A

Appendix A

The NAEP 2000 Science Assessment

The design of the NAEP 2000 science assessment followed the guidelines provided in the framework developed for the 1996 assessment. While maintaining some conceptual continuity with the NAEP 1990 science assessment, the 1996 framework took into account the current reforms in science education, as well as documents such as the science framework used for the 1991 International Assessment of Educational Progress. In addition, the Framework Steering Committee recommended that a variety of strategies be used for assessing students' performance. These included:

- performance tasks that allow students to manipulate physical objects and draw scientific understanding from the materials before them;
- constructed-response questions that provide insight into students' levels of understanding and ability to communicate in the sciences as well as their ability to generate, rather than simply recognize, information related to scientific concepts and their interconnections; and
- multiple-choice questions that probe students' conceptual understanding and ability to connect ideas in a scientifically sound way.
Samples of each type of task and question are available in the "NAEP Questions" section of the NAEP web site http://nces.ed.gov/nationsreportcard. The framework for the 1996 and 2000 science assessments is represented as a matrix with two dimensions: 1) fields of science (Earth,
physical, and life) and 2) elements of knowing and doing science (conceptual understanding, scientific investigation, and practical reasoning). The fields-of-science dimension is used to create three subscales at each grade. Subscales are not created based on the elements of knowing and doing science. In addition there are two overarching domains that describe science: 1) nature of science and 2) themes. [These overarching domains provide additional
guidance to the development of assessment questions and tasks, ensuring that the assessment also integrates the three fields of science rather than only represents three separate content areas.] Figures A.1a, A.1b, and A.1c describe, respectively, the fields of science, the elements of knowing and doing science, and the overarching domains that guided the development of the 1996 and 2000 science assessments.

Conceptual Understanding

Conceptual understanding includes the body of scientific knowledge that students draw upon when conducting a scientific investigation or engaging in practical reasoning. Essential scientific concepts involve a variety of information including facts and events the student learns from science instruction and experiences with the natural environment and scientific concepts, principles, laws, and theories that scientists use to explain and predict observations of the natural world.

Scientific Scientific investigation probes students' abilities to use the tools of science, Investigation

Practical
Reasoning including both cognitive and laboratory tools. Students should be able to acquire new information, plan appropriate investigations, use a variety of scientific tools, and communicate the results of their investigations.

Practical reasoning assesses students' ability to use and apply science understanding in new, real-world applications.

SOURCE: National Assessment Governing Board. (2000). Science Framework for the 1996 and 2000 National Assessment of Educational Progress. Washington, DC: Author.

The Nature of
Science

Themes

The nature of science incorporates the historical development of science and technology, the habits of mind that characterize these fields, and methods of inquiry and problem-solving. It also encompasses the nature of technology and includes issues of design, application of science to real-world problems, and tradeoffs or compromises that need to be made.
Themes are the "big ideas" of science that transcend the various scientific disciplines and enable students to consider problems with global implications. The NAEP science assessment focuses on three themes: systems, models, and patterns of change.

- Systems are complete, predictable cycles, structures, or processes occurring in natural phenomena. Students should understand that a system is an artificial construction created to represent or explain a natural occurrence. Students should be able to identify and define the system boundaries, identify the components and their interrelationships, and note the inputs and outputs to the system.
- Models of objects and events in nature are ways to understand complex or abstract phenomena. As such they have limits and involve simplifying assumptions but also possess generalizability and often predictive power. Students need to be able to distinguish the idealized model from the phenomenon itself and to understand the limitations and simplified assumptions that underlie scientific models.
- Patterns of change require students to recognize patterns of similarity and differences and to recognize how these patterns change over time. In addition, students should be able to remember common types of patterns and transfer their understanding of a familiar pattern of change to a new and unfamiliar one.

Table A.1a summarizes the distribution of assessment time across the three fields of science-Earth, physical, and life. These fields provide the basis for the content area scales. Care was taken to ensure congruence between the percentages used in the
assessment (actual) and those indicated in the assessment specifications (target). The classification of items by field of science was overseen and approved by a committee of expert science educators.

Table A.1a

Distribution of assessment time by field of science: 1996 and 2000

| | Earth | | | Physical | | | Life | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4 | Target | Actual
 1996 | Actual
 2000 | Target | Actual
 1996 | Actual
 2000 | Target | Actual
 1996 | Actual
 2000 |
| Grade 8 | 30% | 33% | 33% | 33% | 34% | 33% | 33% | 33% | 33% |
| Grade 12 | 33% | 31% | 30% | 30% | 34% | 40% | 40% | 35% | |

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table A. 1 b shows the distribution of assessment time across the second dimension: knowing and doing science. This dimension includes conceptual understanding, scientific investigation, and practical reasoning. As with the above classification of items, an expert committee of science educators oversaw the categorization of items by this dimension. In both this table
and the table above, variation is evident across the two assessment years in percentages of questions within categories. Such variation is the result of releasing several blocks of questions from the 1996 assessment and replacing them with newly developed questions in 2000. In addition, one of the four hands-on blocks administered at each grade in 1996 was released,

Table A.1b

Distribution of assessment time by knowing and doing science: 1996 and 2000

	Conceptual understanding			Scientific investigation			Practical reasoning		
	Target	Actual 1996	Actual 2000	Target	Actual 1996	Actual 2000	Target	Actual 1996	Actual 2000
Grade 4	45\%	45\%	56\%	45\%	38\%	27\%	10\%	17\%	17\%
Grade 8	45\%	45\%	59\%	30\%	29\%	18\%	25\%	26\%	24\%
Grade 12	45\%	44\%	56\%	30\%	28\%	24\%	25\%	28\%	20\%

[^0]and no replacement block was developed for 2000 . This resulted in a smaller proportion of scientific investigation questions at each grade in 2000 than in 1996. The reporting of changes in student performance is not affected by these variations because trend reporting is based upon the underlying scale, which uses the common blocks (i.e., those used in both assessment years), but maintains its stability even if some blocks are dropped or replaced.

The Assessment Design

One-half of the students who participated in the science assessment received a booklet containing six sections; the other half, five sections. All the booklets contained either two or three sections that were blocks of cognitive questions assessing knowledge and skills outlined in the framework. In addition, each booklet contained two sections that were sets of background questions. Each booklet had two cognitive sections containing only paper-and-pencil questions. The booklets with three blocks of cognitive questions also contained a hands-on task with related paper-and-pencil questions. The booklets with two blocks of cognitive questions did not contain a hands-on task. Thus, one-half of the students who participated in the assessment performed a hands-on task.

At each grade level there were 14 different sections or blocks of cognitive questions usually consisting of both mul-tiple-choice and constructed-response questions. ${ }^{1}$ Short constructed-response questions required a few words or a sentence or two for an answer (e.g., briefly
stating why a potted plant can survive in a sealed container much longer than a mouse), while extended constructedresponse questions generally required a paragraph or more (e.g., outlining an experiment to find the density of a metal ring). Some extended constructed-response questions also required diagrams, graphs, or calculations. It was expected that students could adequately answer the short con-structed-response questions in about two to three minutes and the extended con-structed-response questions in about five minutes.

Other features were built into the blocks of questions. Three of the blocks at each grade level were hands-on tasks where students were given a set of equipment and asked to conduct an investigation and answer questions relating to the investigation. One-half of the students conducted a hands-on task that was always presented as the third cognitive section. A second feature was the inclusion of theme blocks at each grade level-one assessing systems, one assessing models, and one assessing patterns of change. A theme block contains a set of questions that all focus on a particular theme, and requires students to engage more thoroughly in the topics related to that theme. For example, students were asked to make drawings and graphs based on data given about the solar system and then answer a number of questions. Theme blocks were placed randomly in the student booklets, but did not appear in every booklet. No student received more than one theme block.

[^1]The data in table A. 2 display the number of questions by type and by grade level for the 1996 and 2000 assessments. Some of these questions were used at more than one grade level; thus, the sum of the questions that appear at each grade level is greater than the total number of unique questions. The total number of questions at each grade level in 2000 is up from 1996. This increase was possible because more mul-tiple-choice questions that take less time were used in 2000 . This increase in mul-tiple-choice questions across the entire assessment was due to the fact that the blocks developed for 2000 to replace those released from the 1996 assessment contained a greater proportion of multiplechoice questions. In addition, as mentioned earlier, one of four hands-on blocks at each grade in 1996 was released and not replaced for 2000. These hands-on blocks contain only constructed-response ques-
tions. As a consequence, the total number of constructed-response questions in 2000 was less than that in 1996. It should be noted that these variations across years do not affect the ability of NAEP to report trends in students' performance across years. Trend reporting is based on those blocks that were common across the two years.

The assessment design allowed for maximum coverage of science content at grades 4,8 , and 12 , while minimizing the time burden for any one student. This was accomplished through the use of matrix sampling of questions, in which representative samples of students took various portions of the entire pool of assessment questions. Individual students were required to take only a small portion of the assessment, but the aggregate results across the entire assessment allowed for broad reporting of science abilities for the targeted population.

Table A. 2

Distribution of questions administered by question type: 1996 and 2000

		Grade 4 only		Grade 4 and 8 overlap		Grade 8 only		Grade 8 and 12 overlap		Grade 12 only		Total by grade	
		1996	2000	1996	2000	1996	2000	1996	2000	1996	2000	1996	2000
	MC ${ }^{1}$	42	62	9	9							51	71
Grade 4	SCR ${ }^{2}$	57	49	16	16							73	65
	ECR^{3}	12	3	4	4							16	7
Grade 8	MC ${ }^{1}$			9	9	44	65	21	21			74	95
	SCR ${ }^{2}$			16	16	58	49	26	26			100	91
	ECR ${ }^{3}$			4	4	13	3	3	3			20	10
Grade 12	MC ${ }^{1}$							21	21	49	70	70	91
	SCR ${ }^{2}$							26	26	62	57	88	83
	ECR^{3}							3	3	27	18	30	21

[^2]In addition to matrix sampling, the Balanced Incomplete Block (BIB) design also balances the order of presentation of the blocks of questions, except for the hands-on blocks, which always appear in position three of a booklet. Furthermore, the design was set up to ensure that no student answered more than one themebased block (though some students did not receive any). This design allows for some balancing of the impact of context and fatigue effects to be measured and reported, but makes allowance for the difficulties and disruption of administering hands-on blocks. It also takes into account the limited breadth of content coverage included in the theme blocks. ${ }^{2}$

Each booklet in the assessment also included two sections of student background questions. The first section, consisting of general background questions, asked students about their race/ethnicity, mother's and father's level of education, reading materials in the home, homework, school attendance, and, at grade 12 , academic expectations. ${ }^{3}$ The second section asked students questions about their science classroom activities (e.g., hands-on exercises, courses taken, and use of specialized resources such as computers).

In addition to the student assessment booklets, four other instruments provided data relating to the assessment: a teacher questionnaire, a school characteristics and policy questionnaire, a questionnaire designed to gather information about students with disabilities (SD) and/or limited English proficient (LEP) students, and a department chair/lead teacher questionnaire at grade 12.

The teacher questionnaire was administered to the science teachers of the fourthand eighth-grade students participating in the assessment. The questionnaire consisted of three sections and took approximately 20 minutes to complete. The first section focused on the teacher's general background and experience; the second section, on the teacher's background related to science; and the third section, on classroom information about science instruction.

The school characteristics and policy questionnaire was given to the principal or other administrator in each participating school and took about 20 minutes to complete. The questions asked about school policies, programs, facilities, and the demographic composition and background of the student body.

The SD and/or LEP student questionnaire was completed by a school staff member knowledgeable about those students who were selected to participate in the assessment and who were identified as: 1) having an Individualized Education Program (IEP) or equivalent program (for reasons other than being gifted and talented) or 2) being limited English proficient (LEP). A questionnaire was completed for each SD and/or LEP student sampled regardless of whether the student participated in the assessment. Each questionnaire took approximately three minutes to complete and asked about the student and the special programs in which he or she participated.

2 For further details on the booklet design, see the forthcoming NAEP 2000 Technical Report.
3 Some questions, such as those referring to parental education, were not asked of fourth-graders.

The department chair/lead teacher questionnaire was given to the high school science department chair or lead teacher in each participating high school. Previous to the 2000 assessment, NAEP had not attempted to collect information from teachers of twelfth-grade science, partly due to the difficulty in identifying the science teachers of assessed twelfth-graders. The questionnaire took about 20 minutes to complete. The questions asked about the certification of the teachers, science courses offered, use of computers in the classroom, teacher preparation time, and frequency of textbook replacement. As this was NAEP's first attempt to collect information from department chairs or lead teachers, an official report of those data is not currently planned. The data are available on NAEP's web site at http://nces.ed.gov/nationsreportcard through the data tool function.

National and State Samples

National Sample

The national results presented in this report are based on a nationally representative probability sample of fourth-, eighth-, and twelfth-grade students. ${ }^{4}$ The sample was chosen using a multistage design that involved sampling students from selected schools within selected geographic areas across the country. The sample design had the following stages:

1) selection of geographic areas (a county, group of counties, or metropolitan statistical area);
2) selection of schools (public and nonpublic) within the selected areas; and
3) selection of students within selected schools.

Each selected school that participated in the assessment and each student assessed represents a portion of the population of interest. Sampling weights are needed to make valid inferences between the student samples and the respective populations from which they were drawn. Sampling weights account for disproportionate representation due to the oversampling of students who attend schools with high concentrations of black and/or Hispanic students and students who attend nonpublic schools. Among other uses, sampling weights also account for lower sampling rates for very small schools and are used to adjust for school and student nonresponse. ${ }^{5}$

A special feature of the 1996 and 2000 national assessments of science was the collection of data from samples of students where assessment accommodations for special-needs students were not permitted and from samples of students where accommodations for special-needs students were permitted. NAEP inclusion rules were applied, and accommodations were offered only when a student had an Individualized Education Program (IEP) because of a disability and/or was identified as being a limited English proficient student (LEP); all other students were asked to participate in the assessment under standard conditions.

[^3]Table A. 3 shows the number of students included in the national samples for the NAEP science assessments at each grade level. For the 1996 and 2000 assessments, the table includes the number of students in the sample where accommodations were not permitted and the number of students in the sample where accommodations were permitted. The table shows that the same non-SD and/or LEP students were
included in both samples in 2000; only the SD and/or LEP students differed between the two samples. The 1996 design differed somewhat, in that the two samples did not include all the same non-SD and/or LEP students. As indicated in the table, additional non-SD and/or LEP students were included in the accommodations-permitted sample.

Table A. 3

National student sample size, grades 4,8, and 12 (public and nonpublic schools combined):1996 and 2000

	1996		2000	
Grade 4	Accommodations-not-permitted sample	Accommodationspermitted sample	Accommodations-not-permitted sample	Accommodationspermitted sample
Non-SD and/or LEP students assessed	d 6,704	3,780*	15,068	
SD and/or LEP students assessed without accommodations	601	319	652	750
SD and/or LEP students assessed with accommodations	NA	174	NA	279
Total students assessed	7,305	10,977	15,720	16,097
Grade 8				
Non-SD and/or LEP students assessed	d 7,122	3,670*	14,905	
SD and/or LEP students assessed without accommodations	652	364	882	798
SD and/or LEP students assessed with accommodations	NA	163	NA	252
Total students assessed	7,774	11,319	15,787	15,955
Grade 12			14,555	
Non-SD and/or LEP students assessed	d 7,128	3,621*		
SD and/or LEP students assessed without accommodations	409	285	554	607
SD and/or LEP students assessed with accommodations	NA	75	NA	163
Total students assessed	7,537	11,109	15,109	15,325

[^4]Table A. 4 provides a summary of the national school and student participation rates for the science assessment samples where accommodations were not permitted and where accommodations were permitted. Participation rates are presented for public and nonpublic schools, individually and combined. The first rate is the weighted percentage of schools participating in the assessment before substitution of demographically similar schools. ${ }^{6}$ This rate is based only on the sample of schools that was initially selected for the assessment. The numerator of this rate is the sum of the estimated number of students represented by each initially selected school that participated in the assessment. The denominator is the sum of the estimated number of students represented by each of the initially selected schools that had eligible students enrolled.

The second school participation rate is the weighted participation rate after substitution. The numerator of this rate is the sum of the estimated number of students represented by each of the participating schools, whether originally selected or selected as a substitute for a school that chose not to participate. The denominator is the sum of the estimated number of students represented by each of the initially selected schools that had eligible students enrolled (this is the same as that for the weighted participation rate for the sample of schools before substitution). The denominator for these two rates is an estimate
of the number of students eligible for the assessment, from all schools in the nation with eligible students enrolled. Because of the common denominators, the weighted participation rate after substitution is at least as great as the weighted participation rate before substitution.

Also presented in table A. 4 are weighted student participation rates. The numerator of this rate is the sum across all students assessed (in either an initial session or a makeup session) of the number of students that each represents. The denominator of this rate is the sum of the number of students represented in the sample, across all eligible sampled students in participating schools. The overall participation rate is calculated as the product of the weighted percentage of school participation before (or after) substitution, and the weighted percentage of student participation after makeup sessions.

For the grade 12 national sample, where school and student response rates did not meet NCES standards, an extensive analysis was conducted that examined, among other factors, the potential for nonresponse bias at both the school and student level. No evidence of any significant potential for either school or student nonresponse bias was found. Results of these analyses, as well as nonresponse bias analyses for the grade 4 and grade 8 national samples, will be included in the forthcoming NAEP 2000 Technical Report.

6 The initial base sampling weights were used in weighting the percentages of participating schools and students. An attempt was made to preselect (before field processes began) a maximum of two substitute schools for each sampled public school (one in-district and one out-of-district) and each sampled Catholic school, and one for each sampled nonpublic school (other than Catholic). To minimize bias, a substitute school resembled the original selection as much as possible on affiliation, estimated number of grade-eligible students, and minority composition.

Table A. 4

National school and student participation rates for public schools, nonpublic schools, and public and nonpublic schools combined, grades 4, 8, and 12: 2000

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

State Samples

The results of the 2000 state assessment program in science provided in this report are based on state-level samples of fourthand eighth-grade public school students independent of the national samples. The samples were selected using a two-stage sample design that first selected schools within participating jurisdictions and then students within schools. As with the national samples, the jurisdiction samples
were weighted to allow for valid inferences about the populations of interest. Tables A.5a and A.5b contain the unweighted number of participating schools and students, as well as weighted school and student participation rates for state samples where accommodations were not permitted and where accommodations were permitted. Participation rates for the states were calculated the same way rates were computed for the nation.

Table A.5a

State school and student participation rates, grade 4 (public schools only): 2000

	Weighted	school partid	ticipation		les where were not	accommoda permitted	tions		es where were pe	accommoda ermitted	
						Overall partic	icipation rate			Overall part	ipation rate
	Percentage before substitution	Percentage after substitution	Total number of schools	Weighted percentage student participation	Total number of students assessed	Before substitution	After substitution	Weighted percentage student participation	Total number of students assessed	Before substitution	After substitution
Nation	85	88	414	96	9,144	81	85	95	9,484	81	84
Alabama	87	94	109	96	2,526	83	91	96	2,552	83	91
Arizona	87	87	95	93	2,080	81	81	93	2,068	81	81
Arkansas	85	85	93	95	2,175	81	81	95	2,214	81	81
California ${ }^{\dagger}$	76	76	81	94	1,682	72	72	94	1,714	71	71
Connecticut	100	100	107	96	2,493	96	96	95	2,550	95	95
Georgia	99	99	107	95	2,640	94	94	94	2,687	94	94
Hawaii	98	98	106	95	2,425	94	94	95	2,439	93	93
Idaho ${ }^{+}$	75	75	78	95	1,717	71	71	95	1,750	71	71
Illinois ${ }^{\dagger}$	73	73	77	95	1,596	70	70	95	1,671	70	70
Indiana ${ }^{\text { }}$	70	70	78	95	1,812	66	66	95	1,870	67	67
lowa ${ }^{\dagger}$	71	71	89	96	1,887	68	68	95	1,951	67	67
Kentucky	92	94	105	95	2,248	87	89	95	2,311	87	89
Louisiana	100	100	108	95	2,452	95	95	95	2,538	95	95
Maine ${ }^{\text { }}$	85	85	107	95	2,094	81	81	94	2,184	81	81
Maryland	100	100	110	95	2,648	95	95	94	2,737	94	94
Massachusetts	99	99	106	95	2,274	94	94	95	2,351	94	94
Michigan ${ }^{\text {+ }}$	71	83	83	94	1,875	67	78	94	1,922	67	78
Minnesota ${ }^{\dagger}$	83	83	78	95	1,853	79	79	95	1,894	78	78
Mississippi	98	98	106	95	2,776	93	93	95	2,799	93	93
Missouri	96	96	103	95	2,367	91	91	94	2,473	91	91
Montana ${ }^{\text { }}$	76	77	67	95	1,176	72	74	95	1,201	72	74
Nebraska	96	96	73	94	1,289	90	90	95	1,315	91	91
Nevada	100	100	109	94	2,526	94	94	94	2,619	94	94
New Mexico	93	93	98	94	1,895	87	87	94	1,999	87	87
New York ${ }^{\text { }}$	72	72	79	93	1,764	67	67	93	1,848	67	67
North Carolina	100	100	108	95	2,374	95	95	95	2,482	95	95
North Dakota	89	89	129	96	2,338	86	86	97	2,400	86	86
Ohio ${ }^{\dagger}$	82	82	85	93	1,887	76	76	93	1,922	76	76
Oklahoma	99	99	120	95	2,377	93	93	94	2,475	93	93
Oregon ${ }^{\dagger}$	73	74	79	94	1,625	69	70	95	1,686	69	70
Rhode Island	100	100	110	95	2,395	95	95	95	2,500	95	95
South Carolina	97	97	103	96	2,448	93	93	96	2,495	93	93
Tennessee	97	97	105	95	2,496	92	92	95	2,522	92	92
Texas	97	99	100	96	2,125	93	95	96	2,229	93	95
Utah	100	100	110	95	2,652	95	95	95	2,694	95	95
Vermont ${ }^{\dagger}$	75	75	66	95	1,237	71	71	95	1,312	71	71
Virginia	100	100	108	96	2,502	96	96	96	2,615	96	96
West Virginia	100	100	126	95	2,522	95	95	95	2,639	95	95
Wisconsin ${ }^{\dagger}$	65	67	69	95	1,393	62	64	96	1,474	62	64
Wyoming	100	100	93	95	1,745	95	95	95	1,821	95	95
Other Jurisdictions											
American Samoa	100	100	17	93	453	93	93	93	475	93	93
DDESS	100	100	39	95	1,295	95	95	96	1,300	96	96
DoDDS	100	100	84	95	2,790	95	95	96	2,825	96	96
Guam	96	96	23	95	996	90	90	95	1,064	91	91
Virgin Islands	100	100	22	96	690	96	96	96	698	96	96

† Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table A.5b

State school and student participation rates, grade 8 (public schools only): 2000

	Weighted school participation			Samples where accommodations were not permitted				Samples where accommodations were permitted			
	$\begin{aligned} & \text { Percentage } \\ & \text { before } \\ & \text { substitution } \end{aligned}$	Percentage after substitution	Total number of schools	Weighted percentage student participation	Total number of students assessed	Overall participation rate		Weighted percentage student participation	Total number of students assessed	Overall participation rate	
						$\begin{aligned} & \text { Before } \\ & \text { substitution } \end{aligned}$	$\begin{gathered} \text { After } \\ \text { substitution } \end{gathered}$			$\begin{gathered} \text { Before } \\ \text { substitution } \end{gathered}$	$\begin{gathered} \text { After } \\ \text { substitution } \end{gathered}$
Nation	83	85	385	92	9,443	76	78	91	9,617	76	78
Alabama	82	92	102	94	2,400	77	86	93	2,382	77	86
Arizona ${ }^{\dagger}$	76	76	80	91	1,783	69	69	91	1,822	69	69
Arkansas	87	87	92	92	2,115	80	80	92	2,140	80	80
California ${ }^{\dagger}$	72	72	76	93	1,650	67	67	93	1,723	67	67
Connecticut	100	100	104	91	2,506	91	91	91	2,551	91	91
Georgia	99	99	102	92	2,550	91	91	92	2,578	91	91
Hawaii	91	91	50	90	2,268	82	82	91	2,285	83	83
Idaho ${ }^{+}$	78	78	63	93	1,973	73	73	93	2,003	73	73
Illinois \dagger	75	75	80	94	1,753	70	70	93	1,808	70	70
Indiana ${ }^{\dagger}$	73	73	76	93	1,878	68	68	93	1,904	68	68
Kentucky	94	95	96	94	2,303	89	90	94	2,383	89	90
Louisiana	100	100	104	91	2,373	91	91	90	2,393	90	90
Maine ${ }^{\dagger}$	83	85	86	94	2,156	78	79	94	2,254	78	79
Maryland	97	97	103	89	2,336	86	86	89	2,434	87	87
Massachusetts	99	99	99	93	2,277	92	92	92	2,389	91	91
Michigan ${ }^{\dagger}$	72	81	86	91	2,024	65	74	91	2,047	65	73
Minnesota ${ }^{\dagger}$	73	73	59	92	1,435	68	68	92	1,458	68	68
Mississippi	98	98	101	93	2,495	91	91	93	2,514	91	91
Missouri	92	94	104	93	2,320	86	88	93	2,415	86	87
Montana ${ }^{+}$	73	74	62	92	1,692	68	69	93	1,745	68	69
Nebraska	98	98	87	91	1,898	90	90	90	1,863	89	89
Nevada	100	100	64	92	2,694	92	92	91	2,733	91	91
New Mexico	91	91	85	89	1,903	81	81	89	1,981	81	82
New York ${ }^{\dagger}$	71	71	74	89	1,616	63	63	89	1,697	63	63
North Carolina	98	98	103	92	2,342	90	90	91	2,452	90	90
North Dakota	91	91	93	93	2,194	84	84	92	2,221	84	84
Ohio	91	91	88	92	2,122	83	83	91	2,169	83	83
Oklahoma	100	100	114	92	2,452	92	92	93	2,515	93	93
Oregon ${ }^{\text {+ }}$	74	74	78	90	1,751	67	67	90	1,780	67	67
Rhode Island	100	100	52	91	2,360	91	91	90	2,440	90	90
South Carolina	91	92	95	93	2,298	85	86	93	2,336	85	86
Tennessee	90	92	97	91	2,227	82	83	91	2,257	82	84
Texas	91	94	100	93	2,302	85	88	92	2,331	84	87
Utah	100	100	95	92	2,446	92	92	92	2,475	92	92
Vermont ${ }^{\text {+ }}$	80	80	74	93	1,966	74	74	92	2,021	74	74
Virginia	100	100	105	91	2,435	91	91	90	2,508	90	90
West Virginia	100	100	102	93	2,436	93	93	92	2,567	92	92
Wisconsin ${ }^{\dagger}$	66	75	80	91	1,811	61	68	91	1,883	60	68
Wyoming	100	100	64	93	2,560	93	93	93	2,575	93	93
Other Jurisdictions											
American Samoa	96	96	16	97	445	93	93	97	471	93	93
DDESS	100	100	14	94	650	94	94	95	701	95	95
DoDDS	100	100	53	94	1,962	94	94	94	1,999	94	94
Guam	100	100	7	90	945	90	90	90	921	90	90
Virgin Islands ${ }^{\dagger}$	100	100	7	90	606	90	90	89	619	89	89

[^5]Asian/Pacific Islander Samples
National scale score and achievement-level results for fourth-grade Asian/Pacific Islander students in 2000 are not reported. Table A. 6 contains average science scale score estimates, and their standard errors, for the nation and for the Asian/Pacific Islander subgroup for the 1996 and 2000 assessment years. In 2000, the average scale score for Asian/Pacific Islanders at grade 4 was 8 points higher than in 1996. However, this cross-year difference was not statistically significant.

It is important to note that all NAEP results are estimates and are subject to some degree of sampling variability. If different samples of schools or students had been obtained, results for some subgroups would be higher than reported here and some would be lower. In most subgroups, particularly large subgroups or subgroups for which special sampling procedures are employed, estimates of performance are
likely to remain similar from one sample to another. However, the national population of Asian/Pacific Islander students is small (about 3 percent of the national population), heterogeneous with respect to academic achievement, and highly clustered in certain locations and schools. These factors are associated with large sampling variability in survey results and are reflected in the large standard errors associated with performance estimates for this subgroup. Furthermore, the sampling plan for the national assessment does not include explicit stratification procedures designed to mitigate these factors. The occurrence of the large, but statistically nonsignificant, change in the 2000 grade 4 Asian/Pacific Islander results was a likely consequence of these factors: 1) the heterogeneous nature of the Asian/Pacific Islander population; 2) the current NAEP sampling design; and 3) the sample sizes that were assessed.

Table A. 6

Average science scale scores for the Asian/Pacific Islander subgroup, grade 4 (public and nonpublic schools combined): 1996 and 2000

	1996		2000	
All students at grade 4	Percentage	Average score	Percentage	Average score
Asian/ Pacific Islander at grade 4	100	$150(0.8)$	100	$150(0.7)$

NOTE: The standard errors of the estimated percentages and average scale scores appear in parentheses.
Results are based on administration procedures that did not permit accommodations.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Standards for State Sample Participation and Reporting of Results

In carrying out the 2000 state assessment program, the National Center for Education Statistics (NCES) established participation rate standards that jurisdictions were required to meet in order for their results to be reported. NCES also established additional standards that re-
quired the annotation of published results for jurisdictions whose sample participation rates were low enough to raise concerns about their representativeness. The NCES guidelines used to report results in the state assessments, and the guidelines for notation when there is some risk of nonresponse bias in the reported results, are presented in this section.

Guideline 1

The publication of NAEP results

The conditions that will result in the publication of a jurisdiction's results are presented below.

Guideline 1-Publication of Public School Results

A jurisdiction will have its public school results published in the 2000 NAEP Science results (or in other reports that include all state-level results) if and only if its weighted participation rate for the initial sample of public schools is greater than or equal to 70 percent. Similarly, a jurisdiction will receive a separate NAEP state report if and only if its weighted participation rate for the initial sample of public schools is greater than or equal to 70 percent.

Discussion: If a jurisdiction's public school participation rate for the initial sample of schools is below 70 percent, there is a substantial possibility that bias will be introduced into the assessment results. This possibility remains even after making statistical adjustments to compensate for school nonparticipation. There remains the likelihood that, in aggregate, the substitute schools are sufficiently dissimilar from the originals that they are replacing and represent too great a proportion of the population to discount such a difference. Similarly, the assumptions underlying the use of statistical adjustments to compensate for nonparticipation are likely to be significantly violated if the initial response rate falls below the 70 percent level. Guideline 1 takes this into consideration. This guideline is congruent with current NAGB policy, which requires that data for jurisdictions that do not have a 70 percent before-substitution participation rate be reported "in a different format," and with the Education Information Advisory Committee (EIAC) resolution, which calls for data from such jurisdictions not to be published.

The following guidelines concerning school and student participation rates in the NAEP state assessment program were established to address four significant ways in which nonresponse bias could be introduced into the jurisdiction sample estimates. Presented on the following pages
are the conditions that will result in a jurisdiction's receiving a notation in the 2000 reports. Note that in order for a jurisdiction's results to be published with no notations, that jurisdiction must satisfy all guidelines.

Guideline 2

Reporting school and student participation rates with possible bias due to school nonresponse

Guideline 2-Notation for Overall Public School Participation Rate

A jurisdiction that meets Guideline 1 will receive a notation if its weighted participation rate for the initial sample of public schools was below 85 percent, and the weighted public school participation rate after substitution was below 90 percent.
Discussion: For jurisdictions that did not use substitute schools, the participation rates are based on participating schools from the original sample. In these situations, the NCES standards specify weighted school participation rates of at least 85 percent to guard against potential bias due to school nonresponse. Thus the first part of these guidelines, referring to the weighted school participation rate for the initial sample of schools, is in direct accordance with NCES standards.
To help ensure adequate sample representation for each jurisdiction participating in the NAEP 2000 state assessments, NAEP provided substitutes for nonparticipating public schools. For jurisdictions that used substitute schools, the assessment results will be based on the student data from all schools participating from both the original sample and the list of substitutes (unless both an initial school and its substitute eventually participated, in which case only the data from the initial school will be used).
The NCES standards do not explicitly address the use of substitute schools to replace initially selected schools that decide not to participate in the assessment. However, considerable technical consideration was given to this issue. Even though the characteristics of the substitute schools were matched as closely as possible to the characteristics of the initially selected schools, substitution does not entirely eliminate bias due to the nonparticipation of initially selected schools. Thus, for the weighted school participation rates including substitute schools, the guidelines were set at 90 percent.
If a jurisdiction meets either standard (i.e., 85 percent or higher prior to substitution or 90 percent or higher after substitution), there will be no notation for the relevant overall school participation rate.

Guideline 3

Important segments of the jurisdiction's student population that must be adequately represented to avoid possible nonresponse bias

Guideline 3-Notation for Strata-Specific Public School Participation Rates

A jurisdiction that is not already receiving a notation under Guideline 2 will receive a notation if the sample of public schools included a class of schools with similar characteristics that had a weighted participation rate (after substitution) of below 80 percent, and from which the nonparticipating schools together accounted for more than five percent of the jurisdiction's total weighted sample of public schools. The classes of schools from each of which a jurisdiction needed minimum school participation levels were determined by degree of urbanization, minority enrollment, and median household income of the area in which the school is located.
Discussion: The NCES standards specify that attention should be given to the representativeness of the sample coverage. Thus, if some important segment of the jurisdiction's population is not adequately represented, it is of concern, regardless of the overall participation rate.
If nonparticipating schools are concentrated within a particular class of schools, the potential for substantial bias remains, even if the overall level of school participation appears to be satisfactory. Nonresponse adjustment cells for public schools have been formed within each jurisdiction, and the schools within each cell are similar with respect to minority enrollment, degree of urbanization, and/or median household income, as appropriate for each jurisdiction.

If the weighted response rate, after substitution, for a single adjustment cell falls below 80 percent, and more than five percent (weighted) of the sampled schools are nonparticipants from such a cell, the potential for nonresponse bias is too great. This guideline is based on the NCES standard for stratum-specific school response rates.

Guideline 4

Possible student nonresponse bias

Guideline 4-Notation for Overall Student Participation Rate in Public Schools
A jurisdiction that meets Guideline 1 will receive a notation if the weighted student response rate within participating public schools was below 85 percent.
Discussion: This guideline follows the NCES standard of 85 percent for overall student participation rates. The weighted student participation rate is based on all eligible students from initially selected or substitute schools who participated in the assessment in either an initial session or a makeup session. If the rate falls below 85 percent, the potential for bias due to students' nonresponse is too great.

Guideline 5

Possible nonresponse bias from inadequately represented strata

Guideline 5-Notation for Strata-Specific Student Participation Rates in Public Schools

A jurisdiction that is not already receiving a notation under Guideline 4 will receive a notation if the sampled students within participating public schools included a class of students with similar characteristics that had a weighted student response rate of below 80 percent, and from which the nonresponding students together accounted for more than 5 percent of the jurisdiction's weighted assessable public school student sample. Student groups from which a jurisdiction needed minimum levels of participation were determined by the age or grade of the student, whether or not the student was classified as a student with a disability (SD) or of limited English proficiency (LEP), and the type of assessment session (monitored or unmonitored), ${ }^{7}$ as well as school level of urbanization, minority enrollment, and median household income of the area in which the school is located.
Discussion: This guideline addresses the fact that if nonparticipating students are concentrated within a particular class of students, the potential for substantial bias remains, even if the overall student participation level appears to be satisfactory. Student nonresponse adjustment cells have been formed using the school-level nonresponse adjustment cells, together with the student's age and the nature of the assessment session (unmonitored or monitored).
If the weighted response rate for a single adjustment cell falls below 80 percent, and more than five percent (weighted) of the invited students who do not participate in the assessment are from such a cell, the potential for nonresponse bias is too great. This guideline is based on the NCES standard for stratum-specific student response rates.

[^6]At both fourth- and eighth-grade, one state, Wisconsin, failed to meet the initial public school participation rate of 70 percent and, at eighth grade, the Virgin Islands failed to meet this standard. Results for these jurisdictions are not included with the findings reported for the state NAEP 2000 science assessment.

At grade 4, there were 12 jurisdictions (California, Idaho, Illinois, Indiana, Iowa, Michigan, Minnesota, Montana, New York, Ohio, Oregon, and Vermont) that failed to meet the required weighted participation rate of 85 percent for the initial sample of schools and their weighted school sample rate after substitution was below 90 percent. At grade 8, 12 jurisdictions (Arizona, California, Idaho, Illinois, Indiana, Maine, Michigan, Minnesota, Montana, New York, Oregon, and Vermont) failed to meet this guideline as well. At grade 4, Maine failed to meet Guideline 3 indicating that the sample of public schools included a class of schools with similar characteristics that had a weighted participation rate (after substitution) of below 80 percent, and from which the nonparticipating schools together accounted for more than 5 percent of the jurisdiction's total weighted sample of public schools. Results for each of these states at the appropriate grade level are shown with a notation indicating possible bias related to nonresponse.

Students with Disabilities (SD) and/or Limited English Proficient (LEP) Students

It is NAEP's intent to assess all selected students from the target population. Therefore, every effort is made to ensure that all
selected students who are capable of participating in the assessment are assessed. Some students sampled for participation in NAEP can be excluded from the sample according to carefully defined criteria. These criteria were revised in 1996 to communicate more clearly a presumption of inclusion except under special circumstances. According to these criteria, students with Individualized Education Programs (IEPs) were to be included in the NAEP assessment except in the following cases:

1) The school's IEP team determined that the student could not participate, OR,
2) The student's cognitive functioning was so severely impaired that she or he could not participate, OR,
3) The student's IEP required that the student had to be tested with an accommodation or adaptation and that the student could not demonstrate his or her knowledge without that accommodation. ${ }^{8}$

All LEP students receiving academic instruction in English for three years or more were to be included in the assessment. Those LEP students receiving instruction in English for fewer than three years were to be included unless school staff judged them to be incapable of participating in the assessment in English.

Participation of SD and/or LEP Students in the Two NAEP Samples

Testing all sampled students is the best way for NAEP to ensure that the statistics generated by the assessment are as representative as possible of the performance of the entire national population and the populations of participating jurisdictions. However, all groups of students include

[^7]certain proportions that cannot be tested in large-scale assessments (such as students who have profound mental disabilities), or who can only be tested through the use of "accommodations" such as extra time, one-on-one administration, or use of magnifying equipment. Some students with disabilities and some LEP students cannot show on a test what they know and can do unless they are provided accommodations. When such accommodations are not allowed, students requiring such adjustments are often excluded from large-scale assessments such as NAEP. This phenomenon has become more common in the last decade and gained momentum with the passage of the Individuals with Disabilities Education Act (IDEA), which led schools and states to identify increasing proportions of students as needing accommodations on assessments to best show what they know and can do. ${ }^{9}$ Furthermore, Section 504 of the Rehabilitation Act of 1973 requires that, when students with disabilities are tested, schools must provide them with appropriate accommodations so that the test results accurately reflect what the students know and are able to do. ${ }^{10}$ In addition, as the proportion of English language learners in the population has increased, some states have started offering accommodations, such as translated versions of assessments or the use of bilingual dictionaries as part of assessments.

Before 1996, NAEP did not allow any testing under nonstandard conditions (i.e., accommodations were not permitted). At that time, NAEP samples were able to
include almost all sampled students in "standard" assessment sessions. However, as the influence of IDEA grew more widespread, the failure to provide accommodations led to increasing levels of exclusion in the assessment. Such increases posed two threats to the program: 1) they threatened the stability of trend lines (because excluding more students in one year than the next might lead to apparent rather than real gains), and 2) they made NAEP samples less than optimally representative of target populations.

NAEP reacted to this challenge by adopting a multipart strategy. It became clear that to ensure that NAEP samples were as inclusive as possible, the program had to move toward allowing the same assessment accommodations that were afforded students in state and district testing programs. However, allowing accommodations represents a change in testing conditions that may affect trend. Therefore, beginning with the 1996 national assessments and the 1998 state assessments, NAEP has assessed a series of parallel samples of students. In one set of samples, testing accommodations were not permitted; this has allowed NAEP to maintain the measurement of achievement trends on an assessment that was, throughout its existence, administered under common conditions. In addition to the samples where accommodations were not permitted, parallel samples in which accommodations were permitted were also assessed. By having two overlapping samples and two sets of related data points, NAEP could

9 Office of Special Education Programs. (1997). Nineteenth annual report to Congress on the implementation of the individuals with disabilities education act. Washington, DC: U. S. Department of Education.
10 Section 504 of the Rehabilitation Act of 1973 is a civil rights law designed to prohibit discrimination on the basis of disability in programs and activities, including education, that receive federal financial assistance.
meet two core program goals. ${ }^{11}$ First, data trends could be maintained. Second, parallel trend lines could be set in ways that ensure that in future years the program will be able to use the most inclusive practices possible and mirror the procedures used by most state and district assessments. Beginning in 2002, NAEP will use only the more inclusive samples in which assessment accommodations are permitted.

In science, national and state data from 1996 and 2000 are reported for the sample in which accommodations were not permitted. National data for the second sample, in which accommodations were permitted, are reported at all grades for 1996 and 2000. State data on this more inclusive sample are reported for 2000 only.

In order to make it possible to evaluate both the impact of increasing exclusion rates in some jurisdictions and differences between jurisdictions, complete data on exclusion in both assessment years are included in this appendix. Since the exclusion rates may affect trend measurement within a jurisdiction, readers should consider the magnitude of exclusion rate changes when interpreting score changes in jurisdictions. In addition, different rates of exclusion may influence the meaning of state comparisons. Thus, exclusion data should be reviewed in this context as well.

Participation rates across the assessment years for students with disabilities (SD) and/or limited English proficient (LEP) students for the national sample where accommodations were not permitted are presented in table A.7. The data in this table include the percentages of students identified as SD and/or LEP, the percentage of students excluded, and the percentage of
assessed SD and/or LEP students. Tables A. 8 a and A .8 b show similar information by jurisdiction for grades 4 and 8 (only 2000 data are presented for grade 4 since there was no fourth-grade state science assessment in 1996). Participation rates for the national sample where accommodations were permitted are presented in table A.9, and state results where accommodations were permitted are shown in tables A.10a and A.10b. The data in these tables include the percentages of students identified as SD and/or LEP, the percentage of students excluded, the percentage of assessed SD and/ or LEP students, the percentage assessed without accommodations, and the percentage assessed with accommodations. Expanded state-level data are available on the NAEP web site (http://nces.ed.gov/ nationsreportcard) that break out these percentages for SD students and LEP students separately.

