Reporting Factors for Assessed and Excluded Sudents

Non SD/LEP SD/LEP

Sample Type Students Students
2 0.5 1
3 0.5 —

10.2.5 Poststratification

Asin most sample surveys, the respondent weights are random variables that are subject to
sampling variability. Even if there were no nonresponse, the respondent weights would at best provide
unbiased estimates of the various subgroup proportions. However, since unbiasedness refers to average
performance over a conceptually infinite number of replications of the sampling, it is unlikely that any
given estimate, based on the achieved sample, will exactly equal the population value. Furthermore, the
respondent weights have been adjusted for nonresponse and a few extreme weights have been reduced in
size.

To reduce the mean squared error of estimates using the sampling weights, these weights were
further adjusted so that estimated population totals for a number of specified subgroups of the
population, based on the sum of weights of students of the specified type, were the same as presumably
better estimates based on composites of estimates from the 1995 and 1996 Current Popul ation Survey
and 1997 population projections made by the U.S. Census Bureau. For details of the method used to
derive these independent estimates, see Appendix C in the Sampling Activities and Field Operations for
1998 NAEP (Gray, et al., 2000).

This adjustment, called poststratification, is intended especially to reduce the mean squared error
of estimates relating to student populations that span several subgroups of the population, and thus also
to reduce the variance of measures of changes over time for such student populations.

The poststratification in 1998 was done for all subjects and grades. Within each grade and
assessment type group, poststratification adjustment cells were defined in terms of race, ethnicity, and
Census region as shown in Tables 10-7. Note that NAEP region was used in years prior to 1996 instead
of Census region. This change was made because the data from the Current Population Survey and
Census Projections are more reliable for Census regions than for NAEP regions.

These subgroups were used as adjustment cells at grade 12. For grades 4 and 8, each of the seven
subgroups was further divided into two eligibility classes: of modal age and not of modal age.
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Table10-7
Major Subgroups for Poststratification
in the 1998 National Assessment

Race Ethnicity Census Region
Black Not Hispanic ~ All
Any Hispanic All

Other Not Hispanic  All
White  Not Hispanic  Northeast
White  Not Hispanic ~ Midwest
White  Not Hispanic  South
White  Not Hispanic =~ West

The procedure used at grade 12 was adopted because the independent estimates of the numbers
of students in the population did not provide consistent data on the numbers of twelfth-grade students by
age. Specifically, the counts of twelfth-grade students age 18 and older are not reliable because they
include adult education students. This procedure has been used since 1988. (See Rust, Bethel, Burke, &
Hansen, 1990, and Rust, Burke, & Fahimi, 1992, for further details.)

Thus, there were 7 or 14 cells for poststratification. The poststratified weight for each student
within a particular cell was the student’ s base weight, with adjustments for nonresponse and trimming,
and the reporting factor from Section 10.2.4, times a poststratification factor. For each cell, the
poststratification factor is aratio whose denominator is the sum of the weights (after adjustments for
nonresponse and trimming) of assessed and excluded students, and whose numerator is an adjusted
estimate, based on more reliable data, of the total number of studentsin the cell. The poststratification
factor for student j in subject type k and poststratification adjustment class c is given by

RPTPS_AD, = TOTAL,
Y W, ® SF_WT, « STUNRADJ, e TRIMFCTR, ¢ RPT _FCTR,;
Chc
where

W = thebase weight for student j (see Section 10.2.1);

TOTAL, = thetotal number of grade-eligible studentsin class ¢, from the October
1995 and 1996 Current Population Surveys and 1997 population
projections;

SF_WT, = the session nonresponse adjustment factor for the school containing
student j in subject typek;

STUNRADJ; = the student nonresponse adjustment for student j;

TRIMFCTR = thetrimming factor for student j;

RPT_FCTR = thereporting factor for student j;

Set Cy. = consists of the studentsin class ¢ who were assessed in subject type k,

except those at grade 12 who were age 18 or older.
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The major subgroups for poststratification in 1998 assessments are shown in Tables 10-7. The
poststratification factors can be found in Westat’ s Sampling Activities and Field Operations for 1998
NAEP (Gray, et a., 2000).

10.2.5.1 The 50-Minute Writing Session

The accommodated SD/L EP students sampled in the 50-minute writing session were given a
25-minute writing booklet. Therefore, the set of assessed 50-minute writing students did not contain
accommodated students. To allow for comparisons between nonaccommodated students assessed in
25-minute writing to students (all nonaccommaodated) in the 50-minute writing session, a special
poststratification procedure was used for the weighting of students assessed in the 50-minute writing
session. The poststratification adjustment factors for the 50-minute writing session were computed using
the set of accommodated students in 25-minute writing, along with the set of students assessed in the
50-minute writing session. After poststratification, the estimated nonaccommodated universe sizes for
grade 8 25-minute and 50-minute writing sessions were 3,572,375 and 3,570,306, respectively. For grade
12, the estimated nonaccommodated universe sizes for grade 12 25-minute and 50-minute writing
sessions were 3,139,073 and 3,172,348, respectively.

10.2.6 Final Student Reporting Weights
NAEP estimates of student characteristics are based on final student weights, that is, the weight

resulting after adjusting the student base weight for nonresponse, trimming, reporting sample factor, and
poststratification. The student final weight, FSTUWT, is given by

FSTUWT=STUAWT e TRIMFCTR ¢ RPT_FCTR ¢ PSFCTR

where
STUAWT = nonresponse adjusted student base weight, (as defined in Section 10.2.2),
TRIMFCTR = trimming factor (as discussed in Section 10.2.3.1),
RPT_FCTR = reporting sample factor (as defined in Section 10.2.4), and
PSFCTR = poststratification factor (as discussed Section in 10.2.5).

The student full-sample reporting weight, FSTUWT, was used to derive all estimates of population and
subpopul ation characteristics that have been presented in the various NAEP reports, including simple
estimates such as the proportion of students of a specified type who would respond in a certain way to an
item and more complex estimates such as mean scale score levels. The distributions of the final student
reporting weights are given in Table 10-8. The sampl e types contained in each reporting sample of the
assessment can be found in Table 10-1.

As indicated earlier, under some simplifying assumptions the factor 1 + V,2 indicates the
approximate relative increase in variance of estimates resulting from the variability in the weights. The
factor V,,” for each sampleis readily derivable from Table 10-8 by squaring the ratio of the standard
deviation to the mean weight. These factors, resulting from the combined effect of the variationsin
weights introduced by design and from other causes, are discussed in Section 10.2.3.
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Table10-8
Distributions of Final Sudent Weights for 1998 National Reporting Samples

Standard 25" 75"
Grade Subject n Mean Deviation Minimum Percentile Median Percentile Maximum
4  25-Minute Writing 21,266 186 119 26 102 150 220 1,195
Reading 8,217 480 308 70 269 373 631 2,707
Civics Special Trend 2,264 1,742 867 401 1,098 1,519 2,242 6,585
Civics 6,355 621 399 90 340 489 759 4,140
8  25-Minute Writing 21,463 171 104 17 102 137 207 1,075
Reading 11,674 315 203 29 175 259 388 2,493
Civics Special Trend 2,148 1,710 945 159 1,033 1,388 2,199 5,705
Civics 8,553 430 265 47 254 345 526 2,370
50-Minute Writing 6,275 569 344 61 338 457 698 3,856
12 25-Minute Writing 20,163 158 93 25 94 130 194 1,266
Reading 13,123 241 161 35 129 194 297 1,373
Civics Special Trend 2,296 1,399 790 273 870 1,153 1,693 4,809
Civics 8,010 401 242 64 236 328 501 3,060
50-Minute Writing 6,006 528 309 86 312 432 648 4,972

10.3 OTHER WEIGHTING PROCEDURESIN THE NATIONAL SAMPLES

10.3.1 Modular Weights

Asdiscussed in Section 10.2, modular weights were computed for the reading assessment to
facilitate analyses involving students from a single sampl e type. The same procedures were used to
derive modular and reporting weights up through the weight trimming step described in Section 10.2.3.1.
After trimming, weighting continued in two parallel processes. Final student reporting weights were the
result of one of these processes, and modular weights were the result of the other.

Modular weights differ from reporting weights for reading in two ways. First, they did not
contain the reporting factor described in Section 10.2.4. The second difference liesin the manner in
which the weights were poststratified. Since the number of studentsin the reading reporting samples are
nearly twice the number of studentsin each sample type (type 2 or type 3), the mean of the modular
weights is about twice the mean of reporting weights for reading.

The modular weights were poststratified as described in Section 10.2.5, except that each sample
type within each grade for reading was poststratified separately. The same initial adjustment cells were
used: 7 cells based on race/region for each sample type at grade 12, and 14 cells based on race/region and
digibility class (of modal age, not of modal age) for each sample type at grades 4 and 8. Some
adjustment factors were quite variable for the same adjustment cell across different sample types for the
same grade and session. This indicates that the individual samples by sample type may not be particularly
stable.

The modular weight is the student’ s base weight after the application of the various adjustments
described in Section 10.2, with the exception of applying a reporting factor, and the new
poststratification factor described above. The distributions of the modular weights are given in
Table 10-9. Note that except for the reading subject, modular weights are identical to reporting weights
for a particular grade/subject/sampl e type combination when that sample type is the only one included in
the reporting sample for that grade.
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Table 10-9
Distribution of Modular Weights Used in the 1998 National Assessment

Standard 25" 75"
Grade Subject n Mean Deviation Minimum Percentile Median Percentile Maximum
4 Reading/ 2" 4593 859 510 127 462 721 1,113 3,460
Reading/3 4,597 858 567 155 431 679 1,034 5,224
8 Reading/ 2" 6,848 537 344 61 338 457 698 3,856
Reading/3 6,078 604 409 43 336 514 751 5,977
12 Reading/Z* 7,048 444 317 45 224 348 594 2,303
Reading/3 7,050 453 313 53 236 373 543 2,615

" 2 refersto sample type 2 and 3 refers to sample type 3.

10.3.2 Linking Weights

Linking (NL) weights were generated so that national NAEP and state-by-state assessments
could be equated for national and state results to be reported on a common scale. Therefore, the results of
each participating jurisdiction would be meaningfully compared with those from the nation samples.
Technical details of the 1996 state assessments can be found in the Technical Report for the NAEP 1996
Sate Assessment Program in Mathematics (Allen, Jenkins, Kulick, and Zelenak, 1997) and in the
Technical Report for the NAEP 1996 State Assessment Program in Science (Allen, Swinton, Isham, and
Zelenak, 1998).

The fourth-grade reading and eighth-grade reading and writing assessments conducted in
February 1998 in the NAEP 1998 state assessment consisted of identical assessment material to that
administered in the corresponding national sample sessions. The guiding principlesin the process of
linking state and national results were similar to those used for the 1996 assessments. (Technical details
of the NAEP 1996 state assessments are given in Allen, Jenkins, Kulick, and Zelenak (1997) and Allen,
Swinton, Isham, and Zelenak (1998).) The national and state-by-state assessments were equated so that
state and national results could be reported on a common scale. The equating was achieved by using from
each assessment that part of the sample representing a common population. For the national samples, this
consisted of those fourth-grade or eighth-grade public-school students from a participating state
(including the District of Columbia) who were assessed in the national reading or (for grade 8) writing
assessment reporting samples.

Although each sample of students received appropriate weights from the weighting procedure
used for the national assessment, in an effort to increase the precision of the equating process, an
additional weighting adjustment was devel oped and applied to each subsample by grade and subject,
solely for use in equating. For each subsample, the distributions of the national sample reporting weights
for three categorical variables were adjusted to agree closely with those obtained from the weighted
aggregate sample from the state assessments in the participating states. The first two variables were
NAEP region (Northeast, Southeast, Central, and West) and race/ethnicity (White non-Hispanic, Black
non-Hispanic, Hispanic, and other). For fourth- and eighth-grade reading, the third variable was reading
skill (very good, good, other). For eighth-grade writing, the third variable was the student’ s writing skill
(“I am good at writing.”). This variable was based on awriting background item that asks how much a
student agrees with the statement “I am good at writing.” The categorical variables and control totals for
each of the assessed grades and subjects are presented in Tables 10-10 and 10-11.
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Table 10-10

First and Second Categorical Variables Used for Raking’

Raking Dimensions

Fourth Grade
Reading

Eighth Grade

Reading

Eighth Grade

Writing Control

Control Total Control Total Total
First Dimension NAEP Region
Northeast 427,412 383,213 400,534
Southeast 731,635 717,450 730,862
Central 478,480 347,368 318,990
West 975,015 960,961 971,641
Total 2,612,532 2,408,992 2,422,027
Second Dimension  Race/Ethnicity
White non-Hispanic 1,573,388 1,452,593 1,430,992
Black non-Hispanic 418,533 372,219 375,766
Hispanic 445,567 427,097 454,611
Other 175,043 157,082 160,658
Total 2,612,532 2,408,992 2,422,027

*Due to rounding, the sum of values within categorical variables may not equal the corresponding totals.

Table10-11

Third Categorical Variable Used for Raking

Grade Skill Control Totals

4 Reading Skill 1. Very Good 1,105,087
2. Good 965,306

3. Other 542,139

Total 2,612,532

8 Reading Skill 1. Very Good 596,581
2. Good 845,194

3. Other 967,216

Total 2,408,992

8 Writing Skill 1. Agree 1,206,813
(“I'amgood at writing.”) 2. Undecided 708,624

3. Other 506,590

Total 2,422,027

*Dueto rounding, the sum of skill values may not equal the corresponding totals.

The equating of each weight distribution was achieved using a procedure known as iterative
proportional fitting, or raking (described by Little & Rubin, 1987). In raking, the marginal population
totals, N;. and N.; are known (i.e., age and gender population counts); however, the interior cells of the
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cross-tabulation N; (the age by gender cells) are estimated from the sample by ; i where these are the
sum of weightsin the cells.

The raking algorithm proceeds by proportionally scaling the N, i such that the following
relations are satisfied:

and

At the completion of the fitting, adjustment factors were derived. The national sample weights for each
subgroup were multiplied by these adjustment factors to force their distribution to agree with those from
the aggregated state samples for each of these three variables in turn. This process was then repeated, and
the final set of adjusted weights was compared with the state sample weights on all three distributions,
and found to be in very close agreement. Table 10-12 shows the distribution of the adjustment factors for
each of the grades and subjects assessed.

Table10-12
Percentiles of Raking Adjustments

Grade4 Grade 8 Grade 8

Distribution Reading Reading Writing
Minimum 0.805 0.885 0.832
10th Percentile 0.816 0.901 0.851
25th Percentile 0.837 0.912 0.899
Median 0.955 1.008 0.987
75th Percentile 1121 1.026 1.076
90th Percentile 1.150 1.196 1.237
Maximum 1.640 1.523 1.570

10.3.3 School Weights

The sampling procedures used to obtain national probability samples of assessed students also
gaveriseindirectly to several national probability samples of schools (from which the students were
subsequently sampled). So that the school samples can be utilized for making national estimates about
schools, appropriate nonresponse adjusted survey weights have been devel oped.
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The school weights were computed separately by session within grade. The school weights were
adirect by-product of the student weighting process. The weight for school i in session his given by

S/Vhi = PSJVVGT_Ml o QS:HWE ° g:H_Wn o SA_VVThi ° SI-YVVThi ° S:_V\/Thi

where

PSUWGT _M; , QSCHWT,; , SCH_WT,; , SA WT,; , STYWT}, , and SF_WT,; are defined in
Section 10.2.

The school weights for the reading samples are modular weights. Each sample defined by sample
type weights up separately to the population. Different school weights are required for analyses involving
schools from both sample types. The weights in such cases can be developed by dividing the modular
weights by two.

Twelve samples of schools were weighted to be nationally representative. For each grade, the
samples include writing/civics, civics special trend, reading sample type 2, and reading sample type 3.

10.3.4 Reporting Weightswith Accommodations

Reporting weights were generated using accommodated students in the 1998 reading samples as
part of the reporting sample. The weights may be useful in the year 2002 when reporting trend from
1998. These weights will also be used in looking into issues dealing with accommodation. The procedure
began with the trimmed weights (Section 10.2.3.1), and proceeded to the application of the reporting
factors as shown in Table 10-13. The reporting factors relating to the reporting sample with
accommodated students were set to 1.0, while the reporting factors for non-SD/LEP students in the 1998
national reporting sample were 0.5. Thus nonzero weights were produced for the SD/LEP studentsin
sample type 3, while not including the SD/LEP students in sample type 2.

Table10-13
Reporting Factors for the Reporting Weights with Accommodations
for the 1998 National Reading Assessment

Non SD/LEP SD/LEP

Sample Type Students Students
2 5 —
3 5 1

Poststratification was done on the accommodated reporting weights. The resulting final
accommodated reporting weights are summarized in Table 10-14.
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Table 10-14
Distribution of Accommodated Reporting Weights
for the 1998 National Reading Assessment

Standard 25" 75"
Grade n Mean Deviation Minimum Percentile Median Percentile Maximum

4 8,205 480.80 306.97 74.22 275.84 366.67 624.37  4,662.20
8 11,561 317.77 223.43 29.09 177.33 260.62 389.67  4,887.60
12 13,087 241.76 162.09 35.34 130.09 191.88 29597  1,424.57

10.3.5 Jackknife Replicate Weights

In addition to the weights that were used to derive all estimates of population and subpopul ation
characteristics, other sets of weights, called jackknife replicate weights, were derived to facilitate the
estimation of sampling variability by the jackknife variance estimation technique. These weights and the
jackknife estimator are discussed in Section 10.5.

104 POTENTIAL FOR BIASDUE TO NONRESPONSE

Although school and student nonresponse adjustments are intended to reduce the potential for
nonparticipation to bias the assessment results, they cannot completely eliminate this potential bias with
certainty. The extent of bias remains unknown, of course, since there are no assessment data for the
nonparticipating schools and students. Recently, some studies related with this issue had been done, such
as on the effects of excluded students in reporting results (see Donoghue, 2000).

Some insight can be gained about the potential for residual nonresponse bias, however, by
examining the weighted school- and student-level distributions of characteristics known for both
participants and nonparticipants, especially for those characteristics known or thought likely to be related
to achievement on the assessment. If the distributions for the full sample of schools (or students) without
the use of nonresponse adjustments are close to those for the participants with nonresponse adjustments
applied, thereis reason to be confident that the bias from nonparticipation is small.

There are several school-level characteristics available for both participating and
nonparticipating schools. The tables below show the combined impact of nonresponse and of the
nonresponse adjustments on the distributions of schools (weighted by the estimated number of eligible
students enrolled) and students, by the type of school (public, Catholic, other nonpublic), the size of the
school as measured by the estimated number of eligible students enrolled, and the urban/rural nature of
the place where the school is located. Three size classes have been defined for each grade. The datain
the tables that follow are for the 25-minute writing assessment because it is the largest assessment at each
grade. It is assumed that other large assessments would behave similarly. More of these types of data are
available for other grades and subjects in Appendix A.

Several student-level characteristics are available for both absent and assessed students. The
tables that follow show the impact of school nonresponse and nonresponse adjustments, and student
nonresponse and nonresponse adj ustments on the distributions of eligible students for each grade. This
discussion also focuses on the writing/civics session for school-level summaries, and 25-minute writing
assessment for student-level tables. The distributions are presented by age category (at or below modal
age, and above modal age), race category (White, Black, Hispanic, and other), gender, SD, and LEP.
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Table 10-15 shows the weighted marginal distributions of students for each of the three
classification variables for each grade, using weighted eligible schools. The distributions before school
nonresponse adjustments are based on the full sample of in-scope schools for the writing/civics session—
those participating, plus those refusals for which no substitute participated. The distributions after school
nonresponse adjustments are based only on participating schools for writing/civics, with school
nonresponse adjustments applied to them.

It can be seen from Table 10-15 that even though the level of school nonparticipation is as high
as 18 percent after substitution for grade 12 (see Table 3-7) and somewhat lower for the other grades, for
the most part, the distributions for the three characteristics considered remain similar. Exceptions may be
rural schoolsin grades 4 and 12, and large grade 12 schools.

Table 10-15
Distribution of Populations of Eligible Sudents Based on Full Weighted Sample of Eligible Schools,
Before and After School Nonresponse Adjustments, 1998 National 25-Minute Writing Samples

Grade4 Grade8 Grade 12
Population Before After Before After Before After
Total Population 3,775,102 3,775,102 3,714,224 3,714,224 2,856,379 2,856,379
School Type
Catholic 6.0% 6.8% 4.9% 5.8% 5.3% 6.4%
Other Nonpublic 4.5% 3.7% 4.4% 4.3% 3.8% 2.7%
Public 89.5% 89.5% 90.6% 89.9% 90.9% 90.9%
School Size'
1 17.8% 18.1% 9.7% 11.1% 5.3% 6.1%
2 43.7% 42.5% 53.2% 52.4% 67.9% 69.3%
3 38.5% 39.5% 37.1% 36.5% 26.8% 24.6%
School Location
Large City 18.5% 17.4% 16.5% 17.2% 14.2% 14.3%
Midsize City 19.8% 19.4% 18.5% 17.4% 18.6% 17.3%
Urban Fringe/Large City 26.9% 26.6% 27.1% 27.2% 29.1% 28.7%
Urban Fringe/Midsize City  7.8% 8.0% 10.3% 10.5% 9.5% 10.4%
Large Town 1.1% 0.9% 1.7% 1.2% 1.1% 1.0%
Small Town 11.4% 11.2% 12.9% 11.7% 15.4% 13.8%
Rural 14.5% 16.5% 13.0% 14.7% 12.1% 14.6%

" Theterm “public schools’ extends to state-run, Department of Defense Education Activity (DoDEA), and Bureau of Indian Affairs
(BIA) schools.

" Distributions by school size are only comparable to 1996 assessments, since students were eligible by grade only, instead of by grade
or age before 1996. School size = number of eligible students enrolled:

1 2 3
Grade 4 149 5099 100 +
Grade 8 149 50299 300+
Grade12 | 149 50-399 400+

Table 10-16 shows the distributions of the same three classification variables, plus additional
distributions of student-level characteristics, using weighted eligible students. The distributions before
student nonresponse adj ustments are based on assessed and absent science students (with base weights
adjusted for school nonparticipation). The distributions after student nonresponse adj ustments are based
on assessed science students only, with the student nonresponse adjustments al so applied to them.
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Table 10-16
Distribution of Populations of Eligible Sudents Before and After Student Nonresponse Adjustments,
1998 National 25-Minute Writing Samples

Grade4 Grade 8 Grade 12

Population Before After Before After Before After
Total Population 3,447,973 3,447,973 3,477,714 3,477,714 2,598,835 2,598,835
School Type

Catholic 7.1% 7.1% 6.0% 6.3% 6.9% 7.8%

Other Nonpublic 3.8% 3.9% 4.2% 4.3% 2.7% 3.2%

Public” 89.1% 89.0% 89.9% 89.4% 90.4% 88.9%
School Location

Large City 16.6% 16.5% 17.2% 17.0% 14.4% 14.0%

Midsize City 19.6% 19.6% 17.0% 16.9% 17.6% 17.3%

Urban Fringe/Large City 27.2% 27.3% 28.1% 28.2% 28.9% 28.9%

Urban Fringe/Midsize 7.7% 7.6% 10.6% 10.7% 10.3% 10.4%

City 0.8% 0.8% 1.1% 1.2% 0.8% 0.8%

Large Town 11.5% 11.5% 11.4% 11.5% 13.7% 14.0%

Small Town 16.7% 16.7% 14.5% 14.5% 14.3% 14.6%

Rural
Age Category

At Modal Ageor Younger  63.8% 63.7% 59.2% 59.4% 63.6% 64.0%

Older than Modal Age 36.2% 36.3% 40.8% 40.6% 36.4% 36.0%
Race/Ethnicity Category

White 59.2% 59.0% 62.4% 62.3% 68.6% 68.1%

Black 14.1% 13.8% 13.2% 13.0% 11.5% 11.1%

Hispanic 19.7% 20.0% 18.1% 18.3% 13.2% 13.4%

Other 7.0% 7.2% 6.3% 6.4% 6.7% 7.4%
Gender’

Male 50.5% 50.6% 50.2% 50.0% 48.4% 47.9%

Female 49.4% 49.3% 49.8% 50.0% 51.6% 52.0%
SD

Yes 7.5% 7.5% 7.3% 7.0% 4.7% 4.3%

No 92.5% 92.5% 92.7% 93.0% 95.3% 95.7%
LEP

Yes 3.5% 3.5% 2.7% 2.7% 2.1% 2.2%

No 96.5% 96.5% 97.3% 97.3% 97.9% 97.8%
SD, LEP

SD yes, LEP yes 0.2% 0.2% 0.3% 0.3% 0.1% 0.1%

SD yes, LEP no 7.4% 7.4% 7.0% 6.8% 4.6% 4.2%

SD no, LEP yes 3.3% 3.3% 2.4% 2.5% 2.0% 2.1%

SD no, LEP no 89.2% 89.2% 90.3% 90.5% 93.3% 93.6%

" The term “public schools” extends to state-run, Department of Defense Education Activity (DoDEA), and Bureau of Indian Affairs

(BIA) schools.