In the 2000 accommodations-notpermitted national sample, 7 percent of students at grades 4 and 8 and 4 percent of students at grade 12 were excluded from the assessment. The comparable percentages in the 2000 accommodations-permitted national sample were 4 percent at grade 4, 3 percent at grade 8 , and 2 percent at grade 12. This comparison would suggest that allowing accommodations did help to decrease the percentage of students excluded from the assessment. A similar pattern is evident in the various jurisdictions that participated in the 2000 state assessment. Across the jurisdictions, the percentage of students excluded in the accommodations-not-permitted sample ranged from 4 to 15 percent at grade 4 , and from 4 to 14 percent at grade 8 . In the

[^8]
Table A. 7

Percentage of students identified as SD and/or LEP where accommodations were not permitted (public and nonpublic schools combined): 1996 and 2000

Grade 4	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of students
SD and/or LEP students				
Identified	1,357	16	1,248	14
Excluded	756	8	596	7
Assessed	601	7	652	7
SD students only				
Identified	773	11	782	10
Excluded	425	6	453	6
Assessed	348	5	329	4
LEP students only				
Identified	654	5	557	5
Excluded	393	3	225	2
Assessed	261	2	332	3
Grade 8				
SD and/or LEP students				
Identified	1,078	12	1,728	14
Excluded	426	4	846	7
Assessed	652	7	882	8
SD students only				
Identified	763	10	1,306	12
Excluded	314	4	711	6
Assessed	449	6	595	6
LEP students only				
Identified	373	3	530	4
Excluded	156	1	217	1
Assessed	217	2	313	2
Grade 12				
SD and/or LEP students				
Identified	834	8	1,066	9
Excluded	425	3	512	4
Assessed	409	4	554	5
SD students only				
Identified	530	5	843	8
Excluded	321	3	449	4
Assessed	209	3	394	4
LEP students only				
Identified	340	3	282	2
Excluded	136	1	111	1
Assessed	204	2	171	1

[^9]Table A.8a
State percentage of students identified as SD and/or LEP where accommodations were not permitted, grade 4 (public schools only): 2000

	Identified	Excluded	Assessed
Nation	16	8	8
Alabama	12	6	7
Arizona	24	11	12
Arkansas	13	6	6
California ${ }^{\dagger}$	33	11	22
Connecticut	15	10	5
Georgia	11	8	4
Hawaii	19	9	10
Idaho ${ }^{+}$	16		10
Illinois ${ }^{\dagger}$	16	9	7
Indiana ${ }^{\text {+ }}$	12	7	5
lowa ${ }^{\text {+ }}$	14	10	5
Kentucky	12	8	4
Louisiana	16	8	8
Maine ${ }^{\dagger}$	18	11	7
Maryland	13	9	3
Massachusetts	20	11	9
Michigan ${ }^{\dagger}$	11	9	2
Minnesota ${ }^{\dagger}$	16	7	9
Mississippi	6	4	2
Missouri	15	10	5
Montana ${ }^{\dagger}$	13	5	7
Nebraska	16	6	11
Nevada	20	11	9
New Mexico	30	13	17
New York ${ }^{\dagger}$	17	13	4
North Carolina	17	14	2
North Dakota	14	6	7
Ohio ${ }^{+}$	12	10	2
Oklahoma	20	10	10
Oregon ${ }^{\text {+ }}$	18	8	10
Rhode Island	23	12	11
South Carolina	17	8	9
Tennessee	11	4	7
Texas	26	15	11
Utah	14	7	7
Vermont ${ }^{\text {+ }}$	15	11	5
Virginia	15	10	5
West Virginia	13	10	3
Wisconsin ${ }^{\dagger}$	20	13	7
Wyoming	14	6	8
Other Jurisdictions			
American Samoa	17	15	2
DDESS	11	7	4
DoDDS	11	5	6
Guam	26	10	17
Virgin Islands	7	5	2

[^10]
Table A.8b

State percentage of students identified as SD and/or LEP where accommodations were not permitted, grade 8 (public schools only): 1996 and 2000

	1996			2000		
	Identified	Excluded	Assessed	Identified	Excluded	Assessed
Nation	13	5	8	16	7	8
Alabama	13	8	5	13	4	8
Arizona ${ }^{\text { }}$	15	6	9	18	9	
Arkansas	12	7	5	15	8	7
California \dagger	21	9	12	26	9	16
Connecticut	15	9	6	14	9	5
Georgia	10	5	5	11	7	4
Hawaii	13	5	7	20	8	12
Idaho ${ }^{\dagger}$	-	-	-	14	5	9
Illinois \dagger	-	-	-	15	11	5
Indiana ${ }^{\dagger}$	11	6	5	11	6	5
Kentucky	9	4	5	13	9	3
Louisiana	11	6	5	13	5	8
Maine	13	7	6	16	9	7
Maryland	12	6	7	14	10	4
Massachusetts	17	7	10	20	13	7
Michigan ${ }^{\dagger}$	10	5	4	11	8	3
Minnesota ${ }^{\dagger}$	11	4	7	15	5	10
Mississippi	11	6	5	8	5	3
Missouri	13	6	7	13	8	5
Montana ${ }^{+}$	9	3	6	13	6	6
Nebraska	11	4	7	15	4	11
Nevada	13	9	5	14	9	6
New Mexico	20	9	11	26	13	13
New York ${ }^{\dagger}$	15	9	6	18	14	4
North Carolina	10	5	5	15	12	2
North Dakota	9	2	7	13	4	9
Ohio	-	-	-	11	8	3
Oklahoma	-	-	-	14	8	7
Oregon ${ }^{+}$	12	5	7	17	6	11
Rhode Island	17	7	10	19	10	
South Carolina	10	7	4	14	8	6
Tennessee	12	4	8	14	6	8
Texas	17	8	9	19	9	11
Utah	9	4	5	12	6	6
Vermont ${ }^{\text {+ }}$	14	6	8	19	11	9
Virginia	12	7	6	15	10	5
West Virginia	12	7	5	16	11	4
Wisconsin ${ }^{\dagger}$	11	7	4	15	9	6
Wyoming	10	4	6	12	4	8
Other Jurisdictions						
American Samoa	-	-	-	15	12	3
DDESS	10	6	3	15	13	3
DoDDS	8	3	5	8	4	4
Guam	9	7	2	17	5	12

${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.

- Indicates that the jurisdiction did not participate.

SD = Students with Disabilities.
LEP = Limited-English-Proficient students.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools
DoDDS: Department of Defense Dependents Schools (Overseas).
NOTE: Percentages may not sum properly due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table A. 9
Percentage of students identified as SD and/or LEP where accommodations were permitted (public and nonpublic schools combined): 1996 and 2000

Δ Percentage is between 0.0 and 0.5 .
$S D=$ Students with Disabilities.
LEP = Limited-English-Proficient students.
NOTE: Within each grade level, the combined SD and/or LEP portion of the table is not a sum of the separate SD and LEP portions because some students were identified as both SD and LEP. Such students would be counted separately in the bottom portions but counted only once in the top portion.
Within each portion of the table, percentages may not sum properly due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table A.10a

State percentage of students identified as SD and/or LEP where accommodations were permitted, grade 4 (public schools only): 2000

	Iden	and/or LEP		ssed SD and/		All students
Nation	Total 18	$\begin{gathered} \text { Excluded } \\ 5 \end{gathered}$	Total 13	Assessed under standard conditions 9	Assessed with accommodations 4	assessed under standard conditions 91
Alabama	12	4	8	6	3	93
Arizona	24	6	18	11	7	87
Arkansas	13	4	9	5	4	92
California \dagger	33	5	28	19	9	86
Connecticut	15	5	10	5	5	90
Georgia	11	3	8	5	3	93
Hawaii	19	8	11	9	2	89
Idaho ${ }^{+}$	16	2	13	8	6	92
Illinois \dagger	16	4	12	6	6	90
Indiana ${ }^{\text {+ }}$	12	3	8	4	4	92
lowa ${ }^{\text {+ }}$	14	3	12	4	7	90
Kentucky	12	4	9	4	5	91
Louisiana	16	2	13	2	11	86
Maine ${ }^{\dagger}$	18	4	14	5	8	87
Maryland	13	3	9	4	6	91
Massachusetts	20	4	16	6	10	87
Michigan ${ }^{\dagger}$	11	3	8	4	3	93
Minnesota ${ }^{\dagger}$	16	3	13	6	7	90
Mississippi	6	2	4	2	2	95
Missouri	15	1	13	5	8	90
Montana ${ }^{\dagger}$	13	3	10	5	5	93
Nebraska	16	5	12	8	3	92
Nevada	20	7	14	9	5	89
New Mexico	30	6	23	17	7	87
New York ${ }^{\dagger}$	17	4	12	3	10	86
North Carolina	17	6	11	4	8	87
North Dakota	14	1	12	8	4	94
Ohio ${ }^{+}$	12	4	8	3	5	91
Oklahoma	20	4	16	11	5	91
Oregon ${ }^{\text {+ }}$	18	4	14	7	7	90
Rhode Island	23	4	19	9	10	86
South Carolina	17	5	11	7	5	90
Tennessee	11	2	9	7	2	96
Texas	26	8	18	14	5	87
Utah	14	4	10	6	4	92
Vermont ${ }^{\dagger}$	15	3	13	4	9	88
Virginia	15	5	10	5	5	90
West Virginia	13	3	10	3	7	90
Wisconsin ${ }^{\text { }}$	20	5	16	6	10	85
Wyoming	14	1	13	6	7	92
Other Jurisdictions						
American Samoa	17	7	10	10	0	93
DDESS	11	5	7	3	4	92
DoDDS	11	2	8	4	4	94
Guam	26	6	20	15	6	88
Virgin Islands	7	4	2	2	0	96

${ }^{+}$Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
SD = Students with Disabilities.
LEP = Limited-English-Proficient students.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
NOTE: Percentages may not sum properly due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table A.10b

State percentage of students identified as SD and/or LEP where accommodations were permitted, grade 8 (public schools only): 2000

	Identified SD and/or LEP		Assessed SD and/or LEP			All students assessed under standard conditions
	Total	Excluded	Total	Assessed under standard conditions	$\begin{gathered} \text { Assessed } \\ \text { with } \\ \text { accommodations } \end{gathered}$	
Nation	14	4	10	7	3	93
Alabama	13	5	7	7	1	94
Arizona ${ }^{\dagger}$	18	4	14	9	5	92
Arkansas	15	5	10	7	3	92
California ${ }^{\dagger}$	26	4	22	18	4	92
Connecticut	14	6	8	6	3	91
Georgia	11	4	7	4	3	93
Hawaii	20	5	15	13	2	93
Idaho ${ }^{+}$	14	3	11	8	3	94
Illinois \dagger	15	5	10	6	4	90
Indiana ${ }^{\dagger}$	11	3	9	5	4	93
Kentucky	13	3	10	5	5	92
Louisiana	13	3	10	6	5	93
Maine ${ }^{+}$	16	2	13	7	6	91
Maryland	14	3	11	7	4	93
Massachusetts	20	4	16	8	8	88
Michigan ${ }^{\dagger}$	11	5	6	4	2	93
Minnesota ${ }^{\dagger}$	15	4	11	10	2	95
Mississippi	8	4	4	2	1	94
Missouri	13	2	11	6	5	93
Montana ${ }^{\text {+ }}$	13	1	11	8	3	95
Nebraska	15	4	11	10	1	95
Nevada	14	4	10	7	3	93
New Mexico	26	6	20	18	3	91
New York ${ }^{\text {+ }}$	18	7	11	3	8	85
North Carolina	15	5	10	4	5	90
North Dakota	13	1	12	8	4	94
Ohio	11	4	8	4	4	92
Oklahoma	14	4	11	9	2	95
Oregon ${ }^{+}$	17	4	13	9	4	92
Rhode Island	19	4	15	12	3	93
South Carolina	14	6	8	7	1	93
Tennessee	14	4	10	10	1	95
Texas	19	6	13	11	2	92
Utah	12	3	9	6	3	94
Vermont ${ }^{\dagger}$	19	3	17	10	6	91
Virginia	15	5	10	5	5	89
West Virginia	16	3	13	5	8	89
Wisconsin ${ }^{\dagger}$	15	4	11	7	5	92
Wyoming	12	1	11	8	3	96
Other Jurisdictions						
American Samoa	15	3	12	10	2	96
DDESS	15	2	13	8	5	93
DoDDS	8	1	7	5	2	97
Guam	17	9	8	4	4	87

[^11]accommodations-permitted sample, the percentages of students excluded ranged from 1 to 8 percent at grade 4 , and from 1 to 9 percent at grade 8 . As with the national exclusion rates, most states and jurisdictions excluded a smaller percentage of students when accommodations were permitted.

Investigating the Effects of Exclusion

 Rates on Assessment ResultsAs indicated by the data in the previous section, exclusion rates have tended to increase across assessment years in the samples that did not permit accommodations, particularly within certain states. In considering the effects of exclusion rates on assessment results, at least two major issues become evident. First, if exclusion rates vary substantially across assessment years, then the ability to report trends (i.e., compare results between years) may be threatened by the fact that the results from different years are based on different proportions of the population. Second, the variation in exclusion rates among states and jurisdictions may threaten the comparison of state-by-state results within a given year, again because the results for different states or jurisdictions are based on different proportions of the populations.

As a consequence, NCES investigated the possibility of establishing criteria for including cautionary notations based on excessive or increased exclusion rates (similar to those based on overall participation rates) in the reporting of national and state-by-state results. This investigation, however, did not reveal a consistent relationship between levels of exclusion, or degrees of change in inclusion rates, and overall results. There were several reasons for this.

First of all, real demographic differences influence exclusion rates in states and, thus, some differences may be unavoidable. Second, program research conducted by NCES and Educational Testing Service (ETS) was unable to identify a particular level of exclusion increase that seemed to affect scores. Third, since excluded students were not tested, NAEP has no direct information about how those students would have done had they been tested. Given these realities and uncertainties, the best approach seemed to be to supply all data about student exclusion and allow readers to consider it as they interpret the achievement data. However, it is important to remember that the main solutions to this issue lie not in flagging results, but in ensuring that all sampled students participate in assessments. The new, more inclusive samples that will become NAEP's main samples in 2002 are intended to accomplish this goal.

The move to more inclusive samples, however, will not be a perfect solution. For example, even within the context of the samples in which accommodations are permitted, there is still some student exclusion (albeit at a far lower level, as the data in tables A. 8 and A. $9 \mathrm{a} / \mathrm{b}$ show). In addition, the assessment accommodations may not have an entirely neutral impact on scores. In other words, it is possible that changes in the percentages of students receiving assessment accommodations may influence scores. It is also possible that differences in state and local accommodations policies will affect state comparisons.

Because of these remaining issues, NCES has funded several major research studies. These activities have been organized around two distinct questions. First, as was
mentioned above, some students are excluded from even the more inclusive NAEP. Therefore, NCES has funded research into ways excluded students might be included in the estimation of scores for overall populations. In other words, research is being conducted to investigate weighting procedures that might be used to ensure the final NAEP estimates include data for all students in a sampled population. There are two general approaches that have been investigated. The first is an idea championed by Albert Beaton of Boston College. Beaton recommends making a simple assumption about excluded students: he would assume that, had these students been tested, they would have performed below some predefined level (for example, the median score or the lowest score in the basic achievement range). This statistic (whether median or some other level) would be adjusted to take account of excluded students.

The second approach to obtaining full population estimates has been recommended by Donald McLaughlin of the American Institutes for Research (AIR). His approach involves using background data about excluded students to estimate how they, as a group, would have performed had they been assessed. This approach is based on different and stronger assumptions than Beaton's. It would have the advantage of allowing NAEP to continue to report all the types of statistics currently in use (including average scores).

The results from an initial examination of the 1996 and 2000 NAEP science data using McLaughlin's approach indicated that
the reported average score gains from 1996 to 2000 in many jurisdictions would be somewhat smaller if full-population estimates were used. This is apparently due to the increase in exclusion rates between years within these states. It should be noted that using such full-population estimates may not only alter the estimates of score gains, but may also alter the rank ordering of states within a given year.

NCES has not yet judged either statistical adjustment approach ready for operational use. Therefore, these "full population reporting" approaches may or may not be used in future years. Results of the studies produced by McLaughlin may be obtained from NCES, as can copies of an Educational Testing Service (ETS) study that implemented Beaton's methodology.

In addition to full population reporting research, NCES has commissioned studies of the impact of assessment accommodations on overall scores. Specifically, ETS has conducted differential item functioning (DIF) studies of items assessed with accommodation in the 1996 assessment. ${ }^{12}$ In these studies, ETS researchers found little evidence that accommodations changed the functioning of test questions.

Types of Accommodations Permitted

Table A. 11 displays the number and the percentages of SD and/or LEP students assessed with the variety of available accommodations. It should be noted that students assessed with accommodations typically received some combination of accommodations. The numbers and percentages presented in the table reflect only

[^12]the primary accommodation provided. For example, students assessed in small groups (as compared to standard NAEP sessions of about 30 students) usually received extended time. In one-on-one administra-
tions, students often received assistance in recording answers and were afforded extra time. Extended time was considered the primary accommodation only when it was the sole accommodation provided.

Table A. 11

Percentage of students in national sample identified as SD and/or LEP by type of accommodation where accommodations were permitted (public and nonpublic schools combined): 1996 and 2000

	Grade 4				Grade 8				Grade 12			
	1996		2000		1996		2000		1996		2000	
	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of students	Number of students sampled	Weighted percentage of student
SD and/or LEP students		0.00	37	0.45	13	0.10	13	0.11	0	0.00	2	0.01
Bilingual dictionary	NA	NA	0	0.00	NA	NA	2	0.01	NA	NA	10	0.11
Glossary/dictionary	16	0.23	NA	NA	14	0.15	NA	NA	2	0.02	NA	NA
Large-print book	0	0.00	1	0.01	0	0.00	2	0.04	0	0.00	0	0.00
Extended time	28	0.69	50	0.56	29	0.47	54	0.35	30	0.32	64	0.51
Read aloud	17	0.56	17	0.29	10	0.19	22	0.24	3	0.07	4	0.06
Small group	99	2.37	137	1.69	89	1.66	140	1.54	26	0.35	68	0.93
One-on-one	11	0.22	35	0.69	7	0.08	11	0.11	12	0.18	8	0.10
Scribe/computer	NA	NA	0	0.00	NA	NA	5	0.08	NA	NA	4	0.03
Other	3	0.07	2	0.01	1	0.01	3	0.04	2	0.02	3	0.04
SD students only												
Science glossary	0	0.00	1	0.01	0	0.00	0	0.00	0	0.00	0	0.00
Bilingual dictionary	NA	NA	0	0.00	NA	NA	1	0.00	NA	NA	0	0.00
Glossary/dictionary	1	0.02	NA	NA	1	0.01	NA	NA	0	0.00	NA	NA
Large-print book	0	0.00	1	0.01	0	0.00	2	0.04	0	0.00	0	0.00
Extended time	28	0.69	49	0.55	29	0.47	52	0.34	30	0.32	54	0.47
Read aloud	17	0.56	17	0.29	10	0.19	18	0.19	3	0.07	4	0.06
Small group	99	2.37	131	1.64	89	1.66	137	1.52	26	0.35	68	0.93
One-on-one	11	0.22	35	0.69	7	0.08	11	0.11	12	0.18	8	0.10
Scribe/computer	NA	NA	0	0.00	NA	NA	5	0.08	NA	NA	4	0.03
Other	3	0.07	2	0.01	1	0.01	3	0.04	2	0.02	2	0.03
LEP students only												
Science glossary	0	0.00	36	0.44	13	0.10	13	0.11	0	0.00	2	0.01
Bilingual dictionary	NA	NA	0	0.00	NA	NA	2	0.01	NA	NA	10	0.11
Glossary/dictionary	16	0.23	NA	NA	14	0.15	NA	NA	2	0.02	NA	NA
Large-print book	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Extended time	3	0.04	1	0.01	2	0.03	3	0.01	2	0.02	10	0.04
Read aloud	2	0.08	1	0.00	4	0.06	6	0.06	0	0.00	0	0.00
Small group	14	0.18	16	0.18	2	0.02	11	0.09	1	0.02	0	0.00
One-on-one	1	0.01	0	0.00	0	0.00	0	0.00	0	0.00	1	0.00
Scribe/computer	NA	NA	0	0.00	NA	NA	0	0.00	NA	NA	0	0.00
Other	0	0.00	0	0.00	0	0.00	1	0.01	0	0.00	1	0.01

[^13]
Data Collection and Scoring

The 2000 science assessment was conducted from January through March 2000, with some makeup sessions in early April. As with all NAEP assessments, data collection for the 2000 assessment was conducted by a trained field staff. For the national assessment, this was accomplished by staff from Westat, Inc.

For the state assessment, testing sessions were conducted and administered by employees of state and local educational agencies and institutions. These employees were carefully trained in assessment procedures by Westat. In addition, Westat employed quality control monitors who observed 25 percent of the sessions in state assessments.

Materials from the 2000 assessment were shipped to National Computer Systems, where trained staff evaluated the responses to the constructed-response questions using scoring rubrics or guides prepared by Educational Testing Service. Each con-structed-response question had a unique scoring rubric that defined the criteria used to evaluate students' responses. The extended constructed-response questions were evaluated with four- and five-level rubrics, and many of the short constructedresponse questions were rated according to three-level rubrics that permitted partial credit. Other short constructed-response questions were scored as either acceptable or unacceptable.

For the 2000 science assessment, approximately 4.5 million constructed responses were scored. This number includes rescoring to monitor inter-rater reliability. The within-year average percentage of exact agreement for the 2000 national reliability sample was 95 percent at grade 4,96 percent at grade 8 , and 96 percent at grade 12 .

Data Analysis and IRT Scaling

Subsequent to the professional scoring, all information was transcribed to the NAEP database at ETS. Each processing activity was conducted with rigorous quality control. After the assessment information was compiled in the database, the data were weighted according to the population structure. The weighting for the national sample reflected the probability of selection for each student as a result of the sampling design, adjusted for nonresponse. Through post-stratification, the weighting assured that the representation of certain subpopulations corresponded to figures from the U.S. Census and the Current Population Survey. ${ }^{13}$

The procedure used for sample weighting in the state assessments is similar to that used in national samples. However, there are two important differences. First, because there is no oversampling of high-minority schools in state samples, the weighting process does not need to adjust for such a procedure. Second, Current Population Survey target totals are not available or stable on a state-by-state basis. Therefore, the post-stratification process described above is not utilized in the state program.

[^14]Analyses were then conducted to determine the percentages of students who gave various responses to each cognitive and background question. In determining these percentages for the cognitive questions, a distinction was made between missing responses at the end of a block (i.e., missing responses subsequent to the last question the student answered) and missing responses prior to the last observed response. Missing responses before the last observed response were considered intentional omissions. In analysis, omitted responses to multiple-choice items were scored as fractionally correct. ${ }^{14}$ For constructedresponse items, omitted responses were placed into the lowest score category. Missing responses at the end of the block were considered "not reached" and treated as if the questions had not been presented to the student. In calculating response percentages for each question, only students classified as having been presented the question were included in the denominator of the statistic.

It is standard NAEP practice to treat all nonrespondents to the last question in a block as if they had not reached the question. For multiple-choice and short con-structed-response questions, this practice produces a reasonable pattern of results in that the proportion reaching the last question is not dramatically smaller than the proportion reaching the next-to-last question. However, for science blocks that ended with extended constructed-response questions, the standard practice would
result in extremely large drops in the proportion of students attempting the final question. Therefore, for blocks ending with an extended constructed-response question, students who answered the next-to-last question but did not respond to the extended constructed-response question were classified as having intentionally omitted the last question.

Item Response Theory (IRT) was used to estimate average science scale scores for the nation and for various subgroups of interest within the nation. IRT models the probability of answering a question in a certain way as a mathematical function of proficiency or skill. The main purpose of IRT analysis is to provide a common scale on which performance can be compared across groups such as those defined by characteristics including gender and race/ ethnicity.

In producing the science scales, three distinct IRT models were used. Multiplechoice questions were scaled using the three-parameter logistic (3PL) model; short constructed-response questions rated as acceptable or unacceptable were scaled using the two-parameter logistic (2PL) model; and short constructed-response questions rated according to a three-level rubric, as well as extended constructedresponse questions rated on a four- or fivelevel rubric, were scaled using a Generalized Partial-Credit (GPC) model. ${ }^{15}$ Developed by ETS and first used in 1992, the GPC model permits the scaling of questions scored according to multipoint rating

[^15]schemes. The model takes full advantage of the information available from each of the student response categories used for these more complex constructed-response questions. ${ }^{16}$

The science scale is composed of three types of questions: multiple-choice, short constructed-response (scored either dichotomously or allowing for partial credit), and extended constructed response (scored according to a partial-credit model). One question about the science scales concerns the amount of information contributed by each type of question. Unfortunately, this question has no simple answer for the NAEP science assessment, due to the procedures used to form the composite science scale. The information provided by a given question is determined by the IRT model used to scale the question. It is a function of the item parameters and varies by level of science proficiency. ${ }^{17}$ Thus, the answer to the query "How much information do the different types of questions provide?" will differ for each level of science performance. When considering the composite science scale, the answer is even more complicated. The science data are scaled separately by the three fields of science (Earth, physical, and life), resulting in three separate subscales at each grade. The composite scale is a weighted combination of these subscales. IRT information functions are only strictly comparable when the item parameters are estimated together. Because the composite scale is based on three separate estimation runs,
there is no direct way to compare the information provided by the questions on the composite scale.

Because of the BIB-spiraling design used by NAEP, students do not receive enough questions about a specific topic to provide reliable information about individual performance. (For more information on BIB-spiraling, see "The Assessment Design" section earlier in this document.) Traditional test scores for individual students, even those based on IRT, would lead to misleading estimates of population characteristics, such as subgroup means and percentages of students at or above a certain scale-score level. Consequently, NAEP constructs sets of plausible values designed to represent the distribution of performance in the population. A plausible value for an individual is not a scale score for that individual, but may be regarded as a representative value from the distribution of potential scale scores for all students in the population with similar characteristics and identical patterns of item response. Statistics describing performance on the NAEP science scale are based on the plausible values. Under the assumptions of the scaling models, these population estimates will be consistent, in the sense that the estimates approach the model-based population values as the sample size increases, which would not be the case for population estimates obtained by aggregating optimal estimates of individual performance. ${ }^{18}$

[^16]
Item Mapping Procedures

The science performance of fourth-, eighth-, and twelfth-graders can be illustrated by maps that position question or "item" descriptions along the NAEP science scale at each grade where questions are likely to be answered successfully by students. The descriptions used on these maps focus on the science knowledge or skill needed to answer the question. For multiple-choice questions, the description indicates the knowledge or skill demonstrated by selection of the correct option; for constructed-response questions, the description takes into account the knowledge or skill specified by the different levels of scoring criteria for that question.

To map questions to particular points on the NAEP science scale, a response probability convention was adopted that would divide those who had a higher probability of success from those who had a lower probability. Establishing a response probability convention has an impact on the mapping of the test questions onto the science scale. A lower boundary convention maps the science questions at lower points along the scale, and a higher boundary convention maps the same questions at higher points on the scale. The underlying distribution of science skills in the population does not change, but the choice of a response probability convention does have an impact on the proportion of the student population that is reported as "able to do" the questions on the science scales.

There is no obvious choice of a point along the probability scale that is clearly superior to any other point. If the convention were set with a boundary at 50 percent, those above the boundary would be more likely to get a question right than get it wrong, while those below the boundary would be more likely to get the question wrong than right. Although this convention has some intuitive appeal, it was rejected on the grounds that having a 50/50 chance of getting the question right shows an insufficient degree of mastery. If the convention were set with a boundary at 80 percent, students above the criterion would have a high probability of success with an question. However, many students below this criterion show some level of science ability that would be ignored by such a stringent criterion. In particular, those in the range between 50 and 80 percent correct would be more likely to get the question right than wrong, yet would not be in the group described as "able to do" the question.

In a compromise between the 50 percent and the 80 percent conventions, NAEP has adopted two related response probability conventions: 74 percent for multiple-choice questions with four response options (to correct for the possibility of answering correctly by guessing), and 65 percent for constructed-response questions (where guessing is not a factor). These probability conventions were established, in part, based on an intuitive judgment that they would provide the best picture of students' science skills.

Some additional support for the dual conventions adopted by NAEP was provided by Huynh. ${ }^{19}$ He examined the IRT information provided by items, according to the IRT model used in scaling NAEP questions. ("Information" is used here in a technical sense. See the forthcoming NAEP 2000 Technical Report for details.) Following Bock, Huynh decomposed the item information into that provided by a correct response $[\mathrm{P}(\mathrm{q}) \mathrm{I}(\mathrm{q})]$ and that provided by an incorrect response $[(1-\mathrm{P}(\mathrm{q}))$ $\mathrm{I}(\mathrm{q})] \cdot{ }^{20}$ Huynh showed that the item information provided by a correct response to a constructed-response item is maximized at the point along the science scale at which the probability of a correct response is two-thirds (for multiple-choice items, the information provided by a correct response is maximized at the point at which the probability of getting the item correct is 0.74). It should be noted, however, that maximizing the item information $\mathrm{I}(\mathrm{q})$, rather than the information provided by a correct response $[\mathrm{P}(\mathrm{q}) \mathrm{I}(\mathrm{q})]$, would imply an item mapping criterion closer to 50 percent.

Results are presented in terms of the composite science scale. However, the science assessment was scaled separately for the three fields of science at grades 4,8 , and 12 . The composite scale is a weighted combination of the three subscales for the three fields of science. To obtain item map information, a procedure developed by Donoghue was used. ${ }^{21}$ This method models the relationship between the item response function for the subscale and the subscale
structure to derive the relationship between the item score and the composite scale (i.e., an item response function for the composite scale). This item response function is then used to derive the probability used in the mapping.

Weighting and

 Variance EstimationA multistage sampling design was used to select the students who were assessed. The properties of a sample selected through such a design could be very different from those of a simple random sample, in which every student in the target population has an equal chance of selection and in which the observations from different sampled students can be considered to be statistically independent of one another. Therefore, the properties of the sample for the data collection design were taken into account during the analysis of the assessment data.

One way that the properties of the sample design were addressed was by using sampling weights to account for the fact that the probabilities of selection were not identical for all students. All population and subpopulation characteristics based on the assessment data were estimated using sampling weights. These weights included adjustments for school and student nonresponse.

Not only must appropriate estimates of population characteristics be derived, but appropriate measures of the degree of uncertainty must be obtained for those statistics. Two components of uncertainty

[^17]are accounted for in the variability of statistics based on student ability: 1) the uncertainty due to sampling only a relatively small number of students, and 2) the uncertainty due to sampling only a relatively small number of cognitive questions. The first component accounts for the variability associated with the estimated percentages of students who had certain background characteristics or who answered a certain cognitive question correctly.

Because NAEP uses multistage sampling procedures, conventional formulas for estimating sampling variability that assume simple random sampling are inappropriate. NAEP uses a jackknife replication procedure to estimate standard errors. The jackknife standard error provides a reasonable measure of uncertainty for any student information that can be observed without error. However, because each student typically responds to only a few questions within any field of science, the scale score for any single student would be imprecise. In this case, plausible values methodology can be used to describe the performance of groups and subgroups of students, but the underlying imprecision involved in this step adds another component of variability to statistics based on NAEP scale scores. ${ }^{22}$

Typically, when the standard error is based on a small number of students or when the group of students is enrolled in a small number of schools, the amount of uncertainty associated with the estimation of standard errors may be quite large.

Estimates of standard errors subject to a large degree of uncertainty are followed by the "!" symbol to indicate that the nature of the sample does not allow accurate determination of the variability of the statistic. In such cases, the standard errorsand any confidence intervals or significance tests involving these standard errorsshould be interpreted cautiously. Additional details concerning procedures for identifying such standard errors are discussed in the forthcoming NAEP 2000 Technical Report.

The reader is reminded that, as with findings from all surveys, NAEP results are subject to other kinds of error, including the effects of imperfect adjustment for student and school nonresponse and unknowable effects associated with the particular instrumentation and data collection methods. Nonsampling errors can be attributed to a number of sourcesinability to obtain complete information about all selected schools in the sample (some students or schools refused to participate, or students participated but answered only certain questions); ambiguous definitions; differences in interpreting questions; inability or unwillingness to give correct background information; mistakes in recording, coding, or scoring data; and other errors in collecting, processing, sampling, and estimating missing data. The extent of nonsampling error is difficult to estimate and, because of their nature, the impact of such errors cannot be reflected in the data-based estimates of uncertainty provided in NAEP reports.

[^18]
Drawing Inferences from the Results

The reported statistics are estimates and are therefore subject to a measure of uncertainty. There are two sources of such uncertainty. First, NAEP uses a sample of students rather than testing all students. Second, all assessments have some amount of uncertainty related to the fact that they cannot ask all questions that might be asked in a content area. The magnitude of this uncertainty is reflected in the standard error of each of the estimates. When the percentages or average scale scores of certain groups are compared, the standard error should be taken into account, and observed similarities or differences should not be relied on solely. Therefore, the comparisons are based on statistical tests that consider the standard errors of those statistics and the magnitude of the difference among the averages or percentages.

Using confidence intervals based on the standard errors provides a way to take into account the uncertainty associated with sample estimates and to make inferences about the population averages and percentages in a manner that reflects that uncertainty. An estimated sample average scale score plus or minus 1.96 standard errors approximates a 95 percent confidence interval for the corresponding population quantity. This statement means that one can conclude with approximately a 95 percent level of confidence that the average performance of the entire population of interest (e.g., all fourth-grade students in public and nonpublic schools) is within plus or minus 1.96 standard errors of the sample average.

As an example, suppose that the average science scale score of the students in a particular group was 156 with a standard error of 1.2. A 95 percent confidence interval for the population quantity would be as follows:

$$
\begin{gathered}
\text { Average } \pm 1.96 \text { standard errors } \\
156 \pm 1.96 \times 1.2 \\
156 \pm 2.35 \\
(153.65,158.35)
\end{gathered}
$$

Thus, one can conclude with a 95 percent level of confidence that the average scale score for the entire population of students in that group is between 153.65 and 158.35. It should be noted that this example, and the examples in the following sections are illustrative. More precise estimates carried out to one or more decimal places are used in the actual analyses.

Similar confidence intervals can be constructed for percentages, if the percentages are not extremely large or extremely small. Extreme percentages should be interpreted with caution. Adding or subtracting the standard errors associated with extreme percentages could cause the confidence interval to exceed 100 percent or go below 0 percent, resulting in numbers that are not meaningful. The forthcoming NAEP 2000 Technical Report will contain a more complete discussion of extreme percentages.

Analyzing Group Differences in Averages and Percentages

Statistical tests determine whether the evidence, based on the data from the groups in the sample, is strong enough to conclude that the averages or percentages are actually different for those groups in the population. If the evidence is strong (i.e., the difference is statistically significant), the report describes the group
averages or percentages as being different (e.g., one group performed higher than or lower than another group), regardless of whether the sample averages or percentages appear to be approximately the same.

The reader is cautioned to rely on the results of the statistical tests rather than on the apparent magnitude of the difference between sample averages or percentages when determining whether the sample differences are likely to represent actual differences among the groups in the population.

To determine whether a real difference exists between the average scale scores (or percentages of a certain attribute) for two groups in the population, one needs to obtain an estimate of the degree of uncertainty associated with the difference between the averages (or percentages) of these groups for the sample. This estimate of the degree of uncertainty, called the "standard error of the difference" between the groups, is obtained by taking the square of each group's standard error, summing the squared standard errors, and taking the square root of that sum.
Standard Error of the Difference $=$

$$
\mathrm{SE}_{\mathrm{A}-\mathrm{B}}=\sqrt{\left(\mathrm{SE}_{\mathrm{A}}^{2}+\mathrm{SE}_{\mathrm{B}}^{2}\right)}
$$

Similar to how the standard error for an individual group average or percentage is used, the standard error of the difference can be used to help determine whether differences among groups in the population are real. The difference between the averages or percentages of the two groups plus or minus 1.96 standard errors of the difference represents an approximate 95 percent
confidence interval. If the resulting interval includes zero, there is insufficient evidence to claim a real difference between the groups in the population. If the interval does not contain zero, the difference between the groups is statistically significant (different) at the 0.05 level.

As an example of comparing groups, consider the problem of determining whether the average science scale score of group A is higher than that of group B. Suppose that the sample estimates of the average scale scores and standard errors were as follows:

Group	Average Scale Score	Standard Error
A	218	0.9
B	216	1.1

The difference between the estimates of the average scale scores of groups A and B is two points (218-216). The standard error of this difference is

$$
\sqrt{\left(0.9^{2}+1.1^{2}\right)}=1.4
$$

Thus, an approximate 95 percent confidence interval for this difference is plus or minus two standard errors of the difference

$$
\begin{gathered}
2 \pm 1.96 \times 1.4 \\
2 \pm 2.74 \\
(-0.74,4.74)
\end{gathered}
$$

The value zero is within the confidence interval; therefore, there is insufficient evidence to claim that group A outperformed group B.

Conducting Multiple Tests

The procedures in the previous section and the certainty ascribed to intervals (e.g., a 95 percent confidence interval) are based on statistical theory that assumes that only one confidence interval or test of statistical significance is being performed. However, many different groups are being compared (i.e., multiple sets of confidence intervals are being analyzed). In sets of confidence intervals, statistical theory indicates that the certainty associated with the entire set of intervals is less than that attributable to each individual comparison from the set. To hold the significance level for the set of comparisons at a particular level (e.g., 0.05), adjustments (called "multiple comparison procedures ${ }^{" 23}$) must be made to the methods described in the previous section. One such procedure, the False Discovery Rate (FDR) procedure ${ }^{24}$ was used to control the certainty level.

Unlike the other multiple comparison procedures (e.g., the Bonferroni procedure) that control the familywise error rate (i.e., the probability of making even one false rejection in the set of comparisons), the FDR procedure controls the expected proportion of falsely rejected hypotheses. Furthermore, familywise procedures are considered conservative for large families of comparisons. ${ }^{25}$ Therefore, the FDR procedure is more suitable for multiple comparisons in NAEP than other procedures. A detailed description of the FDR procedure appears in the forthcoming NAEP 2000 Technical Report.

To illustrate how the FDR procedure is used, consider the comparisons of current and previous years' average science scale scores for the five groups presented in table A.12. Note that the difference in average scale scores and the standard error of the difference are calculated in a way comparable with that of the example in the previous section. The test statistic shown is the difference in average scale scores divided by the standard error of the difference.

The difference in average scale scores and its standard error can be used to find an approximate 95 percent confidence interval as in the example in the previous section or they can be used to identify a confidence percentage. In the example in the previous section, because an approximate 95 percent confidence interval was desired, the number 1.96 was used to multiply the standard error of the difference to create the approximate confidence interval. In the current example, the confidence interval for the test statistics is identified from statistical tables. Instead of checking to see if zero is within the 95 percent confidence interval about the mean, the significance level from the statistical tables can be directly compared to $100-95=5$ percent.

If the comparison of average scale scores across two years were made for only one of the five groups, there would be a significant difference between the average scale scores for the two years if the significance level were less than 5 percent. However, because

[^19]we are interested in the difference in average scale scores across the two years for all five of the groups, comparing each of the significance levels to 5 percent is not adequate. Groups of students defined by shared characteristics, such as race/ethnicity groups, are treated as sets or families when making comparisons. However, comparisons of average scale scores for each pair of years were treated separately. So the steps described in this example would be replicated for the comparison of other current and previous year average scale scores.

To use the FDR procedure to take into account that all comparisons are of interest to us, the percents of confidence in the example are ordered from largest to smallest: $62,35,20,4$, and 1. In the FDR procedure, 62 percent confidence for the Group 4 comparison would be compared to 5 percent, 35 percent for the Group 5 comparison would be compared to $0.05^{\star}(5-1) / 5=0.04=4$ percent, ${ }^{26}$ 20 percent for the Group 1 comparison would be compared to $0.05 \star(5-2) / 5=$
$0.03=3$ percent, 4 percent for the Group 3 comparison would be compared to $0.05^{\star}(5-3) / 5=0.02=2$ percent, and 1 percent for the Group 2 comparison (actually slightly smaller than 1 prior to rounding) would be compared to $0.05 \star(5-4) / 5=0.01=1$ percent. The last of these comparisons is the only one for which the percent confidence is smaller than the FDR procedure value. The difference in the current year and previous years' average scale scores for the Group 2 students is significant; for all of the other groups, average scale scores for current and previous year are not significantly different from one another. In practice, a very small number of counterintuitive results occur when using the FDR procedures to examine between-year differences in subgroup results by jurisdiction. In those cases, results were not included in this report. NCES is continuing to evaluate the use of FDR and multiple-comparison procedures for future reporting.

Table A. 12

FDR comparisons of average scale scores for different groups of students

	Previous year		Current year		Previous year and current year			
	Average scale score	Standard error	Average scale score	Standard error	Difference in averages	Standard error of difference	Test statistic	Percent confidence*
Group 1	224	1.3	226	1.0	2.08	1.62	1.29	20
Group 2	187	1.7	193	1.7	6.31	2.36	2.68	1
Group 3	191	2.6	197	1.7	6.63	3.08	2.15	4
Group 4	229	4.4	232	4.6	3.24	6.35	. 51	62
Group 5	201	3.4	196	4.7	-5.51	5.81	-. 95	35

* The percent confidence is $2(1-F(x))$ where $F(x)$ is the cumulative distribution of the t-distribution with the degrees of freedom adjusted to reflect the complexities of the sample design.

26 The level of confidence times the number of comparisons minus one divided by the number of comparisons is $0.05^{\star}(5-1) / 5=0.04=4$ percent.

NAEP Reporting Groups

Results are provided for groups of students defined by shared characteristics-region of the country, gender, race or ethnicity, school's type of location, eligibility for the free/reduced-price school lunch program, and type of school. Based on participation rate criteria, results are reported for subpopulations only when sufficient numbers of students and adequate school representation are present. The minimum requirement is at least 62 students in a particular subgroup from at least five primary sampling units (PSUs). ${ }^{27}$ However, the data for all students, regardless of whether their
subgroup was reported separately, were included in computing overall results. Definitions of the subpopulations are presented below.

Region

Results in NAEP are reported for four regions of the nation: Northeast, Southeast, Central, and West. Figure A. 2 shows how states are subdivided into these NAEP regions. All 50 states and the District of Columbia are listed. Other jurisdictions, including territories and the two Department of Defense Educational Activities jurisdictions are not assigned to any region.

Figure A. 2
States included in the four NAEP regions

Northeast	Southeast	Central	West
Connecticut	Alabama	Illinois	Alaska
Delaware	Arkansas	Indiana	Arizona
District of Columbia	Florida	lowa	California
Maine	Georgia	Kansas	Colorado
Maryland	Kentucky	Michigan	Hawaii
Massachusetts	Louisiana	Minnesota	Idaho
New Hampshire	Mississippi	Missouri	Montana
New Jersey	North Carolina	Nebraska	Nevada
New York	South Carolina	North Dakota	New Mexico
Pennsylvania	Tennessee	Ohio	Oklahoma
Rhode Island	*Virginia	South Dakota	Oregon
Vermont	West Virginia	Wisconsin	Texas
*Virginia			Utah
			Washington
			Wyoming

[^20][^21]
Gender

Results are reported separately for males and females.

Race/Ethnicity

The race/ethnicity variable is derived from two questions asked of students and from school records, and it is used for race/ ethnicity subgroup comparisons. Two questions from the set of general student background questions were used to determine race/ethnicity:
If you are Hispanic, what is your Hispanic background?

I am not Hispanic

Mexican, Mexican American, or Chicano
Puerto Rican

Cuban

\square Other Spanish or Hispanic background
Students who responded to this question by filling in the second, third, fourth, or fifth oval were considered Hispanic. For students who filled in the first oval, did not respond to the question, or provided information that was illegible or could not be classified, responses to the following question were examined to determine their race/ethnicity.

Which best describes you?
\square White (not Hispanic)
\square Black (not Hispanic)
\square Hispanic ("Hispanic" means someone who is Mexican, Mexican American, Chicano, Puerto Rican, Cuban, or other Spanish or Hispanic background)
Asian or Pacific Islander ("Asian or Pacific Islander" means someone who is from a Chinese, Japanese, Korean, Filipino,Vietnamese, Asian American or some other Asian or Pacific Islander background.)
American Indian or Alaskan Native ("American Indian or Alaskan Native" means someone who is from one of the American Indian tribes or one of the original people of Alaska.)
\square Other (specify) \qquad
Students' race/ethnicity was then assigned on the basis of their responses. For students who filled in the sixth oval ("Other"), provided illegible information or information that could not be classified, or did not respond at all, race/ethnicity was assigned as determined by school records.

Race/ethnicity could not be determined for students who did not respond to either of the demographic questions and whose schools did not provide information about race/ethnicity.

Also, some students indicated that they were from a Hispanic background (e.g., Puerto Rican or Cuban) and that a racial/ ethnic category other than Hispanic best described them. These students were classified as Hispanic based on the rules described above.

Type of Location

Results from the 2000 assessment are reported for students attending schools in three mutually exclusive location types: central city, urban fringe/large town, and rural/small town:

Central City:This category includes central cities of all Standard Metropolitan Statistical Areas (SMSA) as defined by the Office of Management and Budget. Central City is a geographical term and is not synonymous with "inner city."

Urban Fringe/Large Town: The urban fringe category includes all densely settled places and areas within SMSA's that are classified as urban by the Bureau of the Census, but which do not qualify as Central City. A Large Town is defined as a place outside a SMSA with a population greater than or equal to 25,000 .
Rural/Small Town: Rural includes all places and areas with populations of less than 2,500 that are classified as rural by the Bureau of the Census. A Small Town is defined as a place outside a SMSA with a population of less than 25,000 , but greater than or equal to 2,500 .

Results for each type of location are not compared across years. This was due to new methods used by NCES to identify the type of location assigned to each school in the Common Core of Data (CCD). The new methods were put into place by NCES in order to improve the quality of the assignments and they take into account more information about the exact physical location of the school.

Eligibility for the Free/Reduced-Price School Lunch Program

Based on available school records, students were classified as either currently eligible for the free/reduced-price school lunch component of the Department of Agriculture's National School Lunch Program or not eligible. Eligibility for the program is determined by students' family income in relation to the federally established poverty level. Free lunch qualification is set at 130 percent of the poverty level, and reduced-price lunch qualification is set at 170 percent of the poverty level. The classification applies only to the school year when the assessment was administered (i.e., the 1999-2000 school year) and is not based on eligibility in previous years. If school records were not available, the student was classified as "Information not available." If the school did not participate in the program, all students in that school were classified as "Information not available."

Type of School

Results are reported by the type of school that the student attends-public or nonpublic. Nonpublic schools include Catholic and other private schools. ${ }^{28}$ Because they are funded by federal authorities, not state/ local governments, Bureau of Indian Affairs (BIA) schools and Department of Defense Domestic Dependent Elementary and Secondary Schools (DDESS) are not included in either the public or nonpublic categories; they are included in the overall national results.

Grade 12 Participation Rates and Motivation

NAEP has been described as a "low-stakes" assessment. That is, students receive no individual scores, and their NAEP performance has no effect on their grades, promotions, or graduation. There has been continued concern that this lack of consequences affects participation rates of students and schools, as well as the motivation of students to perform well on NAEP. Of particular concern has been the performance of twelfth-graders, who typically have lower student participation rates than fourth- and eighth-graders, and who are more likely to omit responses compared to the younger cohorts.

Participation Rates

In NAEP, there has been a consistent pattern of lower participation rates for older students. In the 2000 NAEP assessments, for example, the student participation rates were 96 percent and 92 percent at grades 4 and 8 , respectively. At grade 12, however, the participation rate was 76 percent. School participation rates (the percentage of sampled schools that participated in the assessment) have also typically decreased with grade level. Again citing the 2000 assessments, the school participation rate was 88 percent for the fourth grade, 85 percent for the eighth grade, and 82 percent for the twelfth grade.

The effect of participation rates on student performance, however, is unclear. Students may choose not to participate in NAEP for many reasons, such as desire to attend regular classes so as not to miss important instruction or conflict with other school-based activities. Similarly, there are a variety of reasons for which various schools do not participate. The sampling weights and nonresponse adjustments, described earlier in this document, provide an approximate statistical adjustment for nonparticipation. However, the effect of some school and student nonparticipation may have some undetermined effect on results.

[^22]
Motivation

To the extent that students in the NAEP sample are not trying their hardest, NAEP results may underestimate student performance. The concern increases as students get older, and may be particularly pronounced for twelfth-graders. The students themselves furnish some evidence about their motivation. As part of the background questions, students were asked how important it was to do well on the NAEP science assessment. They were asked to indicate whether it was very important, important, somewhat important, or not very important to them. The percentage of students indicating they thought it was either important or very important to do well was 89 percent for fourth-graders, 58 percent for eighth-graders, and 31 percent for twelfth-graders.

It is also interesting to note that students who indicated it was very important for them to do well on NAEP did not have the highest average scores. In fact, at grades 8 and 12 , students who reported it was not very important to do well also had higher average scores than those who reported it was very important to do well. These data further cloud the relationship between motivation and performance on NAEP.

Need for Future Research

More research is needed to delineate the factors that contribute to nonparticipation and lack of motivation. To that end, NCES is currently investigating how various types of incentives can be effectively used to increase participation in NAEP. One report that examines the impact of monetary incentives on student effort and performance is available on the NCES web site at http://nces.ed.gov/pubsearch/. Enter NCES\#: 2001024.

Cautions in Interpretations

As described earlier, the NAEP science scale makes it possible to examine relationships between students' performance and various background factors measured by NAEP. However, a relationship that exists between achievement and another variable does not reveal its underlying cause, which may be influenced by a number of other variables. Similarly, the assessments do not capture the influence of unmeasured variables. The results are most useful when they are considered in combination with other knowledge about the student population and the educational system, such as trends in instruction, changes in the school-age population, and societal demands and expectations.

Appendix B Data Appendix

This appendix contains complete data for all the tables and figures presented in this report, including average scores, achievement-level results, and percentages of students. In addition, standard errors appear in parentheses next to each scale score and percentage. The comparisons presented in this report are based on statistical tests that consider the magnitude of the difference between group averages or percentages and the standard errors of those

Appendix
 Focus

Complete data for all tables and figures.
statistics. Because NAEP scores and percentages are based on samples rather than the entire population(s), the results are subject to a measure of uncertainty reflected in the standard errors of the estimates. It can be said with 95 percent certainty that for each population of interest, the value for the whole population is approximately within plus or minus two standard errors of the estimate for the sample. As with the figures and tables in the chapters, significant differences between results of previous assessments and the 2000 assessment are highlighted.

Appendix Contents

Average Scores

Achievementlevel results

Percentages of Students

Standard Errors

Table B.1: Data for Table 1.1 Sample Question 1 Results (Multiple-Choice)

Overall percentage correct and percentages correct within each achievement-level range: 2000

${ }^{\dagger}$ Includes fourth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.2: Data for Table 1.2 Sample Question 2 Results (Short Constructed-Response)
Overall percentage "Complete" and percentages "Complete" within each achievement-level range: 2000

Grade 4	Percentage "Gomplete" within achievement-level intervals		
Overall percentage "Complete" \dagger	Basic $138-169^{*}$	Proficient $170-204^{*}$	Advanced 205 and above*
$28(1.5)$	$26(2.3)$	$45(3.8)$	$65(12.2)$

${ }^{\dagger}$ Includes fourth-grade students who were below the Basic level. *NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.3: Data for Table 1.3 Sample Question 3 Results (Short Constructed-Response)
Overall percentage "Complete" and percentages "Complete" within each achievement-level range:
2000

${ }^{\dagger}$ Includes fourth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of
Educational Progress (NAEP), 2000 Science Assessment.

Table B.4: Data for Table 1.4 Sample Question 4 Results (Multiple-Choice)

Overall percentage correct and percentages correct within each achievement-level range: 2000

${ }^{\dagger}$ Includes eighth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.5: Data for Table 1.5 Sample Question 5 Results (Short Constructed-Response)
Overall percentage "Complete" and percentages "Complete" within each achievement-level range: 2000

${ }^{\dagger}$ Includes eighth-grade students who were below the Basic level. *NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.6: Data for Table 1.6 Sample Question 6 Results (Extended Constructed-Response)

Overall percentage "Essential" or better and percentages "Essential" or better within each achievementlevel range: 2000

Grade 8	Percentage "Essential" or better within achievement-level intervals		
Overall percentage "Essential" or better ${ }^{\dagger}$	$\begin{gathered} \text { Basic } \\ \text { 143-169* } \end{gathered}$	Proficient 170-207*	Advanced 208 and above*
24 (1.0)	23 (2.4)	40 (2.9)	67 (7.9)

${ }^{\dagger}$ Includes eighth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.7: Data for Table 1.7 Sample Question 7 Results (Multiple-Choice)

Overall percentage correct and percentages correct within each achievement-level range: 2000

Includes twelfth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.8: Data for Table 1.8 Sample Question 8 Results (Extended Constructed-Response)

Overall percentage "Essential" or better and percentages "Essential" or better within each achievementlevel range: 2000

Grade 12	Percentage "Essential" or better within achievement-Ievel intervals		
Overall percentage	Basic "Essential" or better	Proficient $146-177^{*}$	Advanced 178-209*
210 and above*			

†Includes twelfth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of
Educational Progress (NAEP), 2000 Science Assessment.

Table B.9: Data for Table 1.9 Sample Question 9 Results (Extended Constructed-Response)

Overall percentage "Essential" or better and percentages "Essential" or better within each achievement level range: 2000

Grade 12	Percentage "Essential" or better within achievement-level intervals		
Overall percentage "Essential" or better	$\begin{gathered} \text { Basic } \\ 146-177^{*} \end{gathered}$	Proficient 178-209*	Advanced 210 and above*
22 (1.5)	24 (2.7)	44 (3.7)	56 (13.7)

${ }^{\dagger}$ Includes twelfth-grade students who were below the Basic level.
*NAEP Science composite scale range.
Standard errors of the estimated percentages appear in parentheses.
SOURCE: National Center for Education Statistics, National Assessment of
Educational Progress (NAEP), 2000 Science Assessment.

Table B.10: Data for Figure 2.1 National Scale Score Results

National average science scale scores, grades 4, 8, and 12: 1996 and 2000

	Grade 4	Grade 8	Grade 12
1996	$150(0.8)$	$150(0.9)$	$150(0.9)^{*}$
2000	$150(0.7)$	$151(0.6)$	$147(1.0)$

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.11: Data for Figure 2.2: National Performance Distribution

National science scale score percentiles, grades 4, 8, and 12: 1996 and 2000

Grade 4	$\begin{aligned} & 1996 \\ & 2000 \end{aligned}$	Mean	10th	25th	50th	75th	90th
		150 (0.8)	105 (2.2)	130 (1.2)	153 (0.9)	173 (0.7)	190 (1.7)
		150 (0.7)	105 (1.2)	129 (0.7)	153 (0.8)	174 (0.8)	191 (0.8)
Grade 8	1996	150 (0.9)	104 (1.0)	128 (1.0)	153 (1.2)	174 (1.5)	192 (1.5) *
	2000	151 (0.6)	103 (1.2)	128 (0.8)	154 (1.0)	177 (0.8)	195 (0.6)
Grade 12	1996	150 (0.9) *	104 (1.1)	128 (1.2)	152 (1.1) *	174 (1.2)	191 (1.2)
	2000	147 (1.0)	102 (1.2)	125 (1.1)	148 (1.0)	171 (1.3)	190 (1.1)

[^23]
Table B.12: Data for Figure 2.3: National Achievement-Level Results

Percentage of students within each science achievement-level range and at or above achievement levels, grades 4, 8, and 12: 1996 and 2000

		Below Basic				At or above Basic	At or above Proficient	
		At Basic	At Proficient	At Advanced				
Grade 4	1996		33 (1.2)	38 (0.8)	26 (0.9)	3 (0.4)	67 (1.2)	29 (0.9)
	2000	34 (0.8)	37 (0.7)	26 (0.7)	4 (0.3)	66 (0.8)	29 (0.8)	
Grade 8	1996	39 (1.1)	32 (0.7) *	26 (1.1)	3 (0.5)	61 (1.1)	29 (1.2) *	
	2000	39 (0.8)	29 (0.5)	28 (0.7)	4 (0.4)	61 (0.8)	32 (0.8)	
Grade 12	1996	43 (1.1) *	36 (1.0)	19 (1.0)	3 (0.3)	57 (1.1) *	21 (1.1)	
	2000	47 (1.1)	34 (0.7)	16 (0.9)	2 (0.3)	53 (1.1)	18 (1.0)	

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.13: Data for Figure 2.4 National Scale Score Results by Region

Percentage of students and average science scale score results by region of the country, grades 4, 8, and 12: 1996 and 2000

		Northeast	Southeast	Central	West
Grade 4	1996	22 (1.5)	22 (1.7)	26 (1.3)	30 (1.9)
		156 (1.8)	143 (2.0)	156 (2.1)	146 (2.0)
	2000	23 (0.8)	23 (1.2)	24 (0.5)	30 (1.2)
		153 (1.1)	143 (1.7)	155 (1.8)	148 (1.5)
Grade 8	1996	22 (1.6)	22 (2.2)	24 (0.5)	32 (2.4)
		151 (2.6)	143 (1.9)	156 (2.5)	149 (2.2)
	2000	22 (0.5)	21 (0.5)	25 (0.4)	32 (0.7)
		153 (1.5)	145 (1.4)	158 (1.6)	148 (1.3)
Grade 12	1996	22 (1.3)	21 (1.8)	24 (0.9)	33 (1.8)
		154 (2.8)	142 (1.4)	158 (2.0) *	147 (2.3)
	2000	21 (1.2)	22 (1.5)	26 (0.5)	32 (1.4)
		151 (2.9)	141 (1.6)	150 (1.7)	145 (1.9)

[^24]
Table B.14: Data for Figure 2.5: National Achievement-Level Results by Region

Percentage of students within each science achievement-level range and at or above achievement levels, by region of the country, grades 4, 8, and 12: 1996 and 2000

							At or above	At or above Proficient
			Below Basic	At Basic	At Proficient	At Advanced	Basic	
Grade 4	Northeast	1996	26 (2.4)	39 (1.6)	31 (2.3)	4 (0.9)	74 (2.4)	36 (2.3)
		2000	30 (1.4)	38 (1.3)	28 (1.9)	4 (0.8)	70 (1.4)	32 (1.7)
	Southeast	1996	43 (2.5)	34 (1.6)	21 (1.5)	2 (0.5)	57 (2.5)	23 (1.8)
		2000	41 (1.9)	35 (1.6)	21 (1.3)	2 (0.5)	59 (1.9)	23 (1.2)
	Central	1996	26 (3.2)	41 (2.5)	30 (2.0)	4 (0.6)	74 (3.2)	34 (2.0)
		2000	27 (1.9)	39 (2.0)	30 (2.1)	5 (0.9)	73 (1.9)	35 (2.4)
	West	1996	37 (3.0)	39 (1.7)	21 (2.0)	2 (0.6)	63 (3.0)	24 (2.2)
		2000	36 (1.8)	36 (1.5)	25 (1.7)	3 (0.5)	64 (1.8)	28 (1.8)
Grade 8	Northeast	1996	38 (3.2)	32 (1.9)	27 (2.7)	3 (1.1)	62 (3.2)	30 (3.5)
		2000	37 (1.8)	28 (1.6)	30 (1.7)	5 (0.9)	63 (1.8)	35 (1.9)
	Southeast	1996	47 (2.6)	30 (1.4)	21 (1.7)	2 (0.3) *	53 (2.6)	22 (1.8)
		2000	45 (1.8)	29 (1.1)	23 (1.3)	3 (0.5)	55 (1.8)	26 (1.4)
	Central	1996	32 (2.8)	33 (1.7)	31 (2.7)	5 (1.1)	68 (2.8)	35 (3.1)
		2000	31 (2.2)	31 (1.8)	34 (1.5)	5 (0.8)	69 (2.2)	38 (1.9)
	West	1996	39 (2.5)	34 (1.3) *	25 (2.0)	3 (1.0)	61 (2.5)	28 (2.3)
		2000	43 (1.6)	28 (1.1)	25 (1.3)	3 (0.5)	57 (1.6)	29 (1.3)
Grade 12	Northeast	1996	40 (3.5)	34 (1.6)	22 (2.4)	4 (0.8)	60 (3.5)	26 (2.8)
		2000	43 (3.6)	34 (2.4)	19 (2.2)	4 (0.9)	57 (3.6)	23 (3.0)
	Southeast	1996	53 (1.8)	33 (1.5)	13 (1.2)	1 (0.4)	47 (1.8)	14 (1.3)
		2000	54 (1.9)	32 (1.2)	13 (1.2)	1 (0.3)	46 (1.9)	14 (1.2)
	Central	1996	33 (2.4) *	39 (2.1)	24 (2.1)	4 (0.6)	67 (2.4) *	28 (2.2) *
		2000	44 (2.2)	37 (1.5)	17 (1.9)	2 (0.7)	56 (2.2)	19 (1.9)
	West	1996	46 (2.8)	37 (2.3)	15 (1.7)	2 (0.7)	54 (2.8)	17 (2.3)
		2000	49 (2.1)	34 (1.3)	16 (1.3)	2 (0.4)	51 (2.1)	18 (1.5)

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages within each science achievement-level range may not add to 100, or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.15: Data for Table 2.1 State Average Score Results, Grade 4

Average science scale score results by state for grade 4 public schools: 2000

Nation	148 (0.8)
Alabama	143 (1.7)
Arizona	141 (1.4)
Arkansas	144 (1.7)
California ${ }^{\dagger}$	131 (2.0)
Connecticut	156 (1.3)
Georgia	143 (1.4)
Hawaii	136 (1.4)
Idaho ${ }^{\dagger}$	153 (1.5)
Illinois ${ }^{\dagger}$	151 (1.6)
Indiana ${ }^{\dagger}$	155 (1.6)
lowa ${ }^{\dagger}$	160 (1.4)
Kentucky	152 (1.1)
Louisiana	139 (1.9)
Maine ${ }^{\text {+ }}$	161 (1.0)
Maryland	146 (1.3)
Massachusetts	162 (1.2)
Michigan ${ }^{\dagger}$	154 (1.8)
Minnesota ${ }^{\dagger}$	157 (1.5)
Mississippi	133 (1.4)
Missouri	156 (1.6)
Montana †	160 (2.1)
Nebraska	150 (1.8)
Nevada	142 (1.3)
New Mexico	138 (2.0)
New York ${ }^{\text {+ }}$	149 (1.4)
North Carolina	148 (1.4)
North Dakota	160 (0.8)
Ohio ${ }^{\dagger}$	154 (1.6)
Oklahoma	152 (1.4)
Oregon ${ }^{\dagger}$	150 (1.9)
Rhode Island	148 (1.5)
South Carolina	141 (1.2)
Tennessee	147 (1.5)
Texas	147 (1.6)
Utah	155 (1.1)
Vermont ${ }^{\dagger}$	159 (1.7)
Virginia	156 (1.6)
West Virginia	150 (1.1)
Wyoming	158 (1.1)
Other Jurisdictions	
American Samoa	51 (1.7)
DDESS	157 (0.7)
DoDDS	156 (0.5)
Guam	110 (2.3)
Virgin Islands	116 (1.1)

[^25]
Table B.16: Data for Table 2.2 State Average Score Results, Grade 8

Average science scale score results by state for grade 8 public schools: 1996 and 2000

	1996	2000
Nation	148 (0.9)	149 (0.7)
Alabama	139 (1.6)	141 (1.9)
Arizona ${ }^{\dagger}$	145 (1.6)	146 (1.6)
Arkansas	144 (1.3)	143 (1.3)
California ${ }^{\dagger}$	138 (1.7) *	132 (1.5)
Connecticut	155 (1.3)	154 (1.4)
Georgia	142 (1.4)	144 (1.5)
Hawaii	135 (0.7)	132 (1.2)
Idaho ${ }^{\dagger}$	-	159 (1.1)
Illinois ${ }^{\dagger}$	-	150 (1.9)
Indiana ${ }^{\dagger}$	153 (1.4)	156 (1.7)
Kentucky	147 (1.2) *	152 (1.3)
Louisiana	132 (1.6)	136 (1.7)
Maine ${ }^{\dagger}$	163 (1.0) *	160 (1.0)
Maryland	145 (1.5)	149 (1.3)
Massachusetts	157 (1.4)	161 (1.6)
Michigan ${ }^{\dagger}$	153 (1.4)	156 (1.7)
Minnesota ${ }^{\dagger}$	159 (1.3)	160 (2.1)
Mississippi	133 (1.4)	134 (1.2)
Missouri	151 (1.2) \ddagger	156 (1.1)
Montana ${ }^{\dagger}$	162 (1.2)	165 (1.2)
Nebraska	157 (1.0)	157 (1.0)
Nevada	-	143 (1.1)
New Mexico	141 (1.0)	140 (1.6)
New York ${ }^{\dagger}$	146 (1.6)	149 (2.4)
North Carolina	147 (1.2)	147 (1.5)
North Dakota	162 (0.8)	161 (0.9)
Ohio	-	161 (1.5)
Oklahoma	-	149 (1.2)
Oregon ${ }^{\dagger}$	155 (1.6)	154 (1.6)
Rhode Island	149 (0.8)	150 (1.3)
South Carolina	139 (1.5)	142 (1.3)
Tennessee	143 (1.8)	146 (1.5)
Texas	145 (1.8)	144 (1.5)
Utah	156 (0.8)	155 (0.9)
Vermont ${ }^{\dagger}$	157 (1.0) *	161 (0.9)
Virginia	149 (1.6)	152 (1.2)
West Virginia	147 (0.9)	150 (1.1)
Wyoming	158 (0.6)	158 (1.0)
Other Jurisdictions		
American Samoa	-	72 (2.3)
DDESS	153 (1.1) \ddagger	159 (1.2)
DoDDS	155 (0.7) \ddagger	159 (0.8)
Guam	120 (1.1)	114 (4.5)

[^26]
Table B.17: Data for Figure 2.10 State Achievement-Level Results, Grade 4

Percentage of students within each science achievement-level range by state for grade 4 public schools: 2000

	Below Basic	At Basic	At Proficient	At Advanced
Nation	36 (0.9)	37 (0.7)	24 (0.8)	3 (0.3)
Alabama	41 (2.1)	37 (1.5)	20 (1.2)	2 (0.4)
Arizona	43 (1.7)	35 (1.6)	20 (1.4)	2 (0.4)
Arkansas	38 (2.1)	38 (1.4)	22 (1.5)	2 (0.6)
California ${ }^{\dagger}$	53 (2.4)	33 (1.8)	13 (1.5)	1 (0.2)
Connecticut	25 (1.7)	40 (1.2)	32 (1.6)	3 (0.6)
Georgia	42 (1.8)	34 (1.4)	21 (1.2)	3 (0.4)
Hawaii	49 (1.5)	35 (1.1)	15 (1.0)	1 (0.3)
Idaho ${ }^{\dagger}$	28 (2.1)	42 (1.7)	28 (1.9)	3 (0.6)
Illinois ${ }^{\dagger}$	32 (2.1)	37 (1.8)	27 (2.1)	4 (0.9)
Indiana ${ }^{\text {¢ }}$	25 (1.9)	42 (1.4)	29 (1.8)	3 (0.5)
lowa ${ }^{+}$	19 (2.2)	44 (1.6)	34 (1.8)	4 (0.6)
Kentucky	30 (1.5)	42 (1.5)	26 (1.4)	3 (0.4)
Louisiana	47 (2.3)	35 (1.7)	17 (1.7)	2 (0.4)
Maine ${ }^{\dagger}$	18 (1.4)	43 (1.6)	34 (1.6)	4 (0.7)
Maryland	39 (1.5)	36 (1.2)	23 (1.4)	3 (0.5)
Massachusetts	19 (1.4)	38 (1.6)	37 (1.7)	6 (0.7)
Michigan ${ }^{\dagger}$	29 (2.1)	38 (1.7)	30 (2.1)	3 (0.7)
Minnesota ${ }^{\dagger}$	22 (1.8)	42 (1.5)	32 (2.0)	3 (0.5)
Mississippi	53 (1.9)	33 (1.3)	13 (1.1)	1 (0.3)
Missouri	25 (1.8)	40 (1.5)	31 (1.6)	4 (0.5)
Montana ${ }^{\dagger}$	19 (2.7)	44 (2.6)	34 (2.8)	4 (0.8)
Nebraska	32 (2.1)	41 (2.0)	24 (2.0)	2 (0.8)
Nevada	42 (1.9)	39 (1.6)	18 (0.9)	2 (0.4)
New Mexico	46 (2.3)	36 (1.9)	16 (1.1)	2 (0.6)
New York ${ }^{\dagger}$	33 (2.0)	41 (1.5)	24 (1.2)	2 (0.3)
North Carolina	36 (1.9)	40 (1.7)	22 (1.3)	2 (0.5)
North Dakota	20 (1.2)	43 (1.3)	34 (1.2)	3 (0.5)
Ohio ${ }^{\dagger}$	28 (1.9)	40 (1.7)	28 (1.5)	4 (0.7)
Oklahoma	29 (2.1)	45 (2.0)	24 (1.8)	2 (0.4)
Oregon ${ }^{+}$	33 (2.4)	40 (1.7)	25 (1.6)	3 (0.7)
Rhode Island	34 (2.0)	40 (1.4)	24 (1.3)	2 (0.4)
South Carolina	44 (1.5)	35 (1.7)	18 (1.1)	2 (0.3)
Tennessee	37 (1.9)	38 (1.7)	23 (1.5)	3 (0.5)
Texas	35 (2.1)	40 (1.4)	22 (1.5)	2 (0.4)
Utah	25 (1.5)	43 (1.1)	29 (1.1)	3 (0.5)
Vermont ${ }^{\dagger}$	22 (1.9)	40 (2.4)	34 (2.6)	4 (1.1)
Virginia	26 (1.9)	41 (1.6)	29 (1.8)	4 (0.6)
West Virginia	31 (1.7)	45 (1.6)	23 (1.3)	2 (0.3)
Wyoming	20 (1.9)	47 (1.7)	30 (1.5)	3 (0.5)
Other Jurisdictions				
American Samoa	98 (0.9)	2 (0.9)	(${ }^{* * * *)}$	0 (****)
DDESS	22 (1.3)	48 (2.1)	27 (1.8)	2 (0.5)
DoDDS	25 (0.8)	45 (1.0)	27 (1.0)	3 (0.4)
Guam	76 (2.0)	20 (1.6)	4 (0.9)	(${ }^{* * * *)}$
Virgin Islands	74 (1.9)	22 (2.0)	4 (0.8)	(${ }^{* * * *)}$

[^27]
Table B.18: Data for Figure 2.11 State Achievement-Level Results, Grade 8

Percentage of students within each science achievement-level range by state for grade 8 public schools: 2000

	Below Basic	At Basic	At Proficient	At Advanced
Nation	41 (0.9)	29 (0.6)	26 (0.8)	4 (0.4)
Alabama	49 (2.2)	29 (1.4)	20 (1.4)	2 (0.5)
Arizona ${ }^{\dagger}$	43 (2.2)	33 (1.6)	22 (1.5)	2 (0.4)
Arkansas	46 (1.6)	31 (1.4)	21 (1.3)	2 (0.4)
California ${ }^{\dagger}$	60 (2.2)	25 (1.9)	14 (1.2)	1 (0.4)
Connecticut	35 (1.8)	30 (1.4)	31 (1.4)	4 (0.6)
Georgia	48 (2.0)	29 (1.3)	21 (1.4)	2 (0.6)
Hawaii	60 (1.3)	25 (1.5)	14 (1.0)	1 (0.3)
Idaho ${ }^{\dagger}$	27 (1.2)	35 (1.1)	35 (1.6)	4 (0.5)
Illinois ${ }^{\dagger}$	38 (2.5)	31 (1.8)	27 (1.8)	3 (0.8)
Indiana ${ }^{\dagger}$	32 (2.3)	34 (1.6)	31 (1.7)	3 (0.6)
Kentucky	38 (1.8)	33 (1.5)	26 (1.4)	3 (0.4)
Louisiana	55 (2.1)	27 (1.7)	16 (1.2)	2 (0.4)
Maine ${ }^{\dagger}$	25 (1.3)	38 (1.5)	33 (1.7)	3 (0.4)
Maryland	41 (1.7)	31 (1.3)	26 (1.4)	3 (0.4)
Massachusetts	26 (2.0)	32 (1.6)	37 (1.8)	5 (0.6)
Michigan ${ }^{\dagger}$	31 (2.0)	32 (1.3)	33 (2.0)	4 (0.8)
Minnesota ${ }^{\dagger}$	27 (2.5)	32 (2.2)	37 (2.0)	5 (0.8)
Mississippi	58 (1.5)	27 (1.3)	14 (1.1)	1 (0.3)
Missouri	32 (1.5)	32 (1.5)	32 (1.5)	4 (0.5)
Montana ${ }^{\dagger}$	20 (1.7)	34 (1.7)	41 (1.7)	5 (0.8)
Nebraska	30 (1.6)	34 (1.7)	33 (1.5)	4 (0.5)
Nevada	46 (1.4)	31 (1.4)	21 (1.2)	2 (0.3)
New Mexico	52 (1.9)	28 (1.9)	19 (1.4)	1 (0.3)
New York ${ }^{\dagger}$	39 (2.7)	32 (1.6)	27 (2.1)	2 (0.6)
North Carolina	44 (1.9)	30 (1.4)	23 (1.3)	3 (0.6)
North Dakota	26 (1.2)	34 (1.5)	36 (1.9)	4 (0.7)
Ohio	27 (1.8)	32 (1.3)	35 (1.8)	6 (0.7)
Oklahoma	38 (1.5)	35 (1.4)	25 (1.3)	2 (0.4)
Oregon ${ }^{\text {+ }}$	33 (2.1)	34 (1.9)	30 (1.7)	3 (0.6)
Rhode Island	39 (1.3)	32 (1.3)	26 (1.1)	3 (0.4)
South Carolina	50 (1.8)	29 (1.2)	18 (1.4)	2 (0.3)
Tennessee	43 (2.2)	32 (1.5)	23 (1.3)	2 (0.4)
Texas	47 (1.9)	30 (1.3)	21 (1.4)	2 (0.4)
Utah	32 (1.2)	34 (1.3)	31 (1.4)	3 (0.5)
Vermont ${ }^{+}$	26 (1.5)	34 (1.5)	35 (1.4)	4 (0.7)
Virginia	37 (1.6)	32 (1.2)	28 (1.2)	3 (0.6)
West Virginia	39 (1.5)	34 (1.4)	24 (1.3)	2 (0.3)
Wyoming	29 (1.6)	35 (1.2)	32 (1.1)	3 (0.5)
Other Jurisdictions				
American Samoa	95 (1.2)	3 (1.0)	2 (0.7)	0 (****)
DDESS	30 (1.9)	35 (2.0)	31 (2.1)	4 (1.0)
DoDDS	28 (1.2)	34 (1.2)	34 (1.3)	4 (0.8)
Guam	78 (2.7)	16 (2.3)	6 (1.4)	- (****)

[^28]
Table B.19: Data for Table 2.3 State Proficient Level Results, Grade 4

Percentage of students at or above the Proficient level in science by state for grade 4 public schools: 2000

2000
28 (0.9)

Nation	28 (0.9)
Alabama	22 (1.4)
Arizona	22 (1.5)
Arkansas	24 (1.5)
California ${ }^{\text { }}$	14 (1.6)
Connecticut	35 (1.7)
Georgia	23 (1.4)
Hawaii	16 (1.1)
Idaho ${ }^{\dagger}$	30 (2.0)
Illinois \dagger	31 (2.2)
Indiana ${ }^{\text {+ }}$	32 (2.0)
lowa ${ }^{\dagger}$	37 (2.1)
Kentucky	29 (1.5)
Louisiana	19 (1.8)
Maine ${ }^{\dagger}$	38 (1.7)
Maryland	26 (1.4)

Massachusetts $\quad 43$ (1.9)
$\begin{array}{ll}\text { Michigan }{ }^{\dagger} & 33 \text { (2.4) }\end{array}$
$\begin{array}{ll}\text { Minnesota }^{\dagger} & 35(2.2) \\ \text { Mississippi } & 14(1.2)\end{array}$
Missouri $\quad 35$ (1.7)
$\begin{array}{ll}\text { Montana }{ }^{\dagger} & 37(2.6) \\ \text { Nebraska } & 26(2.2)\end{array}$
Nevada 19 (1.0)
$\begin{array}{ll}\text { New Mexico } & 18 \text { (1.5) } \\ \text { New York } \dagger & 26(1.3)\end{array}$
North Carolina 24 (1.4)
North Dakota $\quad 38$ (1.3)
Ohio ${ }^{\dagger} \quad 31$ (1.9)
$\begin{array}{cl}\text { Oklahoma } & 26(1.9) \\ \text { Oregon }{ }^{\dagger} & 28(1.8)\end{array}$

Oregon	$28(1.8)$
Rhode Island	$27(1.4)$
South Carolina	$21(1.3)$
Tennessee	$26(1.7)$
Texas	$24(1.8)$
Utah	$32(1.3)$
Vermont ${ }^{\dagger}$	$39(3.0)$
Virginia	$33(2.0)$
West Virginia	$25(1.4)$
Wyoming	$33(1.5)$

Other Jurisdictions	
American Samoa	$\mathbf{\Delta}\left(^{* * * *}\right)$
DDESS	$29(1.8)$
DoDDS	$30(1.0)$
Guam	$4(0.9)$
Virgin Islands	$4(0.8)$

[^29]
Table B.20: Data for Table 2.4 State Proficient Level Results, Grade 8

Percentage of students at or above the Proficient level in science by state for grade 8 public schools: 1996 and 2000

	1996	2000
Nation	27 (1.3)	30 (0.9)
Alabama	18 (1.5) *	22 (1.6)
Arizona ${ }^{\text {+ }}$	23 (1.7)	24 (1.5)
Arkansas	22 (1.5)	23 (1.5)
California ${ }^{\dagger}$	20 (1.7)	15 (1.4)
Connecticut	36 (1.7)	35 (1.5)
Georgia	21 (1.7)	23 (1.6)
Hawaii	15 (1.0)	15 (1.0)
Idaho ${ }^{\dagger}$	-	38 (1.7)
Illinois \dagger	-	30 (2.1)
Indiana ${ }^{\dagger}$	30 (1.9)	35 (1.9)
Kentucky	23 (1.3) \ddagger	29 (1.5)
Louisiana	13 (1.2) *	18 (1.4)
Maine ${ }^{\dagger}$	41 (1.8)	37 (1.8)
Maryland	25 (1.8)	28 (1.4)
Massachusetts	37 (1.7) *	42 (1.9)
Michigan ${ }^{\dagger}$	32 (2.0)	37 (2.2)
Minnesota ${ }^{\dagger}$	37 (1.7)	42 (2.3)
Mississippi	12 (1.0)	15 (1.3)
Missouri	$28(1.3) \ddagger$	36 (1.5)
Montana ${ }^{+}$	41 (2.1)	46 (1.8)
Nebraska	35 (1.5)	36 (1.6)
Nevada	-	23 (1.2)
New Mexico	19 (0.7)	20 (1.5)
New York ${ }^{\dagger}$	27 (1.7)	30 (2.3)
North Carolina	24 (1.4)	27 (1.6)
North Dakota	41 (1.5)	40 (1.7)
Ohio	-	41 (2.0)
Oklahoma	-	26 (1.4)
Oregon ${ }^{\dagger}$	32 (1.8)	33 (1.8)
Rhode Island	26 (1.5)	29 (1.1)
South Carolina	17 (1.4)	20 (1.5)
Tennessee	22 (1.7)	25 (1.4)
Texas	23 (1.5)	23 (1.6)
Utah	32 (1.2)	34 (1.4)
Vermont ${ }^{\dagger}$	34 (1.6) \ddagger	40 (1.4)
Virginia	27 (2.1)	31 (1.4)
West Virginia	21 (1.1) \ddagger	26 (1.4)
Wyoming	34 (1.3)	36 (1.1)
Other Jurisdictions		
American Samoa	-	2 (0.7)
DDESS	27 (2.2) \ddagger	35 (1.9)
DoDDS	$31(1.3) \ddagger$	37 (1.2)
Guam	7 (1.0)	6 (1.4)

[^30]
Table B.21: Data for Figure 3.1 National Scale Score Results by Gender

Percentage of students and average science scale scores by gender, grades 4,8 , and 12 :
1996 and 2000

		Male	Female
Grade 4	1996	$\begin{array}{r} 50(0.6) \\ 151(0.9) \end{array}$	$\begin{array}{r} 50(0.6) \\ 149(0.9) \end{array}$
	2000	$\begin{array}{r} 50(0.5) \\ 153(0.8) \end{array}$	$\begin{array}{r} 50(0.5) \\ 147(0.8) \end{array}$
Grade 8	1996	$\begin{gathered} 51(1.0) \\ 151(1.0) \text { * } \end{gathered}$	$\begin{array}{r} 49(1.0) \\ 149(1.1) \end{array}$
	2000	$\begin{array}{r} 51(0.5) \\ 154(0.7) \end{array}$	$\begin{array}{r} 49(0.5) \\ 147(0.8) \end{array}$
Grade 12	1996	$\begin{gathered} 48(0.9) \\ 152(1.2) \text { * } \end{gathered}$	$\begin{array}{r} 52(0.9) \\ 148(0.9) \end{array}$
	2000	$\begin{array}{r} 49(0.6) \\ 148(1.1) \end{array}$	$\begin{array}{r} 51(0.6) \\ 145(1.0) \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.22: Data for Figure 3.2 National Scale Score Differences by Gender
Differences in average science scale scores by gender, grades 4, 8, and 12: 1996 and 2000

		Male-Female
Grade 4	1996	$2(1.2)^{*}$
	2000	$5(1.1)$
Grade 8		
	1996	$2(1.5)^{*}$
Grade 12		$7(1.1)$
	2000	$5(1.5)$

[^31]
Table B.23: Data for Figure 3.3 National Achievement-Level Results by Gender

Percentage of students within each science achievement-level range and at or above achievement levels by gender, grades 4, 8, and 12: 1996 and 2000

							At or above	At or above Proficient
			Below Basic	At Basic	At Proficient	At Advanced	Basic	
Grade 4	Male	1996	32 (1.4)	37 (1.3)	27 (1.1)	3 (0.5)	68 (1.4)	31 (1.1)
		2000	31 (0.9)	36 (1.2)	28 (1.0)	5 (0.4)	69 (0.9)	33 (1.1)
	Female	1996	33 (1.5)	40 (1.5)	24 (1.2)	3 (0.4)	67 (1.5)	27 (1.2)
		2000	36 (1.1)	38 (1.0)	23 (0.8)	3 (0.4)	64 (1.1)	26 (0.9)
Grade 8	Male	1996	38 (1.3)	31 (1.0) *	27 (1.2) *	4 (0.5)	62 (1.3)	31 (1.2) *
		2000	36 (0.8)	28 (0.6)	31 (0.8)	5 (0.6)	64 (0.8)	36 (0.8)
	Female	1996	39 (1.4)	34 (0.9) *	24 (1.5)	3 (0.6)	61 (1.4)	27 (1.7)
		2000	43 (1.1)	30 (0.9)	24 (1.1)	3 (0.4)	57 (1.1)	27 (1.1)
Grade 12	Male	1996	40 (1.3) *	34 (1.3)	21 (1.4)	$4(0.6)$	60 (1.3) *	25 (1.6)
		2000	46 (1.4)	33 (1.1)	18 (1.1)	3 (0.5)	54 (1.4)	21 (1.1)
	Female	1996	45 (1.3)	37 (1.3)	16 (1.1)	1 (0.3)	55 (1.3)	17 (1.2)
		2000	49 (1.5)	35 (1.0)	15 (1.0)	1 (0.3)	51 (1.5)	16 (1.1)

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.24: Data for Figure 3.4 National Scale Score Results by Race/Ethnicity

Percentage of students and average science scale scores by race/ethnicity, grades 4,8 , and 12 :
1996 and 2000

		White	Black	Hispanic	Asian/ Pacific Islander	American Indian
Grade 4	1996 2000	$\begin{array}{r} 69(0.5) \\ 160(0.9) \\ 66(0.3) \\ 160(0.8) \end{array}$	$\begin{array}{r} 15(0.2) \\ 124(1.9) \\ 14(0.2) \\ 124(1.6) \end{array}$	$\begin{array}{r} 12(0.5) \\ 128(1.7) \\ 15(0.3) \\ 129(1.3) \end{array}$	$\begin{array}{r} 3(0.2) \\ 151(3.6) \\ 3(0.2) \end{array}$	$\begin{array}{r} 2(0.2) \\ 144(3.8) \\ 2(0.1) \\ 140(2.8) \end{array}$
Grade 8	1996 2000	$\begin{array}{r} 70(0.2) \\ 159(1.1) \\ 67(0.2) \\ 162(0.7) \end{array}$	$\begin{array}{r} 14(0.1) \\ 121(1.1) \\ 13(0.1) \\ 122(1.3) \end{array}$	$\begin{array}{r} 12(0.2) \\ 129(1.7) \\ 14(0.2) \\ 128(1.3) \end{array}$	$\begin{array}{r} 3(0.3) \\ 152(3.1) \\ 4(0.2) \\ 156(2.4) \end{array}$	$\begin{gathered} 2(0.2) \\ 148(4.1) \text { * } \\ 2(0.2) \\ 134(3.2) \end{gathered}$
Grade 12	1996 2000	$\begin{gathered} 70(0.4) \\ 159(1.0) \text { * } \\ 71(0.3) \\ 154(1.2) \end{gathered}$	$\begin{array}{r} 14(0.4) \\ 124(1.5) \\ 13(0.2) \\ 123(1.4) \end{array}$	$\begin{array}{r} 11(0.3) \\ 130(2.3) \\ 11(0.2) \\ 128(1.9) \end{array}$	$\begin{array}{r} 4(0.2) \\ 149(2.9) \\ 4(0.1) \\ 153(2.5) \end{array}$	$\begin{gathered} 1(0.2) \\ 145(4.7)! \\ 1(0.1) \\ 139(3.6) \end{gathered}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
NOTE: Percentages may not add to 100 due to rounding.
\sim Special analyses raised concerns about the accuracy and precision of the national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.25: Data for Figure 3.5 National Scale Score Differences by Race/Ethnicity

Differences in average science scale scores by race/ethnicity, grades 4, 8, and 12: 1996 and 2000