T Gender is unknown for a small percentage of students.

The rates of student nonparticipation for 25-minute writing were 5.1 percent for grade 4, 7.8
percent for grade 8, and 20.3 percent for grade 12 (see Table 3-16). Table 10-17 shows that for the
distributions of type of school attended and place where the school islocated, the combined effect of

student nonparticipation and the subsequent nonresponse adjustments have resulted in very little change

in distribution.

When comparing the distributions in Table 10-16 before and after student nonresponse
adjustments, distributions by age category and race/ethnicity are expected to be similar because these

variables were used to determine student nonresponse adjustment classes. However, the distributions by
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gender, SD, and LEP are also similar. To the extent that nonrespondents would perform like respondents
with the same characteristics (defined by the classification variables in the tables), the biasin the
assessment datais small.

Table 10-17 shows the weighted distributions of eligible students in participating schools, using
the base weights of assessed and absent students unadjusted for school-level nonresponse. Tables 10-16
and 10-17 show that both school and student-level nonresponse and nonresponse adjustments have little
effect on the distributions of eligible students by age, race/ethnicity, gender, SD and LEP. All of the
distributions in the tables are similar.

Table10-17
Distribution of Populations of Eligible Sudents Before School and Sudent Nonresponse Adjustments,
1998 National 25-Minute Writing Samples

Population Grade4 Grade8 Grade 12
Total Population 3,065,866 2,946,000 2,598,835
Age Category

At Modal Age or Younger 64.2% 59.3% 63.6%

Older than Modal Age 35.8% 40.7% 36.4%
Race/Ethnicity Category

White 58.4% 61.9% 68.6%

Black 14.5% 13.6% 11.5%

Hispanic 20.0% 18.3% 13.2%

Other 7.0% 6.2% 6.7%
Gender”

Male 50.5% 50.2% 48.4%

Female 49.4% 49.8% 51.6%
SD

Yes 7.6% 7.2% 4.7%

No 92.4% 92.8% 95.3%
LEP

Yes 3.6% 2.8% 2.1%

No 96.4% 97.2% 97.9%
SD, LEP

SD yes, LEP yes 0.2% 0.3% 0.1%

SD yes, LEP no 7.4% 7.0% 4.6%

SD no, LEP yes 3.4% 2.5% 2.0%

SD no, LEP no 89.0% 90.2% 93.3%

" Gender is unknown for asmall percentage of students.

Further information about potential nonresponse bias can be gained by studying the absent
students. NAEP scale score estimates are biased to the extent that assessed and absent students within the
same weighting class differ in their distribution of scale scores. It seems likely that the assumption that
absent students are similar in proficiency to assessed students is reasonable for some absent students
namely, those whose absence can be characterized as random. Conversely, it seemslikely that students
with longer and more consistent patterns of absenteeism, such as truants, dropouts, near dropouts, and the
chronically ill, are unlikely to be as proficient as their assessed counterparts.

In the 1998 assessments, schools were asked to classify each absent student into one of nine
categories. The results of this classification for the 25-minute writing assessment are shown in
Table 10-18. The discussion focuses on the 25-minute writing assessment because it is the largest. It is
assumed that the other large assessments would behave similarly.
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Table 10-18 shows that, as anticipated, the majority of absence from the assessment was the
result of an absence from school of atemporary and unscheduled nature. The table shows that absence
among twelfth-graders occurs at about four times the rate of absence among fourth-graders, and two-and-
a-half times that of eighth-graders. The proportion of absence classified as temporary differs somewhat
by grade, but is of the same magnitude for grades 8 and 12. These two facts taken together suggest
strongly that a substantial proportion of the temporary absences among twelfth-grade studentsis not a
result of illness, because such absences are occurring at almost three times the rate that they do among
fourth- or eighth-grade students. Whereas it might be reasonable to regard temporary absence due to
illness as independent of proficiency, for other temporary absences, this appears less tenable. The datain
the table give support to the contention that, at grade 4, student absences are unlikely to introduce any
significant biasinto NAEP estimates. The absentee rate islow; most absences are temporary, and athird
of the remaining absences are aresult of parental refusal.

Table 10-18
Weighted Distribution of Absent Sudents by Nature of Absenteeism
for All Grades, 1998 National 25-Minute Writing Samples

Nature of Absenteeism Grade4 Grade8 Grade 12
Temporary Absence’ 87.4% 74.6% 71.9%
Long-Term Absence' 0.7% 2.2% 0.8%
Chronic Truant 0.2% 1.6% 0.8%
Suspended or Expelled 0.9% 3.7% 0.4%
In School, Did Not Attend 0.2% 1.4% 8.3%
Disruptive Behavior 0.0% 0.4% 0.1%
Parent Refusal 4.1% 9.5% 3.5%
Student Refusal 0.2% 1.7% 7.4%
Missing 0.0% 0.0% 0.0%
Other, Specify on Cover 0.8% 2.0% 5.5%
Incorrectly Coded as Excluded 5.3% 2.8% 1.2%
Total Absentee Sample 1,067 1,731 5,017
Total Sample Size of Invited Students 20,883 22,317 24,522
Overall Absentee Rate, Unweighted 5.1% 7.8% 20.5%

" Absent |ess than two weeks due to illness, disabhility, or excused absence.
T Absent more than two weeks due to illness or disabi lity.

At grades 8 and 12, however, a significant component of absenteeism is not temporary or due to
parental refusal. Chronic truants, those suspended, and those in school but did not attend, and disruptive
behavior constitute the obvious candidates for potential bias. These groups comprise 7.1 percent of
absent students at grade 8 (or 0.6% of the total sample) and 9.6 percent of absent students at grade 12 (or
2.0% of the total sample). Thus their potential for introducing significant bias under the current
procedures is minor.
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105 VARIANCE ESTIMATION

A major source of uncertainty in the estimation of the value in the population of a variable of
interest exists because information about the variable is obtained on only a sample from the population.
To reflect thisfact, it isimportant to attach to any statistic (e.g., a mean) an estimate of the sampling
variability to be expected for that statistic. Estimates of sampling variability provide information about
how much the value of a given statistic would be likely to change if the statistic had been based on
another, equivalent, sample of individuals drawn in exactly the same manner as the achieved sample.

Another important source of variability isthat due to imprecision in the measurement of
individual scale scores. For the 1998 assessment, scale scoresin all subject areas were summarized
through item response theory (IRT) models, but not in the way that these models are used in standard
applications where each person responds to enough items to allow for precise estimation of that person’s
scale score. In NAEP, each individual responds to relatively few items so that individual scale score
values are not well determined. Consequently, the variance of any statistic based on scale score values
has a component due to the imprecision in the measurement of the scale scores of the sampled
individuals in addition to a component measuring sampling variability. The estimation of the component
of variability due to measurement imprecision and its effect on the total variability of statistics based on
scale score values are discussed in Chapter 12.

The estimation of the sampling variability of any statistic must take into account the sample
design. In particular, because of the effects of cluster selection (students within schools, schools within
PSUs) and because of effects of nonresponse and poststratification adjustments, observations made on
different students cannot be assumed to be independent of each other (and are, in fact, generally
positively correlated). Furthermore, to account for the differential probabilities of selection (and the
various adjustments), each student has an associated sampling weight, which should be used in the
computation of any statistic and isitself subject to sampling variability. Ignoring the special
characteristics of the sample design and treating the data as if the observations were independent and
identically distributed, will generally produce underestimates of the true sampling variability, due to the
clustering and unequal sampling weights.

10.5.1 Procedureto Estimate Sampling Variability

The proper estimation of the sampling variability of a statistic based on the NAEP datais
complicated and requires techniques beyond those commonly available in standard statistical packages.
Fortunately, the jackknife procedure (see, e.g., Kish & Frankel, 1974; Rust, 1985; Wolter, 1985) provides
good quality estimates of the sampling variability of most statistics, at the expense of increased
computation, and can be used in concert with standard statistical packages to obtain a proper estimate of
sampling variability.

The jackknife procedure used by NAEP has a number of properties that make it particularly
suited for the analysis of NAEP data. When properly applied, ajackknife estimate of the variability of a
linear estimator (such as atotal) will be the same as the standard textbook variance estimate specified for
the sample design (if the first-stage units were sampled with replacement and approximately so
otherwise). Additionally, if the finite sampling corrections for the first-stage units can be ignored, the
jackknife produces asymptotically consistent variance estimates for statistics such asratios, regression
estimates, or weighted means and for any other nonlinear statistic that can be expressed as a smooth
function of estimated totals of one or more variables (Krewski & Rao, 1981).
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Through the creation of student replicate weights (defined below), the jackknife procedure
allows the measurement of variability attributable to the use of poststratification and other weight
adjustment factors that are dependent on the observed sample data. Once these replicate weights are
derived, it is a straightforward matter to obtain the jackknife variance estimate of any statistic.

The jackknife procedure in this application is based on the devel opment of a set of jackknife
replicate weights for each assessed student (or school depending on the file involved). The replicate
weights are developed in such away that, when utilized as described below, approximately unbiased
estimates of the sampling variance of an estimate result, with an adequate number of degrees of freedom
to be useful for purposes of making inferences about the parameter of interest.

The estimated sampling variance of a parameter estimator t is the sum of M squared differences
(where M isthe number of replicate weights devel oped):

~ M 2
Var(t) = 3.(t —t)
i=1

where t; denotes the estimator of the parameter of interest, obtained using the i™ set of replicate weights,
SRWH;, in place of the original sample of full sample estimates FSTUWT.

There were 62 replicate weights devel oped using the procedures outlined below. Full details of
the generation of replicate weights for al samples are given in Sampling Activities and Field Operations
for 1998 NAEP (Gray, et al., 2000).

Of the 62 replicate weights formed for each record from a national assessment sample, 36 act to
reflect the amount of sampling variance contributed by the noncertainty strata of PSUs, with the
remaining 26 replicate weights reflecting the variance contribution of the certainty PSU samples.

The derivation of the 36 replicate weights reflecting the variance of the noncertainty PSUs
involvesfirst defining pairs of PSUs in a manner that models the design as one in which two PSUs are
drawn with replacement per stratum. This definition of pairsis undertaken in a manner closely reflective
of the actual design, in that PSUs are pairs that are drawn from strata within the same subuniverse, and
with similar stratum characteristics. The same definition of pairs was used for each of the age/grade
classesin the national assessment, since al were drawn from the same sample of noncertainty PSUs. The
72 noncertainty PSUs, drawn one from each of 72 strata, were formed into 36 pairs of PSUs, where the
pairs were composed of PSUs from adjacent strata within each subuniverse (thus the strata were
relatively similar on socioeconomic characteristics such as proportion minority population, population
change since 1980, per capitaincome, civilian unemployment rate, educational attainment, and
unemployment rate). Whereas the actual sample design was to select one PSU with probability
proportional to size from each of 72 strata, for variance estimation purposes the design is regarded as
calling for the selection of two PSUs with probability proportional to size with replacement from each of
36 strata. This procedure likely gives asmall positive bias to estimates of sampling error.

The student replicate weight for the i pair of noncertainty PSUs, for the 36 pairs corresponding
to values of i from 1 to 36, is computed as follows:

1. Let W; be the base weight of a student, as described in Section 10.2, which accounts for the
various components of the selection probability for the student.

2. At random, one PSU in each pair is denoted as PSU number 1, while the other is denoted as
PSU number 2. Thei" replicate base weight W is given by:
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0 if the student belongs to PSU number 1 of pair i
W, = 2x W, if the student belongs to PSU number 2 of pair i

Ws if the student is from neither PSU in pair i

3. Thei" student replicate weight SRWT; is obtained by applying the various school and
student nonresponse adjustments, the weight trimming, and the poststratification to the i""
set of replicate base weights, using proceduresidentical to those used to obtain the final
student weights WT from the set of base weights Wk.

In brief, the procedure for deriving the sets of Wg; values from the W; values reflects the
sampling of PSUs, schooals, sessions, and students. By repeating the various weight adjustment
procedures in each set of replicate base weights, the impact of these procedures on the sampling variance

of the estimator, t, is appropriately reflected in the variance estimator Var (t) defined above.

The procedure for obtaining the 26 sets of replicate weights to estimate the sampling variance
from the certainty PSUs is analogous, but somewhat more complex. The first stage of sampling in this
caseis at the school level, and the derivation of replicate weights must reflect appropriately the sampling
of schools within certainty PSUs. Since each of the three grade classes in the national assessment
involved different samples of schools, the procedure for forming replicate base weights was
individualized to each of these sample components. In common across these three samples were the 22
certainty PSUs used, and the fact that 26 replicate weights were formed in each case.

For each grade, within the 22 certainty PSUs, a sample of schools was drawn systematically
within each. Using the schools listed in order of sample selection within each of eight “combinations” of
NAEP region and type of school (public, nonpublic), successive schools were grouped (i.e., PAIR). The
number of variance groups within a combination depended on the number of schoolsin the combination,
or indirectly assigned in proportion to the relative size of the combination. Thus, generally speaking, the
largest combination were assigned the largest numbers of replicates (or pairs). When splitting the
combinations, the schools were split into groups of (as close as possible) equal size, based on the
ordering at the time of sample selection. One group was assigned to each replicate. Within each group in
each combination, schools were alternately numbered 1 or 2 starting randomly. When, however, there
were exactly three schools sampled in the variance group, the schools were randomly numbered 1, 2, or
3. The method of forming replicate base weightsin variance groups (i.e., PAIR) where there were not
exactly three schools was the same as for the noncertainty strata. If a variance group (PAIR) contained
three schools, students in these schools had their weights perturbed for two sets of replicates, say i; and
i, asfollows:

-

0 if the student in school number 1 of aPSU in set i
W, = 15XW, if the student in school number 2 or 3of aPSU in seti
W, if the student does not belong to aPSU in set i

15XW, if the student in school number 1 or 2 of aPSU in set i

W, =+ 0 if the student in school number 3 of aPSU in set i

W, if the student does not belong to aPSU in set i

L B
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The actual pattern of replicate base weight assignment used for each of the samplesisgivenin
Westat’' s Sampling Activities and Field Operations for 1998 NAEP (Gray, et al., 2000).

The nonresponse, trimming, and poststratification adjustments were applied to each set of
replicate base weights to derive the final replicate weights in each case, exactly asin the noncertainty
PSUs. In fact, these procedures were applied to the full set of weights from all parts of the given sample
together, just as for the full sample weights. That is, for example, poststratification factors were derived
from the full set of datafor each replicate, not separately for certainty and noncertainty PSUs.

This estimation technique was used by NAEP to estimate all sampling errors presented in the
various reports. A further discussion of the variance estimation procedure used by NAEP, including a
discussion of aternative jackknife estimators that were also considered, appears in Johnson (1989).

As stated above, a separate estimate of the contribution to variance due to the imprecision in the
measure of individual proficiencies is made and added to the jackknife estimate of variance. That
variance component could have been approximately reflected in the jackknife variance estimates simply
by separately applying the IRT computations to each jackknife replicate. Because of the heavier IRT
computational load, this was not done. Less work was involved by the simple procedure of making
separate estimates of this component to be added to the jackknife variance estimates. Also, a separate
measure of this component of variance is then available, which would not be so if it were reflected in the
jackknife variance estimate.

10.5.2 Approximating the Sampling Variance Using Design Effects

In practical terms, the major expenditure of resources in the computation of ajackknife variance
estimate occurs in the preparation of estimates for each of the pseudo-replicates. In the 1998 assessment,
thisimplies that the statistic of interest has to be recomputed up to 63 times, once for the overall estimate
t, and once for each of the up to 62 pseudo-replicatest;. Because thisis a considerable increase in the
amount of computation required, relative to a conventional variance estimate, it is of interest to see how
much the jackknife variance estimates differ from their less computationally intensive, simple random
sampling based, anal ogues.

The comparison of the conventional and the jackknife methods of variance estimation will bein
terms of a statistic called the design effect, which was developed by Kish (1965) and extended by Kish
and Frankel (1974). The design effect for a statistic isthe ratio of the actual variance of the statistic
(taking the sample design into account) over the conventional variance estimate based on asimple
random sample with the same number of elements. The design effect is the inflation factor to be applied
to the conventional variance estimate in order to adjust error estimates based on simple random sampling
assumptions to account approximately for the effect of the sample design. The value of the design effect
depends on the type of statistic computed and the variables considered in a particular analysis aswell as
the combined clustering, stratification, and weighting effects occurring among sampled elements. While
stratification drives down the sampling variance, the effects of clustering and weighting that drive
variances up are generally sufficient to produce variance estimates that are larger than variances based on
simple random sampling assumptions. Consequently, the design effects will be greater than one. In
NAEP, the underestimates are the result of ignoring the effects of clustering and unequal probabilities of
selection in the variance calculations.

Since most of the analyses conducted by NAEP are based on the results of scaling models that
summarize performance of students across alearning area, design effects are expected for analyses based
on these scale scores. For reasons given in Chapter 12, NAEP provides each individual with a set of
“plausible values,” each of which is arandom draw from the distribution of the potential scale scores for
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that individual. Since NAEP' s current interest is on the effect of the sampling design on estimation and
inference, attention is restricted to a single measure of an individual’s scale score, the first plausible value
of the individual’s scale score.

A key statistic of interest is the estimated mean scale score of a subgroup of the population. An
estimate of the subgroup mean scale score is the weighted mean of the first plausible values of scale

score of the sampled individuals who belong to the subpopulation of interest. Let Y be the wei ghted
mean of the plausible values of the sampled members of the subpopulation. The conventional estimate of

the variance of Y is
>rw(y -Y)

Var,, (Y) = NETY :

where N is the total number of sampled individualsin the subpopulation for which plausible values are
available, w; is the weight of thei™ individual, y; is a plausible value from the distribution of potential
proficiencies for that individual, and W. is the sum of the weights across the N individuals.

The design effect for the subgroup mean scale score estimate is

deff(Y) = Var y(Y) / Varco(Y)

where Var JK(V ) isthe jackknife variance of Y (As has been pointed out previously, Var JK(V ) as

computed does not measure the variability of Y dueto imprecision in the measurement of the
proficiencies of the sampled individuals. The estimation of this very important source of variability is

discussed in Chapter 12.) Of the factors that determine deff( Y ), the effects of stratification are usually
less than one, which means the efficiency of a stratified sampling is better than a simple random
sampling; wheresas the clustering effects are always larger than one. The clustering effects can be
approximated by

1+(M-Dp

where m isthe average cluster sizeand © istheintracluster correlation (Cochran, 1977, p. 209). Therefore,
the large cluster size or large intercluster correlation will inflate the clustering effects.

Values of the design effects for subgroup mean proficiencies are displayed, by grade, in Tables
10-19 through 10-21, for the 1998 national assessments of reading, writing, and civics, respectively.
Design effects are shown for the population as awhole (Total) aswell as for avariety of demographic
subgroups:. gender; race/ethnicity (White, Black, Hispanic, Asian American, other); type of location
(central city, urban fringe/large town, rural/small town); parental education (did not graduate high school,
graduated high school, post-high school, graduated college, unknown); and type of school (public,
nonpublic). These particular demographic variables were selected because (1) they are major variablesin
NAEP reports and (2) they reflect different types of divisions of the population that might have different
levels of sampling variability.

The tables show that the design effects are predominantly larger than 1, indicating that standard
variance estimation formulas will be generally too small, usually markedly so. Although the design
effects appear somewhat different for certain subgroups of the population, they are, perhaps, similar
enough (at least within a subject and grade) to select an overall composite value that is adequate for most
purposes. In choosing a composite design effect, some consideration must be made about the relative
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consequences of overestimating the variance as opposed to underestimating the variance. For example, if
an overestimate of the variance is viewed as severe an error as an underestimate, the composite design
effect should be near to the center of the distributions of the design effects. Possible composites of this
type are the mean and median design effects across the combined distribution of all design effects. Larger
design effects should be used if it isfelt that it is a graver error to underestimate the variability of a
statistic than to overestimate it. For example, Johnson and King (1987) examine estimation of variances
using design effects (among other techniques) under the assumption that the consequences of an
underestimate are three times as severe as those of an overestimate of the same magnitude. Adopting a
loss function that is aweighted sum of absolute values of the deviations of predicted from actual with
underestimates receiving three times the weight of overestimates, produces the upper quartile of the
design effects as the composite value. This assumes that the distribution of design effectsis roughly
independent of the jackknife estimates of variance, so that the size of a design effect does not depend on
the size of the variance.

To compare Table 10-21 with Tables 10-19 and 10-20, the design effects for mean civics
proficiencies are smaller than those of reading and writing. The reading reporting samples consist of
non-SD/LEP students in sample types 2 and 3, and SD/LEP students in sample types 2. The intracluster
correlation islarger for reading reporting samples that contain large groups of non-SD/L EP students.
Therefore, the clustering effects for the reading reporting samples become larger than those of civics,
which only used studentsin sample type 3.

Table 10-19
Design Effects by Demographic Subgroup and Grade
for Mean Reading Scale Scores*

Grade 4 Grade8 Gradel2

Total 3.15 5.30 3.98
Male 2.95 3.69 3.86
Female 1.38 3.14 2.09
White 2.55 4,55 2.96
Black 231 2.55 3.62
Hispanic 3.01 7.23 3.08
Asian American 1.35 7.62 453
Other race/ethnicity 1.50 2.30 157
Urban 6.12 7.81 8.11
Suburban 4.72 6.52 3.98
Rural 2.24 4.80 3.70
PARED < HS 1.00 2.22 1.74
PARED = HS 141 2.96 1.69
PARED > HS 0.92 247 1.77
PARED = College 2.68 2.72 2.15
PARED = Unknown 1.40 2.17 151
Public school 2.92 4.64 4.09
Nonpublic school 6.37 6.59 3.68

" Desi gn effects are based on the conventional and jackknife variances of
subgroup means of the first plausible values of scale score.
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Table 10-20
Design Effects by Demographic Subgroup and Grade for Mean Writing Scale Scores*

Grade4 Grade8 Grade 12

Tota 5.42 6.42 6.60
Mae 3.48 511 414
Female 311 3.26 3.99
White 3.95 5.57 4,90
Black 1.88 2.53 5.01
Hispanic 5.76 5.45 3.02
Asian American 3.06 9.58 6.89
Other race/ethnicity 2.04 1.66 2.06
Urban 6.90 10.40 10.92
Suburban 5.95 12.95 8.88
Rural 6.48 4.74 2.42
PARED <HS 6.07 3.45 1.87
PARED = HS 1.65 1.40 171
PARED > HS 2.12 251 2.62
PARED = College 4.21 5.12 3.70
PARED = Unknown 1.45 1.14 1.38
Public school 5.80 571 7.09
Nonpublic school 4.59 5.33 5.60

" Desi gn effects are based on the conventional and jackknife variances of
subgroup means of the first plausible values of scale score.