		White-Black	White-Hispanic
Grade 4	1996	$36(2.1)$	$31(1.9)$
	2000	$36(1.8)$	$31(1.5)$
		$38(1.5)$	$31(2.0)$
Grade 8	1996	$40(1.5)$	$33(1.5)$
	2000		$29(2.5)$
		$35(1.8)$	$26(2.3)$

[^32]Table B.26: Data for Figure 3.6 National Achievement-Level Results by Race/Ethnicity
Percentage of students within each science achievement-level range and at or above achievement levels by race/ethnicity, grades 4, 8, and 12: 1996 and 2000

						At or above	At or above Proficient
		Below Basic	At Basic	At Proficient	At Advanced	Basic	
Grade 4 White	1996	21 (1.3)	42 (1.1)	33 (1.3)	4 (0.5)	79 (1.3)	37 (1.3)
	2000	21 (0.9)	41 (0.8)	33 (1.0)	5 (0.4)	79 (0.9)	38 (1.1)
Black	1996	66 (2.1)	28 (1.8)	7 (1.2)	(${ }^{(* * * *)}$	34 (2.1)	7 (1.3)
	2000	66 (1.9)	27 (1.8)	6 (0.8)	(${ }^{* * * *)}$	34 (1.9)	7 (0.8)
Hispanic	1996	58 (2.1)	33 (1.8)	$9(1.0)$	- (0.2)	42 (2.1)	9 (1.2)
	2000	58 (1.5)	31 (1.4)	10 (0.8)	1 (0.4)	42 (1.5)	11 (0.9)
Asian/Pacific Islander	1996	34 (4.8)	37 (3.5)	25 (4.6)	4 (1.4)	66 (4.8)	29 (4.8)
	2000	~	~	~	~	~	~
American Indian	1996	41 (4.8)	33 (4.4)	24 (5.0)	2 (****)	59 (4.8)	26 (4.4)
	2000	43 (3.6)	39 (3.1)	17 (3.5)	1 (0.9)	57 (3.6)	19 (3.5)
Grade 8 White	1996	27 (1.3)	36 (0.9) *	33 (1.5)	4 (0.7)	73 (1.3)	37 (1.7)
	2000	26 (0.9)	33 (0.7)	36 (0.9)	5 (0.6)	74 (0.9)	41 (1.0)
Black	1996	76 (1.7)	19 (1.6)	5 (0.8)	(${ }^{* * * *)}$	24 (1.7)	5 (0.8)
	2000	74 (1.5)	19 (1.4)	6 (0.7)	வ (0.2)	26 (1.5)	7 (0.7)
Hispanic	1996	64 (2.2)	25 (1.8)	10 (1.1)	(${ }^{(* * * *)}$	36 (2.2)	11 (1.1)
	2000	65 (1.6)	23 (1.3)	11 (1.1)	1 (0.2)	35 (1.6)	12 (1.1)
Asian/Pacific Islander	1996	38 (4.0)	31 (3.4)	27 (3.2)	3 (1.7)	62 (4.0)	30 (3.7)
	2000	36 (3.6)	27 (2.1)	31 (3.3)	6 (1.4)	64 (3.6)	37 (3.6)
American Indian	1996	40 (6.7)	35 (6.4)	22 (4.9)	2 (****)	60 (6.7)	24 (5.7)
	2000	61 (5.6)	24 (5.6)	12 (3.4)	2 (1.2)	39 (5.6)	14 (3.5)
Grade 12 White	1996	32 (1.1) *	41 (1.2)	24 (1.3)	3 (0.5)	68 (1.1) *	27 (1.6)
	2000	38 (1.4)	39 (1.1)	20 (1.2)	3 (0.4)	62 (1.4)	23 (1.3)
Black	1996	77 (2.0)	20 (2.0)	4 (0.8)	(${ }^{* * * *)}$	23 (2.0)	4 (0.9)
	2000	78 (1.6)	18 (1.3)	3 (0.6)	(${ }^{* * * *)}$	22 (1.6)	3 (0.6)
Hispanic	1996	67 (3.0)	26 (2.6)	6 (1.2)	1 (0.5)	33 (3.0)	7 (1.3)
	2000	70 (2.1)	23 (1.7)	6 (0.8)	© (0.2)	30 (2.1)	7 (0.9)
Asian/Pacific Islander	1996	44 (4.1)	34 (4.1)	19 (3.1)	3 (1.1)	56 (4.1)	22 (3.3)
	2000	41 (3.6)	33 (2.3)	22 (2.6)	4 (1.3)	59 (3.6)	26 (2.9)
American Indian	1996	48 (9.8) !	41 (9.3) !	10 (5.1) !	(${ }^{* * * *}$)	52 (9.8) !	10 (5.1) !
	2000	56 (5.7)	35 (6.3)	8 (3.4)	1 (****)	44 (5.7)	9 (3.5)

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
(****) Standard error estimates cannot be accurately determined.
Δ Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. ~ Special analyses raised concerns about the accuracy and precision of the national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.27: Data for Figure 3.7 National Scale Score Results by Parents' Education

Percentage of students and average science scale scores by student-reported parents' highest level of education, grades 8 and 12:1996 and 2000

Grade 8	1996	Less than high school	Graduated high school	Some education after high school	Graduated college	Unknown
		$\begin{array}{r} 6(0.4) \\ 131(1.9) \end{array}$	$\begin{array}{r} 20(0.9) \\ 140(1.5) \end{array}$	$\begin{array}{r} 20(0.7) \\ 155(1.1) \end{array}$	$\begin{array}{r} 45(1.2) \\ 159(1.2) \end{array}$	$\begin{array}{r} 9(0.5) \\ 134(2.4) \end{array}$
	2000	$\begin{array}{r} 6(0.2) \\ 126(1.6) \end{array}$	$\begin{array}{r} 18(0.5) \\ 138(1.0) \end{array}$	$\begin{array}{r} 19(0.5) \\ 155(1.0) \end{array}$	$\begin{array}{r} 47(0.9) \\ 162(0.8) \end{array}$	$\begin{array}{r} 9(0.3) \\ 130(1.7) \end{array}$
Grade 12	1996	$\begin{array}{r} 7(0.5) \\ 123(1.8) \end{array}$	$\begin{gathered} 18(0.8) \\ 140(1.5) \text { * } \end{gathered}$	$\begin{gathered} 26(0.7) \\ 151(1.1) \text { * } \end{gathered}$	$\begin{array}{r} 47(1.4) \\ 160(1.0) \end{array}$	$\begin{array}{r} 3(0.3) \\ 116(3.1) \end{array}$
	2000	$\begin{array}{r} 6(0.3) \\ 126(1.9) \end{array}$	$\begin{array}{r} 17(0.6) \\ 135(1.3) \end{array}$	$\begin{array}{r} 27(0.7) \\ 146(1.1) \end{array}$	$\begin{gathered} 48 \text { (1.1) } \\ 157 \text { (1.1) } \end{gathered}$	$\begin{array}{r} 3(0.2) \\ 114(3.0) \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.28: Data for Figure 3.8 National Achievement-Level Results by Parents' Education

Percentage of students within each science achievement-level range and at or above achievement levels by parents' highest level of education, grades 8 and 12: 1996 and 2000

						At or above	At or above Proficient
		Below Basic	At Basic	At Proficient	At Advanced	Basic	
Grade 8							
Less than high school	1996	61 (3.1)	29 (3.0)	9 (1.7)	(${ }^{* * * *)}$	39 (3.1)	10 (1.8)
	2000	70 (2.4)	23 (1.9)	8 (1.5)	(${ }^{* * * *)}$	30 (2.4)	8 (1.5)
Graduated high school	1996	51 (2.2)	31 (1.5)	17 (1.9)	1 (0.5)	49 (2.2)	18 (1.7)
	2000	54 (1.5)	29 (1.6)	17 (1.5)	1 (0.3)	46 (1.5)	18 (1.6)
Some education after high school	1996	31 (1.6)	36 (2.5)	30 (2.1)	3 (0.9)	69 (1.6)	33 (2.2)
	2000	34 (1.6)	33 (1.4)	30 (1.4)	3 (0.8)	66 (1.6)	34 (1.5)
Graduated college	1996	28 (1.4)	33 (1.3)	33 (1.4)	5 (0.8)	72 (1.4)	39 (1.7)
	2000	26 (0.9)	30 (1.0)	37 (1.2)	7 (0.7)	74 (0.9)	44 (1.2)
Unknown	1996	59 (4.0)	28 (3.4)	13 (2.6)	(${ }^{(* * * *)}$	41 (4.0)	13 (2.6)
	2000	63 (2.0)	23 (2.3)	13 (1.4)	1 (0.5)	37 (2.0)	14 (1.6)
Grade 12							
Less than high school	1996	75 (2.7)	21 (2.8)	3 (0.9)	(${ }^{* * * *)}$	25 (2.7)	3 (0.9)
	2000	73 (2.7)	23 (2.8)	4 (0.9)	(${ }^{* * * *)}$	27 (2.7)	4 (0.8)
Graduated high school	1996	57 (2.4)	32 (2.0)	11 (1.8)	1 (0.4)	43 (2.4)	12 (1.8)
	2000	63 (1.7)	29 (1.6)	8 (1.1)	- (0.2)	37 (1.7)	9 (1.0)
Some education after high school	1996	41 (1.4) *	40 (1.7)	17 (1.7)	2 (0.7)	59 (1.4) *	19 (1.8)
	2000	49 (1.6)	36 (1.3)	14 (1.3)	1 (0.4)	51 (1.6)	15 (1.3)
Graduated college	1996	31 (1.2) *	39 (1.6)	26 (1.5)	4 (0.5)	69 (1.2) *	30 (1.7)
	2000	35 (1.3)	38 (1.2)	23 (1.1)	4 (0.6)	65 (1.3)	27 (1.4)
Unknown	1996	83 (3.0)	12 (3.1)	4 (2.1)	(${ }^{* * * *)}$	17 (3.0)	4 (2.1)
	2000	82 (3.8)	15 (3.5)	3 (1.3)	(${ }^{* * * *)}$	18 (3.8)	3 (1.3)

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.
(****) Standard error estimates cannot be accurately determined.
A Percentage is between 0.0 and 0.5 .
NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.29: Data for Figure 3.9 National Scale Score Results by Type of School

Percentage of students and average science scale scores by type of school, grades 4,8 , and 12 : 1996 and 2000

Grade 4	1996	Public	Nonpublic
		$\begin{array}{r} 88(1.7) \\ 148(0.9) \end{array}$	$\begin{array}{r} 12(1.7) \\ 163(1.8) \end{array}$
	2000	$\begin{array}{r} 89(0.6) \\ 148(0.8) \end{array}$	$\begin{array}{r} 11(0.6) \\ 163(0.9) \end{array}$
Grade 8	1996	$\begin{array}{r} 89(1.4) \\ 148(0.9) \end{array}$	$\begin{array}{r} 11(1.4) \\ 162(2.5) \end{array}$
	2000	$\begin{array}{r} 90(0.5) \\ 149(0.7) \end{array}$	$\begin{array}{r} 10(0.5) \\ 166(0.9) \end{array}$
Grade 12	1996	$\begin{gathered} 88(1.7) \\ 149(1.0) \text { * } \end{gathered}$	$\begin{gathered} 12(1.7) \\ 155(2.2) \text { * } \end{gathered}$
	2000	$\begin{array}{r} 91(0.5) \\ 145(1.1) \end{array}$	$\begin{array}{r} 9(0.5) \\ 161(1.0) \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.30: Data for Figure 3.10 National Achievement-Level Results by Type of School

Percentage of students within each science achievement-level range and at or above achievement levels by type of school, grades 4, 8, and 12: 1996 and 2000

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000.

NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.31: Data for Table 3.1 National Scale Score Results by Type of Location

Percentage of students and average science scale scores by type of location, grades 4, 8, and 12:2000

	Central city	Urban fringe/large town	Rural/small town
Grade 4	$31(1.5)$	$46(2.2)$	$24(1.9)$
	$140(1.7)$	$155(1.2)$	$152(1.7)$
	$30(1.2)$	$156(1.0)$	$26(1.7)$
	$142(1.6)$	$47(3.4)$	$152(1.7)$
Grade 8	$27(2.1)$	$149(1.3)$	$26(3.0)$
	$144(1.9)$		$145(2.0)$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.32: Data for Figure 3.11 National Achievement-level results by Type of Location

Percentage of students within each science achievement-level range and at or above achievement levels by type of location, grades 4, 8, and 12: 2000

		Below Basic				At or above Basic	At or above Proficient	
		At Basic	At Proficient	At Advanced				
Grade 4	Central city		46 (2.0)	32 (1.5)	19 (1.2)	3 (0.4)	54 (2.0)	22 (1.4)
	Urban fringe/large town	27 (1.3)	39 (0.9)	29 (1.2)	4 (0.4)	73 (1.3)	34 (1.4)	
	Rural/small town	29 (2.0)	40 (1.8)	27 (1.9)	3 (0.7)	71 (2.0)	30 (2.1)	
Grade 8	Central city	49 (1.8)	26 (1.1)	21 (1.2)	3 (0.5)	51 (1.8)	24 (1.4)	
	Urban fringe/large town	33 (1.3)	31 (0.9)	32 (1.3)	5 (0.6)	67 (1.3)	36 (1.5)	
	Rural/small town	37 (2.0)	30 (1.5)	29 (1.7)	4 (0.7)	63 (2.0)	33 (1.9)	
Grade 12	Central city	50 (2.2)	32 (1.3)	15 (1.5)	2 (0.5)	50 (2.2)	17 (1.8)	
	Urban fringe/large town	45 (1.5)	35 (1.2)	18 (1.3)	2 (0.5)	55 (1.5)	20 (1.4)	
	Rural/small town	50 (2.4)	35 (1.7)	14 (1.7)	1 (0.5)	50 (2.4)	16 (1.8)	

[^33]
Table B.33: Data for Figure 3.12 National Scale Score Results by Free/Reduced-Price School Lunch Eligibility

Percentage of students and average science scale scores by student eligibility for free/reduced-price school lunch program, grades 4, 8, and 12: 1996 and 2000

Grade 4	1996	Eligible	Not eligible	Info not available
		$\begin{array}{r} 35(1.8) \\ 133(1.3) \end{array}$	$\begin{array}{r} 53(2.2) \\ 159(0.9) \end{array}$	$\begin{array}{r} 12(1.9) \\ 161 \text { (3.5) } \end{array}$
	2000	$\begin{array}{r} 33(1.0) \\ 130(1.2) \end{array}$	$\begin{array}{r} 49(1.8) \\ 159(1.0) \end{array}$	$\begin{array}{r} 18(1.9) \\ 161(1.5) \end{array}$
Grade 8	1996	$\begin{gathered} 26(1.5) \\ 133(1.6) \text { * } \end{gathered}$	$\begin{gathered} 51(3.3) \\ 156(1.2) \text { * } \end{gathered}$	$\begin{array}{r} 23(4.1) \\ 156(2.9) \end{array}$
	2000	$\begin{array}{r} 25(1.0) \\ 128(1.1) \end{array}$	$\begin{array}{r} 53(1.9) \\ 160(0.8) \end{array}$	$\begin{array}{r} 22(2.0) \\ 156(1.4) \end{array}$
Grade 12	1996	$\begin{array}{r} 11(1.2) \\ 125(1.9) \end{array}$	$\begin{gathered} 68(3.9) \\ 154(0.9) \text { * } \end{gathered}$	$\begin{array}{r} 21(4.0) \\ 150(2.9) \end{array}$
	2000	$\begin{array}{r} 13(0.9) \\ 126(1.3) \end{array}$	$\begin{array}{r} 60(3.3) \\ 150(1.2) \end{array}$	$\begin{array}{r} 28(3.5) \\ 150(2.1) \end{array}$

[^34]
Table B.34: Data for Figure 3.13 National Achievement-level results by Free/Reduced-Price School Lunch Eligibility

Percentage of students within each science achievement-level range and at or above achievement levels by student eligibility for free/reduced-price school lunch program, grades 4, 8, and 12: 1996 and 2000

[^35]
Table B.35: Data for Table 3.2 State Scale Score Results by Gender, Grade 4

State average science scale scores by gender for grade 4 public schools: 2000

	Male	Female
Nation	151 (1.0)	146 (0.9)
Alabama	143 (2.3)	143 (1.8)
Arizona	142 (1.7)	140 (1.4)
Arkansas	145 (2.2)	143 (1.8)
California ${ }^{\text {+ }}$	132 (2.1)	130 (2.5)
Connecticut	160 (1.5)	153 (1.4)
Georgia	147 (1.5)	140 (1.7)
Hawaii	138 (1.8)	135 (1.6)
Idaho ${ }^{\dagger}$	155 (2.0)	150 (1.6)
Illinois ${ }^{\dagger}$	154 (1.9)	148 (1.9)
Indiana ${ }^{\dagger}$	157 (2.2)	153 (1.6)
lowa ${ }^{\dagger}$	163 (1.5)	158 (1.7)
Kentucky	155 (1.3)	150 (1.4)
Louisiana	141 (2.1)	136 (2.1)
Maine ${ }^{\dagger}$	165 (1.1)	158 (1.2)
Maryland	148 (1.8)	144 (1.4)
Massachusetts	164 (1.5)	159 (1.5)
Michigan ${ }^{\dagger}$	156 (1.9)	151 (2.1)
Minnesota ${ }^{\dagger}$	159 (1.6)	155 (1.9)
Mississippi	135 (1.8)	132 (1.6)
Missouri	159 (1.7)	153 (1.8)
Montana ${ }^{\dagger}$	163 (2.3)	157 (2.2)
Nebraska	153 (2.0)	148 (2.2)
Nevada	142 (1.7)	142 (1.3)
New Mexico	140 (2.4)	136 (2.3)
New York ${ }^{\dagger}$	151 (1.6)	147 (1.7)
North Carolina	150 (1.5)	146 (1.6)
North Dakota	164 (1.1)	156 (1.1)
Ohio ${ }^{\dagger}$	156 (1.8)	152 (1.8)
Oklahoma	153 (1.9)	150 (1.4)
Oregon ${ }^{+}$	151 (2.2)	148 (2.1)
Rhode Island	151 (1.9)	145 (1.6)
South Carolina	143 (1.5)	139 (1.3)
Tennessee	150 (1.8)	145 (1.7)
Texas	150 (1.9)	145 (1.9)
Utah	157 (1.5)	152 (1.2)
Vermont ${ }^{\dagger}$	161 (2.0)	157 (2.0)
Virginia	157 (2.2)	155 (1.6)
West Virginia	152 (1.3)	149 (1.3)
Wyoming	162 (1.4)	153 (1.2)
Other Jurisdictions		
American Samoa	52 (2.3)	49 (3.4)
DDESS	158 (1.0)	155 (1.1)
DoDDS	159 (0.7)	153 (0.8)
Guam	108 (2.9)	113 (2.7)
Virgin Islands	118 (1.6)	113 (1.9)

[^36]
Table B.36: Data for Table 3.3 State Scale Score Results by Gender, Grade 8

State average science scale scores by gender for grade 8 public schools: 1996 and 2000

	1996		2000	
	Male	Female	Male	Female
Nation	149 (1.1) *	148 (1.2)	153 (0.8)	146 (0.9)
Alabama	138 (2.0)	139 (1.7)	144 (2.1)	139 (2.0)
Arizona ${ }^{\dagger}$	147 (1.8)	143 (1.7)	150 (1.9)	142 (2.0)
Arkansas	147 (1.8)	142 (1.5)	144 (1.9)	142 (1.5)
California ${ }^{\dagger}$	140 (2.0)	136 (1.9) *	136 (2.3)	129 (1.7)
Connecticut	156 (1.4)	155 (1.5)	158 (1.9)	150 (1.5)
Georgia	144 (1.8)	139 (1.5)	147 (1.9)	140 (1.4)
Hawaii	135 (1.0)	135 (1.0)	133 (1.6)	131 (1.4)
Idaho ${ }^{+}$	-	-	162 (1.3)	155 (1.5)
Illinois \dagger	-	-	153 (2.6)	148 (1.8)
Indiana ${ }^{\dagger}$	154 (1.7)	152 (1.5)	158 (1.8)	154 (1.8)
Kentucky	148 (1.5) \ddagger	147 (1.3)	155 (1.7)	148 (1.3)
Louisiana	136 (1.9)	129 (1.7)	138 (2.1)	134 (1.8)
Maine ${ }^{+}$	165 (1.2)	161 (1.2) *	163 (1.3)	157 (1.2)
Maryland	146 (1.9) *	145 (1.5)	152 (1.5)	147 (1.4)
Massachusetts	159 (1.7)	154 (1.5) *	162 (1.8)	160 (1.7)
Michigan ${ }^{\dagger}$	156 (1.6)	150 (1.7)	158 (1.7)	154 (2.0)
Minnesota ${ }^{\dagger}$	161 (1.4)	157 (1.5)	162 (2.6)	158 (2.4)
Mississippi	134 (1.8)	132 (1.3)	136 (1.3)	132 (1.4)
Missouri	152 (1.3) \ddagger	150 (1.3) *	159 (1.3)	154 (1.3)
Montana ${ }^{\dagger}$	164 (1.7)	160 (1.3)	169 (1.5)	161 (1.4)
Nebraska	160 (1.2)	155 (1.3)	160 (1.4)	154 (1.6)
Nevada	-	-	145 (1.6)	142 (1.2)
New Mexico	143 (1.3)	139 (1.1)	144 (2.4)	137 (1.4)
New York ${ }^{\dagger}$	148 (2.5)	143 (1.3)	151 (2.9)	147 (2.3)
North Carolina	149 (1.5)	145 (1.3)	151 (1.6)	144 (1.7)
North Dakota	163 (0.9)	161 (0.9)	163 (1.1)	159 (1.2)
Ohio	-	-	164 (1.8)	157 (1.7)
Oklahoma	-	-	152 (1.6)	146 (1.2)
Oregon ${ }^{\dagger}$	157 (2.0)	153 (1.5)	155 (1.9)	153 (1.6)
Rhode Island	150 (1.1)	148 (1.2)	152 (1.1)	147 (2.1)
South Carolina	141 (1.9)	136 (1.5)	145 (1.6)	139 (1.5)
Tennessee	144 (2.0)	142 (2.1)	149 (1.9)	143 (1.7)
Texas	147 (1.6)	143 (2.4)	147 (1.7)	141 (1.7)
Utah	159 (1.2)	154 (0.8)	158 (1.5)	153 (1.0)
Vermont ${ }^{\dagger}$	158 (1.3) *	156 (1.1)	163 (1.2)	159 (1.2)
Virginia	150 (1.7) *	148 (1.7)	156 (1.6)	148 (1.3)
West Virginia	148 (1.3) *	147 (1.1)	153 (1.4)	147 (1.2)
Wyoming	159 (1.0)	156 (0.9)	159 (1.4)	156 (1.2)
Other Jurisdictions				
American Samoa	-	-	70 (3.8)	75 (3.2)
DDESS	157 (1.6)	149 (1.6) \ddagger	160 (1.8)	157 (1.7)
DoDDS	157 (1.1) \ddagger	154 (0.9)	162 (1.3)	156 (1.0)
Guam	120 (1.6)	120 (1.6)	116 (4.7)	112 (4.7)

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000 if only one jurisdiction or the Nation is being examined.
\ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
- Indicates that the jurisdiction did not participate.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.37: Data for Table 3.4 State Proficient Level Achievement Results by Gender, Grade 4

State percentages of students at or above the Proficient level in science by gender for grade 4 public schools: 2000

	Male	Female
Nation	31 (1.2)	24 (1.0)
Alabama	23 (2.2)	21 (1.8)
Arizona	24 (2.0)	20 (1.5)
Arkansas	26 (2.1)	21 (1.9)
California ${ }^{\text {+ }}$	16 (2.1)	12 (2.4)
Connecticut	40 (2.2)	30 (1.8)
Georgia	27 (1.8)	20 (2.0)
Hawaii	18 (1.3)	14 (1.4)
Idaho ${ }^{\dagger}$	35 (3.3)	25 (2.1)
Illinois ${ }^{\dagger}$	34 (3.0)	28 (2.3)
Indiana ${ }^{\dagger}$	37 (2.6)	28 (2.3)
lowa ${ }^{\dagger}$	42 (2.8)	33 (2.3)
Kentucky	32 (1.7)	25 (2.2)
Louisiana	22 (2.4)	16 (2.0)
Maine ${ }^{\dagger}$	43 (2.3)	34 (1.9)
Maryland	29 (2.2)	23 (1.6)
Massachusetts	46 (2.5)	38 (1.8)
Michigan ${ }^{\dagger}$	37 (2.7)	29 (2.7)
Minnesota ${ }^{\dagger}$	38 (2.7)	32 (2.9)
Mississippi	16 (1.5)	12 (1.3)
Missouri	39 (2.0)	31 (2.2)
Montana †	43 (3.7)	32 (2.9)
Nebraska	29 (2.3)	23 (2.8)
Nevada	21 (1.9)	17 (1.7)
New Mexico	20 (2.0)	16 (1.8)
New York ${ }^{\dagger}$	28 (2.2)	24 (1.8)
North Carolina	26 (1.8)	22 (1.8)
North Dakota	44 (2.0)	32 (1.7)
Ohio ${ }^{+}$	34 (2.1)	29 (2.3)
Oklahoma	29 (2.3)	24 (2.3)
Oregon ${ }^{\text {+ }}$	29 (2.2)	26 (2.2)
Rhode Island	31 (1.8)	23 (1.5)
South Carolina	24 (1.7)	17 (1.8)
Tennessee	29 (2.2)	23 (2.0)
Texas	28 (2.4)	21 (1.7)
Utah	36 (1.9)	27 (1.8)
Vermont ${ }^{\dagger}$	41 (3.6)	36 (3.5)
Virginia	35 (2.6)	30 (2.1)
West Virginia	26 (1.7)	23 (1.9)
Wyoming	39 (2.5)	27 (1.9)
Other Jurisdictions		
American Samoa	(${ }^{* * * *)}$	(${ }^{* * * * *)}$
DDESS	33 (2.7)	26 (1.9)
DoDDS	35 (1.5)	26 (1.4)
Guam	4 (1.4)	4 (0.9)
Virgin Islands	4 (1.3)	3 (1.0)

[^37]
Table B.38: Data for Table 3.5 State Proficient Level Achievement Results by Gender, Grade 8

State percentages of students at or above the Proficient level in science by gender for grade 8 public schools: 1996 and 2000

1996	2000	
Female	Male	Female
26 (1.8)	35 (0.9)	26 (1.2)
17 (1.7)	24 (1.9)	20 (1.9)
20 (1.8)	29 (2.2)	19 (2.2)
18 (1.4)	25 (2.1)	21 (1.7)
18 (1.8)	18 (2.0)	13 (1.8)
35 (2.3)	39 (2.1)	30 (1.6)
17 (1.7)	27 (2.0)	20 (1.6)
14 (1.5)	17 (1.6)	14 (1.3)
-	44 (2.0)	32 (2.2)
-	34 (3.1)	26 (2.0)
28 (2.2)	38 (2.3)	32 (2.2)
21 (1.6)	34 (2.2)	24 (1.8)
10 (1.2) *	21 (1.7)	15 (1.6)
38 (2.5)	42 (2.3)	32 (2.3)
24 (2.2)	32 (1.7)	25 (1.8)
33 (2.0)	44 (2.3)	40 (2.4)
29 (2.5)	38 (2.5)	35 (2.5)
33 (2.0)	45 (3.1)	38 (2.6)
11 (1.1)	17 (1.6)	12 (1.7)
25 (1.7) *	40 (2.1)	32 (1.5)
37 (2.3)	52 (2.6)	39 (2.4)
30 (1.9)	41 (2.2)	31 (2.2)
-	25 (1.6)	20 (1.5)
16 (1.2)	25 (2.1)	16 (1.8)
23 (1.8)	32 (2.9)	27 (2.4)
22 (1.5)	31 (2.1)	23 (2.0)
37 (1.8)	44 (2.2)	36 (2.2)
-	46 (2.5)	36 (2.4)
-	31 (1.8)	22 (1.8)
29 (1.9)	37 (2.1)	30 (2.2)
24 (2.0)	31 (1.7)	26 (1.5)
15 (1.3)	23 (1.8)	18 (1.6)
20 (2.1)	29 (1.8)	21 (1.5)
20 (1.8)	27 (2.1)	20 (1.5)
27 (1.6)	39 (2.2)	30 (1.4)
32 (2.0)	43 (2.0)	36 (1.7)
26 (2.5)	35 (2.0)	27 (1.6)
19 (1.6)	30 (1.7)	22 (1.9)
32 (1.6)	39 (1.5)	32 (1.8)

Other Jurisdictions				
American Samoa	-	-	$3(1.1)$	$1(0.9)$
DDESS	$32(2.9)$	$21(2.6) *$	$38(3.4)$	$33(3.0)$
DoDDS	$33(1.9) \ddagger$	$29(1.6)$	$42(1.6)$	$33(1.5)$
Guam	$8(1.3)$	$7(1.5)$	$7(2.5)$	$5(1.3)$

[^38]
Table B.39: State Scale Score Differences by Gender, Grade 4

State differences in average science scale scores by gender, grade 4: 2000

	le-Female
Nation	5 (1.3)
Alabama	(2.9)
Arizona	2 (2.2)
Arkansas	2 (2.8)
California ${ }^{\text {+ }}$	2 (3.2)
Connecticut	7 (2.0)
Georgia	7 (2.3)
Hawaii	3 (2.4)
Idaho ${ }^{\dagger}$	5 (2.5)
Illinois ${ }^{\dagger}$	5 (2.7)
Indiana ${ }^{\text {+ }}$	4 (2.7)
lowa †	6 (2.3)
Kentucky	5 (1.9)
Louisiana	5 (2.9)
Maine ${ }^{\dagger}$	7 (1.7)
Maryland	4 (2.3)
Massachusetts	5 (2.2)
Michigan ${ }^{\dagger}$	4 (2.8)
Minnesota ${ }^{\dagger}$	4 (2.5)
Mississippi	3 (2.4)
Missouri	5 (2.5)
Montana ${ }^{\dagger}$	6 (3.2)
Nebraska	5 (3.0)
Nevada	- (2.2)
New Mexico	4 (3.3)
New York ${ }^{\dagger}$	3 (2.3)
North Carolina	4 (2.2)
North Dakota	7 (1.5)
Ohio ${ }^{\dagger}$	4 (2.5)
Oklahoma	3 (2.3)
Oregon ${ }^{\dagger}$	4 (3.1)
Rhode Island	6 (2.5)
South Carolina	4 (2.0)
Tennessee	5 (2.5)
Texas	4 (2.7)
Utah	5 (1.9)
Vermont ${ }^{\dagger}$	4 (2.8)
Virginia	3 (2.7)
West Virginia	3 (1.8)
Wyoming	8 (1.8)
Other Jurisdicitons	
American Samoa	2 (4.1)
DDESS	4 (1.5)
DoDDS	6 (1.1)
Guam	-5 (4.0)
Virgin Islands	5 (2.4)

[^39]
Table B.40: State Scale Score Differences by Gender, Grade 8

State differences in average science scale scores by gender, grade 8: 1996 and 2000

Male-Female		
	1996	2000
Nation	1 (1.7) *	7 (1.2)
Alabama	(2.6)	5 (2.9)
Arizona ${ }^{\text { }}$	4 (2.5)	8 (2.8)
Arkansas	5 (2.3)	2 (2.4)
California ${ }^{\dagger}$	3 (2.7)	7 (2.8)
Connecticut	1 (2.0)	7 (2.5)
Georgia	4 (2.3)	7 (2.4)
Hawaii	1 (1.5)	2 (2.2)
Idaho ${ }^{\dagger}$	-	7 (2.0)
Illinois ${ }^{\dagger}$	-	5 (3.2)
Indiana ${ }^{\text {¢ }}$	1 (2.3)	4 (2.6)
Kentucky	1 (2.0) *	7 (2.1)
Louisiana	6 (2.6)	4 (2.8)
Maine ${ }^{\dagger}$	4 (1.7)	6 (1.8)
Maryland	- (2.5)	5 (2.1)
Massachusetts	5 (2.2)	3 (2.5)
Michigan ${ }^{\dagger}$	6 (2.4)	3 (2.7)
Minnesota ${ }^{\dagger}$	4 (2.1)	3 (3.6)
Mississippi	2 (2.2)	4 (1.9)
Missouri	2 (1.9)	5 (1.8)
Montana ${ }^{\dagger}$	4 (2.1)	7 (2.1)
Nebraska	5 (1.8)	6 (2.1)
Nevada	-	3 (2.0)
New Mexico	5 (1.7)	7 (2.8)
New York ${ }^{\dagger}$	5 (2.8)	4 (3.7)
North Carolina	4 (2.0)	7 (2.4)
North Dakota	2 (1.3)	4 (1.6)
Ohio	-	7 (2.5)
Oklahoma	-	6 (2.0)
Oregon ${ }^{+}$	5 (2.5)	2 (2.5)
Rhode Island	3 (1.6)	5 (2.4)
South Carolina	6 (2.4)	6 (2.2)
Tennessee	2 (2.9)	6 (2.6)
Texas	5 (2.9)	6 (2.4)
Utah	5 (1.4)	5 (1.8)
Vermont ${ }^{\dagger}$	1 (1.7)	4 (1.7)
Virginia	2 (2.4)	8 (2.0)
West Virginia	1 (1.7)	6 (1.8)
Wyoming	2 (1.4)	2 (1.8)
Other Jurisdictions		
American Samoa	-	-4 (5.0)
DDESS	8 (2.3)	3 (2.5)
DoDDS	3 (1.4)	6 (1.6)
Guam	1 (2.2)	4 (6.7)

Standard errors of the estimated difference in scale scores appear in parentheses.
Score differences are calculated based on differences between unrounded average scale scores.

* Significantly different from 2000 if only one jurisdiction or the nation is being examined.

A Difference is between -0.5 and 0.5 .
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

- Indicates that the jurisdiction did not participate.

DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.41: State Percentages of Students by Gender, Grade 4

State percentages of students by gender for grade 4, public schools: 2000

	Male	Female
Nation	50 (0.5)	50 (0.5)
Alabama	51 (1.2)	49 (1.2)
Arizona	51 (1.2)	49 (1.2)
Arkansas	50 (1.1)	50 (1.1)
California ${ }^{\dagger}$	50 (1.3)	50 (1.3)
Connecticut	50 (1.2)	50 (1.2)
Georgia	50 (1.0)	50 (1.0)
Hawaii	50 (1.1)	50 (1.1)
Idaho ${ }^{\dagger}$	51 (1.1)	49 (1.1)
Illinois ${ }^{\dagger}$	51 (1.5)	49 (1.5)
Indiana ${ }^{\dagger}$	50 (1.1)	50 (1.1)
lowa ${ }^{\dagger}$	49 (1.1)	51 (1.1)
Kentucky	50 (1.0)	50 (1.0)
Louisiana	49 (1.0)	51 (1.0)
Maine ${ }^{\text { }}$	47 (1.2)	53 (1.2)
Maryland	49 (0.8)	51 (0.8)
Massachusetts	52 (1.1)	48 (1.1)
Michigan ${ }^{\dagger}$	49 (1.2)	51 (1.2)
Minnesota \dagger	52 (1.0)	48 (1.0)
Mississippi	49 (1.1)	51 (1.1)
Missouri	50 (1.1)	50 (1.1)
Montana †	48 (1.4)	52 (1.4)
Nebraska	48 (1.4)	52 (1.4)
Nevada	51 (1.1)	49 (1.1)
New Mexico	48 (1.2)	52 (1.2)
New York ${ }^{\dagger}$	47 (1.4)	53 (1.4)
North Carolina	49 (1.1)	51 (1.1)
North Dakota	48 (1.2)	52 (1.2)
Ohio ${ }^{\dagger}$	52 (1.3)	48 (1.3)
Oklahoma	49 (1.2)	51 (1.2)
Oregon ${ }^{\dagger}$	49 (1.3)	51 (1.3)
Rhode Island	49 (1.2)	51 (1.2)
South Carolina	51 (0.9)	49 (0.9)
Tennessee	50 (0.9)	50 (0.9)
Texas	49 (1.1)	51 (1.1)
Utah	51 (1.1)	49 (1.1)
Vermont ${ }^{\dagger}$	53 (1.5)	47 (1.5)
Virginia	50 (1.0)	50 (1.0)
West Virginia	48 (1.0)	52 (1.0)
Wyoming	49 (1.2)	51 (1.2)
Other Jurisdictions		
American Samoa	53 (2.3)	47 (2.3)
DDESS	51 (1.3)	49 (1.3)
DoDDS	50 (0.9)	50 (0.9)
Guam	47 (1.6)	53 (1.6)
Virgin Islands	52 (2.0)	48 (2.0)

[^40]
Table B.42: State Percentages of Students by Gender, Grade 8

State percentages of students by gender for grade 8, public schools: 1996 and 2000

	1996		2000	
	Male	Female	Male	Female
Nation	51 (1.2)	49 (1.2)	51 (0.5)	49 (0.5)
Alabama	49 (0.9)	51 (0.9)	51 (1.2)	49 (1.2)
Arizona ${ }^{\text {¢ }}$	50 (1.1)	50 (1.1)	51 (1.2)	49 (1.2)
Arkansas	50 (1.3)	50 (1.3)	50 (1.3)	50 (1.3)
California ${ }^{\dagger}$	49 (0.9)	51 (0.9)	47 (1.5)	53 (1.5)
Connecticut	49 (0.9)	51 (0.9)	49 (1.0)	51 (1.0)
Georgia	50 (1.0)	50 (1.0)	49 (1.1)	51 (1.1)
Hawaii	52 (1.3)	48 (1.3)	50 (0.9)	50 (0.9)
Idaho ${ }^{+}$	-	-	51 (1.2)	49 (1.2)
Illinois ${ }^{\dagger}$	-	-	50 (1.7)	50 (1.7)
Indiana ${ }^{\text {¢ }}$	50 (1.1)	50 (1.1)	51 (1.4)	49 (1.4)
Kentucky	50 (1.3)	50 (1.3)	51 (1.2)	49 (1.2)
Louisiana	50 (1.0)	50 (1.0)	49 (1.1)	51 (1.1)
Maine ${ }^{\dagger}$	48 (1.0)	52 (1.0)	49 (1.4)	51 (1.4)
Maryland	51 (1.2)	49 (1.2)	49 (0.9)	51 (0.9)
Massachusetts	52 (1.0)	48 (1.0)	49 (1.0)	51 (1.0)
Michigan ${ }^{\dagger}$	50 (1.2)	50 (1.2)	50 (1.2)	50 (1.2)
Minnesota ${ }^{\text {+ }}$	50 (1.1)	50 (1.1)	53 (1.4)	47 (1.4)
Mississippi	50 (1.1)	50 (1.1)	50 (0.9)	50 (0.9)
Missouri	51 (1.1)	49 (1.1)	49 (1.2)	51 (1.2)
Montana ${ }^{\dagger}$	49 (1.5)	51 (1.5)	55 (1.4)	45 (1.4)
Nebraska	50 (0.9)	50 (0.9)	53 (1.0)	47 (1.0)
Nevada	-	-	50 (1.1)	50 (1.1)
New Mexico	50 (1.0)	50 (1.0)	49 (1.2)	51 (1.2)
New York ${ }^{\dagger}$	50 (1.0)	50 (1.0)	50 (1.4)	50 (1.4)
North Carolina	50 (1.0)	50 (1.0)	49 (1.4)	51 (1.4)
North Dakota	52 (0.9)	48 (0.9)	51 (1.2)	49 (1.2)
Ohio	-	-	49 (1.3)	51 (1.3)
Oklahoma	-	-	51 (1.0)	49 (1.0)
Oregon ${ }^{\text { }}$	49 (1.2)	51 (1.2)	50 (1.1)	50 (1.1)
Rhode Island	50 (1.3)	50 (1.3)	50 (1.1)	50 (1.1)
South Carolina	49 (1.1)	51 (1.1)	48 (1.1)	52 (1.1)
Tennessee	52 (1.3)	48 (1.3)	51 (1.1)	49 (1.1)
Texas	50 (1.1)	50 (1.1)	50 (1.2)	50 (1.2)
Utah	48 (1.0)	52 (1.0)	48 (1.1)	52 (1.1)
Vermont ${ }^{\dagger}$	49 (1.4)	51 (1.4)	50 (1.2)	50 (1.2)
Virginia	51 (1.1)	49 (1.1)	49 (1.1)	51 (1.1)
West Virginia	51 (0.9)	49 (0.9)	49 (1.2)	51 (1.2)
Wyoming	52 (1.1)	48 (1.1)	51 (1.1)	49 (1.1)
Other Jurisdictions				
American Samoa	-	-	52 (2.9)	48 (2.9)
DDESS	51 (1.9)	49 (1.9)	49 (1.9)	51 (1.9)
DoDDS	49 (1.0)	51 (1.0)	50 (1.1)	50 (1.1)
Guam	50 (1.4)	50 (1.4)	53 (1.9)	47 (1.9)

Standard errors of the estimated percentages appear in parentheses.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.

- Indicates that the jurisdiction did not participate.

NOTE: Percentages may not add to 100 due to rounding.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.43: Data for Table 3.6 State Scale Score Results by Race/Ethnicity, Grade 4

State average science scale scores by race/ethnicity for grade 4 public schools: 2000

	White	Black	Hispanic	Asian/ Pacific Islander	American Indian
Nation	159 (0.9)	124 (1.7)	127 (1.4)	~	139 (2.9)
Alabama	158 (1.5)	125 (1.6)	117 (5.1)	****(****)	****(****)
Arizona	157 (1.1)	128 (3.8)	123 (2.2)	****(****)	115 (3.8)
Arkansas	156 (1.3)	117 (2.9)	121 (4.7)	****(****)	144 (5.6)
California ${ }^{\dagger}$	151 (2.1)	119 (4.3)	115 (2.5)	142 (3.1)	****(****)
Connecticut	166 (1.0)	127 (2.6)	133 (2.5)	****(****)	****(****)
Georgia	160 (1.6)	124 (1.4)	128 (3.3)	162 (5.5)	****(****)
Hawaii	148 (1.8)	125 (5.0)	119 (2.9)	138 (1.7)	****(****)
Idaho ${ }^{+}$	158 (1.4)	****(****)	126 (3.2)	****(****)	****(****)
Illinois \dagger	166 (1.4)	127 (2.5)	129 (2.8)	****(****)	****(****)
Indiana ${ }^{\dagger}$	160 (1.4)	132 (4.1)!	130 (4.4)	****(****)	****(****)
lowa ${ }^{\text {+ }}$	162 (1.3)	****(****)	141 (3.8)	****(****)	****(****)
Kentucky	156 (1.2)	129 (2.5)	138 (4.5)	****(****)	****(****)
Louisiana	156 (1.6)	121 (2.3)	126 (4.9)	****(****)	****(****)
Maine ${ }^{\dagger}$	163 (1.0)	****(****)	144 (3.9)	****(****)	****(****)
Maryland	162 (1.5)	125 (1.8)	133 (3.1)	164 (4.6)	134 (5.2)
Massachusetts	169 (0.9)	137 (3.4)	130 (3.1)	161 (4.5)	****(****)
Michigan ${ }^{\dagger}$	164 (1.6)	121 (2.9)	132 (4.0)	****(****)	****(****)
Minnesota ${ }^{\dagger}$	163 (1.2)	126 (5.4)	136 (4.2)	134 (4.8)	148 (5.1)
Mississippi	153 (1.4)	117 (1.2)	114 (4.0)	****(****)	****(****)
Missouri	164 (1.1)	131 (2.6)	129 (7.0)	****(****)	152 (3.5)
Montana ${ }^{+}$	164 (1.5)	****(****)	147 (4.3)	****(****)	145 (5.2) !
Nebraska	155 (1.7)	125 (4.6) !	136 (3.7)	****(****)	****(****)
Nevada	152 (1.4)	121 (3.0)	127 (1.7)	147 (2.9)	145 (4.0)
New Mexico	155 (2.1)	129 (5.8)	129 (2.6)	****(****)	123 (4.5)
New York ${ }^{+}$	163 (1.2)	131 (2.3)	132 (2.7)	156 (4.6) !	****(****)
North Carolina	159 (1.1)	128 (1.7)	133 (4.1)	****(****)	132 (6.4) !
North Dakota	163 (0.8)	****(****)	145 (3.4)	****(****)	136 (5.5)
Ohio ${ }^{\dagger}$	161 (1.4)	129 (3.2)	141 (3.9)	****(****)	****(****)
Oklahoma	159 (1.3)	133 (2.5)	136 (2.3)	****(****)	148 (2.9)
Oregon ${ }^{\text {+ }}$	156 (1.7)	****(****)	123 (4.3)	****(****)	148 (3.7)
Rhode Island	159 (1.3)	121 (2.2)	116 (4.2)	143 (5.3)	****(****)
South Carolina	157 (1.2)	123 (1.9)	128 (4.2)	****(****)	****(****)
Tennessee	157 (1.3)	122 (2.5)	128 (4.6)	********)	****(****)
Texas	162 (1.2)	134 (3.4)	135 (2.3)	158 (6.0) !	****(****)
Utah	160 (1.0)	****(****)	135 (2.3)	147 (4.7)	138 (4.4)
Vermont ${ }^{\text {+ }}$	160 (1.9)	****(****)	****(****)	****(****)	****(****)
Virginia	166 (1.3)	139 (2.6)	140 (7.3)	176 (3.9)	****(****)
West Virginia	152 (1.1)	132 (3.7) !	135 (4.3)	****(****)	****(****)
Wyoming	161 (1.1)	****(****)	142 (2.3)	****(****)	149 (4.2)
Other Jurisdictions					
American Samoa	****(****)	****(****)	36 (4.1)	58 (2.2)	****(****)
DDESS	166 (0.9)	145 (1.5)	154 (1.6)	157 (2.6)	****(****)
DoDDS	163 (0.8)	141 (0.9)	151 (1.4)	156 (1.8)	153 (2.4)
Guam	112 (5.8)	****(****)	88 (5.4)	116 (1.6)	****(****)
Virgin Islands	****(****)	119 (1.4)	106 (3.0)	****(****)	****(****)

[^41]
Table B.44: Data for Table 3.7 State Scale Score Results by Race/Ethnicity, Grade 8

State average science scale scores by race/ethnicity for grade 8 public schools: 1996 and 2000

	White		Black		Hispanic		Asian/Pacific Islander		American Indian	
	1996	2000	1996	2000	1996	2000			1996	2000
Nation	159 (1.1)	160 (0.8)	120 (1.2)	121 (1.3)	127 (1.8)	127 (1.4)	150 (3.3)	154 (2.7)	148 (4.2) *	132 (3.4)
Alabama	151 (1.5)	154 (1.5)	117 (1.8)	116 (2.4)	107 (7.6)	106 (6.3)	***(****)	****(****)	***(****)	***(****)
Arizona ${ }^{\dagger}$	157 (1.3)	159 (1.2)	124 (3.3)	127 (4.7)	129 (2.1)	126 (2.6)	****(****)	****(****)	121 (8.6) !	137 (4.0)
Arkansas	154 (1.5)	154 (1.3)	116 (2.5)	113 (2.2)	122 (5.8)	118 (5.2)	****(****)	****(****)	***(****)	***(****)
California ${ }^{\dagger}$	156 (1.7)	150 (1.7)	121 (3.4)	120 (5.2)	121 (1.9)	117 (1.7)	148 (3.6)	147 (4.0)	****(****)	****(****)
Connecticut	165 (1.0)	166 (0.9)	121 (4.4)	122 (3.2)	122 (2.6)	129 (3.0)	163 (3.7)	160 (5.0)	****(****)	****(****)
Georgia	155 (1.2)	159 (1.7)	122 (1.4)	123 (1.5)	128 (4.2)	124 (4.1)	****(****)	****(****)	****(****)	****(****)
Hawaii	146 (1.8)	149 (2.5)	128 (4.4)	128 (3.5)	119 (2.6)	119 (2.7)	136 (1.0) *	132 (1.4)	****(****)	****(****)
Idaho ${ }^{+}$		162 (1.2)		****(****)		135 (2.6)	-	****(****)	-	****(****)
$1 \mathrm{llinois}{ }^{\dagger}$	-	165 (1.5)	-	123 (3.4)	-	131 (3.2)	-	162 (3.7)	-	****(****)
Indiana ${ }^{\dagger}$	158 (1.3)	161 (1.3)	125 (3.3)	127 (3.4) !	139 (2.1)	132 (6.4)	****(****)	****(****)	****(****)	****(****)
Kentucky	151 (1.1) *	155 (1.3)	127 (2.7)	126 (2.9)	113 (6.2)	********)	****(****)	****(****)	********)	*****)
Louisiana	148 (1.3) *	154 (1.4)	113 (2.1)	113 (2.0)	104 (5.7)	119 (4.7)	****(****)	****(****)	****(****)	****(****)
Maine ${ }^{+}$	164 (0.9) *	161 (1.0)	****(****)	****(****)	141 (4.6)	****(****)	****(****)	****(****)	****(****)	****(****)
Maryland	160 (1.4)	163 (1.1)	124 (1.4)	127 (1.7)	121 (4.1) *	135 (3.3)	161 (3.6)	170 (3.2)	****(****)	****(****)
Massachusetts	163 (1.2) *	168 (1.1)	126 (3.3)	134 (4.0)	126 (3.9)	128 (4.0)	152 (7.3) !	165 (3.9)	****(****)	****(****)
Michigan ${ }^{+}$	161 (1.4)	164 (1.3)	122 (2.4)	120 (3.4)	134 (4.9)	137 (4.1)	****(****)	****(****)	****(****)	*****)
Minnesota ${ }^{+}$	162 (1.2)	165 (1.3)	130 (4.4)	122 (9.0) !	134 (5.3)	136 (7.0)	152 (9.7) !	****(****)	****(****)	****(****)
Mississippi	149 (1.2)	150 (1.3)	119 (1.4) *	114 (1.2)	105 (3.8)	113 (4.6)	****(****)	****(****)	****(****)	****(****)
Missouri	158 (1.0) *	162 (1.1)	120 (2.8)	125 (2.8)	130 (5.0)	141 (4.4)	****(****)	****(****)	****(****)	****(****)
Montana ${ }^{+}$	166 (0.9)	168 (0.9)	****(****)	****(****)	147 (2.7)	151 (4.2)	****(****)	****(****)	139 (2.7)	143 (4.7)
Nebraska	161 (0.9)	162 (0.9)	130 (3.1)	129 (3.8)	134 (3.1)	132 (4.2)	****(****)	****(****)	******)	****(****)
Nevada	-	154 (0.8)	-	125 (3.0)	-	126 (2.4)	-	148 (2.5)	-	134 (4.5)
New Mexico	159 (1.0)	160 (1.5)	****(****)	****(****)	130 (1.1)	130 (1.9)	****(****)	****(****)	126 (2.4)	124 (5.3)
New York ${ }^{+}$	161 (1.4)	165 (1.7)	120 (1.9)	128 (4.1)	116 (2.7)	125 (5.6)	155 (5.4)	151 (5.4)	****(****)	****(****)
North Carolina	157 (1.1)	158 (1.5)	126 (1.4)	123 (1.9)	123 (3.6) *	139 (4.7)	****(****)	158 (5.7)	136 (4.1) !	****(****)
North Dakota	164 (0.8)	164 (0.9)	***(****)	****(****)	137 (4.5)	139 (4.5)	****(****)	****(****)	137 (6.9) !	133 (2.7)
Ohio	-	165 (1.3)	-	131 (3.6)	-	147 (4.5)	-	****(****)	-	****(****)
Oklahoma	-	156 (1.1)	-	127 (2.6)	-	123 (5.2)	-	****(****)	-	145 (2.2)
Oregon ${ }^{\dagger}$	158 (1.4)	160 (1.4)	****(****)	131 (4.8)	133 (3.7)	128 (3.1)	157 (3.3)	157 (4.4)	142 (7.9)	144 (3.9)
Rhode Island	155 (0.9)	156 (0.8)	130 (2.8)	128 (3.3)	118 (1.8)	127 (5.7)	142 (3.1)	143 (4.0)	****(****)	****(****)
South Carolina	153 (1.6)	155 (1.7)	122 (1.6)	122 (1.5)	122 (4.1)	123 (5.2)	****(****)	****(****)	****(****)	****(****)
Tennessee	151 (1.7)	155 (1.2)	117 (3.1)	118 (2.3)	104 (6.2)	123 (6.3)	********)	****(****)	****(****)	****(****)
Texas	161 (1.2)	159 (2.0)	127 (2.4)	122 (3.2)	129 (2.7)	132 (1.9)	157 (3.6)	162 (5.4)	****(****)	****(****)
Utah	159 (0.7)	159 (0.9)	****(****)	****(****)	133 (2.9)	135 (3.0)	143 (3.2)	152 (5.4)	****(****)	****(****)
Vermont ${ }^{\text {+ }}$	159 (0.9)	162 (1.0)	****(****)	****(****)	136 (3.4)	****(****)	****(****)	****(****)	****(****)	****(****)
Virginia	158 (1.4)	161 (1.3)	126 (2.3)	130 (1.9)	132 (4.2)	138 (3.0)	165 (3.2)	169 (3.9)	****(****)	****(****)
West Virginia	149 (0.9)	151 (1.1)	127 (3.2)	125 (3.6)	122 (4.3)	****(****)	****(****)	****(****)	****(****)	****(****)
Wyoming	161 (0.6)	161 (0.8)	****(****)	****(****)	140 (1.9)	139 (3.1)	****(****)	****(****)	138 (2.5)	141 (4.4) !
Other Jurisdictions										
American Samoa	-	****(****)	-	****(****)	-	55 (3.7)	-	90 (3.8)	-	***(****)
DDESS	162 (1.7) *	169 (2.0)	137 (2.5)	140 (2.6)	149 (2.4)	156 (2.7)	****(****)	****(****)	****(****)	****(****)
DoDDS	164 (1.2)	168 (1.1)	140 (1.2)	142 (1.5)	146 (1.6)	153 (2.5)	156 (1.4)	160 (2.1)	****(****)	****(****)
Guam	138 (4.6)	****(****)	****(****)	****(****)	106 (2.9)	97 (9.2)	122 (1.4)	119 (2.7)	****(****)	****(****)

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000 if only one jurisdiction or the Nation is being examined.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
**** (****) Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000
- Indicates that the jurisdiction did not participate.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.45: Data for Table 3.8 State Proficient Level Achievement Results by Race/Ethnicity, Grade 4

State percentages of students at or above the Proficient level in science by race/ethnicity for grade 4 public schools: 2000

Standard errors of the estimated percentages appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
****(****) Sample size is insufficient to permit a reliable estimate. † Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
A Percentage is between 0.0 and 0.5 .
~Special analyses raised concerns about the accuracy and precision of the National grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.46: State Basic Level Achievement Results by Race/Ethnicity, Grade 4

State percentages of students at or above the Basic level in science by race/ethnicity for grade 4 public schools: 2000

Nation	White $78 \text { (1.0) }$	$\begin{gathered} \text { Black } \\ 33 \text { (2.1) } \end{gathered}$	Hispanic $40 \text { (1.6) }$	Asian/ Pacific Islander	American Indian 56 (3.9)
Alabama	78 (2.0)	34 (2.7)	31 (4.1)	****(****)	****(****)
Arizona	76 (1.8)	38 (5.4)	35 (2.6)	****(****)	29 (4.5)
Arkansas	77 (1.8)	25 (3.1)	35 (4.8)	********)	62 (6.3)
California ${ }^{\dagger}$	72 (2.6)	28 (3.8)	27 (2.5)	61 (6.4)	****(****)
Connecticut	88 (1.3)	35 (5.0)	46 (3.4)	****(****)	****(****)
Georgia	79 (2.1)	33 (2.1)	42 (4.0)	80 (6.7)	****(****)
Hawaii	66 (3.5)	39 (5.9)	31 (3.6)	52 (2.0)	****(****)
Idaho ${ }^{+}$	78 (2.0)	****(****)	40 (4.6)	****(****)	****(****)
Illinois \dagger	87 (1.5)	37 (3.5)	42 (4.2)	****(****)	****(****)
Indiana ${ }^{\text {+ }}$	81 (1.8)	42 (5.0) !	43 (5.5)	****(****)	****(****)
lowa ${ }^{+}$	84 (1.9)	****(****)	56 (8.6)	****(****)	****(****)
Kentucky	76 (1.4)	38 (4.7)	51 (6.1)	****(****)	****(****)
Louisiana	76 (1.8)	30 (2.6)	41 (5.9)	****(****)	****(****)
Maine ${ }^{\dagger}$	83 (1.3)	****(****)	65 (7.3)	****(****)	****(****)
Maryland	81 (1.6)	34 (1.8)	45 (3.8)	83 (7.0)	48 (8.1)
Massachusetts	90 (0.9)	47 (6.4)	40 (4.1)	80 (6.4)	****(****)
Michigan ${ }^{\dagger}$	83 (1.6)	29 (5.1)	46 (5.3)	****(****)	****(****)
Minnesota ${ }^{\text {+ }}$	84 (1.5)	39 (7.9)	53 (6.7)	50 (7.3)	69 (7.2)
Mississippi	73 (2.0)	23 (2.0)	25 (4.1)	****(****)	****(****)
Missouri	85 (1.3)	43 (4.3)	48 (6.3)	****(****)	70 (4.8)
Montana ${ }^{\dagger}$	86 (2.1)	****(****)	64 (8.8)	****(****)	63 (9.6) !
Nebraska	75 (1.7)	35 (6.8) !	49 (6.1)	****(****)	****(****)
Nevada	71 (2.2)	29 (3.8)	40 (2.4)	62 (4.7)	62 (6.7)
New Mexico	74 (2.1)	42 (7.7)	44 (3.3)	****(****)	35 (5.7)
New York ${ }^{\dagger}$	87 (1.5)	40 (4.1)	44 (3.6)	71 (7.7) !	****(****)
North Carolina	80 (1.9)	37 (2.1)	43 (6.5)	****(****)	42 (10.9) !
North Dakota	85 (1.3)	****(****)	60 (6.5)	****(****)	48 (8.1)
Ohio ${ }^{\dagger}$	80 (1.6)	38 (5.1)	55 (6.3)	********)	****(****)
Oklahoma	81 (2.0)	43 (4.7)	50 (3.8)	****(****)	66 (4.8)
Oregon \dagger	75 (2.2)	****(****)	39 (5.1)	********)	65 (9.3)
Rhode Island	80 (1.8)	27 (3.8)	29 (3.2)	58 (8.5)	****(****)
South Carolina	75 (1.4)	32 (2.8)	41 (5.6)	****(****)	****(****)
Tennessee	76 (1.5)	31 (3.7)	40 (6.3)	****(****)	****(****)
Texas	84 (1.6)	45 (5.0)	49 (3.0)	72 (6.4) !	****(****)
Utah	80 (1.3)	****(****)	52 (4.2)	64 (5.9)	57 (7.7)
Vermont ${ }^{\dagger}$	80 (2.0)	****(****)	****(****)	****(****)	****(****)
Virginia	86 (1.7)	53 (3.3)	54 (10.0)	94 (3.7)	****(****)
West Virginia	72 (1.8)	40 (7.8) !	51 (6.1)	****(****)	****(****)
Wyoming	84 (1.8)	****(****)	59 (4.2)	****(****)	69 (8.8)
Other Jurisdictions					
American Samoa	****(****)	****(****)	- (0.4)	3 (1.2)	****(****)
DDESS	89 (1.7)	62 (4.0)	74 (3.2)	83 (4.3)	****(****)
DoDDS	85 (1.2)	56 (2.6)	71 (3.0)	78 (3.5)	78 (5.1)
Guam	24 (6.2)	****(****)	9 (2.8)	27 (2.2)	****(****)
Virgin Islands	****(****)	29 (2.2)	17 (4.6)	****(****)	****(****)

Standard errors of the estimated percentages appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
****(****) Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
~Special analyses raised concerns about the accuracy and precision of the National grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
A Percentage is between 0.0 and 0.5 .
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.47: State Achievement-Level Results by Race/Ethnicity, Grade 4

State percentages of students at or above science achievement levels by race/ethnicity for grade 4 public

		White			Black				Hispanic			
	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic	At or above Proficient	Advanced	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic	At or above Proficient	Advanced	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic	At or above Proficient	Advanced
Nation	22 (1.0)	78 (1.0)	37 (1.2)	5 (0.5)	67 (2.1)	33 (2.1)	6 (0.9)	(${ }^{(* * * *)}$	60 (1.6)	40 (1.6)	10 (0.9)	1 (0.4)
Alabama	22 (2.0)	78 (2.0)	34 (2.1)	3 (0.6)	66 (2.7)	34 (2.7)	5 (1.1)	(${ }^{(* * * *)}$	69 (4.1)	31 (4.1)	8 (4.0)	(${ }^{* * * *)}$
Arizona	24 (1.8)	76 (1.8)	34 (2.6)	4 (0.7)	62 (5.4)	38 (5.4)	9 (3.2)	0 (****)	65 (2.6)	35 (2.6)	7 (1.8)	(****)
Arkansas	23 (1.8)	77 (1.8)	32 (1.8)	3 (0.8)	75 (3.1)	25 (3.1)	3 (1.1)	(****)	65 (4.8)	35 (4.8)	9 (2.9)	(****)
California ${ }^{\text {+ }}$	28 (2.6)	72 (2.6)	27 (3.1)	2 (0.6)	72 (3.8)	28 (3.8)	4 (1.8)	(****)	73 (2.5)	27 (2.5)	5 (1.0)	(****)
Connecticut	12 (1.3)	88 (1.3)	45 (1.9)	4 (0.8)	65 (5.0)	35 (5.0)	4 (1.7)	(****)	54 (3.4)	46 (3.4)	12 (1.8)	1 (****)
Georgia	21 (2.1)	79 (2.1)	39 (2.3)	5 (0.8)	67 (2.1)	33 (2.1)	6 (1.0)	(${ }^{(* * * *)}$	58 (4.0)	42 (4.0)	12 (2.4)	1 (****)
Hawaii	34 (3.5)	66 (3.5)	25 (2.5)	1 (0.7)	61 (5.9)	39 (5.9)	8 (3.5)	1 (****)	69 (3.6)	31 (3.6)	7 (1.8)	(${ }^{* * * *)}$
Idaho ${ }^{+}$	22 (2.0)	78 (2.0)	35 (2.0)	3 (0.7)	****(****)	****(****)	****(****)	****(****)	60 (4.6)	40 (4.6)	8 (2.7)	(${ }^{* * * *)}$
Illinois ${ }^{\text {+ }}$	13 (1.5)	87 (1.5)	46 (2.9)	6 (1.4)	63 (3.5)	37 (3.5)	7 (2.4)	(${ }^{(* * * *)}$	58 (4.2)	42 (4.2)	10 (2.0)	1 (0.6)
Indiana ${ }^{\text {+ }}$	19 (1.8)	81 (1.8)	37 (2.2)	4 (0.7)	58 (5.0) !	! 42 (5.0) !	9 (3.1) !	0 (****) !	57 (5.5)	43 (5.5)	12 (2.8)	(${ }^{* * * *)}$
lowa ${ }^{+}$	16 (1.9)	84 (1.9)	40 (2.0)	4 (0.7)	****(****)	****(****)	****(****)	****(****)	44 (8.6)	56 (8.6)	16 (4.9)	0 (****)
Kentucky	24 (1.4)	76 (1.4)	32 (1.7)	3 (0.5)	62 (4.7)	38 (4.7)	5 (2.1)	0 (****)	49 (6.1)	51 (6.1)	15 (4.1)	1 (****)
Louisiana	24 (1.8)	76 (1.8)	31 (3.1)	3 (0.7)	70 (2.6)	30 (2.6)	5 (0.9)	(${ }^{(* * * *)}$	59 (5.9)	41 (5.9)	17 (4.3)	2 (1.3)
Maine ${ }^{\dagger}$	17 (1.3)	83 (1.3)	40 (1.9)	4 (0.7)	****(****)	****(****)	****(****)	****(****)	35 (7.3)	65 (7.3)	16 (6.9)	0 (****)
Maryland	19 (1.6)	81 (1.6)	40 (2.3)	5 (0.9)	66 (1.8)	34 (1.8)	6 (1.1)	(${ }^{(* * * *)}$	55 (3.8)	45 (3.8)	13 (3.3)	(${ }^{* * * *)}$
Massachusetts	10 (0.9)	90 (0.9)	50 (1.9)	7 (0.8)	53 (6.4)	47 (6.4)	13 (3.6)	1 (****)	60 (4.1)	40 (4.1)	11 (2.4)	1 (****)
Michigan ${ }^{+}$	17 (1.6)	83 (1.6)	43 (2.8)	5 (0.9)	71 (5.1)	29 (5.1)	6 (2.0)	(${ }^{(* * * *)}$	54 (5.3)	46 (5.3)	12 (5.1)	1 (****)
Minnesota ${ }^{\text {+ }}$	16 (1.5)	84 (1.5)	41 (2.4)	4 (0.6)	61 (7.9)	39 (7.9)	7 (3.6)	0 (****)	47 (6.7)	53 (6.7)	14 (3.4)	1 (****)
Mississippi	27 (2.0)	73 (2.0)	26 (1.6)	2 (0.5)	77 (2.0)	23 (2.0)	2 (0.9)	(${ }^{(* * * *)}$	75 (4.1)	25 (4.1)	7 (2.8)	(${ }^{* * * *)}$
Missouri	15 (1.3)	85 (1.3)	42 (1.8)	5 (0.6)	57 (4.3)	43 (4.3)	9 (2.0)	(${ }^{(* * * *)}$	52 (6.3)	48 (6.3)	20 (4.8)	(${ }^{(* * * *)}$
Montana ${ }^{+}$	14 (2.1)	86 (2.1)	41 (2.6)	4 (0.9)	****(****)	****(****)	****(****)	****(****)	36 (8.8)	64 (8.8)	23 (5.3)	2 (****)
Nebraska	25 (1.7)	75 (1.7)	31 (2.4)	3 (0.9)	65 (6.8) !	! 35 (6.8) !	5 (2.5) !	0 (****) !	51 (6.1)	49 (6.1)	12 (3.0)	1 (****)
Nevada	29 (2.2)	71 (2.2)	27 (1.6)	2 (0.5)	71 (3.8)	29 (3.8)	4 (1.8)	(${ }^{(* * * *)}$	60 (2.4)	40 (2.4)	8 (1.5)	(${ }^{* * * *)}$
New Mexico	26 (2.1)	74 (2.1)	33 (2.9)	4 (1.5)	58 (7.7)	42 (7.7)	9 (4.6)	1 (****)	56 (3.3)	44 (3.3)	10 (1.7)	1 (0.4)
New York ${ }^{+}$	13 (1.5)	87 (1.5)	40 (2.0)	3 (0.5)	60 (4.1)	40 (4.1)	6 (2.2)	(****)	56 (3.6)	44 (3.6)	9 (1.9)	(${ }^{* * * *)}$
North Carolina	20 (1.9)	80 (1.9)	35 (1.8)	3 (0.9)	63 (2.1)	37 (2.1)	6 (1.0)	(${ }^{(* * * *)}$	57 (6.5)	43 (6.5)	11 (3.6)	0 (****)
North Dakota	15 (1.3)	85 (1.3)	41 (1.4)	4 (0.5)	****(****)	****(****)	****(****)	****(****)	40 (6.5)	60 (6.5)	23 (3.9)	1 (****)
Ohio ${ }^{+}$	20 (1.6)	80 (1.6)	38 (2.1)	5 (0.8)	62 (5.1)	38 (5.1)	7 (1.6)	(${ }^{(* * * *)}$	45 (6.3)	55 (6.3)	17 (3.6)	1 (****)
Oklahoma	19 (2.0)	81 (2.0)	34 (2.1)	3 (0.6)	57 (4.7)	43 (4.7)	9 (2.6)	1 (****)	50 (3.8)	50 (3.8)	11 (2.3)	1 (0.4)
Oregon ${ }^{+}$	25 (2.2)	75 (2.2)	32 (2.1)	3 (0.8)	****(****)	****(****)	****(****)	****(****)	61 (5.1)	39 (5.1)	10 (2.8)	(${ }^{* * * *)}$
Rhode Island	20 (1.8)	80 (1.8)	35 (1.6)	3 (0.5)	73 (3.8)	27 (3.8)	5 (1.6)	1 (****)	71 (3.2)	29 (3.2)	4 (1.3)	(${ }^{* * * *)}$
South Carolina	25 (1.4)	75 (1.4)	34 (2.1)	4 (0.6)	68 (2.8)	32 (2.8)	4 (1.2)	(${ }^{(* * * *)}$	59 (5.6)	41 (5.6)	11 (2.6)	2 (****)
Tennessee	24 (1.5)	76 (1.5)	34 (2.0)	4 (0.7)	69 (3.7)	31 (3.7)	6 (1.4)	(****)	60 (6.3)	40 (6.3)	9 (2.7)	1 (****)
Texas	16 (1.6)	84 (1.6)	39 (2.7)	4 (0.8)	55 (5.0)	45 (5.0)	10 (2.8)	(${ }^{(* * * *)}$	51 (3.0)	49 (3.0)	12 (1.5)	1 (0.5)
Utah	20 (1.3)	80 (1.3)	36 (1.4)	4 (0.6)	********)	****(****)	****(****)	****(****)	48 (4.2)	52 (4.2)	13 (2.3)	1 (0.5)
Vermont ${ }^{+}$	20 (2.0)	80 (2.0)	40 (3.3)	4 (1.2)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Virginia	14 (1.7)	86 (1.7)	44 (2.4)	6 (0.9)	47 (3.3)	53 (3.3)	12 (2.0)	(${ }^{(* * * *)}$	46 (10.0)	54 (10.0)	17 (4.4)	1 (****)
West Virginia	28 (1.8)	72 (1.8)	26 (1.5)	2 (0.3)	60 (7.8) !	! 40 (7.8) !	8 (3.2) !	(${ }^{(* * * *)}$!	49 (6.1)	51 (6.1)	12 (4.4)	1 (****)
Wyoming	16 (1.8)	84 (1.8)	37 (1.7)	3 (0.6)	********)	****(****)	****(****)	****(****)	41 (4.2)	59 (4.2)	15 (3.3)	$\mathbf{\Delta l}^{(* * * *)}$
Other Jurisdictions												
American Samoa	****(****)	****(****)	****(****)	****(****)	********)	****(****)	****(****)	****(****)	100 (****)	(${ }^{* * * *)}$	0 (****)	0 (****)
DDESS	11 (1.7)	89 (1.7)	42 (2.2)	3 (0.7)	38 (4.0)	62 (4.0)	15 (2.7)	(${ }^{(* * * *)}$	26 (3.2)	74 (3.2)	26 (4.3)	2 (1.1)
DoDDS	15 (1.2)	85 (1.2)	41 (1.8)	5 (0.6)	44 (2.6)	56 (2.6)	12 (1.6)	(${ }^{* * * *)}$	29 (3.0)	71 (3.0)	23 (2.4)	2 (0.8)
Guam	76 (6.2)	24 (6.2)	7 (3.6)	0 (****)	****(****)	****(****)	****(****)	****(****)	91 (2.8)	9 (2.8)	(${ }^{* * * *)}$	0 (****)
Virgin Islands	****(****)	****(****)	****(****)	********)	71 (2.2)	29 (2.2)	4 (1.0)	(${ }^{* * * *)}$	83 (4.6)	17 (4.6)	1 (****)	(${ }^{* * * *)}$

Table B.47: State Achievement-level results by Race/Ethnicity, Grade 4 (continued)

State percentages of students at or above science achievement levels by race/ethnicity for grade 4 public schools: 2000

sch		Asian/Pacific Islander			American Indian			
	Below	At or above	At or above		Below	At or above	At or above	
	Basic	Basic	Proficient	Advanced	Basic	Basic	Proficient	Advanced
Nation	~	~	~	~	44 (3.9)	56 (3.9)	17 (3.6)	1 (0.9)
Alabama	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Arizona	****(****)	****(****)	****(****)	****(****)	71 (4.5)	29 (4.5)	7 (2.9)	0 (****)
Arkansas	****(****)	****(****)	****(****)	****(****)	38 (6.3)	62 (6.3)	22 (6.0)	1 (****)
California ${ }^{+}$	39 (6.4)	61 (6.4)	19 (3.9)	1 (1.0)	****(****)	****(****)	****(****)	****(****)
Connecticut	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Georgia	20 (6.7)	80 (6.7)	39 (9.1)	6 (****)	****(****)	****(****)	****(****)	****(****)
Hawaii	48 (2.0)	52 (2.0)	16 (1.4)	1 (0.4)	****(****)	****(****)	****(****)	****(****)
Idaho ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Illinois \dagger	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Indiana ${ }^{\text {+ }}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
lowa ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Kentucky	****(****)	****(****)	****(****)	****(****)	********)	****(****)	****(****)	****(****)
Louisiana	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Maine ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Maryland	17 (7.0)	83 (7.0)	44 (7.2)	7 (3.6)	52 (8.1)	48 (8.1)	18 (5.7)	1 (****)
Massachusetts	20 (6.4)	80 (6.4)	41 (6.7)	5 (3.0)	****(****)	****(****)	****(****)	****(****)
Michigan ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Minnesota ${ }^{\text {+ }}$	50 (7.3)	50 (7.3)	11 (5.1)	1 (****)	31 (7.2)	69 (7.2)	18 (5.7)	(${ }^{(* * * *)}$
Mississippi	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Missouri	****(****)	****(****)	****(****)	****(****)	30 (4.8)	70 (4.8)	35 (6.7)	2 (****)
Montana ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	37 (9.6) !	! 63 (9.6) !	19 (5.8) !	(${ }^{* * * *)}$!
Nebraska	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Nevada	38 (4.7)	62 (4.7)	21 (4.3)	2 (****)	38 (6.7)	62 (6.7)	20 (5.8)	2 (****)
New Mexico	****(****)	****(****)	****(****)	****(****)	65 (5.7)	35 (5.7)	6 (3.1)	((****)
New York ${ }^{\text {+ }}$	29 (7.7) !	71 (7.7) !	36 (6.7) !	4 (****)	! ****(****)	****(****)	****(****)	****(****)
North Carolina	****(****)	****(****)	****(****)	****(****)	58 (10.9) !	! 42 (10.9) !	10 (4.8) !	1 (****) !
North Dakota	****(****)	****(****)	****(****)	****(****)	52 (8.1)	48 (8.1)	13 (4.6)	1 (****)
Ohio ${ }^{+}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Oklahoma	****(****)	****(****)	****(****)	****(****)	34 (4.8)	66 (4.8)	22 (3.8)	2 (1.1)
Oregon \dagger	****(****)	****(****)	****(****)	****(****)	35 (9.3)	65 (9.3)	26 (5.9)	2 (****)
Rhode Island	42 (8.5)	58 (8.5)	18 (5.8)	3 (****)	****(****)	****(****)	****(****)	****(****)
South Carolina	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Tennessee	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Texas	28 (6.4) !	72 (6.4) !	38 (9.1) !	6 (****)	! ****(****)	****(****)	****(****)	****(****)
Utah	36 (5.9)	64 (5.9)	21 (5.6)	1 (****)	43 (7.7)	57 (7.7)	16 (4.8)	1 (****)
Vermont \dagger	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Virginia	6 (3.7)	94 (3.7)	58 (8.7)	13 (4.1)	****(****)	****(****)	****(****)	****(****)
West Virginia	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
Wyoming	****(****)	****(****)	****(****)	****(****)	31 (8.8)	69 (8.8)	22 (5.5)	1 (****)
Other Jurisdictions								
American Samoa	97 (1.2)	3 (1.2)	(${ }^{* * * *)}$	0 (****)	****(****)	****(****)	****(****)	****(****)
DDESS	17 (4.3)	83 (4.3)	25 (8.1)	(${ }^{* * * *)}$	****(****)	****(****)	****(****)	****(****)
DoDDS	22 (3.5)	78 (3.5)	30 (3.2)	2 (1.1)	22 (5.1)	78 (5.1)	24 (6.0)	1 (****)
Guam	73 (2.2)	27 (2.2)	4 (1.1)	(${ }^{(* * * *)}$	****(****)	****(****)	****(****)	****(****)
Virgin Islands	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)

Standard errors of the estimated percentages appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
(****) Standard error estimates cannot be accurately determined.
**** (****) Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
A Percentage is between 0.0 and 0.5 .
~Special analyses raised concerns about the accuracy and precision of the National grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.48: Data for Table 3.9 State Proficient Level Achievement Results by Race/Ethnicity, Grade 8

State percentages of students at or above the Proficient level in science by race/ethnicity for grade 8 public schools: 1996 and 2000

	White		Black		Hispanic		Asian/Pacific Islander		American Indian	
	1996	2000	1996	2000	1996	2000	1996	2000	1996	2000
Nation	36 (1.8)	40 (1.1)	4 (0.8)	6 (0.8)	10 (1.2)	11 (1.2)	27 (3.6)	36 (3.9)	24 (5.8)	14 (3.6)
Alabama	25 (2.0)	31 (1.9)	4 (1.1)	4 (1.0)	7 (3.2)	7 (3.8)	****(****)	****(****)	****(****)	****(****)
Arizona ${ }^{\dagger}$	33 (1.9)	35 (1.9)	7 (3.5)	8 (4.2)	8 (1.9)	8 (1.4)	****(****)	****(****)	6 (3.9) !	$9(6.0)$
Arkansas	29 (1.9)	30 (1.8)	3 (1.5)	2 (1.0)	9 (4.0)	8 (3.5)	****(****)	****(****)	****(****)	****(****)
California ${ }^{\dagger}$	33 (2.7)	26 (2.7)	5 (2.5)	6 (2.5)	6 (1.5)	5 (1.1)	27 (3.6)	29 (5.9)	****(****)	****(****)
Connecticut	44 (2.0)	45 (1.3)	5 (2.9)	6 (1.3)	7 (1.8)	11 (2.5)	45 (6.3)	44 (6.3)	****(****)	****(****)
Georgia	31 (2.0)	36 (2.3)	5 (1.2)	6 (1.1)	14 (4.1)	13 (3.5)	****(****)	****(****)	****(****)	****(****)
Hawaii	23 (3.6)	29 (3.5)	9 (4.1)	10 (3.9)	7 (1.5)	7 (2.3)	15 (1.2)	14 (1.3)	****(****)	****(****)
Idaho ${ }^{+}$	-	42 (1.8)	-	****(****)	-	12 (3.4)	-	****(****)	-	****(****)
$1 \mathrm{llinois}{ }^{\dagger}$	-	44 (2.9)	-	5 (2.2)	-	12 (2.5)	-	42 (6.1)	-	****(****)
Indiana ${ }^{\dagger}$	34 (2.0)	40 (1.9)	8 (2.3)	6 (4.0) !	15 (3.2)	12 (3.7)	****(****)	****(****)	****(****)	********)
Kentucky	25 (1.3) *	32 (1.7)	6 (1.8)	7 (2.0)	9 (4.3)	****(****)	****(****)	****(****)	****(****)	****(****)
Louisiana	21 (1.6) *	29 (2.0)	3 (0.9)	3 (0.9)	7 (2.9)	11 (3.0)	****(****)	****(****)	****(****)	****(****)
Maine ${ }^{+}$	43 (1.7) *	38 (1.9)	****(****)	****(****)	16 (7.3)	****(****)	****(****)	****(****)	****(****)	****(****)
Maryland	38 (2.3)	41 (1.9)	5 (1.3)	8 (1.4)	8 (2.8)	16 (3.6)	38 (6.7)	47 (6.1)	****(****)	****(****)
Massachusetts	41 (1.8) *	49 (2.0)	9 (2.7)	12 (3.5)	11 (2.8)	12 (2.5)	38 (7.9) !	46 (6.2)	****(****)	****(****)
Michigan ${ }^{+}$	39 (2.3)	43 (2.1)	6 (1.5)	6 (1.7)	14 (4.4)	20 (5.1)	****(****)	****(****)	****(****)	****(****)
Minnesota ${ }^{+}$	40 (1.7)	46 (2.2)	9 (3.2)	11 (5.9) !	13 (5.7)	21 (6.5)	30 (10.8) !	****(****)	****(****)	****(****)
Mississippi	22 (1.5)	24 (2.0)	3 (0.6)	2 (0.5)	3 (1.7)	7 (3.0)	****(****)	****(****)	****(****)	****(****)
Missouri	34 (1.6) *	42 (1.8)	3 (1.3)	7 (1.8)	12 (3.6)	19 (5.0)	****(****)	****(****)	****(****)	********)
Montana ${ }^{+}$	45 (2.0)	49 (1.8)	****(****)	****(****)	19 (4.8)	29 (7.7)	****(****)	****(****)	12 (3.6)	25 (4.2)
Nebraska	38 (1.6)	40 (1.7)	7 (2.6)	10 (4.0)	16 (4.0)	16 (2.8)	****(****)	****(****)	****(****)	****(****)
Nevada	-	31 (1.6)	-	7 (2.4)	-	9 (1.4)	-	25 (3.9)	-	14 (5.6)
New Mexico	36 (1.4)	39 (3.0)	********)	****(****)	9 (0.8)	10 (1.4)	****(****)	****(****)	8 (1.6)	7 (2.1)
New York \dagger	39 (2.2)	44 (2.7)	4 (1.2)	8 (2.9)	7 (2.3)	11 (2.8)	37 (8.3)	29 (6.9)	****(****)	****(****)
North Carolina	33 (1.7)	37 (2.1)	6 (1.0)	6 (1.3)	8 (3.2)	19 (4.8)	****(****)	36 (7.3)	14 (5.0) !	****(****)
North Dakota	43 (1.6)	44 (1.7)	****(****)	****(****)	16 (4.8)	21 (6.7)	****(****)	****(****)	12 (4.6) !	12 (3.5)
Ohio	-	45 (2.0)	-	11 (3.2)	-	30 (5.4)	-	****(****)	-	****(****)
Oklahoma	-	32 (1.8)	-	7 (2.2)	-	10 (2.9)	-	********)	-	19 (2.3)
Oregon ${ }^{\text {+ }}$	34 (1.9)	38 (2.0)	****(****)	8 (3.8)	13 (2.7)	10 (2.7)	35 (5.2)	38 (6.1)	21 (6.9)	22 (8.0)
Rhode Island	31 (1.8)	34 (1.3)	7 (2.4)	6 (2.2)	4 (1.2)	9 (1.8)	16 (4.7)	26 (4.7)	****(****)	****(****)
South Carolina	29 (2.3)	31 (2.2)	4 (0.9)	5 (1.3)	7 (2.7)	11 (3.3)	****(****)	****(****)	****(****)	****(****)
Tennessee	26 (2.0)	31 (1.2)	5 (1.6)	6 (1.7)	3 (3.1)	13 (4.1)	****(****)	****(****)	****(****)	****(****)
Texas	38 (2.1)	36 (2.7)	6 (2.1)	7 (1.8)	8 (1.1)	12 (1.5)	34 (5.7)	40 (8.5)	****(****)	****(****)
Utah	34 (1.3)	38 (1.6)	****(****)	****(****)	13 (2.8)	15 (3.0)	17 (4.7)	32 (6.1)	****(****)	****(****)
Vermont ${ }^{\dagger}$	36 (1.7) *	41 (1.5)	****(****)	****(****)	16 (6.2)	****(****)	****(****)	****(****)	****(****)	****(****)
Virginia	36 (2.4)	39 (1.8)	6 (1.4)	9 (1.3)	12 (4.1)	18 (4.0)	41 (7.1)	49 (5.9)	****(****)	****(****)
West Virginia	22 (1.1) *	28 (1.5)	4 (2.8)	7 (3.4)	3 (3.3)	****(****)	****(****)	****(****)	****(****)	****(****)
Wyoming	37 (1.4)	39 (1.2)	****(****)	****(****)	14 (2.3)	17 (2.6)	****(****)	****(****)	8 (3.2)	21 (4.4)!
Other Jurisdictions										
American Samoa	-	****(****)	-	****(****)	-	0 (0.0)	-	3 (1.3)	-	****(****)
DDESS	39 (4.1)	48 (3.1)	8 (2.7)	13 (3.7)	20 (3.7)	31 (4.8)	****(****)	****(****)	****(****)	****(****)
DoDDS	42 (2.0) *	50 (2.2)	13 (1.8)	16 (2.5)	20 (2.7)	28 (4.7)	33 (3.5)	37 (3.3)	****(****)	****(****)
Guam	23 (4.7)	****(****)	****(****)	****(****)	4 (1.5)	2 (2.9)	6 (1.1)	7 (1.4)	****(****)	****(****)

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000 if only one jurisdiction or the Nation is being examined.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
****(****) Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
- Indicates that the jurisdiction did not participate in 2000.

NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.49: State Basic Level Achievement Results by Race/Ethnicity, Grade 8

State percentages of students at or above the Basic level in science by race/ethnicity for grade 8 public schools: 1996 and 2000

Standard errors of the estimated percentages appear in parentheses.

* Significantly different from 2000 if only one jurisdiction or the nation is being examined.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
**** (${ }^{* * * *) ~ S a m p l e ~ s i z e ~ i s ~ i n s u f f i c i e n t ~ t o ~ p e r m i t ~ a ~ r e l i a b l e ~ e s t i m a t e . ~}$
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
- Indicates that the jurisdiction did not participate.