Table10-21
Design Effects by Demographic Subgroup and Grade for Mean Civics Scale Scores*

Grade 4 Grade8 Gradel?

Total 2.34 3.23 3.70
Male 1.82 257 2.83
Female 1.48 1.95 2.36
White 224 3.25 3.39
Black 0.82 1.33 2.95
Hispanic 2.79 1.42 1.54
Asian American 0.94 8.44 6.41
Other race/ethnicity 141 1.02 1.78
Urban 2.15 3.67 4.52
Suburban 2.65 3.75 3.74
Rural 4.32 3.88 3.15
PARED < HS 1.35 3.66 1.19
PARED = HS 1.94 1.75 0.97
PARED > HS 1.34 184 2.07
PARED = College 1.83 2.16 25

PARED = Unknown 1.67 1.67 153
Public school 213 2.84 3.85
Nonpublic school 4.05 12.31 271

" Desi gn effects are based on the conventional and jackknife variances of
subgroup means of the first plausible values of scale score.
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Table 10-22 gives the composite values of mean, median, and upper quartile of the distribution of
design effects for mean scale score by grade for the reading, writing, and civics assessments, and across
those assessments.

Table 10-22
Within-Grade Mean, Median, and Upper Quartile of the
Distribution of Design Effects for 1998 National Assessments
by Subject Area and Across Subject Areas

Statistic Grade4 Grade8 Gradel?
Distribution Across
Demogr aphic Subgroups
Mean Reading Proficiencies
Upper Quartile 3.00 6.22 3.95
Mean 2.67 4.40 3.23
Median 243 412 3.35
Mean Writing Proficiencies
Upper Quartile 5.79 5.68 6.35
Mean 411 5.13 4.60
Median 4.08 5.12 4.07
Mean Civics Proficiencies
Upper Quartile 2.32 3.67 3.62
Mean 2.07 3.37 2.84
Median 1.89 271 277
Distribution Across
Subject Areasand
Demographic Subgroups
Across Subject Areas
Upper Quartile 4.03 5.42 4.07
Mean 2.95 4.30 3.56
Median 2.33 3.56 3.12

" Des gn effects are based on the conventional and jackknife variances of subgroup means of the
first plausible values of scale score.

The Var (Y )as defined above is an estimate of S?/N where S?represents the unit variance for a
simple random sample for the population of students from which the sample isaso drawn. Thisisan
appropriate estimate of the increase in variance over simple random sampling from that population due to
the effects of weighting. However, the computer packages used for estimating the variance may not
reflect the weights in estimating the unit variance, as given above, but instead may provide an estimate of
aunit variance of the form
1 = —\2
——— > (yv)"

N(N-1) =1

In this case, the unweighted estimate of unit variance would be appropriate for the denominator
of adesign effect measure of the increase in variance over the unit variance as estimated by the computer
package. If thereis no correlation between the wi and yi, there would be little difference between the
two.
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Chapter 11

STATE WEIGHTING PROCEDURES AND VARIANCE ESTIMATION*

Jiahe Qian, Bruce A. Kaplan, and Eugene G. Johnson
Educational Testing Service

Ibrahim S Yansaneh and Keith F. Rust
Westat

111 OVERVIEW

The 1998 state assessment program included samples of fourth- and eighth-grade studentsin
public and nonpublic schools. The samples of students were selected using a complex multistage design
involving the sampling of students from participating schools within each state. See Chapter 4 for a
detailed description of the state sample design. Tables providing weighted counts of assessed and
excluded students appear in this chapter. Supplemental datais provided in Appendix B tables.

The weighting process involved the development of survey weights for students, using data from
a periodic assessment of students for each participating school in each of the states, territories, and
military jurisdictions of the U.S. Following the collection of assessment and background data from and
about assessed and excluded students, the processes of deriving sampling weights and associated sets of
replicate weights were carried out. The sampling weights are needed to make valid inferences from the
student samples to the respective populations from which they were drawn. Replicate weights are used in
the estimation of sampling variance, through a procedure known as jackknife repeated replication.

Weights were devel oped for students sampled at grades 4 and 8 for the state assessment in
reading and at grade 8 for the state assessment in writing. Each student was assigned a weight to be used
for making inferences about each state’ s students. This weight is known as the full-sample or overall
sample weight. The full-sample weight contains five components. First, a base weight is established that
isthe inverse of the overall probability of selecting the sampled student. The base weight incorporates
the probability of selecting a school and the student within a school. This weight is then adjusted for two
sources of nonparticipation—school level and student level. These weighting adjustments seek to reduce
the potentia for bias from such nonparticipation by increasing the weights of students from schools
similar to those schools not participating, and by increasing the weights of students similar to those
students from within participating schools who did not attend the assessment session (or makeup session)
as scheduled. Furthermore, the weights reflect the trimming of extremely large weights at each stage in
the weighting process. For more detail on the implementation of these weighting steps, see Sections 11.2
and 11.3.

Section 11.4 addresses the effectiveness of the adjustments made to the weights using the
procedures described in Section 11.3, examining characteristics of nonresponding schools and students,
and investigating the extent to which nonrespondents differ from respondents in ways not accounted for

! |brahim Y ansaneh and Keith F. Rust were responsible for the design and implementation of the weighting process for the 1998
NAEP state assessments. Jiahe Qian, with the assistance of Bruce Kaplan and in consultation with Eugene G. Johnson, was
responsible for the planning, specification, and coordination of the state weighting at ETS. The statistical programming for this
chapter was overseen by Bruce Kaplan and provided by Phillip Leung, Michagl Narcowich, and Y oun-Hee Lim.
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in the weight adjustment procedures. Section 11.5 considers the distributions of the final student weights
in each jurisdiction, and whether there were outliers that called for further adjustment.

In addition to the full-sample weights, a set of replicate weights was provided for each student.
These replicate weights are used in calculating the sampling errors of estimates obtained from the data,
using the jackknife repeated replication method. Full details of the method of using these replicate
weights to estimate sampling errors are contained in the Technical Report of the NAEP 1994 Trial State
Assessment Program in Reading (Mazzeo, Allen, & Kline, 1995) and in earlier NAEP state technical
reports. Section 11.6 of this report describes how the sets of replicate weights were generated for the
1998 state assessment data. The methods of deriving these weights were aimed at reflecting the features
of the sample design appropriately in each jurisdiction, so that when the jackknife variance estimation
procedure is implemented, approximately unbiased estimates of sampling variance are obtained.

Asdetailed in Chapter 5, two different sets of administration rulesindicated by the sample type
field were used in the 1998 state assessment program for reading. ETS raked the student weights for each
subset to force agreement with the total s estimated using both subsets combined. This raking processis
detailed in Section 11.7. The process of trimming extremely large raked student weightsis also
described.

11.2 CALCULATION OF BASE WEIGHTS
11.2.1 Calculation of School Base Weights

Base weights were assigned to schools separately by grade and subject. The base weight assigned
to asschool was calculated as the reciprocal of the overall probability of selection of that school. For the
grade 8 samples, the school base weight depended on the assessment subject, because some schools were
so small that students were tested in only one subject. For “new” schools selected using the supplemental
new school sampling procedures (see Chapter 4), the school base weight reflected the combined
probability of selection of the district, and school within district.

Thus the base weight for school i was calculated as

1

_ for originally sampled schools; and
Min{EHIT, 3

W =

1
DISTPROB x TCPNEW

for new schools

where EHIT denotes the expected number of hits during sample selection; DISTPROB denotes the
selection probability assigned to each sampled school district for updating purposes;, and TCPNEW
denotes the school probability of selection of new and newly €ligible schools.

In each jurisdiction, all schools included in the sample with certainty were assigned school base
weights of unity. Schools sampled with certainty were sometimes selected more than once in the
systematic sampling process. For example, a school that was selected twice was allocated twice the usual
number of students for the assessments, or two sessions; a school that was selected three times was
alocated three times the usual number of students for the assessments, or three sessions. All schools at
grade 8 with less than 20 students were assigned one subject (see Chapter 4). For these schools, the base
weight included afactor of 2. Additional details about the weighting process are given in the sections
below.
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11.2.2 Weighting New Schools

New public schools were identified and sampled through a two-stage sampling process, involving
the selection of districts, and then of new schools within selected districts. This processis described in
Chapter 4. There were two distinct processes used depending upon the size of the district.

Within each jurisdiction, public school districts were partitioned into “small” districts—those
having at most three schools on the aggregate frame and no more than one fourth-, one eighth-, and one
twelfth-grade school. The remainder of the districts were denoted as “large” districts. For the larger
districts (i.e., those having multiple schoolsin at least one of grades 4, 8, and 12), a sample of districts
was selected in each jurisdiction. Districts in the sample were asked to identify schools having grade 4 or
grade 8 that were not included on the school frame. A sample of these newly identified schools was then
selected. The base weight for these schools reflected the probability of two factors: (i) that the district
was selected for this updating process; and (ii) that the school was included in the NAEP sample, having
been identified as new by the district. If the school was in grade 8 but was only large enough to assess
one subject, the base weight included a factor of 2, as described in Section 11.2.1. There were no schools
identified in small districts (see Tables 4-8 and 4-9).

11.2.3 Trimming School Base Weightsfor New Schools

The base weights for new schools were evaluated for possible trimming. The process involved
computing a hypothetical school base weight for the new schools as though they had been selected as
part of the original sample. The hypothetical base weight was then compared to the actual base weight.
Those schools with actual base weights greater than three times the hypothetical base weights had their
base weights trimmed to three times their hypothetical base weights.

The trimming factor was computed as

L for new schools with RSCHBWT > 3; and
- RSCHBWT
=
1 for other new schools and for non-new schools;

where RSCHBWT denotes the ratio of the school base weight to the hypothetical base weight.

The trimmed school base weight, denoted by wi" , was then defined as the product of the school
base weight and the trimming factor. That is,

Wi = wEn

Two schools had their weights trimmed as aresult of this process. One of these schoolsisin a
state that dropped out of the assessment. The other school has a trimming factor very close to 1, and
therefore is not expected to have a significant impact on the weights.

11.2.4 Treatment of Substitute Schools

A school that replaced arefusing schooal (i.e., a substitute school) was assigned the weight of the
refusing school. Thus the substitute school was treated as though it were the original school that it
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replaced, for purposes of obtaining school base weights. The base weight was adjusted by afactor of 2
for grade 8 schools that were only large enough to assess one subject.

11.2.5 Calculation of Student Base Weights

Within the sampled schools, eligible students were sampled for assessment using the procedures
described in Chapter 4. The within-school probability of selection for each subject therefore depended on
the number of grade-eligible studentsin the school and the number of students selected for the
assessment (usually 30). The within-school weights for sampled schools were adjusted to account for the
fact that some schools operate twelve months per year and have only a proportion of their total
enrollment attending school at any one time. For substitute schools, the within-school weights were
further adjusted to compensate for differences in the grade enrollments of the substitute and the
originally sampled (replaced) schools. In the case of eighth-grade schools, the within-school weight also
incorporated afactor to account for (i) cases in which small schools were assigned at random to do one
subject (reading or writing); and (ii) the random assignment of students to subjects. Thus, in general, the
within-school student weight for the j* student in school i was equal to:

W}’jV'th'”: _I Ki XKai

ni
where
N; = the number of grade-eligible students enrolled in the school, as reported
at the time of student sampling; and
n; = the number of students selected for the given subject.

The factors Ky and Ky in the formulafor the within-school student weight generally apply to
only afew schoolsin each jurisdiction. The factor Ky; adjusts the count of grade-eligible studentsin a
substitute school to be consistent with the corresponding count of the originally sampled (replaced)
school. Specifically, for substitute schools,

E:
with
E; = the grade enrollment of the originally sampled (replaced) school; and
ES = the grade enrollment of the substitute school.

For nonsubstitute schools, K;; = 1.
The factor Ky, which was applied to schools determined to be year-round schoals, is defined as:

1
1- Port

Ko =

where py IS the percentage of students enrolled in the school who were not scheduled to attend
school at the time of assessment. For schools that are not year-round schools (the great majority), Ky = 1.
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The overall student base weight for a student j selected for the assessment for a given subject
(reading or writing) in school i was obtained by multiplying the trimmed school base weight by the
within-school student weight and therefore was computed as:

base — \ 5,tsch within
Wii™ = Wi X Wjj :

11.3 ADJUSTMENTSFOR NONRESPONSE

As mentioned earlier, the base weight for a student was adjusted by two factors: one to adjust for
nonparticipating schools for which no substitute participated, and another to adjust for students who were
invited to the assessment but did not attend the scheduled sessions (original or makeup).

11.3.1 Defining Initial School-L evel Nonresponse Adjustment Classes

School-level nonresponse adjustment classes were created separately for public and nonpublic
schools within each jurisdiction. For each set, these classes were defined as a function of their sampling
strata as follows.

Public Schools. For each jurisdiction, except Virgin Islands, DoDEA/DDESSZ, and
DoDEA/DoDDS?, the initial school nonresponse adjustment classes were formed by cross classifying the
level of urbanization and minority status (see Chapter 4 for definitions of these characteristics). Where
there was only one minority status category within a particular level of urbanization, a categorized
version of median household income was crossed with the urbanization category. For this purpose within
each level of urbanization, public schools were sorted by the median household income, and then divided
into three groups of about equal size, representing low, middle, and high income areas. In Virgin Islands,
there was no information on minority status or median household income. Thus, for Virgin Islands, at
grade 4 a categorized version of estimated grade enrollment was used, and at grade 8, due to the small
number of schools, all schools were placed in the same initial nonresponse adjustment cell. In all cases,
for schools with SD/LEP students, sample type (whether accommodations were offered or not) was used
in addition to the variables described above.

Department of Defense Education Activity/Department of Defense Domestic Elementary Schools
(DoDEA/DDESS) and Department of Defense Education Activity/Department of Defense Dependents
Schools (DoDEA/DoDDS). For the jurisdictions comprising DoODEA/DDESS and DoDEA/DoDDS
schools, urbanization, median income, and metro status were not available. Therefore, the initial school
nonresponse adjustment classes were defined by the state or district code, except for DODEA/DDESS
grade 8, which had only one adjustment cell due to the small number of schools. Again, sample type was
used in addition to the variables described above.

Nonpublic Schools. For each jurisdiction (excluding Virgin Islands nonpublic schools), initial
nonresponse adjustment classes were formed by cross classifying school type (Catholic and non-
Catholic) and metropolitan status (the urban/rural nature of the place where the schooal is located). For
Virgin Islands, urban/rural status was not available, so only school type was used. For schools with
SD/LEP students, sampl e type was used in addition to the variables described above.

2 Department of Defense Education Activity/Department of Defense Domestic Elementary and Secondary Schools
8 Department of Defense Education Activity/Department of Defense Dependents Schools
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11.3.2 Constructing the Final Nonresponse Adjustment Classes

The objective in forming the nonresponse adjustment classes is to create as many classes as
possible that are internally as homogeneous as possible, but such that the resulting nonresponse
adjustment factors are not subject to large random variation. Consequently, all initial nonresponse
adjustment classes deemed unstable were collapsed with suitable neighboring classes so that: (i) the
combined class contained at least six sessions, and (ii) the resulting nonresponse adjustment factor did
not exceed 1.35. (In afew cases, afactor in excess of 1.35 was permitted). When 100 percent of the
public schoolsin ajurisdiction responded, no action was taken for a public-school adjustment class that
contained fewer than six sessions. The same approach was used for nonpublic schools where 100 percent
of the schools participated. Although there is clearly no adjustment for school nonresponse in these
cases, this procedure could have an effect on the final definition of the student nonresponse adj ustment
classes (see Section 11.3.4).

Public Schools. For public schools, inadequate nonresponse adjustment classes were reinforced
by collapsing adjacent levels of minority status (or median household income level if minority
information was missing). Metropolitan and non-metropolitan schools were combined together in cases
where there were less than six cooperating schools after collapsing across al levels of minority status (or
median household income levels, if minority status information was missing) that were not mixed. No
collapsing was done across sampl e type.

Nonpublic Schools. For nonpublic schoolsin all states except Virgin Islands, inadequate classes
were reinforced by collapsing adjacent levels of metropolitan-area status within school type. Catholic and
non-Catholic schools were kept apart to the extent possible, particularly when the only requirement to
combine such schools was as a means of reducing the adjustment factors below 1.35. For nonpublic
schoolsin Virgin Islands, Catholic and non-Catholic schools were collapsed together in order to form a
stable nonresponse adjustment class.

11.3.3 School Nonresponse Adjustment Factors
The school-level nonresponse adjustment factor for the i school in the " class was computed

Y Wit Ep
iECh

> WX Efi X S
iECh

F =

where

Ch = the subset of school recordsin class h,

=
=
I

the base weight of the ith school in class h,
Ey = the grade enrollment for the ith school in class h,

1 if theith school in adjustment class h participated in the assessments; and

0 otherwise.
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Both the numerator and denominator of the nonresponse adjustment factor contained only
schools that were determined to have eligible students enrolled.

In the calculation of the above nonresponse adjustment factors, a school was said to have
participated if:

e it was selected for the sample from the frame or from the lists of new schools
provided by participating school districts, and student assessment data were
obtained from the school; or

¢ the school participated as a substitute school and student assessment data were
obtained (so that the substitute participated in place of the originally selected
school).

The nonresponse-adjusted weight for the ith school in class h was computed as:

WR'= FRXWR"

11.3.4 Student Nonresponse Adjustment Classes

Theinitia student nonresponse classes for assessed students were formed based on several
variables. These variables are based on information from the sample design, age of the student, final
collapsed school nonresponse cells, and the actual monitor status (or assigned monitor status, if the actual
monitor status is not available; see Chapter 4) at the session level. The first of these was public/nonpublic
strata and an indicator of whether or not a student was excluded from the assessment. Public/nonpublic
strata were then cross classified by a variable created from combining SD/LEP status and the sample type
for the student.

Within these categories, the initial student nonresponse adjustment classifications were defined
further depending on the SD/LEP status of a student. For all schools except DoDEA/DDESS and
DoDEA/DaDDS, if astudent was SD or LEP, then the class was formed by urbanization cross classified
by student age. Age was used to classify students into two groups (for grade 4, those born in September
1987 or earlier and those born in October 1987 or later, and for grade 8, those born in September 1983 or
earlier and those born in October 1983 or later). If a student was neither SD nor LEP, then the initial
nonresponse adjustment class was formed by urbanization cross classified by student age (as defined
above), by the quality control monitoring status (see Chapter 4), then finally by minority status as
collapsed for the school nonresponse. For the DODEA/DDESS and DoDEA/DoDDS schoals, the
nonresponse adjustment classes for SD and L EP students was student age cross classified by the minority
status variable as defined for the school nonresponse adjustment classes.

Following creation of these student honresponse adjustment classes, all unstable classes were
identified for possible collapsing with other classes. A class was considered to be unstable when either of
the following conditions was true for the given class:

e number of responding eligible students was fewer than 20, or

¢ nonresponse adjustment factor exceeded 1.5.
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All classes deemed unstable in the previous step were collapsed with other classes using the
following rules:

e Do not collapse across public and nonpublic.
e Do not collapse across SD/LEP and non-SD—non-LEP.

o |f within cells defined by the cross classification of public/nonpublic and SD-
L EP/non-SD—non-LEP status, and sample type within the SD/LEP categories, all
of the adjustments are one, no adjustments are made.

e Collapse across the last variable of the nonresponse adjustment cell only (i.e.,
collapse across geography for SD/LEP students in Department of Defense
Education Activity (DoDEA) schools).

More collapsing was necessary only if the resulting classes had fewer than 15 responding eligible
students. Collapsing then continued within the successive variables until the class size was no longer
deficient or until a“set” boundary that could not be crossed was reached. In the case of SD or LEP
students, more collapsing was done to eliminate the rare situation in which all studentsin a class were
nonrespondents.

11.3.5 Student Nonresponse Adjustments

As described above, the student-level nonresponse adjustments for the assessed students were
made within classes defined by the SD/LEP status, sample type, final school-level nonresponse
adjustment classes, monitoring status of the school, and age group of the students. Subsequently, in each
jurisdiction, the final student weight for the j" student of the i"" school in class k was then computed as:

final adj ithi

\/Vi adj

the nonresponse-adj usted school weight for schooal i;

WM™ = the within-school weight for the jth student in school i; and
2Wij
i

Fr= —— .
ZWijékj
J

In the above formulation, the summation included all students, j, in the k™ final (collapsed)
nonresponse class. The indicator variable §); had avalue of 1 when the jth student in adjustment class k

participated in the assessment; otherwise, §y; = 0.

For excluded students, no nonresponse adjustment procedures were applied because excluded
students were not required to complete an assessment. In effect, all excluded students were considered
respondents. Weights are provided for excluded students so as to estimate the size of this group and its
population characteristics. Tables 11-1 through 11-6 summarize the unweighted and final weighted
counts of assessed and excluded students in public and nonpublic schools for each jurisdiction, grade and
subject.
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Table11-1
Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 4 Public Schools, 1998 Reading State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Total 109,148 2,646,973 9,186 260,558 118,334 2,907,530
Alabama 2,559 56,372 239 4,922 2,798 61,294
Arizona 2,602 55,867 318 6,349 2,920 62,216
Arkansas 2,656 30,773 144 1,613 2,800 32,386
Cadlifornia 1,898 372,225 384 65,127 2,282 437,352
Colorado 2,656 49,221 195 3,309 2,851 52,530
Connecticut 2,607 38,543 379 4,971 2,986 43514
Delaware 2,483 8,171 127 381 2,610 8,552
District of Columbia 2,464 4,691 284 504 2,748 5,194
DoDEA/DDESS 2,693 2,821 128 128 2,821 2,949
DoDEA/DoDDS 2,670 6,310 105 234 2,775 6,545
Florida 2,658 154,056 224 12,220 2,882 166,276
Georgia 2,733 96,499 179 6,058 2,912 102,557
Hawaii 2,742 13,548 144 676 2,886 14,224
[llinois 2,264 124,291 200 10,148 2,464 134,439
lowa 2,339 33,263 171 2,324 2,510 35,587
Kansas 1,922 32,925 104 1,657 2,026 34,582
Kentucky 2,508 41,123 233 3,661 2,741 44,784
Louisiana 2,701 51,743 308 5,741 3,009 57,484
Maine 2,464 15,635 231 1,294 2,695 16,929
Maryland 2,344 57,644 204 4,894 2,548 62,538
M assachusetts 2,478 70,290 188 5,222 2,666 75,512
Michigan 2,416 116,655 179 8,068 2,595 124,723
Minnesota 2,425 61,069 94 2,179 2,519 63,248
M ississippi 2,591 36,430 118 1,565 2,709 37,995
Missouri 2,599 60,008 206 4,488 2,805 64,496
Montana 1,936 11,065 67 360 2,003 11,425
Nevada 2,732 20,105 388 2,652 3,120 22,757
New Hampshire 1,908 15,509 91 671 1,999 16,180
New Mexico 2,550 21,238 330 2,521 2,880 23,759
New York 2,318 192,009 196 16,046 2,514 208,055
North Carolina 2,628 87,078 265 8,222 2,893 95,300
Oklahoma 2,647 43,087 303 4,366 2,950 47,453
Oregon 2,550 36,836 192 2,597 2,742 39,433
Rhode Island 2,698 11,139 221 844 2,919 11,983
South Carolina 2,518 43,925 273 4,493 2,791 48,418
Tennessee 2,735 66,272 120 2,737 2,855 69,009
Texas 2,443 249,823 383 37,861 2,826 287,684
(continued)
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Table 11-1 (continued)
Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 4 Public Schools, 1998 Reading State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Utah 2,784 31,657 185 1,903 2,969 33,560
Virgin Islands 1,485 1,552 95 95 1,580 1,647
Virginia 2,723 76,981 228 6,123 2,951 83,104
Washington 2,491 67,261 137 3,662 2,628 70,923
West Virginia 2,568 19,137 271 1,868 2,839 21,005
Wisconsin 2,183 55,418 245 5,548 2,428 60,966
Wyoming 2,779 6,708 110 257 2,889 6,965

Table11-2

Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 8 Public Schools, 1998 Reading Sate Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Total 93,223 2,441,495 6,068 151,260 99,291 2,592,754
Alabama 2,490 54,366 177 3,718 2,667 58,084
Arizona 2,529 53,001 183 3,376 2,712 56,377
Arkansas 2,489 32,855 170 2,056 2,659 34,911
California 2,182 364,480 159 23,908 2,341 388,388
Colorado 2,673 49,634 133 2,270 2,806 51,904
Connecticut 2,617 35,939 214 2,655 2,831 38,594
Delaware 2,081 8,220 122 399 2,203 8,618
District of Columbia 1,589 3,967 142 306 1,731 4,273
DoDEA/DDESS 630 1,324 28 56 658 1,380
DoDEA/DoDDS 2,221 4,746 61 122 2,282 4,868
Florida 2,545 147,121 145 7,863 2,690 154,984
Georgia 2,600 95,969 146 4,870 2,746 100,839
Hawaii 2,602 12,468 163 715 2,765 13,183
Ilinois 2,148 127,567 117 6,459 2,265 134,026
Kansas 1,932 34,261 105 1,574 2,037 35,835
Kentucky 2,342 44,684 105 1,943 2,447 46,627
Louisiana 2,585 50,192 228 3,982 2,813 54,174
Maine 2,474 15,471 164 963 2,638 16,434
Maryland 2,178 54,030 123 2,738 2,301 56,768
Massachusetts 2,306 60,590 148 3,546 2,454 64,136
Minnesota 2,039 63,573 61 1,669 2,100 65,242
Mississippi 2,332 33,909 173 2,363 2,505 36,272
Missouri 2,632 63,890 142 3,288 2,774 67,178
(continued)
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Table 11-2 (continued)

Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,

Grade 8 Public Schools, 1998 Reading State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Montana 1,946 12,021 82 412 2,028 12,433
Nevada 2,564 18,154 200 1,319 2,764 19,473
New Mexico 2,365 21,623 239 1,885 2,604 23,508
New Y ork 1,923 181,223 208 17,019 2,131 198,242
North Carolina 2,595 81,637 222 6,317 2,817 87,954
Oklahoma 2,234 42,355 236 4,081 2,470 46,436
Oregon 2,294 38,419 105 1,498 2,399 39,917
Rhode Idand 2,513 10,591 160 596 2,673 11,187
South Carolina 2,509 45,583 169 2,765 2,678 48,348
Tennessee 2,245 58,759 122 2,975 2,367 61,734
Texas 2,500 248,845 175 16,047 2,675 264,892
Utah 2,601 34,340 133 1,548 2,734 35,888
Virgin Idands 643 1,464 54 108 697 1,572
Virginia 2,592 73,995 187 4,824 2,779 78,819
Washington 2,323 69,342 104 2,856 2,427 72,198
West Virginia 2,537 20,565 239 1,756 2,776 22,321
Wisconsin 1,997 62,606 152 4,234 2,149 66,840
Wyoming 2,626 7,716 72 183 2,698 7,899
Table11-3

Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,

Grade 8 Public Schools, 1998 Writing State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Total 91,996 2,429,504 4,872 124,329 96,868 2,553,832
Alabama 2,449 53,997 169 3,521 2,618 57,518
Arizona 2,499 53,315 162 2,992 2,661 56,307
Arkansas 2,462 32,430 162 1,945 2,624 34,375
Cdlifornia 2,157 359,589 155 23,418 2,312 383,007
Colorado 2,697 50,662 117 1,914 2,814 52,576
Connecticut 2,592 36,138 221 2,786 2,813 38,924
Delaware 2,119 8,265 80 269 2,199 8,533
District of Columbia 1,592 4,007 130 276 1,722 4,283
DoDEA/DDESS 650 1,362 19 38 669 1,400
DoDEA/DoDDS 2,182 4,704 34 68 2,216 4772
Florida 2,574 150,236 130 7,085 2,704 157,321
Georgia 2,605 96,368 138 4,599 2,743 100,967
(continued)
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Table 11-3 (continued)
Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 8 Public Schools, 1998 Writing State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Hawaii 2,647 12,619 123 522 2,770 13,141
Ilinois 2,145 129,782 95 5,263 2,240 135,045
Kentucky 2,341 44,823 66 1,145 2,407 45,968
Louisiana 2,653 51,962 158 2,882 2,811 54,844
Maine 2,508 15,659 148 860 2,656 16,519
Maryland 2,263 55,675 55 1,216 2,318 56,891
M assachusetts 2,399 62,177 131 3,091 2,530 65,268
Minnesota 1,980 63,353 65 1,884 2,045 65,237
Mississippi 2,401 35,008 130 1,708 2,531 36,716
Missouri 2,621 63,703 79 1,747 2,700 65,450
Montana 2,024 12,492 62 319 2,086 12,811
Nevada 2,553 18,325 181 1,167 2,734 19,492
New Mexico 2,426 22,277 192 1,476 2,618 23,753
New Y ork 1,981 189,995 123 10,306 2,104 200,301
North Carolina 2,669 83,857 127 3,673 2,796 87,530
Oklahoma 2,258 42,418 239 4,054 2,497 46,472
Oregon 2,323 38,838 90 1,251 2,413 40,089
Rhode Island 2,516 10,584 129 488 2,645 11,072
South Carolina 2,469 45,294 160 2,619 2,629 47,913
Tennessee 2,275 59,184 104 2,536 2,379 61,720
Texas 2,530 250,733 169 15,518 2,699 266,251
Utah 2,588 34,091 117 1,355 2,705 35,446
Virgin Idands 614 1,412 59 118 673 1,530
Virginia 2,605 74,518 131 3,392 2,736 77,910
Washington 2,286 68,730 96 2,637 2,382 71,367
West Virginia 2,611 21,219 157 1,127 2,768 22,346
Wisconsin 2,006 62,152 105 2,895 2,111 65,047
Wyoming 2,726 7,551 64 169 2,790 7,720
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Table11-4

Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 4 Nonpublic Schools, 1998 Reading State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Tota 8,101 210,902 64 2,131 8,165 213,033
Arkansas 166 2,386 0 0 166 2,386
Colorado 225 4,599 2 54 227 4,653
Connecticut 263 4,214 2 26 265 4,241
Florida 274 20,284 1 67 275 20,351
Georgia 270 6,631 6 113 276 6,744
Hawaii 379 2,000 0 0 379 2,000
Illinois 355 25,870 3 194 358 26,064
lowa 330 4,257 1 17 331 4,274
Louisiana 425 10,462 4 120 429 10,582
Maine 131 917 0 0 131 917
Maryland 297 8,750 3 115 300 8,865
M assachusetts 284 8,951 5 156 289 9,106
Michigan 265 15,375 3 160 268 15,535
Minnesota 338 8,426 1 22 339 8,448
Mississippi 224 3,763 0 0 224 3,763
Missouri 320 9,621 2 74 322 9,695
Montana 102 466 1 4 103 471
Nebraska 478 3,063 3 21 481 3,083
Nevada 150 962 1 6 151 968
New Mexico 249 2,350 8 83 257 2,433
New Y ork 377 36,271 5 398 382 36,669
North Carolina 236 6,773 0 0 236 6,773
Rhode Idand 382 1,506 0 0 382 1,506
South Carolina 227 3,951 2 31 229 3,983
Utah 107 681 0 0 107 681
Virgin Idands 426 461 0 0 426 461
Washington 175 4,965 0 0 175 4,965
West Virginia 125 973 0 0 125 973
Wisconsin 426 11,710 10 463 436 12,173
Wyoming 95 266 1 4 96 271
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Table11-5
Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 8 Nonpublic Schools, 1998 Reading State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Tota 5,554 182,810 43 1,000 5,597 183,810
Arkansas 133 1,754 2 33 135 1,787
Arizona 176 6,072 6 223 182 6,294
Cdlifornia 295 44,862 0 0 295 44,862
Colorado 154 2,310 0 0 154 2,310
Connecticut 371 5,143 3 50 374 5,192
Florida 190 14,159 1 45 191 14,204
Georgia 185 7,090 0 0 185 7,090
Illinois 289 20,787 1 78 290 20,865
Louisiana 459 10,267 2 47 461 10,314
M assachusetts 185 5,986 0 0 185 5,986
Maryland 329 8,021 0 0 329 8,021
Maine 78 535 0 0 78 535
Missouri 297 7,199 0 0 297 7,199
Mississippi 0 0 0 0 0 0
Montana 147 646 0 0 147 646
North Carolina 238 5,032 3 75 241 5,107
Nebraska 366 2,950 4 33 370 2,982
New Mexico 170 1,471 9 67 179 1,539
Nevada 130 943 1 11 131 954
New York 351 29,209 3 244 354 29,453
Rhode Idand 403 1,507 5 19 408 1,527
Virgin Idands 228 394 0 0 228 394
Washington 230 5,284 3 76 233 5,360
West Virginia 99 1,041 0 0 99 1,041
Wyoming 51 149 0 0 51 149
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Table11-6
Unweighted and Final Weighted Counts of Assessed and Excluded Students by Jurisdiction,
Grade 8 Nonpublic Schools, 1998 Writing State Samples

Assessed Excluded Assessed and Excluded
Jurisdiction Unweighted Weighted Unweighted Weighted Unweighted Weighted
Tota 5,593 173,497 27 960 5,620 174,457
Arkansas 140 2,143 1 13 141 2,155
Arizona 130 3,234 11 306 141 3,540
Cdlifornia 224 30,585 0 0 224 30,585
Colorado 137 2,916 0 0 137 2,916
Connecticut 240 4,151 2 30 242 4,180
Florida 213 13,409 1 42 214 13,451
Georgia 144 6,246 1 35 145 6,281
Illinois 314 23,623 0 0 314 23,623
Louisiana 580 11,449 0 0 580 11,449
M assachusetts 263 8,395 1 28 264 8,423
Maryland 350 9,168 0 0 350 9,168
Maine 95 831 0 0 95 831
Missouri 303 9,843 0 0 303 9,843
Montana 206 853 1 5 207 858
North Carolina 248 6,142 3 50 251 6,192
Nebraska 354 2,835 0 0 354 2,835
New Mexico 204 1,842 2 12 206 1,854
Nevada 108 730 0 0 108 730
New Y ork 380 27,993 4 439 384 28,432
Rhode Island 434 1,680 0 0 434 1,680
Virgin Islands 193 383 0 0 193 383
Washington 155 3,824 0 0 155 3,824
West Virginia 117 977 0 0 117 977
Wyoming 61 246 0 0 61 246

114 CHARACTERISTICS OF NONRESPONDING SCHOOLSAND STUDENTS

In the previous section, procedures were described for adjusting the survey weights so asto
reduce the potential bias of nonparticipation of sampled schools and students. To the extent that the
characteristics of nonresponding schools or students are different from those of respondents in the same
nonresponse adjustment class, potential for nonresponse bias remains. Recently, some studies related
with this issue have been done, such as on the effects of excluded students in reporting results (see
Donoghue, 2000).

This section examines the potential for remaining nonresponse biasin two related ways. First,
weighted distributions for each grade and subject within each jurisdiction of certain characteristics of
schools and students, both for the full sample and for respondents only, are discussed. This analysisis of
necessity limited to those characteristics that are known for both respondents and nonrespondents, and
hence, cannot directly address the question of nonresponse bias. The approach taken does reflect the
reduction in bias obtained through the use of nonresponse weighting adjustments. As such, it is more
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appropriate than a simple comparison of the characteristics of nonrespondents with those of respondents
for each subject and jurisdiction.

The second approach involves modeling the probability that a school is arespondent, as a
function of the nonresponse adjustment class to which the school belongs, together with other school
characteristics. Thiswas achieved using linear logistic regression models, with school response status as
the dependent variable. By testing to seeif the school characteristics add any predictive ability to the
model over using the membership of the nonresponse adjustment class to make this prediction,
researchers can obtain some insight into the remaining potential for nonresponse bias. If these factors are
substantially marginally predictive, there is danger that significant nonresponse bias will remains. See
Section 11.4.2 for details on how this approach was implemented.

11.4.1 Weighted Distributions of Schools Before and After School Nonresponse

To study the potential for nonresponse bias, Westat analysts compared the school characteristics
before and after school nonresponse for public schools. For public schools, the variables for which means
are presented are the percentage of Black students in the school, the percentage of Hispanic students, the
median household income (1989) of the ZIP code area where the school islocated, and the type of
location. The first two variables were obtained from the sample frame, and hence from Quality Education
Data, Inc., (QED) as described in Chapter 4. Median income was obtained from the 1990 Donnelly File.
The variable designating type of location was derived for each sampled school using U.S. Bureau of
Census data. The type of location variable has seven possible levels, which are defined in Chapter 4.
Although this variable is not interval-scal ed, the mean value does give an indication of the degree of
urbanization of the population represented by the school sample (lower values for type of location
indicate a greater degree of urbanization).

For public schools, the mean values of the variables, both before and after nonresponse, were
calculated for all jurisdictions in reading grades 4 and 8, and writing grade 8. The means are weighted
appropriately to reflect whether nonresponse adjustments have been applied (i.e., to respondents only) or
not (to the full set of in-scope schools). The tables are presented in Appendix B. For each grade and
subject, two sets of means are presented for these four variables. The first set shows the weighted mean
derived from the full sample of in-scope schools selected for each subject, that is, respondents and
nonrespondents (for which there was no participating substitute). The weight for each sampled school is
the product of the school base weight and the grade enrollment. This weight therefore represents the
number of studentsin the state represented by the selected school. The second set of meansis derived
from responding schools only, after school substitution. In this case the weight for each school isthe
product of the nonresponse-adjusted school weight and the grade enrollment of the original school, and
therefore indicates the number of students in the jurisdiction represented by the responding school.

The characteristics of interest for nonpublic schools were the proportion of Catholic schools and
the proportion of schoolsthat are located in urban districts. As was done for public schools, two sets of
means are presented: the means for the full sample and for the responding sample.

For both public and nonpublic schools, the differences between these sets of means give an
indication of the potential for nonresponse bias that has been introduced by nonresponding schools with
no participating substitute. For example, for grade 4 reading in lllinois, the mean percentage Black
enrollment, estimated from the original sample of public schools, is 20.92 percent. The estimate from the
responding schools is 26.33 percent. Thus there may be a dlight bias in the results for Illinois because
these two means differ. Note, however, that the differences in the two sets of mean values are generally
very dlight, at least in absolute terms, suggesting that it is unlikely that substantial bias has been
introduced by schools that did not participate and for which no substitute participated. Of coursein a
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number of states there was no nonresponse at the school level (weighted participation rate is 100%), so
that these sets of means are identical. Even in those jurisdictions where school nonresponse was
relatively high (such asin New Hampshire grade 4 reading, Minnesota grade 8 writing, and Wisconsin
grade 8 reading and writing), the absolute differences in means are slight. Occasionally the relative
differenceislarge, for instance, the “Percent Black” in Illinois for both grade 4 and grade 8 reading (for
public schools), or West Virginia grade 4 reading, Wyoming grade 4 reading, and New Y ork grade 8
reading (for nonpublic schools). However, these are for small population subgroups, and thus are very
unlikely to have alarge impact on results for the jurisdiction as awhole.

11.4.2 Characteristics of Schools Related to Response

In an effort to evaluate the possibility that substantial bias remains as a result of school
nonparticipation, following the use of nonresponse adjustments, a series of analyses were conducted on
the response status for public schools. These analyses were restricted to those jurisdictions with a
participation rate of below 90 percent (after substitution), because these are the jurisdictions where the
potential for nonresponse bias was likely to be the greatest. Jurisdictions with an initial public-school
response rate below 70 percent were not included, since NAEP does not report results for these
jurisdictions because of concern about nonresponse bias. Information about this can be found in Chapters
17 and 21. Nonpublic schools were omitted from these analyses as well because of the small sample sizes
involved, meaning that it is difficult to assess whether a potential for bias exists. Table 11-7 gives each
participating states' participation rate as included in the analysis for each grade and subject.

Table 11-7
Jurisdictions Included in Logistic Regression Analysis
of the NAEP 1998 Sate Assessment
Participation
Grade Subject Jurisdiction Rate
4 Reading CA 80%
IL 84%
1A 84%
KS 70%
MD 88%
MA 88%
MN 86%
MT 78%
NH 70%
NY 84%
WA 89%
WI 82%
8 Reading CA 84%
IL 81%
KS 71%
KY 87%
MD 85%
MA 89%
MN 74%
(continued)
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Table 11-7 (continued)
Jurisdictions Included in Logistic Regression Analysis

of the NAEP 1998 Sate Assessment

Participation

Grade Subject Jurisdiction Rate

8 Writing MT 78%

NY 77%

OR 88%

TN 89%

WA 86%

Wi 73%

CA 83%

IL 80%

KY 87%

MD 86%

MA 89%

MN 74%

MT 78%

NY 7%

OR 88%

TN 89%

WA 87%

WI 73%

The approach used was to develop alogistic regression model to predict the probability of
participation as afunction of the nonresponse adjustment classes and other school characteristics. These
models were developed for public schools in each of the jurisdictions and for each grade and subject
specified in the above table. For the three grade-subject combinations, this resulted in the devel opment of
37 models, which differ only in the number of nonresponse class levels that are included in the model.
The number of final nonresponse adjustment classes varied by state. The logistic regression analysis was
used to determine whether the response rates are significantly related to school characteristics, after
accounting for the effect of the nonresponse class. Thus, “dummy” variables were created to indicate
nonresponse class membership.

If there are k nonresponse classes within ajurisdiction, for nonresponse classi = 1, ..., k-1, let

Xij 1if the schooal j is classified in nonresponse classii,

= 0 otherwise.

Within each jurisdiction, alogistic model was fitted to the data on public-school participation. In
the model, the indicator variables for nonresponse class, and additional variables available for
participating and nonparticipating schools aike were included. These variables are denoted as Y, for i
from 1 to 4 of school j. They were the percentage of Black students (Y ), the percentage of Hispanic
students (), the estimated enrollment for grades 4 and 8 of the school (Y ,), and the median household
income of the ZIP code areain which the school was located (Y, ).
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Let P; denote the probability that school j is a participant, and let L; denote the logit of P;. That is,

P

1-P,

Lj =In(—L).

The model fitted in each jurisdiction was the following:
Li=A+XYBX;+XCY;,
where A, B, and C, are the coefficients of the logistic regression model.

Note that this model cannot be estimated if there are nonresponse classes in which all schools
participated (so that no adjustments for nonresponse were made for those schools). Even though this
analysis was restricted to those jurisdictions with relatively poor response, unestimatable cases occurred
in a number of instances. When this happened, those (responding) schoolsin such classes were dropped
from the analyses. Tables 11-8, through 11-10 show the proportion of the state public-school student
population that is represented in the sample by schools from classes with less than 100 percent response
for each grade and subject. Thusin grade 4 reading for Illinois, Kansas, and New Hampshire, there was
some nonresponse within every adjustment class, whereas for the other nine states in grade 4, some
portion of the population is not represented because schools were dropped from classes with no
nonresponse. The states in which the entire student population is represented in the sample by schools
from classes with less than 100% response are Illinois, Kansas, Minnesota, New Y ork, and Wisconsin for
grade 8 reading; and Illinois, Minnesota, New Y ork, and Wisconsin for grade 8 writing. For the rest of
the states, in both grades, some portion of the student population is not represented because schools were
dropped from classes with no nonresponse.

The tables show that only three of the 37 models that contained all of the variables were
significant. These were the models for grade 8 reading and writing for Illinois and Minnesota, all with p-
values ranging from 0.0013 to 0.0184. Furthermore, the variables designating median household income
and percent of Hispanic students were not significant for any of the 37 models. For the models for
Minnesota grade 8 reading and writing, the only individual variable that was significant was the
estimated grade enrollment, with p-values of 0.0009 and 0.0007 respectively. The only significant
variable in the model for Illinois grade 8 writing was the percent of Black students, with a p-value of
0.0064. For some states, the overall model was not significant, but had individual variables that were
significant. Examples of such states are Kansas grade 4, where the significant individual variable was the
dummy variable corresponding to nonresponse class 4, which indicates for this state that the nonresponse
classes significantly explain the variation in the response rates. In fact, Kansas was the only statein
which the nonresponse class turned out to be a significant individual variable in the model. There were
two models, for grade 8 reading and writing in the state of Wisconsin, in which the percent of Black
students was significant even though the overall model was not.

As mentioned before, the variable designating the percent of Black students was clearly
significant in the models for Wisconsin grade 8 reading and writing, and for Illinois grade 8 writing. This
variable was used in forming nonresponse adjustment classes in these states. Note that the percent of
Black studentsin Wisconsin is 7.99 for the grade 8 reading fill sample (see Table B-2 in Appendix B),
and 9.56 for the respondents. This indicates that the final sample is somewhat over-representative of
schools with relatively high proportion of Black students. Similar results hold for Illinois and Wisconsin
grade 8 writing (see Table B-3in Appendix B).
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Table 11-8

Results of Logistic Regression Analysis of School Nonresponse - Grade 4, 1998 Reading State Samples

M odel with All Variables Test: Y;i's=0
School Degrees Degrees

Participation ~ Percent of Population of of
Jurisdiction Rate (%) Covered by M odel Freedom  Significance Significant Variables Freedom Significance
Cdlifornia 79.92 92.74 7 p=0.279 none 4 p=0.069
lowa 83.94 80.13 4
Illinois 84.13 100.00 12 p=0.309 none 4 p=0.839
Kansas 70.42 100.00 8 p=0.237 nonresponse cell 4, p=0.0390 4 p=0.309
M assachusetts 88.15 56.93 4
Maryland 88.42 73.21 4
Minnesota 85.82 55.45
Montana 78.48 91.37 4
New Hampshire 70.48 100.00 7 p=0.564 none 4 p=0.954
New York 83.92 82.25 4
Washington 89.25 88.51 4
Wisconsin 82.04 80.15 4
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Table11-9

Results of Logistic Regression Analysis of School Nonresponse — Grade 8, 1998 Reading State Samples

Per cent of M odel with All Variables Test: Y;i's=0
School Population Degrees Degrees

Participation Covered of of
Jurisdiction Rate (%) by M odel Freedom Significance Significant Variables Freedom Significance
Cdlifornia 83.74 79.87
Illinois 81.12 100.00 9 p=0.001 none 4 p=0.126
Kansas 70.60 100.00 9 p=0.748 none 4 p=0.353
Kentucky 87.32 72.63 4
M assachusetts 89.20 77.59 4
Maryland 85.45 81.62 4
Minnesota 73.73 100.00 7 p=0.009 estimated grade enrollment, 4 p=0.003

p=0.0009

Montana 77.81 79.74 4
New Y ork 77.27 100.00 8 p=0.198 none 4 p=0.282
Oregon 87.53 86.66 4
Tennessee 89.03 60.09 8 p=0.203 none 4 p=0.083
Washington 86.13 95.22 11 p=0.701 none 4 p=0.897
Wisconsin 73.18 100.00 8 p=0.331 percent Black, p=0.0134 4 p=0.075
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Table 11-10

Results of Logistic Regression Analysis of School Nonresponse — Grade 8, 1998 Writing State Samples

Per cent of M odel with All Variables Test: Y;i's=0
School Population Degrees Degrees

Participation Covered of of
Jurisdiction Rate (%) by M odel Freedom Significance Significant Variables Freedom Significance
Cdlifornia 83.15 85.83 4
Illinois 80.28 100.00 9 p=0.003 Percent of Black students, p=0.0064 4 p=0.067
Kentucky 87.14 73.23 4
M assachusetts 89.28 77.42 4
Maryland 86.42 81.62 4
Minnesota 7351 100.00 7 p=0.018 Estimated grade enrollment, 4 p=0.010

p=0.0007

Montana 77.60 82.51 4
New Y ork 77.27 100.00 8 p=0.099 none 4 p=0.588
Oregon 87.53 86.66 4
Tennessee 89.03 60.07 8 p=0.354 none 4 p=0.140
Washington 86.59 95.16 11 p=0.506 none 4 p=0.852
Wisconsin 72.91 100.00 8 p=0.246 Percent of Black students, p=0.0068 4 p=0.044
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The only models in which the estimated grade-specific enrollment is significant are those for grade 8
reading and writing in the state of Minnesota. For public schools, this variable was not used in forming
nonresponse adjustment classes in these states (it was used only for Virgin Islands). This variable is not shown
in Tables B-1 through B-3 in Appendix B. However, the near-zero value of the coefficient for thisvariablein
the logistic model indicates that small schools have as much chance of participating as larger schools, after
controlling for the other predictor variables.