A Percentage is between 0.0 and 0.5 .
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.50: State Achievement-level results by Race/Ethnicity, Grade 8

State percentages of students at or above science achievements levels by race/ethnicity for grade 8 public schools: 2000

	Below Basic	At or above Basic	At or above Proficient	Advanced	Below Basic	At or above Basic	At or above Proficient	Advanced	Below Basic	At or above Basic	At or above Proficient	Advanced
Nation	28 (1.0)	72 (1.0)	40 (1.1)	5 (0.7)	76 (1.6)	24 (1.6)	6 (0.8)	(0.2)	67 (1.7)	33 (1.7)	11 (1.2)	1 (0.2)
Alabama	34 (2.0)	66 (2.0)	31 (1.9)	3 (0.8)	80 (2.5)	20 (2.5)	4 (1.0)	(${ }^{* * * *)}$	75 (5.6)	25 (5.6)	7 (3.8)	$1{ }^{(* * * *)}$
Arizona ${ }^{+}$	27 (2.3)	73 (2.3)	35 (1.9)	3 (0.7)	67 (7.1)	33 (7.1)	8 (4.2)	(${ }^{* * * *)}$	67 (2.7)	33 (2.7)	8 (1.4)	(${ }^{* * * *)}$
Arkansas	33 (1.7)	67 (1.7)	30 (1.8)	2 (0.6)	83 (2.0)	17 (2.0)	2 (1.0)	0 (****)	66 (6.5)	34 (6.5)	8 (3.5)	(${ }^{(* * * *)}$
California +	37 (2.6)	63 (2.6)	26 (2.7)	2 (1.0)	75 (5.5)	25 (5.5)	6 (2.5)	1 (****)	78 (2.5)	22 (2.5)	5 (1.1)	(${ }^{* * * *)}$
Connecticut	20 (1.4)	80 (1.4)	45 (1.3)	5 (0.7)	74 (3.7)	26 (3.7)	6 (1.3)	(${ }^{* * * *)}$	66 (4.3)	34 (4.3)	11 (2.5)	1 (****)
Georgia	29 (2.1)	71 (2.1)	36 (2.3)	4 (1.0)	75 (2.3)	25 (2.3)	6 (1.1)	(****)	68 (5.0)	32 (5.0)	13 (3.5)	1 (****)
Hawaii	39 (3.5)	61 (3.5)	29 (3.5)	3 (1.2)	67 (5.1)	33 (5.1)	10 (3.9)	1 (****)	73 (3.1)	27 (3.1)	7 (2.3)	(${ }^{* * * *)}$
Idaho ${ }^{+}$	23 (1.4)	77 (1.4)	42 (1.8)	4 (0.6)	****(****)	****(****)	****(****)	****(****)	57 (6.1)	43 (6.1)	12 (3.4)	(${ }^{* * * *)}$
Illinois ${ }^{\text {+ }}$	20 (1.8)	80 (1.8)	44 (2.9)	5 (1.2)	75 (3.2)	25 (3.2)	5 (2.2)	(${ }^{* * * *)}$	63 (5.2)	37 (5.2)	12 (2.5)	1 (****)
Indiana ${ }^{\text {+ }}$	24 (1.9)	76 (1.9)	40 (1.9)	4 (0.6)	75 (5.1) !	! 25 (5.1) !	! $6(4.0)$!	0 (****) !	60 (6.8)	40 (6.8)	12 (3.7)	1 (****)
Kentucky	34 (1.7)	66 (1.7)	32 (1.7)	3 (0.5)	71 (4.5)	29 (4.5)	7 (2.0)	0 (****)	****(****)	****(****)	****(****)	****(****)
Louisiana	33 (2.1)	67 (2.1)	29 (2.0)	2 (0.6)	83 (2.0)	17 (2.0)	3 (0.9)	(0.2)	68 (5.2)	32 (5.2)	11 (3.0)	1 (****)
Maine ${ }^{+}$	24 (1.3)	76 (1.3)	38 (1.9)	4 (0.4)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	********)
Maryland	23 (1.5)	77 (1.5)	41 (1.9)	4 (0.6)	69 (2.6)	31 (2.6)	8 (1.4)	(${ }^{* * * *)}$	59 (5.7)	41 (5.7)	16 (3.6)	$1(* * * *)$
Massachusetts	17 (1.9)	83 (1.9)	49 (2.0)	6 (0.8)	62 (5.2)	38 (5.2)	12 (3.5)	2 (1.2)	65 (4.5)	35 (4.5)	12 (2.5)	1 (****)
Michigan ${ }^{+}$	21 (1.6)	79 (1.6)	43 (2.1)	5 (1.0)	75 (3.5)	25 (3.5)	6 (1.7)	$\boldsymbol{\Delta}$ (****)	56 (5.1)	44 (5.1)	20 (5.1)	2 (****)
Minnesota ${ }^{\text {+ }}$	21 (2.2)	79 (2.2)	46 (2.2)	5 (0.9)	71 (8.9) !	! 29 (8.9) !	! 11 (5.9) !	0 (****) !	54 (9.4)	46 (9.4)	21 (6.5)	(${ }^{(* * * *)}$
Mississippi	38 (2.1)	62 (2.1)	24 (2.0)	2 (0.5)	84 (1.9)	16 (1.9)	2 (0.5)	0 (****)	75 (5.3)	25 (5.3)	7 (3.0)	(${ }^{* * * *)}$
Missouri	24 (1.6)	76 (1.6)	42 (1.8)	4 (0.5)	73 (2.9)	27 (2.9)	7 (1.8)	0 (****)	49 (8.5)	51 (8.5)	19 (5.0)	$1(* * * *)$
Montana ${ }^{+}$	16 (1.5)	84 (1.5)	49 (1.8)	5 (0.9)	****(****)	****(****)	****(****)	****(****)	36 (5.7)	64 (5.7)	29 (7.7)	(${ }^{* * * * *)}$
Nebraska	24 (1.7)	76 (1.7)	40 (1.7)	4 (0.6)	65 (5.2)	35 (5.2)	10 (4.0)	0 (****)	60 (4.8)	40 (4.8)	16 (2.8)	$1(* * * *)$
Nevada	33 (1.3)	67 (1.3)	31 (1.6)	2 (0.5)	69 (4.7)	31 (4.7)	7 (2.4)	(${ }^{* * * *)}$	67 (2.4)	33 (2.4)	9 (1.4)	(${ }^{* * * *)}$
New Mexico	27 (2.1)	73 (2.1)	39 (3.0)	3 (0.8)	****(****)	****(****)	****(****)	****(****)	64 (2.5)	36 (2.5)	10 (1.4)	(${ }^{* * * *)}$
New York ${ }^{\dagger}$	19 (2.0)	81 (2.0)	44 (2.7)	4 (0.9)	66 (5.5)	34 (5.5)	8 (2.9)	(${ }^{* * * *)}$	66 (4.8)	34 (4.8)	11 (2.8)	(${ }^{(* * * *)}$
North Carolina	30 (1.9)	70 (1.9)	37 (2.1)	5 (0.9)	75 (3.2)	25 (3.2)	6 (1.3)	(****)	48 (6.9)	52 (6.9)	19 (4.8)	2 (0.7)
North Dakota	21 (1.1)	79 (1.1)	44 (1.7)	5 (0.7)	****(****)	****(****)	****(****)	****(****)	54 (7.4)	46 (7.4)	21 (6.7)	(${ }^{(* * * *)}$
Ohio	22 (1.4)	78 (1.4)	45 (2.0)	7 (0.8)	63 (6.1)	37 (6.1)	11 (3.2)	1 (****)	43 (6.2)	57 (6.2)	30 (5.4)	2 (****)
Oklahoma	30 (1.8)	70 (1.8)	32 (1.8)	2 (0.5)	72 (3.9)	28 (3.9)	7 (2.2)	(${ }^{* * * *)}$	68 (5.6)	32 (5.6)	10 (2.9)	1 (****)
Oregon ${ }^{+}$	25 (2.1)	75 (2.1)	38 (2.0)	4 (0.8)	64 (7.8)	36 (7.8)	8 (3.8)	2 (****)	68 (4.2)	32 (4.2)	10 (2.7)	(${ }^{* * * *)}$
Rhode Island	32 (1.5)	68 (1.5)	34 (1.3)	3 (0.5)	66 (5.4)	34 (5.4)	6 (2.2)	0 (****)	66 (4.2)	34 (4.2)	9 (1.8)	(${ }^{* * * *)}$
South Carolina	33 (2.5)	67 (2.5)	31 (2.2)	3 (0.6)	76 (1.6)	24 (1.6)	5 (1.3)	(${ }^{* * * *)}$	71 (6.0)	29 (6.0)	11 (3.3)	1 (****)
Tennessee	33 (2.0)	67 (2.0)	31 (1.2)	3 (0.5)	78 (3.6)	22 (3.6)	6 (1.7)	(****)	62 (7.0)	38 (7.0)	13 (4.1)	1 (****)
Texas	27 (2.7)	73 (2.7)	36 (2.7)	4 (0.7)	76 (3.8)	24 (3.8)	7 (1.8)	1 (****)	62 (2.5)	38 (2.5)	12 (1.5)	1 (0.4)
Utah	27 (1.2)	73 (1.2)	38 (1.6)	3 (0.6)	****(****)	****(****)	****(****)	****(****)	57 (3.2)	43 (3.2)	15 (3.0)	1 (****)
Vermont ${ }^{\text {+ }}$	25 (1.7)	75 (1.7)	41 (1.5)	4 (0.7)	****(****)	****(****)	****(****)	****(****)	********)	****(****)	****(****)	****(****)
Virginia	26 (1.7)	74 (1.7)	39 (1.8)	4 (0.8)	65 (3.1)	35 (3.1)	9 (1.3)	(${ }^{(* * * *)}$	54 (4.3)	46 (4.3)	18 (4.0)	1 (****)
West Virginia	37 (1.5)	63 (1.5)	28 (1.5)	2 (0.3)	73 (5.4)	27 (5.4)	7 (3.4)	0 (****)	****(****)	****(****)	****(****)	****(****)
Wyoming	25 (1.6)	75 (1.6)	39 (1.2)	4 (0.6)	****(****)	****(****)	****(****)	****(****)	51 (3.8)	49 (3.8)	17 (2.6)	((****)
Other Jurisdictions												
American Samoa	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	100 (****)	(${ }^{* * * *)}$	0 (****)	0 (****)
DDESS	17 (3.1)	83 (3.1)	48 (3.1)	7 (2.0)	56 (4.4)	44 (4.4)	13 (3.7)	(${ }^{* * * *)}$	30 (5.4)	70 (5.4)	31 (4.8)	2 (****)
DoDDS	17 (1.3)	83 (1.3)	50 (2.2)	6 (1.4)	51 (3.1)	49 (3.1)	16 (2.5)	(****)	36 (4.2)	64 (4.2)	28 (4.7)	2 (****)
Guam	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	86 (4.2)	14 (4.2)	2 (****)	0 (****)

See footnotes at end of table.

Table B.50: State Achievement-level results by Race/Ethnicity, Grade 8 (continued)

State percentages of students at or above science achievements levels by race/ethnicity for grade 8 public schools: 2000

Standard errors of the estimated percentages appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic. (****) Standard error estimates cannot be accurately determined.
**** (****) Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
A Percentage is between 0.0 and 0.5 .
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.51: State Scale Score Differences by Race/Ethnicity, Grade 4

State differences in average science scale scores by race/ethnicity, grade 4: 2000

	White-Black	White-Hispanic
Nation	35 (1.9)	32 (1.6)
Alabama	33 (2.2)	41 (5.3)
Arizona	29 (4.0)	34 (2.5)
Arkansas	38 (3.2)	35 (4.9)
California ${ }^{\dagger}$	32 (4.8)	36 (3.3)
Connecticut	39 (2.8)	32 (2.7)
Georgia	36 (2.1)	32 (3.6)
Hawaii	23 (5.3)	30 (3.4)
Idaho ${ }^{\dagger}$	****(****)	32 (3.4)
Illinois ${ }^{\dagger}$	39 (2.9)	37 (3.2)
Indiana ${ }^{\dagger}$	28 (4.3)	30 (4.7)
lowa ${ }^{\dagger}$	****(****)	22 (4.0)
Kentucky	27 (2.7)	18 (4.7)
Louisiana	34 (2.8)	30 (5.1)
Maine ${ }^{\dagger}$	****(****)	19 (4.0)
Maryland	36 (2.3)	28 (3.5)
Massachusetts	32 (3.5)	39 (3.2)
Michigan ${ }^{\dagger}$	42 (3.3)	32 (4.3)
Minnesota ${ }^{\dagger}$	37 (5.6)	27 (4.4)
Mississippi	36 (1.8)	39 (4.2)
Missouri	32 (2.8)	35 (7.1)
Montana ${ }^{\dagger}$	****(****)	17 (4.6)
Nebraska	30 (4.9)	19 (4.0)
Nevada	31 (3.3)	25 (2.2)
New Mexico	26 (6.2)	26 (3.3)
New York ${ }^{\dagger}$	32 (2.6)	32 (2.9)
North Carolina	31 (2.1)	27 (4.2)
North Dakota	****(****)	19 (3.5)
Ohio ${ }^{\dagger}$	32 (3.5)	20 (4.2)
Oklahoma	26 (2.8)	23 (2.6)
Oregon ${ }^{\text {+ }}$	****(****)	33 (4.6)
Rhode Island	38 (2.5)	43 (4.4)
South Carolina	34 (2.2)	29 (4.3)
Tennessee	35 (2.8)	29 (4.7)
Texas	28 (3.6)	27 (2.6)
Utah	****(****)	24 (2.5)
Vermont ${ }^{+}$	****(****)	****(****)
Virginia	27 (2.9)	26 (7.4)
West Virginia	20 (3.9)	17 (4.5)
Wyoming	****(****)	19 (2.5)
Other Jurisdictions		
American Samoa	****(****)	****(****)
DDESS	20 (1.8)	12 (1.9)
DoDDS	23 (1.2)	12 (1.6)
Guam	****(****)	25 (8.0)
Virgin Islands	****(****)	****(****)

[^42]
Table B.52: State Scale Score Differences by Race/Ethnicity, Grade 8

State differences in average science scale scores by race/ethnicity, grade 8: 1996 and 2000

	White-Black		White-Hispanic	
	1996	2000	1996	2000
Nation	39 (1.6)	40 (1.5)	31 (2.1)	34 (1.6)
Alabama	34 (2.3)	38 (2.8)	45 (7.8)	48 (6.5)
Arizona ${ }^{\dagger}$	33 (3.6)	32 (4.8)	29 (2.5)	33 (2.9)
Arkansas	37 (2.9)	42 (2.5)	32 (6.0)	36 (5.3)
California ${ }^{\dagger}$	34 (3.9)	30 (5.4)	35 (2.5)	34 (2.4)
Connecticut	44 (4.6)	44 (3.4)	43 (2.8)	37 (3.1)
Georgia	33 (1.9)	35 (2.2)	27 (4.4)	35 (4.4)
Hawaii	18 (4.7)	21 (4.3)	27 (3.1)	30 (3.7)
Idaho ${ }^{+}$	-	**** (****)	-	27 (2.9)
Illinois ${ }^{\dagger}$	-	42 (3.7)	-	33 (3.5)
Indiana ${ }^{\dagger}$	33 (3.5)	34 (3.7)	19 (2.5)	29 (6.6)
Kentucky	24 (3.0)	29 (3.1)	37 (6.3)	**** (****)
Louisiana	35 (2.4)	42 (2.5)	43 (5.8)	35 (4.9)
Maine ${ }^{\dagger}$	**** (****)	**** (****)	23 (4.7)	**** (****)
Maryland	37 (2.0)	36 (2.1)	39 (4.4) *	27 (3.5)
Massachusetts	37 (3.5)	34 (4.1)	36 (4.1)	40 (4.1)
Michigan ${ }^{\dagger}$	39 (2.8)	44 (3.6)	27 (5.1)	27 (4.3)
Minnesota ${ }^{\dagger}$	32 (4.6)	43 (9.1)	28 (5.4)	29 (7.1)
Mississippi	30 (1.8) *	36 (1.8)	44 (4.0)	37 (4.8)
Missouri	38 (2.9)	37 (3.0)	28 (5.1)	22 (4.5)
Montana ${ }^{\dagger}$	**** (****)	**** (****)	19 (2.8)	17 (4.3)
Nebraska	31 (3.3)	32 (3.9)	27 (3.2)	30 (4.3)
Nevada	-	29 (3.1)	-	28 (2.6)
New Mexico	**** (****)	**** (****)	29 (1.5)	29 (2.4)
New York ${ }^{\dagger}$	41 (2.3)	37 (4.4)	45 (3.0)	41 (5.8)
North Carolina	30 (1.7)	35 (2.5)	33 (3.8) *	19 (5.0)
North Dakota	**** (****)	**** (****)	27 (4.6)	25 (4.6)
Ohio	-	34 (3.8)	-	18 (4.7)
Oklahoma	-	29 (2.9)	-	33 (5.3)
Oregon ${ }^{\text { }}$	**** (****)	29 (5.0)	24 (4.0)	32 (3.4)
Rhode Island	26 (2.9)	28 (3.4)	37 (2.0)	29 (5.7)
South Carolina	31 (2.3)	32 (2.3)	31 (4.4)	32 (5.4)
Tennessee	34 (3.6)	36 (2.6)	47 (6.4)	31 (6.4)
Texas	35 (2.7)	37 (3.8)	33 (2.9)	27 (2.8)
Utah	**** (****)	**** (****)	26 (3.0)	24 (3.1)
Vermont ${ }^{\dagger}$	**** (****)	**** (****)	23 (3.6)	**** (****)
Virginia	32 (2.7)	31 (2.3)	27 (4.4)	23 (3.3)
West Virginia	22 (3.3)	26 (3.8)	27 (4.4)	**** (****)
Wyoming	**** (****)	**** (****)	21 (2.0)	22 (3.2)
Other Jurisdictions				
American Samoa	-	**** (****)	-	**** (****)
DDESS	25 (3.0)	29 (3.3)	13 (2.9)	13 (3.4)
DoDDS	24 (1.7)	27 (1.8)	18 (2.0)	16 (2.8)
Guam	**** (****)	**** (****)	32 (5.4)	**** (****)

Standard errors of the estimated difference in scale scores appear in parentheses.
Score differences are calculated based on differences between unrounded average scale scores.

* Significantly different from 2000 if only one jurisdiction or the nation is being examined.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
- Indicates that the jurisdiction did not participate.
**** (****) Sample size is insufficient to permit a reliable estimate.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.53: State Percentages of Students by Race/Ethnicity, Grade 4

State percentages of students by race/ethnicity for grade 4 public schools: 2000

	White	Black	Hispanic	Asian/ Pacific Islander	American Indian
Nation	64 (0.4)	15 (0.2)	16 (0.3)	3 (0.2)	2 (0.2)
Alabama	54 (2.6)	35 (2.2)	8 (0.8)	1 (0.2)	2 (0.5)
Arizona	52 (1.8)	5 (0.6)	33 (1.6)	2 (0.4)	7 (0.6)
Arkansas	66 (2.2)	21 (2.2)	8 (0.8)	2 (0.5)	4 (0.6)
California \dagger	34 (2.4)	10 (1.7)	40 (2.3)	12 (1.4)	3 (0.5)
Connecticut	70 (1.8)	11 (1.2)	15 (0.9)	3 (0.4)	2 (0.3)
Georgia	48 (1.5)	38 (1.5)	10 (0.8)	2 (0.4)	2 (0.4)
Hawaii	17 (1.1)	5 (0.6)	12 (0.7)	62 (1.6)	2 (0.3)
Idaho ${ }^{\dagger}$	79 (1.4)	2 (0.4)	13 (1.4)	3 (0.6)	3 (0.5)
Illinois \dagger	56 (3.2)	18 (3.0)	22 (2.8)	3 (0.6)	1 (0.2)
Indiana ${ }^{\text {+ }}$	80 (2.2)	8 (1.8)	8 (0.9)	1 (0.4)	2 (0.3)
lowa ${ }^{\dagger}$	87 (1.1)	3 (0.7)	6 (0.9)	1 (0.3)	2 (0.3)
Kentucky	81 (1.2)	9 (0.7)	5 (0.5)	2 (0.4)	3 (0.4)
Louisiana	47 (2.5)	43 (2.2)	7 (0.8)	1 (0.2)	3 (0.4)
Maine ${ }^{\dagger}$	91 (1.0)	1 (0.3)	5 (0.6)	1 (0.3)	2 (0.4)
Maryland	51 (1.6)	33 (1.6)	9 (0.7)	3 (0.5)	3 (0.4)
Massachusetts	76 (1.7)	6 (1.0)	13 (1.0)	4 (0.6)	1 (0.2)
Michigan ${ }^{\dagger}$	71 (2.2)	14 (2.0)	10 (1.2)	2 (0.6)	3 (0.5)
Minnesota ${ }^{\text { }}$	80 (1.9)	5 (0.9)	7 (0.9)	4 (0.6)	4 (0.5)
Mississippi	45 (1.8)	44 (2.0)	8 (0.8)	1 (0.3)	2 (0.3)
Missouri	73 (1.3)	15 (1.0)	7 (0.9)	2 (0.4)	3 (0.4)
Montana ${ }^{\dagger}$	79 (2.8)	2 (0.7)	9 (1.2)	1 (0.6)	9 (1.8)
Nebraska	75 (2.4)	6 (1.4)	12 (1.7)	2 (0.4)	4 (1.3)
Nevada	54 (1.4)	9 (1.0)	29 (1.3)	6 (0.6)	3 (0.4)
New Mexico	36 (2.1)	3 (0.6)	49 (2.3)	1 (0.3)	11 (1.7)
New York ${ }^{\dagger}$	51 (2.1)	18 (1.8)	25 (1.7)	4 (1.0)	1 (0.4)
North Carolina	60 (1.9)	30 (1.5)	5 (0.6)	1 (0.2)	3 (1.0)
North Dakota	84 (1.4)	1 (0.4)	6 (0.6)	1 (0.3)	7 (1.1)
Ohio ${ }^{+}$	74 (1.8)	16 (1.6)	6 (0.6)	1 (0.3)	2 (0.4)
Oklahoma	62 (2.0)	9 (1.8)	15 (1.0)	1 (0.2)	13 (1.1)
Oregon ${ }^{\text {+ }}$	75 (1.5)	3 (0.6)	14 (1.2)	3 (0.6)	5 (0.7)
Rhode Island	70 (1.8)	7 (0.7)	17 (1.4)	3 (0.6)	2 (0.3)
South Carolina	51 (1.9)	39 (1.9)	7 (0.9)	1 (0.2)	2 (0.3)
Tennessee	70 (1.7)	23 (1.3)	6 (0.7)	1 (0.2)	2 (0.3)
Texas	43 (2.2)	15 (1.8)	37 (2.0)	3 (0.7)	2 (0.3)
Utah	79 (1.2)	2 (0.3)	14 (1.0)	3 (0.3)	3 (0.3)
Vermont ${ }^{\dagger}$	89 (1.3)	2 (0.4)	5 (0.8)	2 (0.6)	2 (0.5)
Virginia	59 (1.9)	27 (1.6)	9 (1.3)	3 (0.6)	2 (0.3)
West Virginia	87 (1.4)	5 (1.2)	5 (0.7)	1 (0.2)	2 (0.3)
Wyoming	78 (1.6)	1 (0.3)	14 (1.2)	2 (0.4)	5 (0.6)
Other Jurisdictions					
American Samoa	4 (0.9)	4 (1.1)	25 (2.4)	65 (2.4)	2 (0.7)
DDESS	41 (1.3)	27 (1.3)	21 (1.0)	6 (0.8)	3 (0.5)
DoDDS	45 (0.9)	19 (0.7)	16 (0.6)	15 (0.7)	3 (0.3)
Guam	7 (0.9)	4 (0.6)	14 (1.5)	73 (2.4)	2 (0.6)
Virgin Islands	3 (0.5)	71 (1.6)	25 (1.7)	1 (0.3)	1 (0.4)

Standard errors of the estimated percentages appear in parentheses.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
NOTE: Percentages may not add to 100 due to rounding.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.54: State Percentages of Students by Race/Ethnicity, Grade 8

State percentages of students by race/ethnicity for grade 8 public schools: 1996 and 2000

	White		Black		Hispanic		Asian/Pacific Islander		American Indian	
	1996	2000	1996	2000	1996	2000	1996	2000	1996	2000
Nation	68 (0.4)	66 (0.3)	15 (0.3)	14 (0.2)	12 (0.3)	14 (0.2)	2 (0.3)	4 (0.2)	2 (0.3)	2 (0.2)
Alabama	61 (1.9)	65 (2.2)	33 (1.9)	28 (2.2)	4 (0.4)	4 (0.5)	1 (0.3)	1 (0.3)	2 (0.4)	2 (0.6)
Arizona ${ }^{\dagger}$	57 (1.9)	56 (2.2)	4 (0.6)	4 (0.6)	31 (1.6)	33 (2.1)	2 (0.4)	3 (0.5)	6 (1.5)	4 (0.6)
Arkansas	73 (1.9)	69 (1.6)	20 (1.7)	22 (1.6)	4 (0.6)	5 (0.5)	1 (0.4)	1 (0.3)	1 (0.3)	2 (0.3)
California ${ }^{\dagger}$	38 (2.1)	32 (2.5)	7 (1.0)	7 (1.1)	39 (1.8)	46 (2.4)	13 (1.4)	14 (1.6)	2 (0.3)	1 (0.3)
Connecticut	75 (1.4)	68 (2.2)	10 (1.3)	13 (1.4)	11 (0.9)	15 (1.5)	3 (0.4)	3 (0.3)	1 (0.2)	1 (0.2)
Georgia	56 (2.3)	55 (1.8)	36 (2.4)	37 (1.7)	5 (0.4)	6 (0.7)	2 (0.4)	2 (0.3)	1 (0.3)	1 (0.2)
Hawaii	17 (0.7)	15 (0.7)	3 (0.4)	4 (0.4)	15 (0.7)	14 (0.8)	60 (1.2)	65 (1.2)	2 (0.3)	2 (0.4)
Idaho ${ }^{+}$	-	84 (1.0)	-	1 (0.2)	-	11 (0.8)	-	2 (0.5)	-	2 (0.3)
Illinois \dagger	-	57 (2.8)	-	20 (3.2)	-	17 (2.1)	-	5 (1.0)	-	1 (0.2)
Indiana ${ }^{\text {+ }}$	81 (1.8)	82 (2.2)	11 (1.4)	9 (2.1)	5 (0.7)	7 (1.2)	1 (0.2)	1 (0.2)	2 (0.4)	1 (0.3)
Kentucky	86 (0.9)	86 (1.2)	9 (0.8)	10 (1.2)	3 (0.4)	2 (0.3)	1 (0.2)	1 (0.3)	1 (0.2)	1 (0.2)
Louisiana	55 (1.8)	52 (1.8)	37 (1.7)	39 (1.9)	6 (0.6)	6 (0.6)	1 (0.3)	1 (0.2)	1 (0.3)	1 (0.3)
Maine ${ }^{+}$	92 (0.7)	93 (0.7)	1 (0.2)	1 (0.2)	3 (0.5)	3 (0.4)	1 (0.3)	1 (0.3)	2 (0.3)	2 (0.5)
Maryland	56 (2.0)	55 (1.8)	32 (2.1)	32 (1.6)	6 (0.6)	7 (0.8)	4 (0.6)	5 (0.5)	2 (0.3)	1 (0.2)
Massachusetts	81 (1.7)	76 (1.7)	6 (1.0)	8 (0.9)	8 (0.7)	10 (1.2)	4 (0.8)	5 (0.6)	1 (0.2)	1 (0.2)
Michigan ${ }^{+}$	76 (2.0)	77 (2.0)	15 (1.9)	13 (1.7)	4 (0.4)	6 (0.7)	2 (0.5)	3 (0.3)	2 (0.3)	1 (0.3)
Minnesota ${ }^{\dagger}$	86 (1.9)	84 (2.4)	4 (0.8)	6 (1.7)	$4(0.6)$	5 (0.9)	4 (0.9)	3 (0.6)	2 (0.5)	2 (0.3)
Mississippi	50 (2.1)	53 (1.8)	44 (1.9)	41 (1.7)	6 (0.6)	4 (0.4)	((0.1)	1 (0.3)	1 (0.2)	1 (0.1)
Missouri	78 (1.5)	79 (1.7)	13 (1.3)	14 (1.4)	5 (0.6)	4 (0.6)	1 (0.3)	2 (0.4)	2 (0.4)	1 (0.3)
Montana ${ }^{+}$	83 (1.9)	85 (1.5)	1 (0.1)	1 (0.2)	5 (0.5)	5 (0.5)	1 (0.2)	$1(0.2)$	10 (1.7)	$9(1.4)$
Nebraska	85 (1.2)	83 (1.4)	5 (0.6)	4 (0.5)	7 (0.9)	9 (1.2)	1 (0.2)	2 (0.5)	2 (0.3)	2 (0.4)
Nevada	-	57 (1.2)	-	7 (0.4)	-	26 (1.1)	-	7 (0.5)	-	3 (0.4)
New Mexico	38 (1.5)	34 (1.6)	3 (0.4)	2 (0.4)	51 (1.5)	52 (1.8)	1 (0.2)	1 (0.3)	8 (0.6)	11 (2.0)
New York \dagger	60 (2.6)	54 (2.6)	17 (2.0)	19 (2.2)	16 (1.2)	19 (1.8)	5 (0.9)	6 (1.0)	2 (0.5)	1 (0.3)
North Carolina	65 (2.0)	63 (1.6)	27 (1.3)	28 (1.5)	4 (0.5)	$4(0.4)$	1 (0.3)	3 (0.4)	3 (1.4)	2 (0.6)
North Dakota	92 (0.8)	87 (1.3)	1 (0.2)	1 (0.3)	4 (0.4)	4 (0.5)	1 (0.2)	1 (0.1)	3 (0.7)	7 (1.2)
Ohio	-	82 (1.5)	-	11 (1.3)	-	$4(0.6)$	-	1 (0.3)	-	1 (0.2)
Oklahoma	-	70 (1.5)	-	9 (1.1)	-	9 (0.8)	-	2 (0.3)	-	11 (0.9)
Oregon ${ }^{+}$	82 (1.5)	77 (1.5)	2 (0.5)	3 (0.6)	$8(1.0)$	12 (1.1)	4 (0.5)	4 (0.6)	4 (0.8)	4 (0.5)
Rhode Island	77 (0.8)	76 (1.2)	5 (0.5)	5 (0.5)	12 (0.5)	12 (1.1)	4 (0.4)	5 (0.6)	1 (0.2)	1 (0.2)
South Carolina	51 (1.9)	56 (1.8)	40 (1.9)	37 (1.7)	6 (0.6)	4 (0.4)	1 (0.3)	1 (0.3)	2 (0.3)	2 (0.3)
Tennessee	77 (1.5)	73 (2.0)	17 (1.5)	20 (1.9)	3 (0.5)	4 (0.5)	1 (0.2)	2 (0.3)	1 (0.3)	1 (0.2)
Texas	48 (1.9)	44 (1.8)	12 (1.3)	12 (1.2)	36 (2.1)	40 (2.0)	3 (0.5)	$4(0.6)$	1 (0.2)	1 (0.3)
Utah	87 (1.0)	83 (1.0)	1 (0.2)	1 (0.2)	8 (0.7)	11 (0.8)	3 (0.4)	3 (0.3)	1 (0.3)	2 (0.4)
Vermont ${ }^{\text {+ }}$	90 (0.9)	92 (0.6)	1 (0.3)	1 (0.2)	4 (0.5)	3 (0.4)	1 (0.3)	1 (0.3)	3 (0.5)	2 (0.4)
Virginia	64 (2.0)	62 (1.5)	24 (1.9)	24 (1.5)	5 (0.6)	7 (0.8)	5 (0.6)	6 (0.7)	1 (0.3)	1 (0.2)
West Virginia	90 (0.7)	90 (0.9)	4 (0.5)	4 (0.6)	3 (0.3)	$2(0.4)$	1 (0.2)	1 (0.2)	2 (0.3)	2 (0.3)
Wyoming	84 (0.8)	82 (1.1)	1 (0.2)	1 (0.3)	11 (0.6)	12 (0.7)	1 (0.2)	1 (0.2)	4 (0.4)	3 (0.7)
Other Jurisdictions										
American Samoa	-	9 (1.3)	-	7 (1.3)	-	31 (3.1)	-	49 (3.2)	-	3 (0.9)
DDESS	47 (1.7)	39 (1.7)	22 (1.5)	23 (1.6)	24 (1.3)	25 (1.4)	3 (0.9)	$9(0.8)$	2 (0.5)	3 (0.8)
DoDDS	45 (0.9)	47 (1.1)	19 (0.8)	19 (0.9)	17 (0.8)	13 (0.7)	14 (0.7)	18 (0.8)	2 (0.3)	2 (0.3)
Guam	8 (0.9)	4 (0.7)	3 (0.6)	2 (0.3)	19 (1.3)	20 (2.1)	69 (1.6)	73 (2.1)	(0.2)	1 (0.4)

Standard errors of the estimated percentages appear in parentheses.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.

- Indicates that the jurisdiction did not participate in 2000.

A Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.55: Data for Table 3.10 State Scale Score Results by Free/Reduced-Price School Lunch Eligibility,

 Grade 4State scale score results by student eligibility for free/reduced-price school lunch for grade 4 public schools: 2000

	Eligible	Not eligible	not available
Nation	129 (1.2)	159 (1.0)	160 (2.4)
Alabama	128 (2.0)	159 (1.4)	146 (5.1) !
Arizona	125 (1.8)	155 (2.5)	136 (5.8) !
Arkansas	131 (2.2)	157 (1.6)	****(****)
California ${ }^{\text { }}$	115 (2.4)	150 (1.9)	137 (6.4) !
Connecticut	135 (2.5)	165 (1.0)	144 (6.6) !
Georgia	124 (1.7)	159 (1.5)	151 (3.3) !
Hawaii	125 (2.3)	147 (1.5)	132 (2.8) !
Idaho ${ }^{\dagger}$	142 (2.2)	159 (1.4)	163 (7.1) !
Illinois ${ }^{\dagger}$	132 (2.0)	163 (1.6)	157 (8.6) !
Indiana ${ }^{\text {+ }}$	138 (2.7)	162 (1.5)	153 (6.1) !
lowa ${ }^{\dagger}$	153 (2.4)	163 (1.4)	159 (4.9) !
Kentucky	142 (1.5)	161 (1.2)	156 (7.8) !
Louisiana	128 (2.1)	159 (1.7)	133 (4.5) !
Maine ${ }^{\dagger}$	150 (1.7)	166 (1.0)	161 (3.7) !
Maryland	126 (2.1)	158 (1.6)	137 (6.3) !
Massachusetts	139 (2.6)	171 (0.9)	155 (8.0) !
Michigan ${ }^{\dagger}$	134 (2.5)	163 (1.6)	131 (12.8) !
Minnesota ${ }^{\text { }}$	141 (2.8)	163 (1.6)	166 (4.9) !
Mississippi	122 (1.4)	153 (1.4)	132 (6.0) !
Missouri	141 (2.8)	165 (1.1)	145 (9.5) !
Montana ${ }^{\dagger}$	147 (4.0)	167 (1.5)	162 (3.7) !
Nebraska	135 (2.0)	159 (1.5)	151 (7.2) !
Nevada	128 (1.7)	150 (1.6)	137 (3.6) !
New Mexico	126 (2.6)	154 (2.5)	146 (7.7) !
New York \dagger	133 (2.0)	163 (1.3)	158 (4.9) !
North Carolina	131 (2.0)	158 (1.2)	155 (3.6) !
North Dakota	150 (2.3)	164 (1.0)	159 (1.9)
Ohio ${ }^{\dagger}$	136 (2.1)	164 (1.6)	158 (3.9) !
Oklahoma	144 (1.6)	162 (1.3)	149 (6.0) !
Oregon ${ }^{+}$	136 (2.7)	158 (1.8)	147 (5.1) !
Rhode Island	125 (2.7)	162 (1.2)	138 (9.2) !
South Carolina	128 (1.5)	157 (1.3)	138 (2.7) !
Tennessee	132 (1.9)	159 (1.6)	153 (6.7)!
Texas	132 (1.6)	160 (1.6)	151 (7.3) !
Utah	142 (1.8)	160 (1.1)	161 (4.4) !
Vermont ${ }^{\dagger}$	145 (2.7)	165 (1.9)	155 (4.7)!
Virginia	138 (2.6)	164 (1.3)	163 (4.5) !
West Virginia	143 (1.3)	158 (1.3)	152 (3.3) !
Wyoming	148 (1.7)	162 (1.0)	155 (4.9) !
Other Jurisdictions			
American Samoa	51 (1.7)	****(****)	****(****)
DDESS	152 (1.1)	160 (1.2)	160 (4.2)
DoDDS	150 (1.3)	158 (0.9)	156 (1.0)
Guam	101 (2.6)	121 (2.7)	****(****)
Virgin Islands	115 (1.1)	****(****)	****(****)

[^43]Table B.56: Data for Table 3.11 State Scale Score Results by Free/Reduced-Price School Lunch Eligibility, Grade 8

State scale score results by student eligibility for free/reduced-price school lunch for grade 8 public schools: 1996 and 2000

	Eligible		Not eligible		not available	
	1996	2000	1996	2000	1996	2000
Nation	133 (1.7) *	127 (1.1)	155 (1.3) *	160 (0.9)	154 (3.6)!	151 (2.1)
Alabama	121 (1.9)	124 (2.2)	150 (1.7)	153 (1.8)	151 (9.3) !	152 (4.7)!
Arizona ${ }^{\dagger}$	127 (2.8)	127 (3.1)	155 (1.7)	156 (1.3)	144 (2.0)	148 (3.0)!
Arkansas	128 (1.7)	127 (2.4)	152 (1.3)	153 (1.4)	155 (9.0) !	139 (11.1)!
California ${ }^{\dagger}$	120 (2.0) *	113 (2.3)	152 (2.0) *	145 (2.1)	137 (4.0)	135 (5.9) !
Connecticut	127 (3.3)	125 (3.5)	163 (1.1)	163 (1.3)	154 (10.9) !	147 (6.9) !
Georgia	124 (1.6)	125 (1.8)	151 (1.6)	155 (1.9)	146 (5.7) !	145 (3.5) !
Hawaii	125 (1.7)	119 (2.1)	141 (0.9)	142 (1.0)	115 (2.1) \ddagger	139 (4.3)
Idaho ${ }^{\dagger}$	-	149 (2.1)	-	164 (1.1)	-	155 (3.9)
Illinois ${ }^{\dagger}$	-	126 (2.6)	-	162 (1.6)	-	152 (5.5) !
Indiana ${ }^{\text {+ }}$	136 (2.3)	139 (3.9)	158 (1.3)	161 (1.5)	****(****)	149 (4.6) !
Kentucky	135 (1.6)	139 (1.7)	155 (1.3) *	160 (1.2)	142 (3.3)!	****(****)
Louisiana	121 (1.9)	122 (2.2)	145 (1.5) \ddagger	155 (1.8)	128 (7.5) !	133 (4.0) !
Maine ${ }^{\dagger}$	152 (1.7)	150 (2.1)	167 (1.0)	163 (1.1)	164 (3.4)!	155 (2.6) !
Maryland	122 (2.1)	127 (2.3)	154 (1.7)	158 (1.3)	143 (6.6)!	138 (4.5) !
Massachusetts	133 (1.8)	134 (3.8)	164 (1.2)	168 (1.3)	149 (6.8)!	164 (5.9) !
Michigan ${ }^{\dagger}$	139 (1.9)	134 (3.3)	159 (1.5)	164 (1.6)	144 (8.3) !	152 (4.2)!
Minnesota ${ }^{\text {+ }}$	145 (2.4)	141 (5.0)	162 (1.1)	165 (1.5)	162 (5.0)	164 (4.5) !
Mississippi	121 (1.5)	120 (1.3)	148 (1.5)	149 (1.4)	134 (5.6) !	138 (2.9) !
Missouri	138 (1.9)	140 (1.9)	157 (1.0) \ddagger	164 (1.2)	144 (8.0) !	153 (4.9) !
Montana ${ }^{\dagger}$	150 (2.0)	155 (2.1)	166 (1.2)	170 (1.4)	165 (1.9)	168 (2.1)
Nebraska	144 (1.6)	142 (2.2)	162 (0.9)	162 (1.1)	161 (5.3) !	161 (2.8)!
Nevada	-	126 (1.9)	-	150 (0.9)	-	144 (4.2)
New Mexico	130 (1.5)	130 (1.9)	151 (1.1)	152 (1.6)	143 (2.4)	142 (4.1)
New York ${ }^{\dagger}$	124 (1.9)	132 (4.4)	159 (1.8)	161 (2.3)	153 (7.1) !	147 (7.1)
North Carolina	128 (1.4)	128 (1.8)	156 (1.2)	155 (1.5)	144 (3.4)!	150 (10.6) !
North Dakota	157 (1.5) *	149 (2.1)	165 (0.7)	166 (1.0)	155 (3.6)	158 (1.4)
Ohio	-	144 (3.4)	-	166 (1.4)	-	151 (6.9) !
Oklahoma	-	137 (2.3)	-	158 (1.1)	-	148 (5.2) !
Oregon ${ }^{\text {+ }}$	145 (2.0)	138 (2.7)	159 (1.5)	160 (1.6)	151 (5.6) !	159 (2.1)!
Rhode Island	131 (1.4)	130 (3.3)	157 (0.9)	158 (0.8)	125 (3.1)	136 (4.6)
South Carolina	126 (1.8)	126 (1.4)	149 (1.4) *	155 (1.6)	****(****)	****(****)
Tennessee	125 (2.4)	129 (2.0)	151 (2.0)	155 (1.7)	144 (5.3)!	147 (6.1)!
Texas	130 (1.7)	128 (1.8)	157 (1.3)	156 (1.9)	127 (15.1)!	137 (7.7)!
Utah	149 (1.7) *	142 (2.1)	158 (0.9)	159 (0.9)	157 (2.0)	158 (1.9)
Vermont ${ }^{+}$	146 (2.1)	144 (2.6)	160 (0.9) \ddagger	165 (0.9)	157 (2.9) !	163 (2.2) !
Virginia	125 (2.2)	130 (2.3)	157 (1.6)	159 (1.2)	150 (4.5) !	150 (5.4)!
West Virginia	138 (1.3)	138 (1.5)	152 (1.0) \ddagger	158 (1.0)	151 (4.8)!	151 (5.0)!
Wyoming	148 (1.2)	147 (2.2)	160 (0.8)	161 (0.9)	155 (4.8)	159 (3.6)!
Other Jurisdictions						
American Samoa	-	72 (2.3)	-	****(****)	-	****(****)
DDESS	148 (2.0)	153 (2.1)	158 (1.8)	163 (1.6)	150 (2.1)	158 (3.4)
DoDDS	146 (2.4) *	155 (2.4)	156 (0.9) \ddagger	161 (1.0)	156 (1.1)	158 (1.4)
Guam	101 (2.2)	96 (7.5)	125 (1.1)	119 (2.9)	****(****)	104 (12.8) !