To determineif the variables other than the nonresponse adjustment class variables added explanatory
power to the model, all variables except the nonresponse adjustment class variables were tested collectively to
seeif the estimates of the parameters were equal to zero. This evaluates whether, taken as a group, the Y
variables are significantly related to the response probability, after accounting for nonresponse class. The
results are shown in the last columns of Tables 11-8 through 11-10. Only three of the 37 tests were significant.
Therest of the tests were not significant, which suggests that the variables did not add to the model after
accounting for the nonresponse adjustment classes, even though on occasion an individual variable was
significant. These results hold for Kansas grade 4 reading, where the full model was not significant, but the
dummy variable representing nonresponse class 4 was significant. This seemsto indicate for Kansas, the
nonresponse adjustment classes alone explain the significant variations in the probability of participation in the
grade 4 assessments.

The results of the analysis indicate that on occasion there were differences between the originally
sampled schools and those that participated, that were not fully removed by the process of creating nonresponse
adjustments. Although these effects were not dramatic, they were sometimes statistically significant, and in
these instances, this was reflected in noticeable differences in population characteristics between respondents
against those who were originally sampled. However, the evidence presented here does not permit valid
speculation about the likely size or even direction of the bias in achievement resultsin reading and writing for
the few states where these sampl e differences are noticeable. The results and details of the logistic regression
analysis are given in Westat’ s Sampling Activities and Field Operations for 1998 NAEP (Gray, et al., 2000).

11.4.3 Weighted Distributions of Students Before and After Student Absenteeism

To check the difference between the full sample and the assessed samples, Westat analysts studied
weighted distributions of students before and after student absenteeism. For the public schoolsin each
jurisdiction, subject, and grade, Westat calculated the weighted sampled percentages of students by gender
(male) and race/ethnicity (White, not Hispanic; Black, not Hispanic; Hispanic), aswell as SD/LEP status for the
full sample of students (after student exclusion), and for the assessed sample. See tablesin Appendix B. The
mean student age in months is also computed on each basis. In those jurisdictions having adequate school
response rates to permit reporting of combined results for public- and nonpublic-school students, these statistics
were calculated for both grades and subjects for all students, public and nonpublic.

The weight used for the full sample was the adjusted student base weight, defined in Section 11.2.5.
The weight for the assessed students was the final student weight, defined in Section 11.3.5. The difference
between the estimates of the population subgroups is an estimate of the bias in estimating the size of the
subgroup, resulting from student absenteeism.

Care must be taken in interpreting these results. First, note that there is generally little difference in the
proportions estimated from the full sample and those estimated from the assessed students. While thisis
encouraging, it does not eliminate the possibility that bias exists within the state as awhole, within the results
for gender and race/ethnicity subgroups, or within other subgroups. Second, when differences do exist, they
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cannot be used to indicate the likely magnitude or direction of the bias with any reliability. For example, in
[llinois the percentages of White and Black studentsin the full sample are respectively 56.87 and 22.24 percent.
For assessed students, these percentages are 61.97 for White students and 18.61 for Black students. This
indicates that White students are overrepresented and Black students are underrepresented in the sample of
assessed students. While these differences raise the possibility that some bias exists, it is not appropriate to
speculate on the magnitude of this bias by considering the assessment results for White or Black studentsin
comparison to other studentsin the state. The reason is that the overrepresented White students or
underrepresented Black students may not be typical of students that were included in the sample. Similarly,
White students who are disproportionately underrepresented or Black students who are disproportionately
overrepresented may not be typical either, because not all students within the same race/ethnicity group receive
the same student nonresponse adjustment.

One other feature to note is that, for assessed students, information about the student’ s gender and
race/ethnicity is provided by the student, whereas for absent students, it is provided by the school. Evidence
from past NAEP assessments (see, for example, Rust & Johnson, 1992) indicates that there can be substantial
discrepancies between those two sources, particularly for grade 4 Hispanic students.

115 VARIATION IN WEIGHTS

After computing the full-sample weights, an analysis was conducted on the distribution of the final
student weights for each grade-subject combination in each jurisdiction. The analysis was intended to (1) check
that the various weight components had been derived properly in each jurisdiction, and (2) examine the impact
of variability in the sample weights on the precision of the sample estimates, both for the jurisdiction as awhole
and for major subgroups within the jurisdiction.

The analysis was conducted by looking at the distribution of the final student weights for the assessed
students in each jurisdiction, grade, and subject separately by public and nonpublic schools. Two key aspects of
the distribution were considered in each case: the coefficient of variation (equivalently, the relative variance) of
the weight distribution, and the presence of outliers—cases whose weights were several standard deviations
away from the median weight.

It was important to examine the coefficient of variation of the weights, because alarge coefficient of
variation reduces the effective size of the sample. Assuming that the variables of interest for individual students
are uncorrelated with the weights of the students, the sampling variance of an estimated average or aggregate is

approximately (1+ VW2 ) times as great as the corresponding sampling variance based on a self-weighting
sample of the same size, where 4, is the coefficient of variation of the weights. Outliers, or cases with extreme
weights, were examined because the presence of such outliers was an indication of the possibility that an error

was made in the weighting procedure, and because it was likely that a few extreme cases would contribute
substantially to the size of the coefficient of variation.

In most jurisdictions, the coefficients of variation were 35 percent or less, both for the whole sample
and for all subgroups. This means that the variation in sampling weights had little impact on the precision of
sample estimates.

A few relatively large student weights were observed in some jurisdictions for reading at both grades 4
and 8. An evaluation was made of the impact of trimming these largest weights back to alevel consistent with
the largest remaining weights found in the state and grade. Such a procedure produced an appreciable reduction
in the size of the coefficient of variation for these weights, and hence this trimming was implemented. Westat
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judged that this procedure had minimal potential to introduce bias, while the reduction in the coefficient of
variation of the weights gave rise to an appreciable decrease in sampling error for all jurisdictions, grades, and
subjects.

11.6 CALCULATION OF REPLICATE WEIGHTS

A replication method known as jackknife was used to estimate the variance of statistics derived from
the full sample. The process of replication involves repeatedly selecting portions of the sample (replicates) and
calculating the desired statistic (replicate estimates). The variability among the calculated replicate estimatesis
then used to obtain the variance of the full-sample estimate.

In each jurisdiction, replicates were formed in two steps. First, each school was assigned to one of a
maximum of 62 replicate groups, each group containing at least one school. In the next step, a random subset of
schools (or, in some cases, students within schools) in each replicate group was excluded. The remaining subset
and all schoolsin the other replicate groups then constituted one of the 62 replicates. The process of forming
these replicate groups, core to the process of variance estimation, is described below.

11.6.1 Defining Replicate Groups and Forming Replicatesfor Variance Estimation

Replicate groups were formed separately for public and nonpublic schools. Once replicate groups were
formed for al schools, students were then assigned to their respective school replicate groups. The formation of
replicate groups was done separately for SD/LEP and non-SD/L EP students. For SD/LEP students, there was an
additional set of replicate group assignments for reading at each grade for states with certainty schools.
Different replicate group assignments were needed for SD/LEP studentsin reading because only SD/LEP
students that were not offered accommodations will be used in reporting for reading. This essentially meant that
certainty schools were treated as noncertainty schools for replication of SD/LEP studentsin reading.

In general, public schools (except schoolsin Virgin Islands and DoDEA/DDESS grade 8) were
assigned to replicates as follows: Noncertainty schools were first paired and then each pair was assigned to its
own replicate group. Large certainty schools were assigned to two replicate groups each, and small certainty
schools were assigned to one replicate group each.

For nonpublic schools, the assignment of replicate groups was as follows: If the sample of noncertainty
schools was small, each noncertainty school was randomly assigned to its own replicate group. If the sample of
noncertainty schools was large enough, this procedure was implemented separately for Catholic and non-
Catholic noncertainty schools. Then, large certainty schools were assigned to two replicate groups each, and
small certainty schools were assigned to one replicate group each.

Replicate group assignments for schools in Virgin Islands and DoODEA/DDESS grade 8 were handled
differently because of small sample sizes. Nonpublic schoolsin Virgin Islands were assigned to replicate
groups using the procedure described in the preceding paragraph for nonpublic schools. For public schoolsin
Virgin Islands and DoDEA/DDESS grade 8, schools were assigned to a number of replicate groups proportional
to the estimated grade-specific enrollment.

The details about the replicate group assignments for all schools are given below.
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11.6.1.1 Replicate Group Assignments for Non-SD/LEP Students

All Public Schools, Except Schoolsin Virgin |slands and DoDEA/DDESS Grade 8. Noncertainty
schools were sorted by jurisdiction according to sample type. Then within sample type, the schools were sorted
by new school status and the order in which they were selected from the sampling frame. The schools were then
grouped in pairs. Where there was an odd number of schools, the last replicate group contained three schools
instead of two. If ajurisdiction had more than 62 pairs, the pair numbering would have gone up to 62 and then
from 62 backwards as needed; however, this did not happen in 1998.

Each of the certainty public schools was assigned to one replicate group or to more replicate groups if
itssize was large. If a school was selected three or more times in the sampling process, then it was assigned to
two replicate groups. Here, schools were sorted by the estimated grade enrollment prior to group assignments.
Again, depending on the jurisdiction, a maximum of 62 certainty groups was formed. The group numbering
resumed from the last group number used for the noncertainty schoolsif the total number of public-school
groups was less than 62. Otherwise, the numbering started from 62 down to the number needed for the last
certainty public school. In jurisdictions where all schools were certainty schools and the total number of public
schools (that is, certainty schools) exceeds 62, the numbering of the groups started at 62 and went downward to
1, and then from 1 up to the number needed for the last certainty school. For instance, in the District of
Columbia grade 4 reading, which had only 114 certainty schools (no honcertainty schools), group numbers
started at 62 and continued down to 1 and then from 1 up to 52. In the District of Columbia grade 8 reading,
which had only 37 certainty schools, the group numbers went from 1 to 55. Eighteen of the 37 certainty schools
in the District of Columbia were selected three or more times and thus were assigned to two replicate groups. A
replicate was formed by randomly deleting one half of the studentsin a certainty school from the sample. For
certainty schools that were assigned to two replicate groups, the students were split equally between four
“halves,” two halves in each of the two replicate groups. This process was repeated for each certainty school.

The purpose of this scheme was to assign as many replicates to ajurisdiction’s public schools as
permitted by the design, to a maximum of 62. When more than 62 replicates were assigned, the procedure
ensured that no subset of the replicate groups (pairs of honcertainty schools, individual certainty schools, or
groups of these) was substantially larger than the other replicate groups. The aim was to maximize the degrees
of freedom available for estimating variances for public-school data.

A single replicate estimate was formed by dropping one member assigned to a particular replicate
group. This process was repeated successively across replicate groups, giving up to 62 replicate estimates.

Nonpublic Schools. Replicate groups for noncertainty nonpublic schools were formed in one of the
two methods described below. It depends on the number of nonpublic noncertainty schools, such as the number
of available noncertainty Catholic or non-Catholic schools. If any of the following conditions was true for a
given jurisdiction, then the subsequent steps were taken to form replicate groups. Here, the numbering started at
62 down to the last needed number.

Conditions for Method 1:

o fewer than 11 nonpublic noncertainty schools; or
o fewer than 2 Catholic noncertainty schools; or

o fewer than 2 non-Catholic noncertainty schools.
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Sepsfor Method 1.

¢ all schools were grouped into a single replicate group;
¢ schools were randomly sorted; and

¢ starting with the second schaool, replicates were formed by consecutively leaving out one
of the remaining n - 1 schools; each replicate included the first school.

When agiven jurisdiction did not match conditions of the first method (i.e., when al of the following
conditions were true), then the preceding steps were repeated separately for two groups, one consisting of
Catholic schools and one consisting of non-Catholic schools.

Conditions for Method 2:

¢ more than 10 nonpublic noncertainty schools; and
e more than 1 Catholic noncertainty school; and

¢ more than 1 non-Catholic noncertainty school.

For jurisdictions with certainty nonpublic schools (Hawaii and Virgin Islands for reading at grade 4;
Rhode Island, Virgin Islands, and Wyoming for both reading and writing at grade 8) each school was assigned
to one or more groups. If a school was selected three or more times in the sampling, it was assigned to two
groups. Prior to this assignment, schools were sorted in descending order of the estimated grade enrolIment.
The group numbering started at the last number where the noncertainty nonpublic schools ended. A replicate
was formed by randomly deleting one half of the students in a certain school from the sample. For the certainty
schools that were assigned to two replicate groups, the students were split equally between four “halves,” two
halves in each of two replicate groups. Thiswas repeated for each certainty school.

Again, the aim was to maximize the number of degrees of freedom for estimating sampling errors for
nonpublic schools (and indeed for public and nonpublic schools combined) within the constraint of forming 62
replicate groups. Where ajurisdiction had a significant contribution from both Catholic and non-Catholic
schools, Westat ensured that the sampling error estimates reflected the stratification on this characteristic.

Virgin Islands. For Virgin Islands, where all schools were selected with certainty, nonpublic schools
were assigned in the usual way, and public schools were assigned to a number of replicate groups proportional
to their estimated grade enrollment.

DoDEA/DDESS Grade 8. Schoolsin the DoDEA/DoDDS grade 8 sample were assigned to a number
of replicate groups proportional to their estimated grade enrollment. Schoolsin all other Department of Defense
Domestic Dependent Elementary and Secondary Schools (DoDEA/DDESS) and DoDEA/DoDDS samples were
assigned to replicate groups following the general rules described above for al public schools. In grade 8
writing, the one noncertainty school was treated like a certainty school.

11.6.1.2 Replicate Group Assignments for SD/LEP Studentsin Reading
For reading certainty schools with non-SD/LEP students were reassigned to replicate groups. The
replicate group assignments for all other schools remained the same. As mentioned before, there were no

certainty schools for SD/LEP replication for reading (certainty schools were treated as noncertainty schools).
The reassignment of replicate groups for certainty schools was implemented as follows.
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All Public Schools, Except thosein Virgin Islands and DoDEA/DDESS Grade 8. The assignment of
schools to replicate groups was done separately for various subgroups of the reading SD/LEP sample. For
public noncertainty schools, the schools were first sorted by jurisdiction according to sample type. Within each
sample type, the schools were sorted by their new school status and sample selection order. In those
jurisdictions where the number of replicate groups for public schools did not exceed 62, the schoolsin the
sorted list were assigned group numbers, two to a group, beginning where the previous assignments for the
public non-certainty schools with non-SD/L EP students stopped. If the number of schools was odd, then the last
three schools were assigned to the same replicate group. If the number of public noncertainty schools exceeded
62, then the group numbering started at 62 and proceeded backwards, assigning pairs of schools to the same
replicate group. If the number of public noncertainty schools to be assigned was odd, the last three schools were
assigned to the same replication group. For Arkansas, Illinois, and Mississippi grade 4; and Florida, North
Carolina, and Tennessee grade 8, there was only one public noncertainty school with SD/LEP students assessed
in reading. This school was assigned to the last replicate group used for the public noncertainty schools with
non-SD/LEP students. If there was an odd number of such schools, then the triple was broken up into two
doubles and the schoal in question was assigned to the last double.

Nonpublic Schools. Nonpublic schools were assigned to replicate groups as follows. For noncertainty
schools, the replicate group assignments were the same for Catholic and non-Catholic schools, and used one of
the two methods described below.

Method 1. If the conditions for Method 1 for non-SD/LEP replication were met, then the first school in
the sorted list was not assigned to any group. The second and subsequent schools were assigned to one replicate
group each, beginning where the numbering for nonpublic noncertainty schoolsin the non-SD/LEP replication
stopped. The numbering then proceeded backwards.

Method 2. If the conditions for Method 2 for non-SD/L EP replication were met, then the procedure for
Method 1 was implemented for Catholic and non-Catholic schools separately. Catholic schools were assigned
first, starting from where the numbering for nonpublic noncertainty non-Catholic schools in the non-SD/LEP
replication stopped. The numbering for the non-Catholic schools started from where that for the Catholic
schools stopped.

Virgin Islands. In Virgin Islands, nonpublic schools were assigned to replicate groups in the usual
way, and the public schools were assigned in the same way as nonpublic schools.

DoDEA/DDESS Grade 8. In the DoODEA/DDESS grade 8, schools were assigned to replicate groups in
exactly the same way as for nonpublic schools.

11.6.2 School-L evel Replicate Weights

As mentioned above, each replicate sample had to be reweighted to compensate for the dropped unit(s)
defining the replicate. This reweighting was done in two stages. At the first stage, the i™ school included in a
particular replicate r was assigned a replicate-specific school base weight defined as:

WriSCh = Kr X\NiSCh,

where W is the full -sample base weight for schoal i, and, for public schools,
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1.5 if school i was contained ina"pair" consisting of 3 units
from which the complimentary member was dropped to form replicater,

2 if school i was contained in apair consisting of 2 units
Ky = from which the complimentary member was dropped to form replicater,

0 if school i was dropped to form replicate r, and
1 if school i wasnot assigned to replicater, or if school i was a certainty.

For nonpublic schools, Method 1:

K Ll if school i was not dropped in forming replicater, and
r = n_

0 if school i was dropped to form replicater.

For nonpublic schools, Method 2 (with n; Catholic schools and n, non-Cathalic schools):

Ll if school i was Catholic not dropped from replicater,
" and replicate r was formed by dropping a Catholic school;

1 if school i was Catholic and replicate r was formed by dropping a non-Catholic school;

if school i was non-Catholic not dropped from replicater,

and replicate r was formed by dropping a non-Catholic school;

1 if school i was dropped to form replicater.

Using the replicate-specific school base weights, V\/r?ch , the school-level nonresponse weighting

adjustments were recalcul ated for each replicate r. That is, the school-level nonresponse adjustment factor for
schoolsin replicate r and adjustment class k was computed as.

h
> Wi < Ey)
ieCy
Frk = g:h
Y Wi X B X 6p)
ieCy
where
Cx = the subset of school records in adjustment class k,
WS = thereplicate-r base weight of the ™ school in class k, and
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Eq = thegrade enrollment for thei™ school in class k.

In the above formulation, the indicator variable §,,; had anonzero value only when the i™ school in

replicate r and adjustment class k participated in the assessment. The replicate-specific nonresponse-adj usted
school weight for thei™ school in replicater in class k was then computed as:

dj _
Wi = FreXWSE'X S -
11.6.3 Student-L evel Replicate Weights
The replicate-specific adjusted student base weights were cal culated by multiplying the replicate-
specific adjusted school weights as described above by the corresponding within-school student weights. That

is, the adjusted student base weight for the j™ student in adjustment class k in replicate r was initially computed
as.

Wkij =W?ﬂj % W}?/ithin
where
w3 = the nonresponse-adjusted school weight for school i in

school adjustment class k and replicate r, and

Within = the within-school weight for the j™ student in school i.

Thefinal replicate-specific student weights were then obtained by applying the student nonresponse
adjustment procedures to each set of replicate student weights. Let F,, denote the student-level nonresponse
adjustment factor for replicate r and adjustment class k. The final replicate r student weight for student j in
school i in adjustment class k was calculated as:

final adj within
VVrkij = Fy x \Nrki X \Nij

Finally, estimates of the variance of sample-based estimates were calculated as:
62 )
Var, (%) = 21 (% - %)
where

~ final
X = E W . — XX
r rkij rkij

i
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denotes an estimated total based on replicate r (one of 62 replicates), and X denote the corresponding estimate
based on the full sample. The standard error of an estimate Xis estimated by taking the square root of the
estimated variance, Varx( X).

11.7 RAKING OF WEIGHTS

Raking (also known as iterative proportional fitting) is donein place of poststratification. Unlike
poststratification, it is performed iteratively to two or more different distributions of a population total (i.e.,
gender and age). It istypically used in situationsin which the interior cells of a cross-tabulation are either
unknown, or some sample sizesin the cells are too small for efficient estimation. In raking, the marginal
population totals, N;. and N.; are known (i.e., age and gender population counts); however, the interior cells of
the cross-tabulation N; (the age by gender cells) are estimated from the sasmple by ; i where these are the sum

of weightsin the cells.

The raking algorithm proceeds by proportionally scaling the N, i such that the following relations are
satisfied:

and

The 1998 state NAEP assessment program used two different sets of administration rulesindicated by
sample type 2 and sample type 3 (see Chapter 4). To enable ETS to analyze the reading assessment omitting the
SD/LEP students with sample type 3, the SD/LEP student weights were raked separately for the two subsets as
defined by sample type. Note that only the weights of SD/LEP students in public schools were raked.
Agreement was forced with totals estimated using both of the subsets combined for each of the sample types.
The purpose of thiswas to enhance the reliability (i.e., reduce the sampling error) of estimates produced by
using information about student characteristics from the whole sample to enhance the estimates. Because of
small sample sizes, the weights of nonpublic SD/LEP students were not raked but were assigned a crude raking
factor of 2. Non-SD/LEP students were assigned dummy raking factors of 1.

11.7.1 Raking Dimensionsfor Full Sample Student Weights

Public Schools. Five variables were used for the raking dimensions. These variables included two
levels of SD (SD/non-SD), two levels of LEP (LEP/non-LEP), two levels of gender, five levels of race (White
and other; Black; Hispanic; Asian or Pacific Islander; and American Indian or Alaskan Native), and two levels
of age. The age variable was defined as follows: for grade 4, those born in August 1987 or earlier and those
born in September 1987 or later; and for grade 8, those born in August 1983 or earlier and those born in
September 1983 or later. Collapsing of levels was done so that no level of a single dimension contained fewer
than 30 students for a state and grade.
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Control totals were obtained by summing the trimmed nonresponse-adjusted student weights for each
level of the collapsed raking dimension. The final collapsed levels that were used for the raking dimensions, for
each jurisdiction and grade, can be found in Tables B-13 and B-14 in Appendix B. An “X” indicates that the
variable was not collapsed for raking. A dash indicates that all levels were combined, and thus, the variable was
not used as araking dimension. An asterisk for the race variable indicates that all other levels of the dimension
were combined into one level. For example in fourth grade for Florida, there are three levels of race: White,
Hispanic, and all others combined.

Nonpublic Schools. Because of the small numbers of nonpublic-school students, no raking was carried
out. A factor of 2 was applied to the weights for the SD/L EP students, since only half the SD/L EP sample was
used for analysis.

11.7.2 Raking Student Replicate Weights

The replicate weights for the public SD/LEP students were raked similarly. Control totals for each
replicate were calculated based on the totals for the replicate weights. The levels of the raking dimensions that
were used for the replicates were the same collapsed levels as used for the full sample student weights. For the
nonpublic schools, again afactor of 2 was applied to the replicate weights of the SD/LEP students.

11.8 APPROXIMATING THE SAMPLING VARIANCE USING DESIGN EFFECTS

Asin Chapter 10" s discussion of variance estimation (see Section 10.5), design effects (Kish & Frankel,
1974) of mean proficiencies across the state samples were cal culated for demographic subgroups for reading
grades 4 and 8, and writing grade 8, respectively. The design effect for a statistic is the ratio of the actual
variance of the statistic (taking the sample design into account) over the conventional variance estimate based
on a simple random sample with the same number of elements. The design effect is the inflation factor to be
applied to the conventional variance estimate in order to adjust error estimates based on simple random
sampling assumptions, thus accounting approximately for the effect of the sample design. Design effects
provide an approximate approach to compute variance from NAEP data for secondary analysis. Moreover, they
provide a measure to analyze the efficiency of a study design.

Since most of the analyses conducted by NAEP are based on the results of scaling models that
summarize performance of students across alearning area, the design effects are based on these scale scores. A
key statistic of interest is the estimated mean scale score of a subgroup of the population. Table 11-11 givesthe
average design effects for state-level mean scale score, averaged across all jurisdictions by grade for the 1998
state reading and writing assessments.

The table shows that the design effects are predominantly larger than 1, indicating that standard
variance estimation formulas will be generally too small, usually markedly so. Although the design effects
appear somewhat different for certain subgroups of the population, they are similar enough (at least within a
subject and grade) to select an overall composite value that is adequate for most purposes. In choosing a
composite design effect, some consideration must be made about the relative consequences of overestimating
the variance as opposed to underestimating the variance. (For details, see descriptionsin Section 10.5.2.) Table
11-12 gives the composite values of mean, median, and upper quartile of the distribution of design effects for
mean state scale scores by grade for the 1998 state reading and writing assessments.
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Table 11-11
Average Design Effects by Demographic Subgroup
for 1998 Mean State Reading and Writing Scale Scores

Averaged Across State Samples’
Grade4 Grade 8 Grade 8
Subgroup Reading Reading Writing
Total 381 3.25 3.21
Male 2.54 2.45 229
Female 2.49 2.13 228
White 2.74 244 2.61
Black 1.87 217 203
Hispanic 2.06 1.70 1.44
Asian/Pacific |slander 1.48 1.42 1.21
Other race/ethnicity 147 181 1.34
Urban 5.00 4.44 4.37
Suburban 4.07 3.63 3.02
Rura 3.37 3.12 275
PARED < HS 128 1.52 1.13
PARED = HS 1.39 1.76 1.28
PARED > HS 1.59 1.49 1.59
PARED = College 291 218 2.40
PARED = Unknown 168 1.43 1.11
Public school 3.84 3.13 2.95

" Design effects are based on the conventional and jackknife variances of subgroup
means of thefirst plausible values of scale score.

Table11-12
Mean, Median, and Upper Quartile of the 1998 Across-State Average
Design Effects for Mean Sate Scale Score
(Distribution Across Demographic Subgroups)

Grade4 Grade8 Grade 8

Subgroup Reading Reading Writing
Upper Quartile 3.37 312 2.75
Mean 2.56 2.36 218
Median 2.49 2.17 228

" Design effects are based on the conventional and jackknife variances of
subgroup means of the first plausible values of scale score.
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Chapter 12

SCALING PROCEDURES'

Nancy L. Allen, James E. Carlson, Eugene G. Johnson, and Robert J. Mislevy
Educational Testing Service

121 INTRODUCTION

The primary method by which results from the 1998 National Assessment of Educational
Progress (NAEP) were disseminated is scale score reporting. The National Assessment Governing Board
(NAGB) provides achievement levels that are used to give judgmental meaning to the scale. With scaling
methods, the performance of a sample of studentsin a subject area or subarea can be summarized on a
single scale or series of scales even when different students have been administered different items. This
chapter presents an overview of the scaling methodol ogies employed in the analyses of the data from
NAEP surveysin general. Details of the scaling procedures specific to the subject areas of reading,
writing, and civics are presented in Chapters 14 through 24.

122 BACKGROUND

The basic information from an assessment consists of the responses of students to the items
presented in the assessment. For NAEP, these items are constructed to measure performance on sets of
objectives developed by nationally representative panels of learning-area speciaists, educators, and
concerned citizens. Satisfying the objectives of the assessment and ensuring that the tasks selected to
measure each goal cover arange of difficulty levelstypically require many items. Depending on the
subject areas, a mixture of multiple-choice, short constructed-response, and extended constructed-
response items were used. To reduce student burden, each assessed student was presented only afraction
of the full pool of items through multiple matrix sampling procedures.

The most direct manner of presenting the assessment results isto report separate statistics for
each item. However, because of the vast amount of information, having separate results for each of the
items in the assessment pool hinders the comparison of the general performance of subgroups of the
population. Item-by-item reporting masks similarities in trends and subgroup comparisons that are
COMMOoN across items.

An obvious summary of performance across a collection of itemsis the average of the separate
item scores. The advantage of averaging isthat it tends to cancel out the effects of peculiaritiesin items
that can affect item difficulty in unpredictable ways. Furthermore, averaging makes it possible to
compare more easily the general performances of subpopulations.

Despite their advantages, there are a number of significant problems with mean item scores.
First, the interpretation of these results depends on the selection of the items; the selection of easy or
difficult items could make student performance appear to be overly high or low. Second, the average

! Nancy L. Allen and James E. Carlson shared responsibility for the psychometric and statistical analysis of the 1998 national and
state NAEP data with John R. Donoghue. Eugene G. Johnson contributed to the design of NAEP and to discussions of sampling
issues. Previously he was responsible for the psychometric and statistical analysis of NAEP data. Robert J. Midlevy is atechnical
consultant contributing in the area of item response theory.
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scoreisrelated to the particular items comprising the average, so that direct comparisonsin performance
between subpopulations require that those subpopul ations have been administered the same set of items.
Third, because this approach limits comparisons to average scores on specific sets of items, it provides
no simple way to report trends over time when the item pool changes. Finally, direct estimates of
parameters or quantities such as the proportion of students who would achieve a certain score across the
items in the pool are not possible when every student is administered only afraction of the item pool.
While the average score across all items in the pool can be readily obtained (as the average of the
individual item scores), statistics that provide distributional information, such as quantiles of the
distribution of scores across the full set of items, cannot be readily obtained without additional
assumptions.

These limitations can be overcome by the use of response scaling methods. If several items
require similar skills, the regularities observed in response patterns can often be exploited to characterize
both respondents and itemsin terms of arelatively small number of variables. These variablesinclude a
respondent-specific variable, called scale score, which quantifies a respondent’ s tendency to answer
items correctly (or, for multipoint items, to achieve a certain item score) and item-specific variables that
indicate characteristics of the item such asits difficulty, effectivenessin distinguishing between
individuals with different levels of scale score, and the chances of avery low scale score respondent
correctly answering a multiple-choice item. (These variables are discussed in more detail in the next
section.) When combined through appropriate mathematical formulas, these variables capture the
dominant features of the data. Furthermore, all students can be placed on a common scale, even though
none of the respondents takes all of the items within the pool. Using the common scale, it becomes
possible to discuss distributions of scale scorein a population or subpopulation and to estimate the
relationships between scal e score and background variables.

It isimportant to point out that any procedure of aggregation, from a simple average to a complex
multidimensional scaling model, highlights certain patterns at the expense of other potentially interesting
patterns that may reside within the data. Every item in aNAEP survey is of interest and can provide
useful information about what United States students know and can do. The choice of an aggregation
procedure must be driven by a conception of just which patterns are salient for a particular purpose.

The scaling for the national main reading, mathematics, science, U.S. history, geography, and
music assessmentsis carried out separately within purposes of reading, mathematics content strands,
fields of science, themes, or content areas as specified in the framework. Originally, this scaling within
subareas was done because it was anticipated that different patterns of performance or different trends
over time might exist for these essential subdivisions of the subject areas. By creating a separate scale for
each of these content areas, potential differencesin subpopulation performance between the content areas
are preserved.

The creation of a series of separate scales to describe performance within a subject area does not
preclude the reporting of asingleindex of overall performance in the subject area—that is, an overall
subject—area composite. A composite is computed as the weighted average of the content—area scales,
where the weights correspond to the relative importance given to each content area as defined by the
framework. The composite provides a global measure of performance within the subject area, while the
constituent content area scales allow the measurement of important interactions within educationally
relevant subdivisions of the subject area.

For all other national main assessment subj ects the framework documents specify asingle

(unidimensional) scale. The long-term trend scales for reading, writing, mathematics, and science are
also scaled asif they were unidimensional.

228



123 SCALING METHODOLOGY

This section reviews the scaling models employed in the analyses of NAEP data and the multiple
imputation or “plausible values” methodology that allows such models to be used with NAEP' s sparse
item-sampling design. The reader isreferred to Mislevy (1991) for an introduction to plausible values
methods and a comparison with standard psychometric analyses to Beaton and Johnson (1992),
Donoghue (1993), and Mislevy, Johnson and Muraki (1992), and for additional information on how the
models are used in NAEP, and to Rubin (1987) for the theoretical underpinnings of the approach. It
should be noted that the imputation procedure used by NAEP is amechanism for providing plausible
values for the unobserved proficiencies and not for filling in blank responses to background or cognitive
variables.

While the NAEP procedures were developed explicitly to handle the characteristics of NAEP
data, they build on other research, and are paralleled by other researchers. See, for example, Andersen
(1980); Dempster, Laird, and Rubin (1977); Engelen (1987); Hoijtink (1991); Laird (1978); Lindsey,
Clogg, and Grego (1991); Little and Rubin (1983, 1987); Rubin (1987, 1991); Tanner and Wong (1987);
and Zwinderman (1991).

12.3.1 The Scaling Models

Three distinct scaling models, depending on item type and scoring procedure, are used in the
analysis of NAEP data. Each of the models is based on item response theory (IRT; e.g., Lord, 1980).
Each isa*“latent variable” model, defined separately for each of the scales, which expresses respondents’
tendencies to achieve certain scores (such as correct/incorrect) on the items contributing to ascale asa
function of a parameter that is not directly observed, called score (6) on the scale.

A three-parameter logistic (3PL) model is used for the multiple-choice items (which are scored
correct or incorrect). The fundamental equation of the 3PL model defines the probability that a person
whose score on scale k is characterized by the unobservable variable 6 will respond correctly to item
as.

(1-g)

P(x =10k a.by,G) =6+ — op[-L17a(0x0)] Pia(6k ), (12.1)
where
X istheresponseto itemj, 1if correct and O if not;
where g >0, isthe slope parameter of item j, characterizing its sensitivity to scale
SCore;
by isthe threshold parameter of item j, characterizing its difficulty; and
G where 0 <c;<1, isthe lower asymptote parameter of item j, reflecting the chances of

students of very low scale score selecting the correct option.

Further define the probability of an incorrect response to theitem as

Pjo=P(% =0/6k,&,bj,¢) =1- Pja(6k). (12.2)
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A two-parameter logistic (2PL) model is used for the short constructed-response items that were
scored correct or incorrect. The form of the 2PL model is the same as Equations (12.1) and (12.2), with
the ¢; parameter fixed at zero.

In addition to the multiple-choice and other two-category items, a number of extended
constructed-response items are presented in NAEP assessments. The long-term trend and national main
writing assessments include only extended constructed-response items, but most other national main and
state assessments include some extended constructed-response items. Each of these itemsis scored on a
multipoint scale with potential scores ranging from 0 to 3, from 0 to 4, or from 0 to 5. For some subjects,
short constructed-response items are scored on a three-point scale (0-2) as well as on atwo-category
scale. Itemsthat are scored on amultipoint scale are referred to as polytomous items, in contrast with the
multiple-choice and short constructed-response items, which are scored correct or incorrect and referred
to as dichotomous items.

The polytomous items are scaled using a generalized partial credit model (Muraki, 1992). The
fundamental equation of this model is the probability that a person with score 6, on scale k will have, for
the | item, aresponse x; that is scored in the i™ of m ordered score categories:

i
exp[ > 173 (6k—bj+ dj,v)]
P(% =10k 8,51, 0,10, Gy my ~1) = ———2

T 5 = Pji (6k) (12.3)
exp( > 1.78(6k—b+ dj,v))

g=0 v=0
where

m isthe number of categoriesin the responseto item j;

X is the response to item j, with possibilities 0, 1, ..., my—1,

& isthe slope parameter;

by isthe item location parameter characterizing overall difficulty; and

d, isthe category i threshold parameter (see below).

Indeterminacies in the parameters of the above model are resolved by setting d; o = 0 and setting
-1
r& dj,i =0. Muraki (1992) points out that b; - d;; is the point on the 6 scale at which the plots of
i=1
Pi-1(6) and P (6 ) intersect and so characterizes the point on the 6, scale at which the response to
item j has equal probability of falling in response category i-1 and falling in response category i.

When my = 2, so that there are two score categories (0,1), it can be shown that P;i(6) of Equation
(12.3) for i = 0,1 corresponds respectively to P (6 ) and Pj1 (6 ) of the 2PL model [(Equations (12.1)
and (12.2) with ¢;= 0)].

Close examination of the 3PL and generalized partial credit models indicate that both models
have alinear indeterminacy of the theta scale. In other words, if the item parameters are estimated in a
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different metric, the value of ¢ could be transformed to make Equations (12.1) and (12.3) true. For the
purposes of reporting item parameter estimates and other intermediary estimates, the linear
indeterminacies apparent in Equations (12.1) and (12.3) may be resolved by an arbitrary choice of the
origin and unit sizein agiven scale. In most cases, a provisional scale standardizing the theta distribution
to have mean 0 and standard deviation 1 is employed. Final results for each content area are linearly
transformed from the & scale to a 0-to-500 or a 0-t0-300 scale, as described in the subject area chaptersin
this report.

A basic assumption of item response theory is the conditional independence of the responses by
an individual to a set of items, given the individual’s scale score. That is, conditional on the
individual’s 6, the joint probability of a particular response pattern x = (Xy,...,X,) across a set of nitems
issimply the product of terms based on Equations (12.1), (12.2), and (12.3):

-1 ;
P(X|0x,item parameters) = ]ﬂ[ri"[ Pji (6k)"
j=1i=0

(12.4)

where P;i(6y) is of the form appropriate to the type of item (dichotomous or polytomous), m is equal to 2
for the dichotomously scored items, and uj; is an indicator variable defined by

|1 responsex; is in category i
Uji = .
0 otherwise

Itisalso typically assumed that response probabilities are conditionally independent of
background variables (y), given &, or

P(g‘ek,item parameters,l/) = p(X|6k.item parameters). (12.5)

After x is observed, Equation (12.4) can be viewed as alikelihood function, and provides a basis
for inference about G or about item parameters. Estimates of item parameters were obtained by the
NAEP BILOG/PARSCALE program, which combines Mislevy and Bock’s (1982) BILOG and Muraki
and Bock’ s (1991) PARSCALE computer programsz, and which concurrently estimates parameters for
al items (dichotomous and polytomous). Donoghue (1993) reports on the effect of having both
dichotomous and polytomous items within ascale. The NAEP BILOG/PARSCALE program has also
been adapted to make use of student sampling weights. The item parameters are then treated as known in
subsequent calculations. In NAEP analyses, for subject areas with multiple scales (i.e., national main
reading, mathematics, science, U.S. history, geography, and music), the parameters of the items
constituting each of the separate scales are estimated independently of the parameters of the other scales.
Onceitems are calibrated in this manner, alikelihood function for the scale score é isinduced by a
vector of responses to any subset of calibrated items, thus allowing 6-based inferences from matrix
samples. Thelikelihood function for the scale score 6y is called the posterior distribution of the thetas for
each student.

In almost all NAEP IRT analyses, missing responses at the end of each block of items a student
was administered are considered “ not reached,” and are treated asif they had not been presented to the
respondent. Missing responses to dichotomous items before the last observed response in ablock are
considered intentional omissions, and are treated as fractionally correct at the value of the reciprocal of

2 See Muraki and Bock (1999) for the current version of PARSCALE.
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the number of response alternatives, if the item was a multiple-choice item. These conventions are
discussed by Mislevy and Wu (1988). With regard to the handling of not-reached items, Mislevy and Wu
found that ignoring not-reached items introduces slight biases into item parameter estimation when not-
reached items are present and speed is correlated with ability. With regard to omissions, they found that
the method described above provides consistent limited-information maximum likelihood estimates of
item and ability parameters under the assumption that respondents omit only if they can do no better than
responding randomly.

Missing responses to polytomous items before the last observed response in ablock are also
considered intentional omissions and scored so that the response is in the lowest category. Occasionally,
extended constructed-response items are the last item in a block of items. Because considerably more
effort isrequired of the student to answer these items, nonresponse to an extended constructed-response
item at the end of ablock is considered an intentional omission (and scored as the lowest category)
unless the student also did not respond to the item immediately preceding that item. In that case, the
extended constructed-response item is considered not reached and treated as if it had not been presented
to the student. In the case of the main and state writing assessment, there is a single extended
constructed-response item in each separately-timed block. In the writing assessment when a student does
not respond to the item or when the student provides an off-task response, the response is also treated as
if the item had not been administered.

Scaling areasin NAEP are determined a priori by grouping items into content areas for which
overall performance is deemed to be of interest, as defined by the frameworks developed by the National
Assessment Governing Board (NAGB). A scale score 6y is defined a priori by the collection of items
representing that scale. What isimportant, therefore, is that the models capture salient information in the
response data to effectively summarize the overall performance on the content area of the populations
and subpopulations being assessed in the content areas.

Thelocal independence assumption embodied in Equation (12.4) implies that item response
probabilities depend only on & and the specified item parameters, and not on the position of theitemin
the booklet, the content of items around an item of interest, or the test-administration and timing
conditions. However, these effects are certainly present in any application. The practical question is
whether inferences concerning aggregate performance in the scaling area that are based on the IRT
probabilities obtained via Equation (12.4) are robust with respect to the ideal assumptions underlying the
IRT model. Our experience with the 1986 NAEP reading anomaly (Beaton & Zwick, 1990) has shown
that for measuring small changes over time, changes in item context and speededness conditions can |ead
to unacceptably large random error components. These can be avoided by presenting items used to
measure change in identical test forms, with identical timings and administration conditions. Thus, we do
not maintain that the item parameter estimates obtained in any particular booklet configuration are
appropriate for other conceivable configurations. Rather, we assume that the parameter estimates are
context-bound. Thisis the reason that the long-term trend booklets and administration procedures have
not changed since the early 1980s and only alimited number of blocks of items are released after each
national main assessment cycle. It was a so the reason we prefer common popul ation equating to
common item equating whenever equivalent random samples are available for linking. In common item
equating, items are assumed to be measuring exactly the same thing for two or more populations, despite
any differencesin context or administration. In common population equating, results for two or more
samples from the same population are matched to one another when linking the scales. Therefore, the
data from the state assessment are calibrated separately from the national NAEP data. In this case, the
administration procedures differ somewhat between the state assessment and the national NAEP.

Although the IRT models are employed in NAEP only to summarize performance, a number of
checks are made to detect serious violations of the assumptions underlying the models. Checks are made
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to detect multidimensionality of the construct being measured and certain condition dependencies. DIF

analyses are used to examine issues of dimensionality, and what are called 27 atisticsin the IRT
literature are used to flag responses with serious departures from the IRT model. DIF analysis
methodologies are discussed in Chapter 9. The latter statistics might better be called item fit statistics

since they do not really have ¥ 2 distributions. These checks include comparisons of empirical and
theoretical item response functions to identify items for which the IRT model may provide a poor fit to
the data. When warranted, remedial efforts, such as collapsing categories of polytomous items or
combining itemsinto a single item, are made to mitigate the effects of such violations on inferences.

In practice, PARSCALE item fit statistics are used as away to identify items that need further
examination. Most of the statistics of this type that are available for use in this setting have distributions
that are unknown. Therefore, they cannot be used for final decisions about the fit of the items to the IRT
model. Because of the lack of statistical tests for IRT model fit, the fit of the IRT modelsto the observed
data was examined within each scale by comparing the empirical item response functions (IRFs) with the
theoretical curves. The primary means of accomplishing thisisto generate plots of empirical versus
theoretical item response curves. The theoretical curves are plots of the response functions based on the
estimates of the item parameters. The empirical proportions are cal culated from the posterior
distributions of the thetas for each student who received the item. For dichotomous items, the sum of the
values of the posterior distributions at a point on the theta scale for each student who answered an item
correctly plus the sum of afractional portion of the values of the posterior distribution at that point on the
theta scale for each student who omitted the item is parallel in meaning to the number of students who
actually answered the item correctly plus afraction of the number of students who omitted theitem. The
sum of the values of the posterior distributions for all students receiving the item at each point on the
theta scale is parallel in meaning to the empirical number of students at that point on the theta scale who
received the item. The plotted values are sums of theseindividual posteriors at each point on the theta
scale for those who got the item correct plus a fraction of the omitters divided by the sum of the
posteriors of those administered the item, in the case of dichotomous items, and for those who scored in
the category of interest over the sum for those who received the item, in the case of polytomous items.

Asan example, Figure 12-1 contains a plot of the empirical and theoretical IRFsfor a
dichotomous item from the 1994 NAEP national main reading assessment. In the plot, the horizontal axis
represents the theta (score) scale, the vertical axis represents the probability of a correct response. The
solid curveisthe theoretical IRF based on the item parameter estimates and Equation (12.1). The centers
of the diamonds represent the empirical proportions correct as described above. The size of the diamonds
are proportional to the sum of the posteriors at each point on the theta scale for all of those who received
the item; thisisrelated to the number of students contributing to the estimation of that empirical
proportion correct.

Figure 12-2 contains a plot of the empirical and theoretical IRFs for a polytomous item from the
1997 Arts (Theatre) National Assessment. Asfor the dichotomous item plot in Figure 12-1, the
horizontal axis represents the score scale, but the vertical axis represents the probability of having a
response fall in each category. The solid curves are the theoretical |RFs based on the item parameter
estimates and Equation (12.3). The centers of the diamonds represent the empirical proportions of
students with responses in each category and are proportional to the sum of the posteriors at each point
on the theta scale for the students who received the item.
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Figure12-1
Dichotomous Item (R016102) Exhibiting Good Model Fit*
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* Diamonds represent 1994 age 13/grade 8 reading assessment data. They indicate estimated

conditional probabilities obtained without assuming a specific model form; the curve indicates the
estimated item response function (IRF) assuming a logistic form.