[^44]Table B.57: Data for Table 3.12 State Proficient Level Achievement Results by Free/Reduced-Price School Lunch Eligibility, Grade 4

State percentages of students at or above the Proficient level in science by student eligibility for free/reduced-price school lunch program for grade 4 public schools: 2000

	Eligible	Not eligible	not available
Nation	11 (0.7)	37 (1.4)	39 (3.4)
Alabama	9 (1.5)	36 (2.0)	23 (6.1)!
Arizona	8 (1.0)	34 (2.7)	19 (4.4) !
Arkansas	13 (1.5)	35 (2.1)	****(****)
California †	4 (0.6)	26 (2.9)	16 (6.1) !
Connecticut	12 (1.9)	44 (1.8)	26 (7.3)!
Georgia	7 (1.0)	37 (2.3)	27 (3.9) !
Hawaii	8 (1.2)	23 (1.5)	11 (2.4) !
Idaho ${ }^{\dagger}$	19 (2.3)	36 (2.2)	41 (11.6) !
Illinois ${ }^{\text {+ }}$	12 (1.8)	42 (3.3)	42 (8.2) !
Indiana †	14 (2.0)	40 (2.4)	31 (8.3)!
lowa †	26 (3.1)	41 (2.3)	36 (6.7)!
Kentucky	17 (1.5)	38 (2.3)	35 (11.8) !
Louisiana	10 (1.3)	36 (3.1)	13 (3.2) !
Maine ${ }^{\dagger}$	23 (2.9)	46 (2.0)	36 (6.8) !
Maryland	7 (1.2)	36 (2.2)	19 (5.8) !
Massachusetts	16 (2.3)	53 (1.9)	37 (10.4) !
Michigan ${ }^{+}$	15 (2.3)	43 (2.9)	12 (8.3)!
Minnesota ${ }^{\dagger}$	17 (2.3)	41 (2.9)	49 (7.1) !
Mississippi	6 (1.0)	28 (1.9)	12 (2.8) !
Missouri	19 (1.7)	44 (2.0)	29 (9.3) !
Montana ${ }^{\dagger}$	23 (2.7)	46 (3.5)	41 (5.8) !
Nebraska	11 (1.8)	35 (2.7)	29 (5.7) !
Nevada	8 (1.0)	26 (1.6)	13 (3.4)!
New Mexico	9 (1.1)	30 (2.8)	26 (7.4)!
New York ${ }^{\dagger}$	11 (1.9)	39 (2.3)	36 (8.5)!
North Carolina	9 (1.7)	34 (1.8)	29 (6.2) !
North Dakota	26 (3.0)	43 (1.6)	38 (3.6)
Ohio ${ }^{+}$	12 (1.7)	43 (2.7)	32 (5.8) !
Oklahoma	17 (1.8)	39 (2.6)	23 (6.1)!
Oregon ${ }^{\dagger}$	15 (2.1)	35 (2.4)	30 (5.0) !
Rhode Island	8 (1.6)	38 (1.9)	19 (9.6) !
South Carolina	9 (1.4)	34 (2.4)	16 (5.8) !
Tennessee	12 (1.6)	36 (2.2)	36 (7.7)!
Texas	9 (1.3)	37 (2.6)	30 (8.2) !
Utah	19 (2.1)	37 (1.6)	40 (6.3) !
Vermont ${ }^{\dagger}$	22 (3.4)	45 (3.9)	34 (4.7)!
Virginia	12 (2.2)	42 (2.3)	43 (7.8)!
West Virginia	17 (1.5)	33 (2.1)	26 (4.5)!
Wyoming	21 (2.1)	38 (1.8)	30 (8.7) !
Other Jurisdictions			
American Samoa	(0.2)	*********)	*********)
DDESS	23 (2.0)	35 (3.0)	32 (8.5)
DoDDS	22 (2.3)	33 (1.8)	31 (2.0)
Guam	2 (0.7)	6 (1.7)	*********)
Virgin Islands	3 (0.7)	****(****)	****(****)

[^45]Table B.58: State Basic Level Achievement Results by Free/Reduced-Price School Lunch Eligibility, Grade 4

State percentage of students at or above the Basic level in science by student eligibility for free/ reduced-price school lunch program for grade 4 public schools: 2000

			Information
	Eligible	Not eligible	not available
Nation	42 (1.3)	78 (1.1)	78 (2.4)
Alabama	41 (2.5)	78 (1.8)	64 (7.0) !
Arizona	37 (2.0)	75 (3.0)	53 (8.0) !
Arkansas	46 (2.4)	78 (2.4)	****(****)
California ${ }^{\dagger}$	28 (1.9)	69 (2.4)	52 (9.5) !
Connecticut	50 (3.9)	86 (1.3)	56 (9.0) !
Georgia	35 (2.1)	76 (2.0)	67 (4.1) !
Hawaii	37 (2.3)	64 (1.9)	45 (6.1)!
Idaho ${ }^{\dagger}$	59 (3.0)	80 (1.8)	84 (7.0) !
Illinois \dagger	44 (3.4)	84 (2.6)	71 (10.7) !
Indiana ${ }^{\text {+ }}$	55 (2.9)	84 (2.1)	68 (8.2) !
lowa \dagger	71 (4.5)	85 (2.2)	78 (7.5) !
Kentucky	57 (2.3)	82 (1.7)	74 (8.7) !
Louisiana	40 (2.4)	79 (2.2)	47 (6.5) !
Maine ${ }^{\dagger}$	69 (2.7)	87 (1.4)	83 (5.2) !
Maryland	37 (2.5)	76 (2.0)	49 (8.4) !
Massachusetts	53 (3.4)	91 (1.0)	75 (9.4) !
Michigan ${ }^{\dagger}$	47 (3.2)	83 (1.8)	42 (21.7) !
Minnesota \dagger	58 (4.4)	85 (1.9)	85 (6.5) !
Mississippi	31 (2.2)	73 (2.1)	46 (7.0) !
Missouri	58 (3.3)	86 (1.1)	60 (11.6) !
Montana ${ }^{\dagger}$	67 (4.9)	89 (1.8)	83 (5.4) !
Nebraska	48 (3.8)	79 (2.1)	69 (4.9) !
Nevada	41 (2.2)	68 (2.4)	51 (5.9) !
New Mexico	41 (2.6)	74 (3.3)	60 (9.6) !
New York ${ }^{\dagger}$	45 (2.7)	87 (1.9)	77 (8.6) !
North Carolina	42 (2.9)	78 (1.9)	72 (4.8) !
North Dakota	68 (3.3)	86 (1.4)	79 (2.9)
Ohio ${ }^{+}$	48 (3.3)	85 (1.6)	78 (5.2) !
Oklahoma	61 (3.0)	84 (2.0)	69 (8.1) !
Oregon ${ }^{\text { }}$	50 (3.7)	78 (2.2)	62 (6.9) !
Rhode Island	37 (2.9)	84 (1.6)	51 (12.0) !
South Carolina	39 (2.2)	76 (1.8)	54 (3.8) !
Tennessee	45 (2.6)	78 (1.8)	69 (7.5) !
Texas	45 (2.6)	81 (1.9)	69 (10.0) !
Utah	58 (2.6)	81 (1.2)	81 (6.3) !
Vermont ${ }^{\dagger}$	63 (3.5)	84 (2.6)	75 (5.4) !
Virginia	52 (3.4)	85 (1.4)	81 (6.2) !
West Virginia	59 (2.3)	79 (1.8)	71 (4.8) !
Wyoming	67 (3.4)	86 (1.8)	76 (5.4) !
Other Jurisdictions			
American Samoa	2 (0.9)	****(****)	****(****)
DDESS	71 (2.4)	82 (1.3)	83 (6.9)
DoDDS	68 (2.1)	78 (1.3)	76 (1.4)
Guam	15 (2.4)	34 (3.9)	****(****)
Virgin Islands	25 (1.9)	****(****)	****(****)

[^46]
Table B.59: State Achievement-level results by Free/Reduced-Price School Lunch Eligibility, Grade 4

State percentages of students at or above science achievement levels by student eligibility for free/reducedprice school lunch program for grade 4 public schools: 2000

	Eligible				Not eligible				Information not available			
	Below Basic	At or above Basic	At or above Proficient	Advanced	Below Basic	At or above Basic	At or above Proficient	Advanced	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic		Advanced
Nation	58 (1.3)	42 (1.3)	11 (0.7)	1 (0.2)	22 (1.1)	78 (1.1)	37 (1.4)	5 (0.5)	22 (2.4)	78 (2.4)	39 (3.4)	6 (1.7)
Alabama	59 (2.5)	41 (2.5)	9 (1.5)	(0.2)	22 (1.8)	78 (1.8)	36 (2.0)	4 (0.7)	36 (7.0) !	64 (7.0) !	23 (6.1) !	$1(0.6)$!
Arizona	63 (2.0)	37 (2.0)	8 (1.0)	(${ }^{* * * *)}$	25 (3.0)	75 (3.0)	34 (2.7)	4 (0.8)	47 (8.0) !	53 (8.0) !	19 (4.4) !	$2(0.9)$!
Arkansas	54 (2.4)	46 (2.4)	13 (1.5)	1 (0.4)	22 (2.4)	78 (2.4)	35 (2.1)	3 (1.1)	**(****)	**(****)	**(****)	*(****)
California †	72 (1.9)	28 (1.9)	4 (0.6)	(****)	31 (2.4)	69 (2.4)	26 (2.9)	2 (0.5)	48 (9.5) !	52 (9.5) !	16 (6.1) !	1 (****) !
Connecticut	50 (3.9)	50 (3.9)	12 (1.9)	(****)	14 (1.3)	86 (1.3)	44 (1.8)	4 (0.8)	44 (9.0) !	56 (9.0) !	26 (7.3) !	2 (1.2)!
Georgia	65 (2.1)	35 (2.1)	7 (1.0)	(****)	24 (2.0)	76 (2.0)	37 (2.3)	5 (1.0)	33 (4.1) !	67 (4.1) !	27 (3.9) !	4 (1.3) !
Hawaii	63 (2.3)	37 (2.3)	8 (1.2)	(${ }^{* * * *)}$	36 (1.9)	64 (1.9)	23 (1.5)	2 (0.5)	55 (6.1) !	45 (6.1) !	11 (2.4) !	1 (****) !
Idaho \dagger	41 (3.0)	59 (3.0)	19 (2.3)	1 (0.7)	20 (1.8)	80 (1.8)	36 (2.2)	3 (0.6)	16 (7.0) !	84 (7.0) !	41 (11.6) !	5 (2.5) !
Illinois \dagger	56 (3.4)	44 (3.4)	12 (1.8)	1 (0.5)	16 (2.6)	84 (2.6)	42 (3.3)	5 (1.2)	29 (10.7) !	71 (10.7) !	42 (8.2) !	9 (3.6)!
Indiana †	45 (2.9)	55 (2.9)	14 (2.0)	(${ }^{* * * *)}$	16 (2.1)	84 (2.1)	40 (2.4)	4 (0.8)	32 (8.2) !	68 (8.2) !	31 (8.3) !	4 (1.3) !
lowa †	29 (4.5)	71 (4.5)	26 (3.1)	2 (0.9)	15 (2.2)	85 (2.2)	41 (2.3)	4 (0.8)	22 (7.5) !	78 (7.5) !	36 (6.7) !	3 (2.2) !
Kentucky	43 (2.3)	57 (2.3)	17 (1.5)	1 (0.4)	18 (1.7)	82 (1.7)	38 (2.3)	4 (0.6)	26 (8.7) !	74 (8.7) !	35 (11.8) !	4 (****) !
Louisiana	60 (2.4)	40 (2.4)	10 (1.3)	(0.2)	21 (2.2)	79 (2.2)	36 (3.1)	4 (1.1)	53 (6.5) !	47 (6.5) !	13 (3.2) !	1 (****) !
Maine \dagger	31 (2.7)	69 (2.7)	23 (2.9)	1 (0.6)	13 (1.4)	87 (1.4)	46 (2.0)	5 (1.0)	17 (5.2) !	83 (5.2) !	36 (6.8) !	3 (1.2) !
Maryland	63 (2.5)	37 (2.5)	7 (1.2)	(${ }^{(* * * *)}$	24 (2.0)	76 (2.0)	36 (2.2)	4 (0.8)	51 (8.4) !	49 (8.4) !	19 (5.8) !	3 (1.9) !
Massachusetts	47 (3.4)	53 (3.4)	16 (2.3)	1 (0.8)	9 (1.0)	91 (1.0)	53 (1.9)	7 (0.9)	25 (9.4) !	75 (9.4) !	37 (10.4) !	3 (****) !
Michigan †	53 (3.2)	47 (3.2)	15 (2.3)	1 (0.7)	17 (1.8)	83 (1.8)	43 (2.9)	5 (0.8)	58 (21.7) !	42 (21.7)!	12 (8.3) !	(${ }^{* * * *)!~}$
Minnesota \dagger	42 (4.4)	58 (4.4)	17 (2.3)	2 (0.9)	15 (1.9)	85 (1.9)	41 (2.9)	4 (0.7)	15 (6.5) !	85 (6.5) !	49 (7.1) !	5 (2.3) !
Mississippi	69 (2.2)	31 (2.2)	6 (1.0)	(0.1)	27 (2.1)	73 (2.1)	28 (1.9)	2 (0.6)	54 (7.0) !	46 (7.0) !	12 (2.8) !	$1(0.6)$!
Missouri	42 (3.3)	58 (3.3)	19 (1.7)	1 (0.5)	14 (1.1)	86 (1.1)	44 (2.0)	5 (0.7)	40 (11.6) !	60 (11.6)!	29 (9.3) !	2 (1.2)!
Montana †	33 (4.9)	67 (4.9)	23 (2.7)	1 (****)	11 (1.8)	89 (1.8)	46 (3.5)	5 (1.3)	17 (5.4) !	83 (5.4) !	41 (5.8) !	3 (1.7) !
Nebraska	52 (3.8)	48 (3.8)	11 (1.8)	(${ }^{(* * * *)}$	21 (2.1)	79 (2.1)	35 (2.7)	3 (1.5)	31 (4.9) !	69 (4.9) !	29 (5.7) !	4 (2.3) !
Nevada	59 (2.2)	41 (2.2)	8 (1.0)	(****)	32 (2.4)	68 (2.4)	26 (1.6)	2 (0.6)	49 (5.9) !	51 (5.9) !	13 (3.4) !	1 (****) !
New Mexico	59 (2.6)	41 (2.6)	9 (1.1)	(****)	26 (3.3)	74 (3.3)	30 (2.8)	3 (1.3)	40 (9.6) !	60 (9.6) !	26 (7.4) !	4 (1.8) !
New York †	55 (2.7)	45 (2.7)	11 (1.9)	(0.2)	13 (1.9)	87 (1.9)	39 (2.3)	3 (0.6)	23 (8.6) !	77 (8.6) !	36 (8.5) !	4 (2.4) !
North Carolina	58 (2.9)	42 (2.9)	9 (1.7)	(${ }^{(* * * *)}$	22 (1.9)	78 (1.9)	34 (1.8)	3 (0.8)	28 (4.8) !	72 (4.8) !	29 (6.2) !	4 (2.3) !
North Dakota	32 (3.3)	68 (3.3)	26 (3.0)	1 (0.8)	14 (1.4)	86 (1.4)	43 (1.6)	4 (0.7)	21 (2.9)	79 (2.9)	38 (3.6)	2 (1.0)
Ohio \dagger	52 (3.3)	48 (3.3)	12 (1.7)	1 (****)	15 (1.6)	85 (1.6)	43 (2.7)	5 (1.0)	22 (5.2) !	78 (5.2) !	32 (5.8) !	5 (1.9) !
Oklahoma	39 (3.0)	61 (3.0)	17 (1.8)	1 (0.3)	16 (2.0)	84 (2.0)	39 (2.6)	4 (0.9)	31 (8.1) !	69 (8.1) !	23 (6.1) !	1 (****) !
Oregon †	50 (3.7)	50 (3.7)	15 (2.1)	1 (****)	22 (2.2)	78 (2.2)	35 (2.4)	4 (0.9)	38 (6.9) !	62 (6.9) !	30 (5.0) !	4 (2.4) !
Rhode Island	63 (2.9)	37 (2.9)	8 (1.6)	(${ }^{* * * *)}$	16 (1.6)	84 (1.6)	38 (1.9)	3 (0.6)	49 (12.0) !	51 (12.0) !	19 (9.6) !	(${ }^{* * * *)!~}$
South Carolina	61 (2.2)	39 (2.2)	9 (1.4)	1 (0.3)	24 (1.8)	76 (1.8)	34 (2.4)	4 (0.7)	46 (3.8) !	54 (3.8) !	16 (5.8) !	1 (****) !
Tennessee	55 (2.6)	45 (2.6)	12 (1.6)	1 (0.4)	22 (1.8)	78 (1.8)	36 (2.2)	4 (0.9)	31 (7.5) !	69 (7.5) !	36 (7.7) !	3 (****) !
Texas	55 (2.6)	45 (2.6)	9 (1.3)	(${ }^{(* * * *)}$	19 (1.9)	81 (1.9)	37 (2.6)	4 (0.7)	31 (10.0) !	69 (10.0) !	30 (8.2) !	3 (1.3) !
Utah	42 (2.6)	58 (2.6)	19 (2.1)	1 (0.6)	19 (1.2)	81 (1.2)	37 (1.6)	4 (0.7)	19 (6.3) !	81 (6.3) !	40 (6.3) !	5 (3.3) !
Vermont \dagger	37 (3.5)	63 (3.5)	22 (3.4)	1 (****)	16 (2.6)	84 (2.6)	45 (3.9)	5 (1.4)	25 (5.4) !	75 (5.4) !	34 (4.7) !	3 (****) !
Virginia	48 (3.4)	52 (3.4)	12 (2.2)	1 (0.4)	15 (1.4)	85 (1.4)	42 (2.3)	6 (1.0)	19 (6.2) !	81 (6.2) !	43 (7.8) !	6 (1.7)!
West Virginia	41 (2.3)	59 (2.3)	17 (1.5)	1 (0.4)	21 (1.8)	79 (1.8)	33 (2.1)	3 (0.7)	29 (4.8) !	71 (4.8) !	26 (4.5) !	2 (****) !
Wyoming	33 (3.4)	67 (3.4)	21 (2.1)	1 (0.7)	14 (1.8)	86 (1.8)	38 (1.8)	3 (0.8)	24 (5.4) !	76 (5.4) !	30 (8.7) !	3 (1.5)!
Other Jurisdictions												
American Samoa	98 (0.9)	2 (0.9)	(${ }^{* * * * *)}$	0 (****)	*********)	****(****)	****(****)	****(****)	****(****)	****(****)	***(****)	****(****)
DDESS	29 (2.4)	71 (2.4)	23 (2.0)	1 (0.6)	18 (1.3)	82 (1.3)	35 (3.0)	3 (0.9)	17 (6.9)	83 (6.9)	32 (8.5)	2 (****)
DoDDS	32 (2.1)	68 (2.1)	22 (2.3)	2 (0.6)	22 (1.3)	78 (1.3)	33 (1.8)	3 (0.6)	24 (1.4)	76 (1.4)	31 (2.0)	3 (0.6)
Guam	85 (2.4)	15 (2.4)	2 (0.7)	(${ }^{(* * * *)}$	66 (3.9)	34 (3.9)	6 (1.7)	0 (****)	****(****)	****(****)	***(****)	***(****)
Virgin Islands	75 (1.9)	25 (1.9)	3 (0.7)	(${ }^{* * * *)}$	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)

[^47]Table B.60: Data for Table 3.13 State ProficientLevel Achievement Results by Free/Reduced-Price School Lunch Eligibility, Grade 8

State percentages of students at or above the Proficient level in science by student eligibility for free/reduced-price school lunch program for grade 8 public schools: 1996 and 2000

	Eligible		Not eligible		Information not available	
	1996	2000	1996	2000	1996	2000
Nation	14 (1.6)	12 (1.0)	32 (1.9) *	39 (1.2)	34 (3.9) !	31 (2.0)
Alabama	7 (1.0)	9 (1.3)	24 (2.2)	31 (2.2)	33 (9.9) !	31 (4.5) !
Arizona ${ }^{\dagger}$	9 (1.5)	10 (2.1)	31 (2.4)	31 (2.1)	18 (2.2)	25 (3.7) !
Arkansas	10 (1.6)	12 (1.6)	28 (1.8)	30 (2.3)	30 (10.1) !	22 (6.0) !
California ${ }^{\text {+ }}$	6 (1.2)	4 (1.3)	31 (2.5)	23 (2.5)	15 (2.3)	17 (6.2) !
Connecticut	10 (3.0)	7 (2.1)	43 (2.1)	43 (1.6)	38 (10.1)!	29 (6.9) !
Georgia	6 (1.0)	9 (1.4)	29 (2.3)	33 (2.4)	25 (5.9) !	23 (3.1) !
Hawaii	9 (1.5)	7 (1.1)	18 (1.3)	20 (1.6)	5 (2.0) *	20 (3.6)
Idaho ${ }^{\dagger}$	-	27 (3.1)	-	44 (1.9)	-	36 (4.8)
Illinois ${ }^{\dagger}$	-	10 (1.5)	-	40 (2.7)	-	28 (6.7) !
Indiana ${ }^{\dagger}$	12 (2.7)	16 (3.2)	35 (1.9)	41 (2.1)	********)	28 (4.5) !
Kentucky	11 (1.5)	16 (1.6)	31 (1.6) *	38 (2.0)	16 (3.6)!	********)
Louisiana	7 (1.1)	8 (1.2)	20 (2.0) \ddagger	32 (2.5)	16 (4.1)!	13 (2.9) !
Maine ${ }^{\dagger}$	27 (2.4)	25 (2.4)	46 (2.3)	41 (2.4)	41 (7.7) !	28 (4.1)!
Maryland	8 (1.2)	9 (1.6)	32 (2.4)	37 (1.9)	16 (7.3) !	17 (4.0) !
Massachusetts	13 (1.6)	14 (2.2)	44 (2.0)	49 (2.0)	29 (6.7) !	46 (8.7) !
Michigan ${ }^{\dagger}$	17 (2.7)	16 (2.3)	38 (2.1)	44 (2.8)	26 (9.2) !	32 (4.2) !
Minnesota ${ }^{\dagger}$	22 (1.9)	21 (4.4)	40 (1.9)	47 (2.4)	42 (6.5)	45 (5.7) !
Mississippi	5 (0.8)	6 (0.7)	22 (1.7)	24 (2.2)	$9(5.1)$!	17 (3.5) !
Missouri	15 (1.8)	18 (2.4)	$34(1.6) \ddagger$	44 (1.9)	25 (5.5) !	32 (5.7) !
Montana ${ }^{\dagger}$	25 (2.9)	34 (3.2)	46 (2.4)	51 (2.2)	43 (4.9)	48 (4.0)
Nebraska	20 (2.3)	21 (2.5)	40 (1.7)	41 (2.0)	38 (8.6) !	44 (5.1) !
Nevada	-	10 (1.5)	-	28 (1.3)	-	17 (4.3)
New Mexico	10 (1.0)	11 (1.6)	28 (1.5)	29 (2.5)	19 (2.2)	24 (3.1)
New York ${ }^{\dagger}$	10 (1.6)	14 (3.1)	37 (2.5)	41 (2.9)	36 (7.4) !	28 (6.5)
North Carolina	7 (0.8)	9 (1.3)	33 (1.8)	34 (2.0)	17 (2.7) !	35 (11.9) !
North Dakota	33 (2.9)	26 (3.2)	44 (1.7)	47 (2.1)	33 (3.9)	36 (3.2)
Ohio	-	22 (3.8)	-	46 (2.1)	-	33 (7.8) !
Oklahoma	-	16 (2.4)	-	33 (1.7)	-	27 (5.5) !
Oregon ${ }^{+}$	20 (2.2)	17 (2.6)	37 (1.8)	39 (2.2)	30 (6.3) !	38 (3.8) !
Rhode Island	10 (1.5)	10 (1.3)	32 (1.9)	36 (1.2)	10 (2.7)	14 (3.1)
South Carolina	7 (1.1)	8 (0.9)	26 (2.1)	31 (2.3)	********)	********)
Tennessee	9 (1.3)	11 (1.0)	28 (2.2)	33 (1.7)	23 (5.5) !	26 (6.4) !
Texas	9 (1.2)	9 (1.3)	34 (2.1)	33 (2.3)	14 (6.6) !	21 (5.2) !
Utah	25 (2.6)	23 (2.4)	34 (1.5)	38 (1.8)	32 (2.7)	37 (3.8)
Vermont ${ }^{\text {+ }}$	22 (2.7)	22 (2.7)	38 (1.9) *	44 (1.7)	30 (3.7) !*	43 (3.5) !
Virginia	6 (1.2)	11 (1.7)	34 (2.5)	37 (1.6)	27 (6.0) !	29 (6.0) !
West Virginia	12 (1.0)	14 (1.7)	26 (1.4) \ddagger	35 (2.0)	23 (6.0) !	25 (4.5) !
Wyoming	22 (2.0)	24 (1.9)	37 (1.4)	40 (1.3)	32 (4.9)	33 (8.5) !
Other Jurisdictions						
American Samoa	-	2 (0.7)	-	****(****)	-	****(****)
DDESS	20 (3.4)	29 (3.6)	32 (3.1)	40 (2.9)	25 (3.5)	35 (4.6)
DoDDS	20 (4.1) *	33 (3.4)	33 (1.9) *	39 (1.6)	31 (2.2)	37 (2.6)
Guam	- (0.3)	3 (2.3)	9 (1.2)	7 (1.4)	****(****)	5 (4.3) !

Standard errors of the estimated percentages appear in parentheses. * Significantly different from 2000 if only one jurisdiction or the nation is being examined.
! The nature of the sample does not allow accurate determination of the variability of the statistic. ${ }^{* * * *(* * * *) ~ S a m p l e ~ s i z e ~ i s ~ i n s u f f i c i e n t ~ t o ~ p e r m i t ~ a ~ r e l i a b l e ~ e s t i m a t e . ~}$
\ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years. \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
— Indicates that the jurisdiction did not participate. $\mathbf{\Delta}$ Percentage is between 0.0 and 0.5 .
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.61: State Basic Level Achievement Results by Free/Reduced-Price School Lunch Eligibility, Grade 8

State percentages of students at or above the Basic level in science by student eligibility for free/ reduced-price school lunch program for grade 8 public schools: 1996 and 2000

Information

	Eligible		Not eligible		not available	
	1996	2000	1996	2000	1996	2000
Nation	40 (2.3)	33 (1.4)	68 (1.6)	71 (1.2)	67 (3.8) !	60 (2.5)
Alabama	26 (2.1)	30 (2.6)	61 (2.2)	65 (2.5)	66 (12.0) !	62 (6.0) !
Arizona ${ }^{\dagger}$	32 (2.8)	33 (3.6)	68 (2.4)	68 (2.5)	53 (3.8)	61 (4.0) !
Arkansas	33 (2.5)	35 (2.8)	66 (1.8)	66 (1.9)	67 (10.3) !	53 (10.6) !
California ${ }^{\dagger}$	26 (2.4) *	19 (2.1)	64 (2.9) *	54 (2.9)	44 (5.1)	43 (7.2) !
Connecticut	34 (4.3)	31 (3.8)	77 (1.6)	76 (1.7)	71 (9.1) !	55 (8.2) !
Georgia	27 (2.2)	29 (2.3)	62 (2.2)	66 (2.4)	55 (8.1) !	53 (4.6) !
Hawaii	30 (2.3)	26 (1.8)	49 (1.5)	50 (1.7)	25 (5.5) *	50 (4.9)
Idaho ${ }^{\dagger}$	-	62 (2.8)	-	79 (1.4)	-	70 (5.3)
Illinois ${ }^{\dagger}$	-	30 (3.2)	-	76 (2.3)	-	64 (8.3) !
Indiana ${ }^{\text { }}$	41 (3.7)	45 (4.7)	71 (1.8)	76 (2.4)	****(****)	56 (6.2) !
Kentucky	40 (2.2)	46 (2.4)	69 (1.9)	72 (1.8)	50 (5.3) !	****(****)
Louisiana	27 (1.8)	28 (2.7)	55 (2.2) \ddagger	68 (2.3)	36 (7.8) !	42 (4.9) !
Maine ${ }^{\dagger}$	64 (2.7)	62 (2.7)	82 (1.6)	79 (1.6)	79 (5.1) !	71 (4.3) !
Maryland	27 (2.5)	33 (3.0)	66 (2.3)	70 (1.8)	50 (12.3) !	45 (6.4) !
Massachusetts	38 (2.3)	42 (4.6)	79 (1.5)	82 (1.9)	57 (9.9) !	74 (6.9) !
Michigan ${ }^{\dagger}$	45 (3.5)	42 (3.9)	73 (2.0)	78 (1.9)	54 (10.4) !	65 (4.8) !
Minnesota ${ }^{\dagger}$	53 (3.2)	53 (5.0)	77 (1.6)	79 (2.6)	74 (5.6)	77 (5.6) !
Mississippi	24 (1.7)	24 (1.8)	59 (2.4)	60 (1.9)	40 (7.8) !	45 (4.8) !
Missouri	46 (2.8)	48 (2.7)	72 (1.6) *	78 (1.7)	56 (10.2) !	62 (7.7) !
Montana ${ }^{\dagger}$	61 (2.9)	67 (3.3)	83 (1.6)	86 (1.9)	83 (3.1)	82 (3.2)
Nebraska	53 (2.8)	54 (3.0)	78 (1.0)	76 (1.7)	77 (7.0) !	74 (5.8) !
Nevada	-	33 (2.4)	-	62 (1.2)	-	57 (8.3)
New Mexico	34 (2.0)	35 (2.5)	62 (2.3)	61 (2.5)	54 (4.0)	52 (4.4)
New York ${ }^{\dagger}$	31 (2.5)	43 (4.4)	73 (2.6)	76 (2.8)	65 (9.8) !	57 (9.3)
North Carolina	31 (1.8)	32 (3.1)	69 (1.8)	67 (1.9)	53 (6.5) !	53 (12.0) !
North Dakota	72 (3.2) *	60 (3.3)	80 (1.3)	80 (1.4)	71 (4.6)	73 (1.7)
Ohio	-	52 (4.1)	-	79 (1.7)	-	62 (8.5) !
Oklahoma	-	46 (3.0)	-	72 (1.9)	-	61 (6.8) !
Oregon ${ }^{\text { }}$	56 (2.9)	47 (3.5)	73 (2.0)	74 (2.1)	63 (6.8) !	73 (3.3) !
Rhode Island	35 (2.3)	37 (2.5)	69 (1.8)	70 (1.4)	29 (6.3)	46 (7.3)
South Carolina	28 (2.4)	30 (2.0)	60 (2.2)	66 (2.1)	****(****)	****(****)
Tennessee	31 (3.1)	35 (2.5)	62 (2.5)	69 (2.4)	58 (5.2) !	57 (10.1) !
Texas	34 (2.6)	34 (2.5)	71 (2.1)	67 (2.5)	36 (11.9) !	48 (8.1) !
Utah	61 (2.7) *	52 (2.6)	72 (1.5)	73 (1.5)	72 (3.9)	72 (3.1)
Vermont ${ }^{\dagger}$	57 (4.0)	54 (4.6)	74 (1.4) *	80 (1.4)	73 (6.1) !	76 (3.9) !
Virginia	26 (2.8)	34 (3.0)	69 (1.9)	72 (1.5)	59 (6.6) !	59 (7.3) !
West Virginia	43 (2.7)	44 (2.5)	$63(1.6) \ddagger$	72 (1.3)	62 (8.5) !	61 (8.6) !
Wyoming	58 (3.1)	57 (3.2)	75 (1.4)	75 (1.4)	67 (9.1)	71 (4.9) !
Other Jurisdictions						
American Samoa	-	5 (1.2)	-	****(****)	-	****(****)
DDESS	59 (5.7)	62 (3.6)	70 (3.5)	75 (2.4)	62 (4.2)	70 (5.6)
DoDDS	53 (3.8) *	65 (3.5)	69 (1.3) *	75 (1.6)	70 (1.7)	70 (2.1)
Guam	10 (2.6)	11 (3.2)	32 (1.8)	25 (2.5)	****(****)	18 (7.2) !

[^48]
Table B.62: State Achievement-level results by Free/Reduced-Price School Lunch Eligibility, Grade 8

State percentages of students at or above science achievement levels by student eligibility for free/reducedprice school lunch program for grade 8 public schools: 2000

	Eligible				Not eligible				Information not available			
	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic	At or above Proficient	Advanced	Below Basic	At or above Basic	At or above Proficient	Advanced	$\begin{aligned} & \text { Below } \\ & \text { Basic } \end{aligned}$	At or above Basic	At or above Proficient	Advanced
Nation	67 (1.4)	33 (1.4)	12 (1.0)	1 (0.3)	29 (1.2)	71 (1.2)	39 (1.2)	5 (0.7)	40 (2.5)	60 (2.5)	31 (2.0)	3 (0.7)
Alabama	70 (2.6)	30 (2.6)	9 (1.3)	$\boldsymbol{\Delta}(0.3)$	35 (2.5)	65 (2.5)	31 (2.2)	3 (0.9)	38 (6.0) !	62 (6.0) !	31 (4.5) !	5 (2.2) !
Arizona ${ }^{+}$	67 (3.6)	33 (3.6)	10 (2.1)	(${ }^{* * * *)}$	32 (2.5)	68 (2.5)	31 (2.1)	3 (0.7)	39 (4.0) !	61 (4.0) !	25 (3.7) !	2 (1.0) !
Arkansas	65 (2.8)	35 (2.8)	12 (1.6)	1 (****)	34 (1.9)	66 (1.9)	30 (2.3)	2 (0.7)	47 (10.6) !	53 (10.6) !	22 (6.0) !	1 (****) !
California +	81 (2.1)	19 (2.1)	4 (1.3)	0 (****)	46 (2.9)	54 (2.9)	23 (2.5)	2 (0.6)	57 (7.2) !	43 (7.2) !	17 (6.2) !	2 (****) !
Connecticut	69 (3.8)	31 (3.8)	7 (2.1)	(${ }^{* * * *)}$	24 (1.7)	76 (1.7)	43 (1.6)	5 (0.9)	45 (8.2) !	55 (8.2) !	29 (6.9) !	5 (2.4) !
Georgia	71 (2.3)	29 (2.3)	9 (1.4)	(****)	34 (2.4)	66 (2.4)	33 (2.4)	3 (1.1)	47 (4.6) !	53 (4.6) !	23 (3.1) !	3 (0.7) !
Hawaii	74 (1.8)	26 (1.8)	7 (1.1)	(${ }^{* * * *)}$	50 (1.7)	50 (1.7)	20 (1.6)	1 (0.5)	50 (4.9)	50 (4.9)	20 (3.6)	1 (****)
Idaho ${ }^{+}$	38 (2.8)	62 (2.8)	27 (3.1)	2 (0.6)	21 (1.4)	79 (1.4)	44 (1.9)	5 (0.8)	30 (5.3)	70 (5.3)	36 (4.8)	3 (1.2)
Illinois \dagger	70 (3.2)	30 (3.2)	10 (1.5)	(${ }^{* * * *)}$	24 (2.3)	76 (2.3)	40 (2.7)	5 (1.2)	36 (8.3) !	64 (8.3) !	28 (6.7) !	2 (1.2)!
Indiana ${ }^{\text {+ }}$	55 (4.7)	45 (4.7)	16 (3.2)	2 (1.0)	24 (2.4)	76 (2.4)	41 (2.1)	4 (0.7)	44 (6.2) !	56 (6.2) !	28 (4.5) !	4 (1.8) !
Kentucky	54 (2.4)	46 (2.4)	16 (1.6)	1 (0.3)	28 (1.8)	72 (1.8)	38 (2.0)	4 (0.6)	***(****)	**(****)	****(****)	****(****)
Louisiana	72 (2.7)	28 (2.7)	8 (1.2)	1 (0.3)	32 (2.3)	68 (2.3)	32 (2.5)	3 (0.9)	58 (4.9) !	42 (4.9) !	13 (2.9) !	(${ }^{(* * * *)!~}$
Maine ${ }^{\dagger}$	38 (2.7)	62 (2.7)	25 (2.4)	2 (0.8)	21 (1.6)	79 (1.6)	41 (2.4)	4 (0.6)	29 (4.3) !	71 (4.3) !	28 (4.1) !	2 (1.3)!
Maryland	67 (3.0)	33 (3.0)	9 (1.6)	(${ }^{* * * *)}$	30 (1.8)	70 (1.8)	37 (1.9)	4 (0.6)	55 (6.4) !	45 (6.4) !	17 (4.0) !	1 (****) !
Massachusetts	58 (4.6)	42 (4.6)	14 (2.2)	1 (0.4)	18 (1.9)	82 (1.9)	49 (2.0)	7 (0.8)	26 (6.9) !	74 (6.9) !	46 (8.7) !	7 (2.4) !
Michigan ${ }^{\text {+ }}$	58 (3.9)	42 (3.9)	16 (2.3)	1 (0.7)	22 (1.9)	78 (1.9)	44 (2.8)	5 (1.1)	35 (4.8) !	65 (4.8) !	32 (4.2) !	2 (1.3)!
Minnesota ${ }^{\text {+ }}$	47 (5.0)	53 (5.0)	21 (4.4)	2 (1.0)	21 (2.6)	79 (2.6)	47 (2.4)	5 (0.9)	23 (5.6) !	77 (5.6) !	45 (5.7) !	4 (2.1) !
Mississippi	76 (1.8)	24 (1.8)	6 (0.7)	(0.2)	40 (1.9)	60 (1.9)	24 (2.2)	2 (0.6)	55 (4.8) !	45 (4.8) !	17 (3.5) !	2 (1.0)!
Missouri	52 (2.7)	48 (2.7)	18 (2.4)	1 (0.5)	22 (1.7)	78 (1.7)	44 (1.9)	5 (0.7)	38 (7.7) !	62 (7.7) !	32 (5.7) !	5 (1.6)!
Montana ${ }^{\dagger}$	33 (3.3)	67 (3.3)	34 (3.2)	2 (0.8)	14 (1.9)	86 (1.9)	51 (2.2)	6 (1.1)	18 (3.2)	82 (3.2)	48 (4.0)	7 (1.7)
Nebraska	46 (3.0)	54 (3.0)	21 (2.5)	2 (0.7)	24 (1.7)	76 (1.7)	41 (2.0)	5 (0.7)	26 (5.8) !	74 (5.8) !	44 (5.1) !	2 (1.6) !
Nevada	67 (2.4)	33 (2.4)	10 (1.5)	(****)	38 (1.2)	62 (1.2)	28 (1.3)	2 (0.4)	43 (8.3)	57 (8.3)	17 (4.3)	1 (****)
New Mexico	65 (2.5)	35 (2.5)	11 (1.6)	1 (****)	39 (2.5)	61 (2.5)	29 (2.5)	2 (0.5)	48 (4.4)	52 (4.4)	24 (3.1)	2 (1.0)
New York ${ }^{+}$	57 (4.4)	43 (4.4)	14 (3.1)	1 (****)	24 (2.8)	76 (2.8)	41 (2.9)	3 (1.0)	43 (9.3)	57 (9.3)	28 (6.5)	3 (2.3)
North Carolina	68 (3.1)	32 (3.1)	9 (1.3)	(0.2)	33 (1.9)	67 (1.9)	34 (2.0)	4 (0.9)	47 (12.0) !	53 (12.0)!	35 (11.9) !	8 (5.0) !
North Dakota	40 (3.3)	60 (3.3)	26 (3.2)	2 (0.7)	20 (1.4)	80 (1.4)	47 (2.1)	5 (1.1)	27 (1.7)	73 (1.7)	36 (3.2)	3 (0.8)
Ohio	48 (4.1)	52 (4.1)	22 (3.8)	3 (1.5)	21 (1.7)	79 (1.7)	46 (2.1)	7 (0.8)	38 (8.5) !	62 (8.5) !	33 (7.8) !	4 (1.6) !
Oklahoma	54 (3.0)	46 (3.0)	16 (2.4)	1 (****)	28 (1.9)	72 (1.9)	33 (1.7)	3 (0.6)	39 (6.8) !	61 (6.8) !	27 (5.5) !	1 (****)!
Oregon ${ }^{+}$	53 (3.5)	47 (3.5)	17 (2.6)	2 (0.8)	26 (2.1)	74 (2.1)	39 (2.2)	4 (0.8)	27 (3.3) !	73 (3.3) !	38 (3.8) !	4 (1.4) !
Rhode Island	63 (2.5)	37 (2.5)	10 (1.3)	1 (****)	30 (1.4)	70 (1.4)	36 (1.2)	3 (0.4)	54 (7.3)	46 (7.3)	14 (3.1)	1 (****)
South Carolina	70 (2.0)	30 (2.0)	8 (0.9)	(${ }^{* * * *)}$	34 (2.1)	66 (2.1)	31 (2.3)	3 (0.6)	****(****)	****(****)	****(****)	****(****)
Tennessee	65 (2.5)	35 (2.5)	11 (1.0)	1 (0.3)	31 (2.4)	69 (2.4)	33 (1.7)	3 (0.6)	43 (10.1) !	57 (10.1) !	26 (6.4) !	1 (****) !
Texas	66 (2.5)	34 (2.5)	9 (1.3)	(${ }^{* * * *)}$	33 (2.5)	67 (2.5)	33 (2.3)	3 (0.6)	52 (8.1) !	48 (8.1) !	21 (5.2) !	2 (****) !
Utah	48 (2.6)	52 (2.6)	23 (2.4)	2 (0.8)	27 (1.5)	73 (1.5)	38 (1.8)	3 (0.7)	28 (3.1)	72 (3.1)	37 (3.8)	3 (1.4)
Vermont ${ }^{+}$	46 (4.6)	54 (4.6)	22 (2.7)	1 (****)	20 (1.4)	80 (1.4)	44 (1.7)	5 (0.9)	24 (3.9) !	76 (3.9) !	43 (3.5) !	5 (2.5) !
Virginia	66 (3.0)	34 (3.0)	11 (1.7)	(${ }^{* * * *)}$	28 (1.5)	72 (1.5)	37 (1.6)	4 (0.7)	41 (7.3) !	59 (7.3) !	29 (6.0) !	3 (2.1) !
West Virginia	56 (2.5)	44 (2.5)	14 (1.7)	1 (0.2)	28 (1.3)	72 (1.3)	35 (2.0)	3 (0.5)	39 (8.6) !	61 (8.6) !	25 (4.5) !	4 (1.8) !
Wyoming	43 (3.2)	57 (3.2)	24 (1.9)	1 (0.6)	25 (1.4)	75 (1.4)	40 (1.3)	4 (0.6)	29 (4.9) !	71 (4.9) !	33 (8.5) !	3 (****) !
Other Jurisdictions												
American Samoa	95 (1.2)	5 (1.2)	2 (0.7)	0 (****)	**(****)	**(****)	****(****)	****(****)	****(****)	****(****)	****(****)	****(****)
DDESS	38 (3.6)	62 (3.6)	29 (3.6)	2 (****)	25 (2.4)	75 (2.4)	40 (2.9)	6 (1.6)	30 (5.6)	70 (5.6)	35 (4.6)	3 (****)
DoDDS	35 (3.5)	65 (3.5)	33 (3.4)	2 (1.4)	25 (1.6)	75 (1.6)	39 (1.6)	4 (1.0)	30 (2.1)	70 (2.1)	37 (2.6)	4 (1.3)
Guam	89 (3.2)	11 (3.2)	3 (****)	0 (****)	75 (2.5)	25 (2.5)	7 (1.4)	(${ }^{* * * *)}$	82 (7.2) !	18 (7.2) !	5 (****) !	0 (****) !