Figure 12-2
Polytomous Item (HC00004) Exhibiting Good Model Fit*
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* Diamonds represent 1997 grade 8 arts assessment data. They indicate estimated conditional
probabilities obtained without assuming a specific model form; the curve indicates the estimated
item category response function (ICRF) using a generalized partial credit model.



For good fitting items, the empirical and theoretical curves are close together. Therefore, items
for which thisis not true are examined carefully. Examples of plots for specific items are provided in the
subject-area chapters. When the same items are presented in two assessment years, the empirical curves
for the two years can be compared. Normally, these curves differ somewhat due to the sampling of
students for each of the two years. Figure 12-3 contains a plot for an item from the NAEP 1996
mathematics national assessment with curves of this type. When the empirical curves differ dramatically,
one cause might be a change in the meaning of the item due to instructional or societal changes across the
years. Thistype of itemisordinarily treated as two different items—one for each of the assessment years.
Figure 12-4 contains the plot for an item that has been treated in this way.

Figure 12-3
Dichotomous Item (M017901) Exhibiting Good Model Fit Across Assessment Years*
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* Circles represent 1996 grade 12 mathematics assessment data; diamonds represent 1992
grade 12 mathematics assessment data. They indicate estimated conditional probabilities
obtained without assuming a specific model form; the curve indicates the estimated item
response function (IRF) assuming a logistic form.
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Figure 12-4
Dichotomous Item (M018901) Exhibiting Different Empirical Item Functions
for Different Assessment Years*

0.9

0.8

0.6

PROBABILITY
0.5
|

< L
(@]
o
2k
o~
=y o %
- RS ——— a= 0
oo @O ! b= 19216
| c= 0.1707
- L [ nalt = 5 _
< |
|
|
o |
o ] ] ] ] ] 1l ]
-4.0 -3.0 2.0 -1.0 0.0 1.0 2.0 3.0 4.0

THETA

* Circles represent 1996 grade 8 mathematics assessment data; diamonds represent 1992 grade 8
mathemati cs assessment data. They indicate estimated conditional probabilities obtained without
assuming a specific model form; the curve indicates the estimated item response function (IRF)
using a generalized partial credit model..

To summarize, using current methodologies in psychometrics, the assumption of conditional
independence and the assumption that the data fit the modelsin Equations 12.1 and 12.3 are examined
and controlled in NAEP in several ways. They are examined by considering tests of DIF, item fit
statistics, and plots of empirical and theoretical IRFs. They are controlled by treating missing and “ not
reached” responses in reasonable ways, maintaining the context and administration of items across
assessments, collapsing categories of polytomous items when appropriate, combining itemsinto asingle
item, or making decisions about the inclusion or exclusion of an item in a scale based on data. The
identification and amelioration of violations of IRT assumptionsis an area of ongoing research in
educational measurement. For example, recent studies have investigated local item dependence (Y en,
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1993; Habing & Donoghue, in press), assessing the fit of the item response function (Orlando & Thissen,
2000; Donoghue & Hombo, 1999, Hombo & Donoghue, 2000), item parameter drift (Donoghue & Isham,
1998) and detecting and describing multidimensionality (e.g., Roussos, Stout, & Marden; 1998; Zhang &
Stout, 1999).

12.3.2 An Overview of Plausible Values M ethodology

Item response theory was developed in the context of measuring individual examinees' abilities.
In that setting, each individual is administered enough items (often 60 or more) to permit precise
estimation of his or her #, as amaximum likelihood estimate, 8 , for example. Because the uncertainty
associated with each @ is negligible, the distribution of 4, or the joint distribution of & with other

variables, can then be approximated using an individual’ s values asif they were & values.

This approach breaks down in the assessment setting when, in order to provide broader content
coverage in limited testing time, each respondent is administered relatively few itemsin a subject area
scale. A first problem is that the uncertainty associated with individual #sistoo large to ignore, and the

features of the 6 distribution can be seriously biased as estimates of the & distribution. (The failure of
this approach was verified in early analyses of the 1984 NAEP reading survey; see Wingersky, Kaplan,

& Beaton, 1987.) A second problem, occurring even with test lengths of 60, arises when test forms vary
across and within assessments as to the numbers, formats, and content of the test items. The measurement

error distributions thus differ even if underlying & distributions do not, causing 6 distributions to exhibit
spurious changes and resulting in deceptive comparisons in apparent population distributions—easily
greater than actual differences over time or across groups. Although this latter problem is avoided in
traditional standardized testing by presenting students with parallel test forms, controlled tightly across
time and groups, the same constraints cannot be imposed in the design and data-collection phases of the
present NAEP. Plausible values were developed as a way to estimate key population features
consistently, and approximate others no worse than standard IRT procedures would, even when item
booklet composition, format, and content balances change over time. A detailed development of plausible
values methodology is given in Mislevy (1991). Along with theoretical justifications, that paper presents
comparisons with standard procedures, discussions of biases that arise in some secondary analyses, and
numerical examples. The following provides abrief overview of the plausible values approach, focusing
on itsimplementation in NAEP analyses.

Let y represent the responses of al sampled examinees to background and attitude questions,
along with variables based on the sampling design such as the school where the student is enrolled, and
let & represent the vector of scale score values. If § were known for all sampled examinees, it would be
possible to compute a statistic t(4,y), such as a scale or composite subpopulation sample mean, a sample
percentile point, or a sample regression coefficient, to estimate a corresponding population quantity T. A
function U(d,y)—for example, ajackknife estimate—would be used to gauge sampling uncertainty, as
the variance of t around T in repeated samples from the population.
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Because the scaling models are latent variable models, however, § values are not observed even
for sampled students. To overcome this problem, we follow Rubin (1987) by considering 8 as “missing
data,” and approximate t(#,y) by its expectation given (x,y), the data that actually were observed, as
follows:

(12.6)

It is possible to approximate t” using random draws from the predictive conditional distribution
of the scale proficiencies given the item responses x; , background variables y;, and model parameters for
sampled student i. These values are referred to as imputationsin the sampling literature, and plausible
valuesin NAEP. The value of g for any respondent that would enter into the computation of t is thus
replaced by arandomly selected value from the respondent’ s conditional distribution. Rubin (1987)
proposes that this process be carried out several times—multiple imputations—so that the uncertainty
associated with imputation can be quantified. The average of the results of, for example, M estimates of t,
each computed from a different set of plausible values, is a Monte Carlo approximation of
Equation (12.6); the variance among them, B, reflects uncertainty due to not observing €, and must be
added to the estimated expectation of U(4,y), which reflects uncertainty due to testing only a sample of
students from the population. Section 12.4 explains how plausible values are used in subsequent
analyses.

It cannot be emphasized too strongly that plausible values are not test scores for individualsin
the usual sense. Plausible values are offered only as intermediary computations for calculating integrals
of the form of Equation (12.6), in order to estimate population characteristics. When the underlying
model is correctly specified, plausible values will provide consistent estimates of population
characteristics, even though they are not generally unbiased estimates of the proficiencies of the
individuals with whom they are associated. The key idealies in the contrast between plausible values and
the more familiar estimates of scale score (e.g., maximum likelihood estimate or Bayes estimate) that are
in some sense optimal for each examinee: Point estimates that are optimal for individual examinees have
distributions that can produce decidedly nonoptimal (specifically, inconsistent) estimates of population
characteristics (Little & Rubin, 1983). Plausible values, on the other hand, are constructed explicitly to
provide consistent estimates of population effects. For further discussion see Midevy, Beaton, Kaplan,
and Sheehan (1992).

12.3.3 Computing Plausible Valuesin IRT-Based Scales

Plausible values for each respondent r are drawn from the predictive conditional distribution
p(O, Xy, I, X)), whereI"and X' are regression model parameters defined in this subsection. This
subsection describes how, in IRT-based scales, these conditional distributions are characterized, and how
the draws are taken. An application of Bayes theorem with the IRT assumption of conditional
independence produces

p(6, | v

r5) e P(% |0y 7.2) % p(Ge|ye 7 2)=P(x J6r )< p(6 ]y, 1 2)  (127)
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where, for vector-valued 6, P( X |6?r ) isthe product over scales of the independent likelihoods induced

by responses to items within each scale, and p(@m,r,z) isthe multivariate—and generally

nonindependent—joint density of proficiencies for the scales, conditional on the observed value y; of

background responses and the parameters I"and 2. The provisional scales are determined by the item
parameter estimates that constrain the population mean to zero and standard deviation to one. The item
parameter estimates are fixed and regarded as population values in the computation described in this
subsection.

In the analyses of the data from the national main assessments, anormal (Gaussian) formis
assumed for p(@_r‘i,F,Z) with a common variance-covariance matrix 2 and with amean given by a

linear model with slope parameters, 7, based on the first approximately 200 principal components of
several hundred selected main-effects and two-way interactions of the complete vector of background
variables. The included principal components are referred to as the conditioning variables, and are
denoted y°. (The complete set of original background variables used in the analyses of each subject area
arelisted in Appendix F.) The following model isfit to the data within each subject area:

O=I"yc+¢ (12.8)

whereg is multivariately normally distributed with mean zero and variance-covariance matrix . The

number of principal components of the background variables used for each sample is sufficient to
account for 90 percent of the total variance of the full set of background variables (after standardizing
each variable). Asin regression analysis, 7" is a matrix, each of whose columns contains the effects for
one scale, and X isthe matrix variance-covariance of residual s between scales.

A model similar to Equation (12.8) is used for the long-term trend assessments, with the
difference that y© consists of main effects and interactions from the smaller set of background variables
(rather than principal components of those variables) available in the long-term trend assessments.

Maximum likelihood estimates of 7~ and ¥ , denoted by /"and %, are obtained with extensions of
Sheehan’ s (1985) MGROUP computer program using the EM algorithm described in Mislevy (1985).
The EM algorithm requires the computation of the mean, ; , and variance-covariance matrix, X ° of the

predictive conditional distribution in Equation (12.7) for respondent r when there are p scales within a
subject area. For subject areas with multiple scales, the CGROUP version of the MGROUP program was
used to compute the moments using higher order asymptotic corrections to a normal approximation
(Thomas, 1993a). For the long-term trend assessments and other assessments with asingle scale, the
more precise but computationally intensive BGROUP version of MGROUP (Thomas, 1994) was used.
BGROUP uses numeric quadrature to evaluate the predictive conditional distribution moments required
by the E-step of the EM algorithm for one- and two-dimensional applications (Thomas, 19934). For
estimation of group means on a single scale, CGROUP (Thomas, 1994) and BGROUP results will be
nearly identical to those from the original MGROUP program. CGROUP and BGROUP yield better
estimates of correlations between scales, and hence better estimates of composite scale means. BGROUP
will, theoretically, yield better estimates than CGROUP, but because of the heavy computational
demands of the methodology used, its function is limited to bivariate scales. Hence CGROUP is used for
assessments involving more than two scales.

After completion of the EM a gorithm, the plausible values for all sampled respondents are
drawn in the following three-step process. First, avalue of I" is drawn from anormal distribution with
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mean being I" and variance bei ng the variance of I". Second, conditional on the generated value of I

and the fixed value of > = %, the predictive conditional distribution mean 6, and the predictive

conditional distribution variance Z; of respondent r are computed from Equation 12.7 using the EM
agorithm (see Thomas, 1993a). Finally, the r are drawn independently from a multivariate normal

distribution with mean 6r and variance =, approximating the distribution in Equation (12.7). These three
steps are repeated five times producing five sets of imputation values for all sampled respondents.

124 INFERENCESABOUT PROFICIENCIES

When survey variables are observed without error from every respondent, usual variance
estimators quantify the uncertainty associated with sample statistics from the only source of uncertainty,
namely the sampling of respondents. Item-level statistics for NAEP cognitive items meet this
requirement, but scale score values do not. The IRT models used in their construction posit an
unobservable scale score variable  to summarize performance on theitemsin a scale. The fact that &
values are not observed even for the respondents in the sample requires additional statistical analysesto
draw inferences about ¢ distributions and to quantify the uncertainty associated with those inferences. As
described above, Rubin’s (1987) multiple imputations procedures were adapted to the context of latent
variable model s to produce the plausible values upon which many analyses of the datafrom NAEP are
based. This section describes how plausible values were employed in subsequent analysesto yield
inferences about population and subpopulation distributions of proficiencies.

12.4.1 Computational Procedures

Even though one does not observe the & value of respondent r, one does observe variables that
are related toit: x;, the respondent’ s answers to the cognitive items he or she was administered in the area
of interest, and y,, the respondent’ s answers to demographic and background variables. Suppose one
wishes to draw inferences about a number T(4,Y) that could be calculated explicitly if the # and y values
of each member of the population were known. Suppose further that if § values were observable, we
would be able to estimate T from a sample of N pairs of  and y values by the statistic t(6,y) [where
@y = (GoY4,..., B,Y)], and that we could estimate the variance in t around T due to sampling
respondents by the function U(4,y). Given that observations consist of (x;,y;) rather than (.,y;), we can
approximatet by its expected value conditional on (x,y), or

t(xy)=E[t(0.y)jxy]=]t(0.y) p(6]x y)de. (12.9)

It is possible to approximate t” with random draws from the conditional distributions p(€i|x;,y;),
which are obtained for all respondents by the method described in Section 12.3.3. Let ém be the m" such

vector of plausible values, consisting of amultidimensional value for the latent variable of each
respondent. This vector is a plausible representation of what the true & vector might have been, had we
been able to observeit.
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12.4.2

results. This section describes the rel ationships between these tests and the variance components
described above. Chapter 13 contains details of the hypothesis tests used in this assessment.

The following steps describe how an estimate of a scalar statistic t(£,y) and its sampling variance
can be obtained from M (>1) such sets of plausible values. (Five sets of plausible values are used in
NAEP analyses.)

1

In this equation, (1+M™)B is the estimate of variance due to the latency of 4. Due to the
excessive computation that would be required, NAEP analyses do not compute and
average jackknife variances over all five sets of plausible values, but uses that computed

Using each set of plausible values ém inturn, evaluatet asif the plausible values

were true values of §. Denote the results tm, form=1, ..., M.

Using the jackknife variance estimator defined in Chapter 10, compute the estimated

sampling variance of tm, denoting the result Uy,.

Thefinal estimate of tis
t* =

m1M

Compute the average sampling variance over the M sets of plausible values, to
approximate uncertainty due to sampling respondents

Compute the variance among the M estimates tm , to approximate the between-
imputation variance

Thefinal estimate of the variance of t" is the sum of two components

V=U*+ (1+M HB

from the first set. Thus, in NAEP reports, U” is approximated by U,.

Statistical Tests

(12.10)

(12.11)

(12.12)

(12.13)

The variance described in Section 12.4.1 is used to make statistical tests comparing NAEP

If € values were observed for all sampled students, the statistic (t - T)/U¥? would follow a

t-distribution with d degrees of freedom, where d is calculated in the usual way. Then the incomplete-
data statistic (t" - T)/V¥?is approximately t-distributed, with degrees of freedom (Johnson & Rust, 1993;
Satterthwaite, 1941) given by
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1 (12.14)

where f is the proportion of total variance due to not observing 6 values:

f=(1+M Y)BIV (12.15)

When B is small relative to U, the reference distribution for incomplete-data statistics differs
little from the reference distribution for the corresponding complete-data statistics. Thisis the case with
main NAEP reporting variables. If, in addition, d is large, the normal approximation can be used to flag
“significant” results.

For k-dimensional t, such as the k coefficientsin amultiple regression analysis, each U,,and U" is
acovariance matrix, and B is an average of squares and cross-products rather than simply an average of
squares. In this case, the quantity (T—t) V* (T —t"), is approximately F distributed, with degrees of
freedom equal to k and with v defined as above but with a matrix generalization of f:

f= (1+ M?) Trace (BVY)/K. (12.16)

By the same reasoning as used for the normal approximation for scalar t, a chi-square distribution on
k degrees of freedom often suffices for multivariatet .

12.4.3 Biasesin Secondary Analyses

Statisticst” that involve proficiencies in a scaled content area and variables included in the
conditioning variables y¢ are consistent estimates of the corresponding population values T. Thisincludes
interrelationships among scal es within a content area that have been treated in the multivariate manner
described above in Section 12.3.3. Statistics involving background variables y that were not conditioned
on, or relationships among scale scores from different purposes, content strands or fields, are subject to
asymptotic biases whose magnitudes depend on the type of statistic and the strength of the relationships
of the nonconditioned background variables to the variables that were conditioned on and to the scale
score of interest. That is, the large sample expectations of certain sample statistics need not equal the true
population parameters.

The direction of the biasis typically to underestimate the effect of honconditioned variables. For
details and derivations see Beaton and Johnson (1990), Midlevy (1991), and Mislevy and Sheehan (1987,
Section 10.3.5). For agiven statistic t” involving one content area and one or more nonconditioned
background variables, the magnitude of the biasis related to the extent to which observed responses x
account for the latent variable ¢, and the degree to which the nonconditioned background variables are
explained by conditioning background variables. The first factor—conceptually related to test
reliability—acts consistently in that greater measurement precision reduces biasesin all secondary
analyses. The second factor acts to reduce biases in certain analyses but increase it in others. In
particular:
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e High shared variance between conditioned and nonconditioned background variables
mitigates biases in analyses that involve only scale score and nonconditioned
variables, such as marginal means or regressions.

e High shared variance exacerbates biases in regression coefficients of conditional
effects for nonconditioned variables, when nonconditioned and conditioned
background variables are analyzed jointly as in multiple regression.

The large number of background variables that have been included in the conditioning vectors for the
1996 assessments allows a large number of secondary analyses to be carried out with little or no bias, and
mitigates biases in analyses of the marginal distributions of £ in nonconditioned variables. Analysis of
the 1988 NAEP reading data (some results of which are summarized in Mislevy, 1991), which had a
similar design and fewer conditioning variables, indicates that the potential bias for nonconditioned
variables in multiple regression analyses is below 10 percent, and biasesin simple regression of such
variablesis below 5 percent. Additional research (summarized in Mislevy, 1990) indicates that most of
the bias reduction obtainable from conditioning on alarge number of variables can be captured by
instead conditioning on the first several principal components of the matrix of all original conditioning
variables. This procedure was adopted for the 1992, 1994, and 1996 national main assessments by
replacing the conditioning effects by the first K principal components, where K was selected so that 90
percent of the total variance of the full set of conditioning variables (after standardization) was captured.
Mislevy (1990) shows that this puts an upper bound of 10 percent on the average bias for al analyses
involving the original conditioning variables.

12.4.4 A Numerical Example

To illustrate how plausible values are used in subsequent analyses, this subsection gives some of
the stepsin the calculation of the 1992 grade 4 reading composite mean and its estimation-error variance.
Thisillustration is an example of the calculation of NAEP means and variances and can be used to
understand their calculation for any NAEP assessment.

The weighted mean of the first plausible values of the reading composite for the grade 4 students
in the sample is 217.79, and the jackknife variance of these valuesis 0.833. Were these values true
values, then 217.79 would be the estimate of the mean and 0.833 would be the estimation-error variance.
The weighted mean of the second plausible values of the same students, however, is 217.62; the third,
fourth, and fifth plausible values give weighted means of 217.74, 218.24, and 218.05. Since al of these
figures are based on precisely the same sample of students, the variation among themis dueto
uncertainty about the students' #s, having observed their item responses and background variables.
Consequently, our best estimate of the mean for grade 4 studentsis the average of the five plausible
values: 217.89. Taking the jackknife variance estimate from the first plausible value, 0.833, as our
estimate U” of sampling variance, and the variance among the five weighted means, .063, as our estimate
B of uncertainty due to not observing #, we obtain as the final estimate V of total error variance 0.833 +
(1+5™) .063 = 0.909.

It isaso possible to partition the estimation error variance of a statistic using these same
variance components. The proportion of error variance due to sampling students from the population is
U’/V, and the proportion due to the latent nature of @ is (1+M™)B/V. The results are shown in Table 12-1.
The value of U’/V roughly corresponds to reliability in classical test theory and indicates the amount of
information about an average individual’s & present in the observed responses of the individual. It should
be recalled again that the objective of NAEP is not to estimate and compare values of individual
examinees, the accuracy of which is gauged by reliability coefficients. The objective of NAEP, rather, is
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to estimate population and subpopulation characteristics, and the marginal estimation methods described
above have been designed to do so consistently regardless of the values of reliability coefficients.

Table 12-1
Estimation Error Variance and Related Coefficients for the 1992 Grade 4 Reading Composite
(Based on Five Plausible Values)
Proportion of Variance Dueto...
Student Sampling: Latency of &
U* (1+5HB v U*IV (1+5HB/IV
0.833 0.076 0.908 0.92 0.08

Chapters 16, 17, 20, 21, and 24 and Appendix H provide values of the proportion of variance due
to sampling and due to the latent nature of # for all 1996 scales and composites for the populations as a
whole and, in the appendix, for selected subpopulations. It will be seen that the proportion of variance
due to the latency of # varies somewhat among subject areas, tending to be largest for the long-term trend
writing assessment, where there islow correlation between tasks and each student responded to only one
or at most two tasks. The proportion of variance due to latency of £ is smallest for the composites of the
national main assessment subjects with several scales, where the number of items per student islargest.
Essentially, the variance due to the latent nature of & islargest when there isless information about a
student’ s scale score. (Note the distinction between estimation error variance of a parameter estimate and
the estimate of the variance of the & distribution. The former depends on the accuracy of measurement;
the large-sample model-based expected value of the latter does not.) Given fixed assessment time, this
decrease in information will occur whenever the amount of information per unit time decreases as can
happen when many short constructed-response or multiple-choice items are replaced by afew extended
constructed-response items.

125 DESCRIBING STUDENT PERFORMANCE

Since its beginning, agoal of NAEP has been to inform the public about what studentsin United
States schools know and can do. While the NAEP scales provide information about the distributions of
scale scores for the various subpopulations, they do not directly provide information about the meaning
of various points on the scale. Traditionally, meaning has been attached to educational scales by norm-
referencing—that is, by comparing students at a particular scale level to other students. In contrast,
NAEP achievement levels and scale anchors describe selected points on the scale in terms of the types of
skillsthat are likely to be exhibited by students scoring at that level. In addition, each NAEP itemis
mapped to a point on its corresponding scale, so that the content of each item provides information about
what students at each score level can do in a probabilistic sense. The achievement level process has been
applied to the reading, mathematics, science, U.S. history, and geography composites and to the writing
and civics unidimensional scales. The achievement levels were set for reading in 1992, mathematicsin
1990, sciencein 1996, U.S. history and geography in 1994, and writing and civicsin 1998.

12.5.1 Achievement Levels

NAGB has determined that achievement levels shall be the first and primary way of reporting
NAEP results. Setting achievement levelsis amethod for setting standards on the NAEP assessment that
identifies what students should know and be able to do at various points on the composite. For each grade
of each subject, three levels were defined—basic, proficient, and advanced. Based on initial policy
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definitions of these levels, panelists were asked to determine operational descriptions of the levels
appropriate with the content and skills assessed in the assessment. With these descriptions in mind, the
panelists were then asked to rate the assessment items in terms of the expected performance of
marginally acceptable examinees at each of these three levels. These ratings were then mapped onto the
NAEP scale to obtain the achievement level cutpoints for reporting. Further details of the achievement
level setting process for subject areas appear in Appendix | for reading and Appendix J for writing and
civics.

12.5.2 Item Mapping Procedures

In order to map items (questions) to particular points on each subject area scale, aresponse
probability convention had to be adopted that would divide those who had a higher probability of success
from those who had a lower probability. Establishing a response probability convention has an impact on
the mapping of assessment items onto the scales. A lower boundary convention maps the items at lower
points along the scales, and a higher boundary convention maps the same items at higher points along the
scales. The underlying distribution of skillsin the population does not change, but the choice of a
response probability convention does have an impact on the proportion of the student population that is
reported as “able to do” the items on the scales.

Thereis no obvious choice of a point along the probability scale that is clearly superior to any
other point. If the convention were set with a boundary at 50 percent, those above the boundary would be
more likely to get an item right than get it wrong, while those below that boundary would be more likely
to get the item wrong than right. While this convention has some intuitive appeal, it was rejected on the
grounds that having a 50/50 chance of getting the item right shows an insufficient degree of mastery. If
the convention were set with aboundary at 80 percent, students above the criterion would have a high
probability of success with an item. However, many of the students below this criterion show some level
of achievement that would be ignored by such a stringent criterion. In particular, those in the range
between 50 and 80 percent correct would be more likely to get the item right than wrong, yet would not
be in the group described as “able to do” the item.

In a compromise between the 50 percent and the 80 percent conventions, NAEP has adopted two
related response probability conventions: 74 percent for multiple-choice items (to correct for the
possibility of answering correctly by guessing), and 65 percent for constructed-response items (where
guessing is not a factor). These probability conventions were established, in part, based on an intuitive
judgment that they would provide the best picture of students’ knowledge and skills.

Some additional support for the dual conventions adopted by NAEP was provided by Huynh
(1994, 1998). He examined the IRT information provided by items, according to the IRT model used in
scaling NAEP items. Following Bock (1972), Huynh decomposed the item information into that provided
by acorrect response [P;i (¢) « I; (¢)] and that provided by an incorrect response [(1-P (0)) « 1 (6)]. Huynh
showed that the item information provided by a correct response to a constructed-responseitemis
maximized at the point along the scale at which two-thirds of the students get the item correct (for
multiple-choice items with four options, information is maximized at the point at which 75 percent get
the item correct). Maximizing the item information, | (#), rather than the information provided by a
correct response [P (6) « | (£)], would imply an item-mapping criterion closer to 50 percent. Maximizing
just the item information, | (#), takes into account both responses that are correct and those that are
incorrect, however.
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For dichotomously scored items the information function as defined by Birnbaum (1968, p. 463)
is defined for the " item as

(6)- (L735) *Pro(0)[Pu(09) -5 ]’ (12.17)
J Pia(6x)(1-¢)° '

where the notation is the same as that used in Equations (12.1) and (12.2). The item information function
was defined by Samejima (1969) in general for polytomously scored items, and has been derived for
items scaled by the generalized partial credit model (Donoghue, 1993; Muraki, 1993) as (in adightly
different, but equivalent form)

1(6) = (1.7@)2{§li 2Py (0K) - {Eli Py (Hk)}z } (12.18)

i=0

126 OVERVIEW OF THE 1998 NAEP SCALES

Thefollowing IRT scale score analyses were carried out for each grade in the 1998 NAEP
assessment:

+ Reading: Three IRT scales linked back to the 1992 and 1994 main assessments of reading.
These three scales, along with a composite scale, are associated with the 1998 main and state
assessments.

« Writing: A single newly developed IRT scale for each grade for the main and state
assessments of writing.

+ Civics: A single newly developed IRT scale for each grade for the main assessment of civics.

Details are in the following chapters.
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Chapter 13

CONVENTIONSUSED IN HYPOTHESISTESTING
AND REPORTING NAEP RESULTS'

Spencer S Swinton, David S, Freund, and Nancy L. Allen
Educational Testing Service

131 OVERVIEW

Results for the 1998 NAEP assessments were disseminated in several different reports: the NAEP
1998 Reading Report Card for the Nation and the States (Donahue, V oelkl, Campbell, & Mazzeo, 1999),
the NAEP 1998 Writing Report Card for the Nation and the States (Greenwald, Persky, Campbell, &
Mazzeo, 1999), the NAEP 1998 Civics Report Card for the Nation (Lutkus, Weiss, Campbell, Mazzeo,
and Lazer, 1999), and, published only on the web, summary data tables for each report. These reports are
published on the NCES/NAEP web site http://nces.ed.gov/nationsreportcard. Several other reports based
on 1998 NAEP datawill be forthcoming.

The NAEP 1998 Reading Report Card for the Nation and the States, the NAEP 1998 Writing
Report Card for the Nation and the States, and the NAEP 1998 Civics Report Card for the Nation
highlight key assessment results for the nation and summarize results across the jurisdictions
participating in the assessments. These reports contain composite scale score results (e.g., scale score
means) for the nation, for each of the four regions of the country, and for public-school students within
each jurisdiction participating in the state assessments of reading and writing, both overall and by
primary reporting variables. The seven key reporting variables (referred to here as primary reporting
variables) are gender, race/ethnicity, level of parents’ education, Title | participation, eligibility for free
or reduced cost school lunch, type of location, and type of school (public, Catholic schools, other
religious schools, and other private schools). For public-school students, scale score means were reported
for avariety of other subpopulations defined by responses to items from the student, teacher, and school
questionnaires and by school and location demographic variables provided by Westat?. Upcoming reports
will include estimates of scale score means and selected percentiles for specific subgroups of students of
interest in each report.

The second type of summary report is an electronically delivered collection of summary data
tables (available on the NCES/NAEP web site) that contain detailed breakdowns of the scale score data
for each sample according to the responses to the student, teacher, and school questionnaires for the
public-school, nonpublic-school, and combined populations as awhole and for important subgroups of
the public-school population, as defined by the primary reporting variables. There are six sectionsin each
collection of summary data tables:

! Spencer S. Swinton played arole in making decisions about hypothesis-testing methods and procedures and worked with David
S. Freund, who implemented many of the methods and proceduresin computer programs. Nancy L. Allen contributed to the
current version of this chapter.

2 Some of these variables were used by Westat, in developing the sampling frame for the assessment and in drawing the sample
of participating schools.
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Sudent Summary Data Tables break down the composite scale score data according to
the students' responses to questions in the three student questionnaires (common core,
subj ect-specific background, and motivational section) included in the assessment
booklets.

Teacher Summary Data Tables break down the composite scale score data according to
the teachers' responses to questions in teacher questionnaires, where they are available.

School Summary Data Tables break down the composite scale score data according to
the principals (or other administrators') responses to questions in the school
characteristics and policies questionnaire.

Question Summary Data Tables provide the response data (percent of students choosing
each option) for each cognitive item in the assessment.

Achievement-Level Summary Data Tables provide estimates of the percentage of
students at or above each achievement level as well as the percentage of students below
the Basic level.

Percentile Summary Data Tables provide sel ected composite-scale and subscale
percentiles for the public-school, nonpublic-school, and total populations and for the
major demographic subgroups of the national school population.

The production of the Report Cards and the summary data tables required many decisions about
avariety of data analysis and statistical issues. For example, certain categories of the reporting variables
contained limited numbers of examinees. A decision was needed as to what constituted a sufficient
sample size to permit the reliable reporting of subgroup results, and which, if any, estimates were
sufficiently unreliable to need to be “flagged” as a caution to readers. As a second example, the
performance for subgroups of students were compared. A number of inferential rules, based on logical
and statistical considerations, had to be devel oped to ensure that conclusions are adequately supported by
the data from the assessment. Practical comparison procedures were required to control for Type | errors
without paying too large a penalty with respect to the statistical power for detecting real and
substantively interesting differences. Prior to 1998, the Bonferroni procedure (Hochberg, 1988) was the
principal method used by NAEP to protect against Type | error. Currently, a new multiple comparison
criterion, false discovery rate or FDR (Benjamini & Hochberg, 1994), is used. FDR controls the rate of
false rgjections (e.g., 5 false rgjections per 100 rejections), rather than controlling the probability of one
such error (familywise error rate, or FWE), as the Bonferroni procedure does. To implement the use of
the FDR, the 1994 procedure of Benjamini and Hochberg was sel ected.

The purpose of this chapter is to document the major conventions and statistical procedures used
in generating the Report Cards and the summary data tables. Additional details about procedures relevant
to the Report Cards can be found in the text and technical appendices of those reports. Information is
available on the Internet, describing procedures used in creating the summary data tables.

132 MINIMUM SCHOOL AND STUDENT SAMPLE SIZESFOR
REPORTING SUBGROUP RESULTS

In all of the reports, estimates of quantities such as composite and scale score means and
percentages of students indicating particular levels of background variables (as measured in the student,
teacher, and school questionnaires) are reported for the population of studentsin each grade. These
estimates are also reported for certain key subgroups of interest as defined by primary NAEP reporting
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variables. Where possible, NAEP reports results for gender, for five racial/ethnic subgroups (White,
Black, Hispanic, Asian American/Pacific Islander, and American Indian/Alaskan Native), three types of
locations (central cities, urban fringes/large towns, rural/small town areas), four levels of parents
education (did not finish high school, high school graduate, some college, college graduate), Title 1
participation, eligibility for the free or reduced-cost school lunch component of the National School
Lunch Program, and type of school. However, for some regions of the country and sometimes for the
nation as awhole, school and/or student sample sizes were too small for one or more of the categories of
these variables to permit accurate reporting.

A consideration in deciding whether to report an estimated quantity is whether the sampling error
istoo large to permit effective use of the estimates. A second, and equally important, consideration is
whether the standard error estimate that accompanies a statistic is itself sufficiently accurate to inform
potential readers about the reliability of the statistic. The precision of a sample estimate (be it sample
mean or standard error estimate) for a population subgroup from a three-stage sample design (the one
used to select samples for the national assessments) is afunction of the sample size of the subgroup and
of the distribution of that sample across first-stage sampling units (i.e., PSUs in the case of the national
assessments). Hence, both of these factors were used in establishing minimum sample sizes for reporting.

Here a decision was reached to report subgroup results only if the student sample size exceeded
61.2 A design effect of two was assumed for this decision, implying a sample design-based variance twice
that of simple random sampling. This assumption is consistent with previous NAEP experience (Johnson
& Rust, 1992). In carrying out the statistical power calculations when comparing a subgroup to the total
group, it was assumed that the total population sample size is large enough to contribute negligibly to
standard errors. Furthermore, it was required that the students within a subgroup be adequately
distributed across PSUs to alow for reasonably accurate estimation of standard errors. In consultation
with Westat, a decision was reached to publish only those statistics that had standard error estimates
based on five or more degrees of freedom. The same minimum student and PSU sample size restrictions
were applied to proportions and to comparisons of percentages or proportions as well as average scale
scores and comparisons of average scale scores.

13.3 IDENTIFYING ESTIMATES OF STANDARD ERRORSWITH LARGE MEAN
SQUARED ERRORS

As noted above, standard errors of average scale scores, proportions, and percentiles play an
important role in interpreting subgroup results and in comparing the performances of two or more
subgroups. The jackknife standard errors reported by NAEP are statistics whose quality depends on
certain features of the sample from which the estimate is obtained. In certain cases, the mean squared
error* associated with the estimated standard errors may be quite large. This result typically occurred
when the number of students upon which the standard error is based is small or when this group of
students comes from a small number of participating PSUs. The minimum PSU and student sample sizes
that were imposed in most instances suppressed statistics where such problems existed. However, the
possibility remained that some statistics based on sample sizes that exceed the minimum requirements
had standard errors that were not well estimated. Therefore, in the reports, estimated standard errors for
published statistics that are themselves subject to large mean squared errors are followed by the symbol

Wy

3 This number was obtained by determining the sample size necessary to detect an effect size of 0.5 with a probability of 0.8 or
greater.

* The mean squared error of the estimated standard error isdefined as& [ § - 6 J°, where $ isthe estimated standard
error,oisthe “true” standard error, and & is the expectation, or expected value operator.

249



The magnitude of the mean squared error associated with an estimated standard error for the
mean or proportion of a group depends on the coefficient of variation (CV) of the estimated size of the
population group, denoted as N (Cochran, 1977, Section 6.3). The coefficient of variation is estimated
by:

CV(N)= SEI\EIN)

where N is apoint estimate of N and SE(I\]) isthe jackknife standard error (described in Chapter 10 of
this report) of N.

Experience with previous NAEP assessments suggests that when this coefficient exceeds 0.2, the
mean squared error of the estimated standard errors of means and proportions based on samples of this
size may be quite large. (Further discussion of thisissue can be found in Johnson & Rust, 1992.)
Therefore, the standard errors of means and proportions for all subgroups for which the coefficient of
variation of the population size exceeds 0.2 are marked as described above. In the Report Cards and the
summary data tables, statistical tests involving one or more quantities that have standard errors,
confidence intervals, or significance tests so flagged should be interpreted with caution.

134 TREATMENT OF MISSING DATA FROM THE STUDENT, TEACHER,
AND SCHOOL QUESTIONNAIRES

As previously described, responses to the student, teacher, and school questionnaires played a
prominent rolein al reports. Although the return rate on all three types of questionnaire was high,® there
were missing data for each type of questionnaire.

The reported estimated percentages of studentsin the various categories of background
variables, and the estimates of the average scale score of such groups, were based on only those students
for whom data on the background variable were available. In the terminology of Little and Rubin (1987),
the analyses pertaining to a particular background variable presented in the reports are contingent on the
assumption that the data are missing completely at random.®

The estimates of proportions and proficiencies based on “missing completely at random”
assumptions are subject to potential nonresponse bias if, as may be the case, the assumptions are not
correct. The amount of missing datawas small (usually, less than 2%) for most of the variables obtained
from the student, school, and teacher questionnaires. For analyses based on these variables, reported
results are subject to little, if any, nonresponse bias. However, for particular background items in these
guestionnaires, the level of nonresponse was somewhat higher, and so the potential for nonresponse bias
is also somewhat greater. Results for background questions for which more than 10 percent of the
responses were missing should be interpreted with caution.

To analyze the relationships among teachers’ questionnaire responses and their students
achievement, each teacher’ s questionnaire had to be matched to the students who were taught by that
teacher. If a student could not be matched to ateacher, all teacher questionnaire responses are missing for
that student. Lower percentages of students with teacher questionnaire data indicate that there is less

® Information about survey participation rates (both school and student), as well as proportions of students excluded by each
jurisdiction from the assessment, is given in Appendix A. Sampling adjustments intended to account for school and student
nonresponse are described in Chapters 10 and 11.

® The term "missing completely at random" means that the mechanism generating the missing data isindependent of the response
to the particular background items and the scale score.
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certainty about results for variables from the teacher questionnaire. Note that these match rates do not
reflect the additional missing data due to item-level nonresponse. The amount of additional item-level
nonresponse in the returned teacher questionnaires can be found in the summary data tables.

135 HYPOTHESISTESTING CONVENTIONS
13.5.1 Comparing Meansand Proportionsfor Different Groups of Students

Many of the group comparisons explicitly commented on in the reports involved mutually
exclusive sets of students. Examples include comparisons of the average scale score for male and female
students, White and Hispanic students, students attending schools in central city and urban fringe or
large-town locations, students who reported watching six or more hours of television each night, and
students who report watching less than one hour of television each night.

The text in the reports indicate that means or proportions from two groups were different only
when the difference in the point estimates for the groups being compared was statistically significant at
an approximate simultaneous o level of .05. An approximate procedure was used for determining
statistical significance NAEP staff judged to be statistically defensible, as well as being computational ly
tractable. Although all pairs of levels within a variable were tested and reported in the summary data
tables, some text within the reports was developed for only a subset of these comparisons, although the
family size was maintained at that of the original tests. For example, text was included in the reportsto
compare the majority ethnic group and each minority group, but text for all possible comparisons of
groups may not have been included. The procedure used to make statistical testsis described in the
following paragraphs.

Let A be the statistic in question (e.g., amean for group i) and let Sy be the jackknife standard

error of the statistic. The text in the reports identified the means or proportions for groupsi and j as being
different if:

| A - Al o7
\/SE (m) * SAZJ () =

where T,, isthe (1 - o) percentile of thet distribution with degrees of freedom, df, as estimated below,
and c is the number of related comparisons being tested. See the following section (Section 13.5.2) for a
more specific description of multiple comparisons. In cases where group comparisons were treated as
individua units, the value of ¢ was taken as 1, and the test tatistic was equivaent to astandard two-tailed t-
test for independent samples. When c is greater than 1, thistest is based on the Benjamini and Hochberg
(1995) procedure of controlling the FDR, described below.

The procedures in this section assume that the data being compared are from independent
samples. Because of the sampling design in which PSUs, schools, and students within school are
randomly sampled, the data from mutually exclusive sets of students may not be strictly independent.
Therefore, the significance tests employed are, in many cases, only approximate. Another procedure, one
that does not assume independence, could have been conducted. However, that procedureis
computationally burdensome. A comparison of the standard errors using the independence assumption
and the correlated group assumption was made using NAEP data. The estimated standard error of the
difference based on independence assumptions was approximately 10 percent larger than the more
complicated estimate based on correlated groups. In almost every case, the correlation of NAEP data
across groups was positive. Because, in NAEP, significance tests based on assumptions of independent
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samples are only somewhat conservative, the approximate (assuming independence) procedure was used
for most comparisons.

Because of clustering and differential weighting in the sample, the degrees of freedom are less than
for asimple random sample of the same size. The degrees of freedom of thist-test isdefined by a
Satterthwaite (Johnson & Rust, 1992) approximation as follows:

N
(¥s2)
df = <=L
N S4
Z Ak

k=1 df Ay

where N is the number of subgroups involved, and dfa, isasfollows:

(tik —tk)z)z

(tjk —tk)4

N

mM=(am-ZWJ('

Mz | L=

j=1

where mis the number of jackknife replicates (usually 62 in NAEP), t; is the j" replicated estimate for
the mean of a subgroup, and t, is the estimate of the subgroup mean using the overall weights and the
first plausible value.

The number of degrees of freedom for the variance equals the number of independent pieces of
information used to generate the variance. In the case of data from NAEP, the 62 pieces of information
are the squared differences (t; —t,)%, each supplying at most one degree of freedom (regardless of how
many individuals were sampled within PSUs). If some of the squared differences (tj — t)? are much larger
than others, the variance estimate of m, is predominantly estimating the sum of these larger components,
which dominate the remaining terms. The effective degrees of freedom of S, in this case will be nearer

to the number of dominant terms. The estimate df,, reflects these relationships.

The two formul ae above show us that when dek issmall, the degrees of freedom for the t-test, df,

will also be small. Thiswill tend to be the case when only afew PSU pairs have information about
subgroup differences relevant to at-test. It will also be the case when a few PSU pairs have subgroup
differences much larger than other PSU pairs.

The procedures described above were used for testing differences of both means and nonextreme
percentages. The approximation for the test for percentages works best when sample sizes are large, and
the percentages being tested have magnitude relatively close to 50 percent. Statements about group
differences should be interpreted with caution if at least one of the groups being compared is small in
sizeor if “extreme” percentages are being compared.
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Differences in percentages were treated as involving “extreme” percentages if for either
percentage, P:

200
P<Rim=——"—,
Nerr +2
where the effective sample size is
P(100-P)
Nepr = ————, and SE
(Ex)° X

isthe jackknife standard error of P. Similarly, at the other end of the 0 — 100 scale, a percentageis
deemed extreme if 100 — P < Py,.. In either extreme case, the normal approximation to the distribution is
apoor approximation, and the value of P was reported, but no standard error was estimated and hence no
significance tests were conducted.

13.5.2 Multiple Comparison Procedures

Frequently, groups (or families) of comparisons were made and were presented as a single set.
The appropriate text, usually a set of sentences or a paragraph, was selected for inclusion in areport
based on the results for the entire set of comparisons. For example, some reports contain a section that
compared average scale scores for a predetermined group, generally the majority group (in the case of
race/ethnicity, for example, White students) to those obtained by other minority groups. The entire set of
tests was presented in the summary data tables. The procedures described above and the certainty
ascribed to intervals (e.g., a 95 % confidence interval) are based on statistical theory that assumes that
only one confidence interval or test of statistical significance is being performed. However, in some
sections of areport, many different groups are compared (i.e., multiple sets of confidence intervals are
being analyzed). In sets of confidence intervals, statistical theory indicates that certainty associated with
the entire set of intervalsis less than that attributable to each individual comparison from the set. To hold
the significance level for the set of comparisons at a particular level (e.g., .05), adjustments—called
“multiple comparison procedures’—must be made to the methods described in the previous section. One
such procedure, the false discovery rate (FDR) procedure (Benjamini & Hochberg, 1995) was used to
control the certainty level.

Unlike the other multiple comparison procedures (e.g., the Bonferroni procedure) that control the
familywise error rate (i.e., the probability of making even one false rejection in the set of comparisons),
the FDR procedure controls the expected proportion of falsely rejected hypotheses. Furthermore,
familywise procedures are considered conservative for large families of comparisons (Williams, Jones, &
Tukey, 1999). Therefore, the FDR procedure is more suitable for multiple comparisonsin NAEP than
other procedures.

The 1998 assessment is the first time NAEP has used the Benjamini-Hochberg procedure to
maintain FDR for all multiple comparisons. Prior to the 1996 assessment, the Bonferroni procedure was
used for multiple comparisons. In 1996, either the Bonferroni or Benjamini-Hochberg FDR procedure
was used, depending on the testing situation. The Benjamini-Hochberg FDR procedure was used for
large numbers of comparisons (i.e., any comparisons involving all of the states): (a) all pairwise
comparisons of the states; (b) all comparisons of individual statesto the national average; and (c) the
trend for each state, which compared the current mean for the state to the state’ s mean in the previous
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assessment. All other multiple comparisons for the 1996 assessment used the Bonferroni procedure. The
1994 NAEP reading assessments used the Bonferroni procedure exclusively for multiple comparisons.

The Benjamini and Hochberg application of the false discovery rate (FDR) criterion can be
described asfollows. Let q be the number of significance tests made and let P(1) < P(2) <. .. <P(q) be
the ordered significance levels of the q tests, from lowest to highest probability. Let o. be the combined
significance level desired, usually .05 for one-tailed tests (or .025 for two-tailed tests). The procedure
compares P(q) with a, P(g-1) with a (g-1)/q, . . ., P(j) with o;/q, stopping the comparisons with the first j
such that P(j) < o;/q. All tests associated with P(1) , . . ., P(j) are declared significant; all tests associated
with P(j+1) , ..., P, are declared nonsignificant.

13.5.3 Comparing Proportions Within a Group

Certain analyses involved the comparison of proportions. One example was the comparison of
the proportion of students who reported that a parent graduated from college to the proportion of students
who indicated that their parents did not finish high school to determine which proportion was larger.
There are other such proportions of interest in this example, such as the proportion of students with at
least one parent graduating from high school but neither parent graduating from college. For these types
of analyses, NAEP staff determined that the dependencies in the data could not be ignored.

Unlike the case for analyses of the type described in Section 13.5.1, the correlation between the
proportion of students reporting a parent graduated from college and the proportion reporting that their
parents did not finish high school islikely to be negative and large. For a particular sample of students, it
islikely that the higher the proportion of students reporting “at least one parent graduated from college’
is, the lower the proportion of students reporting “neither parent graduated from high school” will be. A
negative dependence will result in underestimates of the standard error if the estimation is based on
independence assumptions (asis the case for the procedures described in Section 13.5.1). Such
underestimation can result in an unacceptably large number of “nonsignificant” differences being
identified as significant.

The procedures of Section 13.5.1 were modified for analyses that involved comparisons of
proportions within a group. The modification involved using a jackknife method for obtaining the
standard error of the difference in dependent proportions. The standard error of the differencein
proportions was obtained by first obtaining a separate estimate of the difference in question for each
jackknife replicate (using the first plausible value only) then taking the standard deviation of the set of
replicate estimates as the estimate. The procedures used for proportions within a group differed from the
procedures of Section 13.5.1 only with respect to estimating the standard error of the difference; all other
aspects of the procedures were identical.
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