Standard errors of the estimated percentages appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
(****) Standard error estimates cannot be accurately determined.
$* * * *(* * * *)$ Sample size is insufficient to permit a reliable estimate.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
A Percentage is between 0.0 and 0.5 .
NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas)
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.63: State Percentages of Students by Free/Reduced-Price School Lunch Eligibility, Grade 4

State percentages of students by eligibility for free/reduced-price school lunch program for grade 4 public schools: 2000

[^49]
Table B.64: State Percentages of Students by Free/Reduced-Price School Lunch Eligibility, Grade 8

State percentages of students by eligibility for free/reduced-price school lunch program for grade 8 public schools: 1996 and 2000

Standard errors of the estimated percentages appear in parentheses.
****(****) Sample size is insufficient to permit a reliable estimate.
(****) Standard error estimates cannot be accurately determined.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.

- Indicates that the jurisdiction did not participate.

A Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments

Table B.65: Data for Table 4.1 Comparison of Two Sets of National Scale Score Results

National average science scale scores by type of results, grades 4, 8, and 12:1996 and 2000

	Accommodations not permitted	Accommodations permitted
Grade 4		
1996	$150(0.8)$	$149(0.8)$
2000	$150(0.7)$	$148(0.6)^{\dagger}$
Grade 8		
1996	$150(0.9)$	$150(0.7)$
2000	$151(0.6)$	$151(0.7)$
Grade 12		
1996	$150(0.9)$ *	$150(0.7)$ *
2000	$147(1.0)$	$146(0.9)$

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000.
† Significantly different from the result where accommodations were not permitted.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.66: Data for Table 4.2 Comparison of Two Sets of National Achievement-Level Results

Percentage of students within each science achievement-level range and at or above achievement levels by type of results, grades 4, 8, and 12: 1996 and 2000

Grade 4	Below Basic	At Basic	At Proficient	At Advanced	At or above Basic	At or above Proficient
1996: Accommodations were						
not permitted	33 (1.2)	38 (0.8)	26 (0.9)	3 (0.4)	67 (1.2)	29 (0.9)
permitted	$35(1.0)$ †	$36(0.6){ }^{\dagger}$	25 (0.8)	4 (0.3)	$65(1.0){ }^{\dagger}$	29 (0.9)
2000: Accommodations were						
not permitted	34 (0.8)	37 (0.7)	26 (0.7)	4 (0.3)	66 (0.8)	29 (0.8)
permitted	$36(0.8) \dagger$	36 (1.0)	25 (0.7)	3 (0.4)	$64(0.8){ }^{\dagger}$	29 (0.8)
Grade 8						
1996: Accommodations were						
not permitted	39 (1.1)	32 (0.7) *	26 (1.1)	3 (0.5)	61 (1.1)	29 (1.2) *
permitted	39 (0.9)	31 (0.7) *	26 (0.8)	3 (0.3) *	61 (0.9)	29 (0.9)
2000: Accommodations were						
not permitted	39 (0.8)	29 (0.5)	28 (0.7)	4 (0.4)	61 (0.8)	32 (0.8)
permitted	39 (0.9)	29 (0.7)	27 (0.8)	4 (0.3)	61 (0.9)	32 (0.8)
Grade 12 l ${ }^{\text {a }}$						
1996: Accommodations were						
not permitted	43 (1.1) *	36 (1.0)	19 (1.0)	3 (0.3)	57 (1.1) *	21 (1.1)
permitted	43 (1.0) *	35 (0.8)	19 (0.7) *	3 (0.3)	57 (1.0) *	21 (0.8) *
2000: Accommodations were						
not permitted	47 (1.1)	34 (0.7)	16 (0.9)	2 (0.3)	53 (1.1)	18 (1.0)
permitted	48 (1.2)	34 (0.8)	16 (0.8)	2 (0.3)	52 (1.2)	18 (0.9)

[^50]
Table B.67: Comparison of Two Sets of National Scale Score Results by Gender

National average science scale scores by gender and type of results, grades 4,8 , and 12: 1996 and 2000

		Male		Female	
		Not permitted	Permitted	Not permitted	Permitted
Grade 4	$\begin{aligned} & 1996 \\ & 2000 \end{aligned}$	$\begin{aligned} & 151(0.9) \\ & 153(0.8) \end{aligned}$	$\begin{aligned} & 150(1.0) \\ & 150(0.7)^{\dagger} \end{aligned}$	$\begin{aligned} & 149(0.9) \\ & 147(0.8) \end{aligned}$	$\begin{aligned} & 148(0.8) \\ & 146(0.8) \end{aligned}$
Grade 8	$\begin{aligned} & 1996 \\ & 2000 \end{aligned}$	$\begin{aligned} & 151(1.0) \text { * } \\ & 154(0.7) \end{aligned}$	$\begin{aligned} & 151(0.9) \text { * } \\ & 154(0.9) \end{aligned}$	$\begin{aligned} & 149(1.1) \\ & 147(0.8) \end{aligned}$	$\begin{aligned} & 149(0.9) \\ & 147(0.8) \end{aligned}$
Grade 12	$\begin{aligned} & 1996 \\ & 2000 \end{aligned}$	$\begin{aligned} & 152(1.2) \text { * } \\ & 148(1.1) \end{aligned}$	$\begin{aligned} & 154(1.0) \text { * } \\ & 148(1.1) \end{aligned}$	$\begin{aligned} & 148 \text { (0.9) } \\ & 145(1.0) \end{aligned}$	$\begin{aligned} & 147(0.8) \\ & 145(1.0) \end{aligned}$

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000.
\dagger Significantly different from the result where accommodations were not permitted.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.68: Comparison of Two Sets of National Achievement-Level Results by Gender

Percentage of students within each science achievement-level range and at or above achievement levels by gender and type of results, grades 4, 8, and 12: 1996 and 2000
$\left.\begin{array}{lll|l|l|l|l|l} \\ & & & & & & & \text { At or above } \\ \text { At or above } \\ \text { Proficient }\end{array}\right)$

[^51]
Table B.69: Comparison of Two National Scale Score Results by Race/Ethnicity

National average science scale scores by race/ethnicity and type of results, grades 4,8 , and 12 :
1996 and 2000

		Wh		Blac		Hispa		Pacific	slander		
		Not permitted	Permitted								
Grade 4	1996	160 (0.9)	159 (0.9)	124 (1.9)	121 (1.7)	128 (1.7)	126 (2.1)	151 (3.6)	147 (3.3)	144 (3.8)	137 (7.7)
	2000	160 (0.8)	159 (0.6)	124 (1.6)	124 (1.0)	129 (1.3)	125 (1.6)	~	~	140 (2.8)	135 (2.9)
Grade 8	1996	159 (1.1)	160 (0.7)	121 (1.1)	121 (0.9)	129 (1.7)	126 (2.1)	152 (3.1)	153 (3.5)	148 (4.1) *	145 (3.6)
	2000	162 (0.7)	162 (0.8)	122 (1.3)	121 (1.3)	128 (1.3)	128 (1.3)	156 (2.4)	155 (2.5)	134 (3.2)	137 (3.0)
Grade 12	1996	159 (1.0) *	159 (0.9) *	124 (1.5)	123 (1.1)	130 (2.3)	132 (2.2)	149 (2.9)	150 (3.0)	145 (4.7) !	144 (4.7)!
	2000	154 (1.2)	154 (1.1)	123 (1.4)	122 (1.6)	128 (1.9)	128 (1.5)	153 (2.5)	149 (3.4)	139 (3.6)	142 (3.2)

Standard errors of the estimated scale scores appear in parentheses.

* Significantly different from 2000.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
\sim Special analyses raised concerns about the accuracy and precision of the national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.70: Comparison of Two Sets of National Achievement-Level Results by Race/Ethnicity

Percentage of students within each science achievement-level range and at or above achievement levels by race/ethnicity and type of results, grades 4, 8, and 12: 1996 and 2000

	Below Basic	At Basic	At Proficient	At Advanced	At or above Basic	At or above Proficient
Grade 4						
White						
1996 Accommodations were						
not permitted	21 (1.3)	42 (1.1)	33 (1.3)	4 (0.5)	79 (1.3)	37 (1.3)
permitted	23 (1.2)	40 (0.9)	33 (1.0)	5 (0.5)	77 (1.2)	37 (1.2)
2000 Accommodations were						
not permitted	21 (0.9)	41 (0.8)	33 (1.0)	5 (0.4)	79 (0.9)	38 (1.1)
permitted	22 (0.8)	40 (1.3)	33 (1.1)	5 (0.5)	78 (0.8)	38 (1.2)
Black						
1996 Accommodations were						
not permitted	66 (2.1)	28 (1.8)	7 (1.2)	(${ }^{* * * *)}$	34 (2.1)	7 (1.3)
permitted	69 (1.8)	25 (1.5)	5 (0.8)	(${ }^{* * * *)}$	31 (1.8)	6 (0.9)
2000 Accommodations were						
not permitted	66 (1.9)	27 (1.8)	6 (0.8)	(${ }^{* * * *)}$	34 (1.9)	7 (0.8)
permitted	67 (1.5)	27 (1.6)	6 (0.7)	(0.1)	33 (1.5)	6 (0.7)
Hispanic						
1996 Accommodations were						
not permitted	58 (2.1)	33 (1.8)	9 (1.0)	(${ }^{\text {(0.2) }}$	42 (2.1)	9 (1.2)
permitted	62 (2.4)	29 (2.0)	9 (1.0)	1 (0.3)	38 (2.4)	9 (1.0)
2000 Accommodations were						
not permitted	58 (1.5)	31 (1.4)	10 (0.8)	1 (0.4)	42 (1.5)	11 (0.9)
permitted	62 (1.9)	28 (1.8)	9 (0.8)	1 (0.2)	38 (1.9)	9 (0.9)
Asian/Pacific Islander						
not permitted	34 (4.8)	37 (3.5)	25 (4.6)	4 (1.4)	66 (4.8)	29 (4.8)
permitted	38 (5.2)	35 (4.0)	23 (2.8)	4 (2.0)	62 (5.2)	27 (3.0)
2000 Accommodations were						
not permitted	~	~	~	~	~	~
permitted	\sim	\sim	\sim	\sim	\sim	\sim
American Indian						
1996 Accommodations were						
not permitted	41 (4.8)	33 (4.4)	24 (5.0)	2 (****)	59 (4.8)	26 (4.4)
permitted	48 (8.7)	31 (6.5)	19 (3.3)	2 (0.8)	52 (8.7)	21 (3.6)
2000 Accommodations were						
not permitted	43 (3.6)	39 (3.1)	17 (3.5)	1 (0.9)	57 (3.6)	19 (3.5)
permitted	48 (4.4)	34 (5.0)	17 (2.8)	1 (****)	52 (4.4)	18 (2.9)

Table B.70: Comparison of Two Sets of National Achievement-Level Results by Race/Ethnicity (continued)

Percentage of students within each science achievement-level range and at or above achievement levels by race/ethnicity and type of results, grades 4, 8, and 12: 1996 and 2000

	Below Basic				At or above	At or above Proficient
		At Basic	At Proficient	At Advanced	Basic	
Grade 8						
White						
1996 Accommodations were						
not permitted	27 (1.3)	36 (0.9) *	33 (1.5)	4 (0.7)	73 (1.3)	37 (1.7)
permitted	27 (1.0)	35 (0.8)	34 (1.0)	4 (0.4)	73 (1.0)	38 (1.1)
2000 Accommodations were						
not permitted	26 (0.9)	33 (0.7)	36 (0.9)	5 (0.6)	74 (0.9)	41 (1.0)
permitted	26 (1.1)	33 (1.0)	35 (1.1)	6 (0.4)	74 (1.1)	41 (1.2)
Black						
1996 Accommodations were						
not permitted	76 (1.7)	19 (1.6)	5 (0.8)	(${ }^{* * * *)}$	24 (1.7)	5 (0.8)
permitted	77 (1.2)	18 (1.2)	5 (0.6)	© (0.1)	23 (1.2)	5 (0.6)
2000 Accommodations were						
not permitted	74 (1.5)	19 (1.4)	6 (0.7)	((0.2)	26 (1.5)	7 (0.7)
permitted	75 (1.7)	18 (1.6)	6 (0.8)	- (0.2)	25 (1.7)	7 (0.8)
Hispanic						
1996 Accommodations were						
not permitted	64 (2.2)	25 (1.8)	10 (1.1)	(${ }^{* * * *)}$	36 (2.2)	11 (1.1)
permitted	66 (2.4)	24 (1.8)	10 (1.3)	- (0.2)	34 (2.4)	10 (1.4)
2000 Accommodations were						
not permitted	65 (1.6)	23 (1.3)	11 (1.1)	1 (0.2)	35 (1.6)	12 (1.1)
permitted	65 (1.5)	23 (1.3)	11 (1.0)	1 (0.2)	35 (1.5)	11 (0.9)
Asian/Pacific Islander 1996 Accommodations were						
not permitted	38 (4.0)	31 (3.4)	27 (3.2)	3 (1.7)	62 (4.0)	30 (3.7)
permitted	37 (4.0)	30 (3.0)	29 (3.8)	4 (1.3)	63 (4.0)	33 (4.2)
2000 Accommodations were						
not permitted	36 (3.6)	27 (2.1)	31 (3.3)	6 (1.4)	64 (3.6)	37 (3.6)
permitted	36 (3.2)	27 (2.7)	31 (3.1)	6 (1.3)	64 (3.2)	37 (3.1)
American Indian						
1996 Accommodations were						
not permitted	40 (6.7)	35 (6.4)	22 (4.9)	2 (****)	60 (6.7)	24 (5.7)
permitted	45 (5.0)	34 (5.4)	21 (5.8)	(${ }^{* * * *)}$	55 (5.0)	21 (5.7)
2000 Accommodations were						
not permitted	61 (5.6)	24 (5.6)	12 (3.4)	2 (1.2)	39 (5.6)	14 (3.5)
permitted	58 (4.5)	26 (3.9)	14 (3.4)	2 (1.3)	42 (4.5)	16 (3.5)

Table B.70: Comparison of Two Sets of National Achievement-Level Results by Race/Ethnicity (continued)

Percentage of students within each science achievement-level range and at or above achievement levels by race/ethnicity and type of results, grades 4, 8, and 12: 1996 and 2000

[^52]
Table B.71: Data for Table 4.3 Comparison of Two Sets of State Scale Score Results, Grade 4

State average science scale scores by type of results for grade 4 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	148 (0.8)	147 (0.7)
Alabama	143 (1.7)	143 (1.7)
Arizona	141 (1.4)	140 (1.8)
Arkansas	144 (1.7)	145 (1.3)
California ${ }^{\dagger}$	131 (2.0)	129 (3.0)
Connecticut	156 (1.3)	156 (1.3)
Georgia	143 (1.4)	142 (1.4)
Hawaii	136 (1.4)	136 (1.4)
Idaho ${ }^{+}$	153 (1.5)	152 (1.4)
Illinois ${ }^{\dagger}$	151 (1.6)	150 (2.4)
Indiana ${ }^{\text {¢ }}$	155 (1.6)	154 (1.5)
lowa ${ }^{+}$	160 (1.4)	159 (1.3)
Kentucky	152 (1.1)	152 (1.2)
Louisiana	139 (1.9)	139 (1.8)
Maine ${ }^{\dagger}$	161 (1.0)	161 (1.1)
Maryland	146 (1.3)	145 (1.3)
Massachusetts	162 (1.2)	161 (1.4)
Michigan ${ }^{\dagger}$	154 (1.8)	152 (1.8)
Minnesota ${ }^{\dagger}$	157 (1.5)	157 (1.6)
Mississippi	133 (1.4)	133 (1.4)
Missouri	156 (1.6)	157 (1.2)
Montana ${ }^{\dagger}$	160 (2.1)	160 (1.5)
Nebraska	150 (1.8)	150 (1.8)
Nevada	142 (1.3)	142 (1.2)
New Mexico	138 (2.0)	140 (1.8)
New York ${ }^{\dagger}$	149 (1.4)	148 (1.3)
North Carolina	148 (1.4)	147 (1.3)
North Dakota	160 (0.8)	160 (0.9)
Ohio ${ }^{+}$	154 (1.6)	155 (1.4)
Oklahoma	152 (1.4)	151 (1.3)
Oregon ${ }^{\text {+ }}$	150 (1.9)	148 (2.0)
Rhode Island	148 (1.5)	148 (1.3)
South Carolina	141 (1.2)	140 (1.3)
Tennessee	147 (1.5)	145 (1.4)
Texas	147 (1.6)	145 (1.8)
Utah	155 (1.1)	154 (1.3)
Vermont ${ }^{\dagger}$	159 (1.7)	160 (1.3)
Virginia	156 (1.6)	155 (1.4)
West Virginia	150 (1.1)	149 (1.3)
Wyoming	158 (1.1)	156 (1.3)
Other Jurisdictions		
American Samoa	51 (1.7)	54 (1.6)
DDESS	157 (0.7)	157 (0.9)
DoDDS	156 (0.5)	155 (0.8)
Guam	110 (2.3)	114 (1.2)
Virgin Islands	116 (1.1)	116 (1.7)

[^53]
Table B.72: Data for Table 4.4 Comparison of Two Sets of State Scale Score Results, Grade 8

State average science scale scores by type of results for grade 8 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	149 (0.7)	149 (0.8)
Alabama	141 (1.9)	143 (1.7)
Arizona ${ }^{\dagger}$	146 (1.6)	145 (1.3)
Arkansas	143 (1.3)	142 (1.2)
California ${ }^{\dagger}$	132 (1.5)	129 (1.8)
Connecticut	154 (1.4)	153 (1.6)
Georgia	144 (1.5)	142 (1.6)
Hawaii	132 (1.2)	130 (1.4)
Idaho ${ }^{+}$	159 (1.1)	158 (1.0)
Illinois ${ }^{\dagger}$	150 (1.9)	148 (1.7)
Indiana ${ }^{\dagger}$	156 (1.7)	154 (1.4)
Kentucky	152 (1.3)	150 (1.2)
Louisiana	136 (1.7)	134 (1.5)
Maine ${ }^{\dagger}$	160 (1.0)	158 (0.9)
Maryland	149 (1.3)	146 (1.4)
Massachusetts	161 (1.6)	158 (1.1)
Michigan ${ }^{\dagger}$	156 (1.7)	155 (1.8)
Minnesota ${ }^{\dagger}$	160 (2.1)	159 (1.2)
Mississippi	134 (1.2)	134 (1.2)
Missouri	156 (1.1)	154 (1.2)
Montana ${ }^{\dagger}$	165 (1.2)	164 (1.4)
Nebraska	157 (1.0)	158 (1.4)
Nevada	143 (1.1)	141 (1.0)
New Mexico	140 (1.6)	139 (1.5)
New York ${ }^{\dagger}$	149 (2.4)	145 (2.1)
North Carolina	147 (1.5)	145 (1.4)
North Dakota	161 (0.9)	159 (1.1)
Ohio	161 (1.5)	159 (1.5)
Oklahoma	149 (1.2)	149 (1.1)
Oregon ${ }^{\text {¢ }}$	154 (1.6)	154 (1.3)
Rhode Island	150 (1.3)	148 (0.9)
South Carolina	142 (1.3)	140 (1.4)
Tennessee	146 (1.5)	145 (1.5)
Texas	144 (1.5)	143 (1.7)
Utah	155 (0.9)	154 (1.0)
Vermont ${ }^{\dagger}$	161 (0.9)	159 (1.0)
Virginia	152 (1.2)	151 (1.0)
West Virginia	150 (1.1)	146 (1.1) *
Wyoming	158 (1.0)	156 (1.0)
Other Jurisdictions		
American Samoa	72 (2.3)	74 (4.2)
DDESS	159 (1.2)	155 (1.6)
DoDDS	159 (0.8)	159 (0.8)
Guam	114 (4.5)	114 (1.8)

Standard errors of the estimated scale scores appear in parentheses.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.

* Significantly different from the result where accommodations were not permitted when examining only one jurisdiction or the nation.

DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.73: Data for Table 4.5 Comparisons of Two Sets of State ProficientLevel Results, Grade 4
Percentage of students at or above the Proficient level in science by state and type of results for grade 4 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	28 (0.9)	27 (0.9)
Alabama	22 (1.4)	22 (1.6)
Arizona	22 (1.5)	22 (1.5)
Arkansas	24 (1.5)	23 (1.4)
California ${ }^{\dagger}$	14 (1.6)	13 (1.8)
Connecticut	35 (1.7)	35 (1.5)
Georgia	23 (1.4)	23 (1.4)
Hawaii	16 (1.1)	16 (1.0)
Idaho ${ }^{+}$	30 (2.0)	29 (1.9)
Illinois ${ }^{\dagger}$	31 (2.2)	31 (2.3)
Indiana ${ }^{\dagger}$	32 (2.0)	32 (1.9)
lowa ${ }^{\dagger}$	37 (2.1)	36 (1.8)
Kentucky	29 (1.5)	28 (1.5)
Louisiana	19 (1.8)	18 (1.5)
Maine ${ }^{\dagger}$	38 (1.7)	37 (1.7)
Maryland	26 (1.4)	24 (1.5)
Massachusetts	43 (1.9)	42 (1.7)
Michigan ${ }^{+}$	33 (2.4)	32 (2.1)
Minnesota \dagger	35 (2.2)	34 (2.0)
Mississippi	14 (1.2)	13 (1.1)
Missouri	35 (1.7)	34 (1.5)
Montana ${ }^{\dagger}$	37 (2.6)	36 (2.5)
Nebraska	26 (2.2)	26 (1.8)
Nevada	19 (1.0)	19 (1.2)
New Mexico	18 (1.5)	17 (1.5)
New York ${ }^{\text {+ }}$	26 (1.3)	24 (1.3)
North Carolina	24 (1.4)	23 (1.5)
North Dakota	38 (1.3)	36 (1.7)
Ohio ${ }^{\dagger}$	31 (1.9)	31 (1.7)
Oklahoma	26 (1.9)	26 (1.4)
Oregon ${ }^{\text {+ }}$	28 (1.8)	27 (1.8)
Rhode Island	27 (1.4)	25 (1.4)
South Carolina	21 (1.3)	20 (1.4)
Tennessee	26 (1.7)	24 (1.7)
Texas	24 (1.8)	23 (1.8)
Utah	32 (1.3)	31 (1.4)
Vermont ${ }^{\dagger}$	39 (3.0)	38 (2.1)
Virginia	33 (2.0)	32 (1.8)
West Virginia	25 (1.4)	24 (1.4)
Wyoming	33 (1.5)	31 (1.7)
Other Jurisdictions		
American Samoa	- (****)	(${ }^{* * * *)}$
DDESS	29 (1.8)	30 (1.4)
DoDDS	30 (1.0)	30 (1.3)
Guam	4 (0.9)	4 (1.0)
Virgin Islands	4 (0.8)	4 (0.7)

Standard errors of the estimated percentages appear in parentheses.
\dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
(****) Standard error estimates cannot be accurately determined.
A Percentage is between 0.0 and 0.5 .
DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
DoDDS: Department of Defense Dependents Schools (Overseas).
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.74: Data for Table 4.6 Comparisons of Two Sets of State Proficient Level Results, Grade 8

Percentage of students at or above the Proficient level in science by state and type of results for grade 8 public schools: 2000

	Accommodations not permitted	Accommodations permitted
Nation	30 (0.9)	30 (0.9)
Alabama	22 (1.6)	23 (1.6)
Arizona ${ }^{\dagger}$	24 (1.5)	23 (1.5)
Arkansas	23 (1.5)	22 (1.3)
California ${ }^{\dagger}$	15 (1.4)	14 (1.5)
Connecticut	35 (1.5)	35 (1.5)
Georgia	23 (1.6)	23 (1.8)
Hawaii	15 (1.0)	14 (1.1)
Idaho ${ }^{\dagger}$	38 (1.7)	37 (1.6)
Illinois ${ }^{\text {+ }}$	30 (2.1)	29 (1.8)
Indiana ${ }^{\dagger}$	35 (1.9)	33 (1.7)
Kentucky	29 (1.5)	28 (1.4)
Louisiana	18 (1.4)	18 (1.2)
Maine ${ }^{\dagger}$	37 (1.8)	35 (1.2)
Maryland	28 (1.4)	27 (1.8)
Massachusetts	42 (1.9)	39 (1.9)
Michigan ${ }^{\dagger}$	37 (2.2)	35 (2.2)
Minnesota ${ }^{\dagger}$	42 (2.3)	41 (1.7)
Mississippi	15 (1.3)	15 (1.1)
Missouri	36 (1.5)	33 (1.7)
Montana ${ }^{\dagger}$	46 (1.8)	44 (2.0)
Nebraska	36 (1.6)	38 (1.6)
Nevada	23 (1.2)	22 (1.0)
New Mexico	20 (1.5)	20 (1.3)
New York ${ }^{\dagger}$	30 (2.3)	28 (2.2)
North Carolina	27 (1.6)	25 (1.7)
North Dakota	40 (1.7)	38 (1.4)
Ohio	41 (2.0)	39 (2.1)
Oklahoma	26 (1.4)	25 (1.2)
Oregon ${ }^{\dagger}$	33 (1.8)	34 (1.6)
Rhode Island	29 (1.1)	27 (1.0)
South Carolina	20 (1.5)	20 (1.3)
Tennessee	25 (1.4)	24 (1.5)
Texas	23 (1.6)	23 (1.8)
Utah	34 (1.4)	34 (1.2)
Vermont ${ }^{\dagger}$	40 (1.4)	39 (1.6)
Virginia	31 (1.4)	29 (1.6)
West Virginia	26 (1.4)	24 (1.2)
Wyoming	36 (1.1)	34 (1.1)
Other Jurisdictions		
American Samoa	2 (0.7)	2 (0.9)
DDESS	35 (1.9)	33 (2.8)
DoDDS	37 (1.2)	38 (1.3)
Guam	6 (1.4)	6 (1.0)

[^54]
Table B.75: Data for Table 5.1 Availability of Computers, Grades 4 and 8

Percentage of fourth- and eighth-graders and average scale score by teachers' reports on availability of computers for use by their science students:1996 and 2000

	1996	2000
Grade 4		
None available	$15(1.9)$	$11(1.2)$
	$143(3.3)$	$143(3.0)$
One within the classroom	$26(3.6)$	$27(2.1)$
	$149(2.2)$	$147(1.6)$
Two to three within the classroom	$17(2.2)$	$23(1.9)$
	$150(2.6)$	$148(1.6)$
Four or more within the classroom	$10(2.2)$	$15(1.8)$
	$155(4.7)!$	$151(2.3)$
Available in computer laboratory but	$15(2.7)$	$8(1.0)$
difficult to access or schedule	$161(2.6)$	$158(2.5)$
Available in a computer laboratory and	$17(2.8)$	$16(1.6)$
easy to access or schedule	$148(2.6)$	$156(2.0)$
Grade 8		
None available	$16(3.1)$	$10(1.4)$
One within the classroom	$149(5.0)!$	$142(3.4)$
Two to three within the classroom	$22(4.2)$	$149(2.5)$
Four or more within the classroom	$151(2.9)$	$11(1.3)$
Available in computer laboratory but	$9(4.0)$	$150(2.5)$
difficult to access or schedule	$157(5.4)!$	$9(1.3)$
Available in a computer laboratory and	$159(2.6)!$	$23(2.3)$
easy to access or schedule	$32(4.5)$	$155(1.7)$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.76: Data for Table 5.2 Teachers' Reports on Computer Use, Grades 4 and 8

Percentage of fourth- and eighth-graders and average scale score by teachers' reports on how they use computers for science instruction:1996 and 2000

	19		2000	
	Yes	No response	Yes	No response
Grade 4				
Drill and practice	5 (1.5)	95 (1.5)	3 (0.7)	97 (0.7)
	149 (5.3) !	151 (1.0)	149 (3.8) !	150 (0.8)
Playing science/learning games	30 (2.6)	70 (2.6)	28 (1.6)	72 (1.6)
	154 (1.7)	149 (1.1)	153 (1.4)	149 (0.9)
Simulations and modeling	18 (2.8) *	82 (2.8)	11 (1.1)	89 (1.1)
	155 (1.8)	150 (1.1)	152 (2.8)	150 (0.8)
Data analysis and other applications	6 (1.2)	94 (1.2)	9 (1.4)	91 (1.4)
	149 (4.9) !	151 (1.0)	153 (3.2)	150 (0.8)
Word processing	10 (1.7)	90 (1.7)	13 (1.1)	87 (1.1)
	159 (2.9)	150 (1.0)	153 (2.2)	150 (0.8)
Do not use computers for science instruction	53 (3.0) *	47 (3.0)	43 (2.0)	57 (2.0)
	148 (1.3)	154 (1.1)	148 (1.2)	153 (1.0)
Grade 8				
Drill and practice	8 (3.9)	92 (3.9)	8 (1.1)	92 (1.1)
	156 (5.8) !	151 (1.2)	147 (3.1)	152 (0.8)
Playing science/learning games	21 (3.5)	79 (3.5)	15 (1.6)	85 (1.6)
	152 (3.2)	152 (1.3)	151 (1.9)	152 (0.8)
Simulations and modeling	25 (5.0)	75 (5.0)	23 (1.9)	77 (1.9)
	155 (2.2) !	151 (1.5)	155 (1.6)	151 (0.8)
Data analysis and other applications	19 (3.1) *	81 (3.1)	33 (2.2)	67 (2.2)
	152 (1.6)	152 (1.3)	156 (1.5)	150 (1.1)
Word processing	22 (3.1) *	78 (3.1)	35 (1.8)	65 (1.8)
	154 (1.9)	151 (1.2)	154 (1.2)	151 (1.0)
Do not use computers for science instruction	46 (3.9) *	54 (3.9)	26 (1.9)	74 (1.9)
	150 (1.9)	153 (1.3)	150 (1.8)	152 (0.8)

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000. Although not marked in the table, the percentage of students not responding in 1996 is significantly different from 2000 in all instances where the corresponding percentage responding yes is significantly different.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.77: Data for Table 5.3 Students Reports on Computer Use, Grade 12

Percentage of twelfth-graders and average scale score by students reports on how they use computers in science classes: 2000

	2000
Collect data using lab equipment that interfaces with computers	
I am not taking science	34 (0.8)
	141 (1.2)
Once a month or more	13 (0.7)
	158 (1.5)
Sometimes but less than once a month	11 (0.4)
	154 (1.4)
Never	42 (1.1)
	148 (1.2)
Download data and related information from the Internet	
I am not taking science	34 (0.8)
	142 (1.2)
Once a month or more	$9(0.4)$
	155 (1.8)
Sometimes but less than once a month	13 (0.5)
	158 (1.5)
Never	45 (0.9)
	148 (1.1)
Analyze data using the computer	
I am not taking science	34 (0.8)
	142 (1.2)
Once a month or more	11 (0.9)
	163 (1.7)
Sometimes but less than once a month	11 (0.5)
	157 (1.5)
Never	44 (1.1)
	147 (1.2)
Use the Internet to exchange information with other students or scientists about science experiments or investigations	
I am not taking science	34 (0.8)
	$142 \text { (1.2) }$
Once a month or more	4 (0.3)
	$146 \text { (2.1) }$
Sometimes but less than once a month	7 (0.4)
	$151 \text { (2.4) }$
Never	54 (0.8)
	151 (1.1)

[^55]Standard errors of the estimated percentages and scale scores appear in parentheses.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.78: Data for Table 5.4 Time Spent On Certain Science Domains, Grade 4

Percentage of fourth-graders and average scale score by teachers' reports on how much time is spent on certain science domains:1996 and 2000

1996
2000

Life science		
A lot	$\begin{array}{r} 28(2.7) \\ 150(1.5) \end{array}$	$\begin{array}{r} 31(1.7) \\ 151(1.5) \end{array}$
Some	$\begin{array}{r} 65(2.8) \\ 151(1.2) \end{array}$	$\begin{array}{r} 60(1.9) \\ 152(1.0) \end{array}$
Little	$\begin{gathered} 6(1.4) \\ 150(3.8)! \end{gathered}$	$\begin{array}{r} 7(0.8) \\ 138(2.9) \\ \hline \end{array}$
None	$\begin{array}{r} 1(0.4) \\ * * * *(* * *) \\ \hline \end{array}$	$\begin{gathered} 2(0.6) \\ 147(4.2)! \\ \hline \end{gathered}$
Earth science A lot	$\begin{gathered} 19(2.1) \text { * } \\ 151(2.3) \end{gathered}$	$\begin{array}{r} 31(2.1) \\ 152(1.5) \\ \hline \end{array}$
Some	$\begin{gathered} 76(2.4) \text { * } \\ 151(1.0) \end{gathered}$	$\begin{array}{r} 62(1.9) \\ 151(0.9) \end{array}$
Little	$\begin{gathered} 5(1.0) \\ 151(4.1)! \end{gathered}$	$\begin{array}{r} 6(0.8) \\ 136(3.2) \\ \hline \end{array}$
None	$\begin{array}{r} \Delta * * *(0.3) \\ \hline * * * *) \\ \hline \end{array}$	$\begin{gathered} 1(0.4) \\ 143(7.2)! \end{gathered}$
Physical scien A lot	$\begin{array}{r} 16(2.3) \\ 154(2.3) \end{array}$	$\begin{array}{r} 22(1.5) \\ 151(1.5) \end{array}$
Some	$\begin{gathered} 73(2.5) \text { * } \\ 151(1.1) \end{gathered}$	$\begin{array}{r} 65(1.9) \\ 151(0.9) \end{array}$
Little	$\begin{array}{r} 9(1.5) \\ 145(3.5) \end{array}$	$\begin{array}{r} 11(1.1) \\ 145(2.7) \end{array}$
None	$\begin{gathered} 2(0.5) \\ 137(7.4)! \end{gathered}$	$\begin{array}{r} 2(0.4) \\ 142(3.6) \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.

* Significantly different from 2000.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
**** (****) Sample size is insufficient to permit a reliable estimate.
A Percentage is between 0.0 and 0.5 .
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.79: Data for Table 5.5 Time Spent On Certain Science Domains, Grade 8

Percentage of eighth-graders and average scale score by teachers' reports on how much time is spent on certain science domains:1996 and 2000

	1996	2000
Life science		
A lot	$19(4.1)$	$21(1.8)$
	$149(2.5)!$	$147(2.2)$
Some	$40(5.3)$	$36(2.2)$
	$150(2.4)$	$150(1.6)$
Little	$23(3.6)$	$22(1.7)$
	$156(2.7)$	$153(2.4)$
None	$18(4.5)$	$20(1.8)$
	$157(4.0)!$	$156(1.6)$
Earth science		
A lot	$41(5.0)$	$45(2.5)$
	$151(2.5)$	$152(1.2)$
Some	$39(4.5)$	$33(2.4)$
	$151(2.1)$	$148(1.5)$
Little	$11(2.7)$	$13(1.6)$
	$155(4.7)!$	$154(2.5)$
None	$9(1.9)$	$9(1.3)$
	$157(3.5)!$	$161(2.1)$
Physical science		
A lot	$49(4.3)$	$47(2.7)$
	$153(1.7)$	$153(1.3)$
Some	$35(4.4)$	$36(2.3)$
Little	$153(2.7)$	$150(1.9)$
None	$12(3.2)$	$11(1.6)$
	$154(3.3)!$	$153(2.3)$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
! The nature of the sample does not allow accurate determination of the variability of the statistic.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.80: Data for Table 5.6 Students' Reports on Science Course Taking, Grade 12

Percentage of twelfth-graders and average scale score by students' reports on whether or not taking a science course this year:1996 and 2000

19962000

Are you taking a science course this year?

Yes	$54(1.2)$	$53(1.0)$
	$160(1.1)$	$157(1.0)$
No	$46(1.2)$	$47(1.0)$
	$140(0.9)$	$137(1.1)$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

Table B.81: Data for Table 5.7 Students' Reports on Science Courses Taken, Grade 12
Percentage of twelfth-graders and average scale score by students' reports on science courses taken since eighth-grade: 2000

	Not taken	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12
Earth (and space) science	$\begin{array}{r} 26(0.9) \\ 148(1.6) \end{array}$	$\begin{gathered} 49(1.8) \\ 150(0.9) \end{gathered}$	$\begin{array}{r} 19(1.8) \\ 146(1.9) \end{array}$	$\begin{array}{r} 5(0.4) \\ 135(2.0) \end{array}$	$\begin{array}{r} 4(0.5) \\ 140(2.3) \end{array}$	$\begin{array}{r} 3(0.3) \\ 144(2.6) \end{array}$
First-year biology	$\begin{array}{r} 8(0.6) \\ 126(3.5) \end{array}$	$\begin{array}{r} 2(0.3) \\ 138(4.1) \end{array}$	$\begin{array}{r} 31(1.7) \\ 156(1.5) \end{array}$	$\begin{array}{r} 54(2.0) \\ 149(0.9) \end{array}$	$\begin{array}{r} 5(0.3) \\ 134(2.2) \end{array}$	$\begin{array}{r} 1(0.2) \\ 125(5.3) \end{array}$
First-year chemistry	$\begin{array}{r} 30(1.3) \\ 128(1.2) \end{array}$	$\begin{array}{r} 1(0.1) \\ 128(5.6) \end{array}$	$\begin{array}{r} 2(0.2) \\ 144(4.6) \end{array}$	$\begin{array}{r} 21(1.4) \\ 166 \text { (1.5) } \end{array}$	$\begin{array}{r} 40(1.3) \\ 155(1.0) \end{array}$	$\begin{array}{r} 7(0.4) \\ 145(1.8) \end{array}$
First-year physics	$\begin{array}{r} 64(1.5) \\ 139(1.0) \end{array}$	$\begin{array}{r} 1(0.1) \\ 128(5.7) \end{array}$	$\begin{array}{r} 2(0.4) \\ 153(5.6) \end{array}$	$\begin{array}{r} 2(0.3) \\ 159(4.5) \end{array}$	$\begin{array}{r} 12(1.0) \\ 167(1.8) \end{array}$	$\begin{array}{r} 19(1.0) \\ 167(1.0) \end{array}$
Life science (other than biology)	$\begin{array}{r} 46(1.3) \\ 151(1.1) \end{array}$	$\begin{array}{r} 22(0.8) \\ 152(1.2) \end{array}$	$\begin{array}{r} 18(0.8) \\ 139(1.7) \end{array}$	$\begin{array}{r} 10(0.4) \\ 131(1.8) \end{array}$	$\begin{array}{r} 6(0.4) \\ 141(3.2) \end{array}$	$\begin{array}{r} 5(0.3) \\ 157(2.4) \end{array}$
Physical science (other than chemistry and physics)	$\begin{array}{r} 36(2.0) \\ 151(1.5) \end{array}$	$\begin{array}{r} 12(0.6) \\ 159(1.5) \end{array}$	$\begin{array}{r} 36(2.4) \\ 147(1.2) \end{array}$	$\begin{array}{r} 11(0.8) \\ 135(1.5) \end{array}$	$\begin{array}{r} 6(0.3) \\ 132(1.8) \end{array}$	$\begin{array}{r} 3(0.3) \\ 141(2.5) \end{array}$
General science	$\begin{array}{r} 47(1.3) \\ 148(1.1) \end{array}$	$\begin{array}{r} 37(1.3) \\ 152(1.2) \end{array}$	$\begin{array}{r} 14(1.3) \\ 145(2.0) \end{array}$	$\begin{array}{r} 4(0.3) \\ 129(1.9) \end{array}$	$\begin{array}{r} 2(0.2) \\ 134(3.6) \end{array}$	$\begin{array}{r} 1(0.2) \\ 144(3.3) \end{array}$
Integrated science	$\begin{array}{r} 85(1.3) \\ 149(1.0) \end{array}$	$\begin{array}{r} 5(0.3) \\ 147(2.7) \end{array}$	$\begin{array}{r} 7(1.1) \\ 149(2.5) \end{array}$	$\begin{array}{r} 3(0.3) \\ 132(2.9) \end{array}$	$\begin{array}{r} 1(0.2) \\ 135(4.6) \\ \hline \end{array}$	$\begin{array}{r} 1(0.2) \\ 142(5.0) \\ \hline \end{array}$
Science and technology	$\begin{array}{r} 86(0.7) \\ 148(0.9) \end{array}$	$\begin{array}{r} 4(0.4) \\ 154(2.5) \end{array}$	$\begin{array}{r} 4(0.4) \\ 154(3.1) \end{array}$	$\begin{array}{r} 3(0.2) \\ 147(3.1) \end{array}$	$\begin{array}{r} 4(0.3) \\ 148(2.9) \end{array}$	$\begin{array}{r} 4(0.3) \\ 149(3.0) \end{array}$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
NOTE: Row percentages may not add to 100 because some students indicated taking a course in more than one grade.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

Table B.82: Data for Table 5.8 Students' Reports on Advanced Placement Courses, Grade 12

Percentage of twelfth-graders and average scale score by students' reports on whether they are currently enrolled in or have taken an Advanced Placement course: 2000

Yes	No response	
AP Biology	$10(0.6)$	$90(0.6)$
AP Environmental Science	$166(2.1)$	$145(0.9)$
AP Chemistry	$2(0.3)$	$98(0.3)$
	$145(4.0)$	$147(1.0)$
AP Physics B or C	$6(0.5)$	$94(0.5)$
	$169(1.9)$	$145(1.0)$
Have never taken an Advanced Placement	$5(0.4)$	$95(0.4)$
science course	$173(2.7)$	$145(0.9)$

The percentage of students is listed first with the corresponding average scale score presented below.
Standard errors of the estimated percentages and scale scores appear in parentheses.
NOTE: Percentages may not add to 100 due to rounding.
SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

To help better place results from the NAEP 2000 state assessment program into context, this appendix presents selected state-level data from sources other than NAEP. These data are taken from the Digest of Education Statistics 2000.

Appendix Contents

Student Enrollment

Poverty Status
Education Expenditures

Table C.1a: School System Characteristics from Non-NAEP Sources

	Estimated total and school-age resident population: 1999 (estimates as of July 1) ${ }^{1}$		Enrollment in public elementary and secondary schools: Fall 1998²		
	Total, all ages (in thousands)	5- to 17-year olds (in thousands)	Total	Kindergarten through grade 8	Grades 9 to 12
Nation	272,691	51,257	46,534,687	33,343,787	13,190,900
Alabama Alaska Arizona Arkansas California	$\begin{array}{r} 4,370 \\ 620 \\ 4,778 \\ 2,551 \\ 33,145 \end{array}$	$\begin{array}{r} 775 \\ 147 \\ 949 \\ 483 \\ 6,424 \end{array}$	$\begin{array}{r} 747,970 \\ 135,373 \\ 848,262 \\ 452,256 \\ 5,925,964 \end{array}$	$\begin{array}{r} 542,340 \\ 96,979 \\ 622,747 \\ 319,232 \\ 4,269,853 \end{array}$	$\begin{array}{r} 205,630 \\ 38,394 \\ 225,515 \\ 133,024 \\ 1,656,111 \end{array}$
Colorado Connecticut Delaware District of Columbia Florida	$\begin{array}{r} 4,056 \\ 3,282 \\ 754 \\ 519 \\ 15,111 \end{array}$	$\begin{array}{r} 777 \\ 610 \\ 132 \\ 68 \\ 2,618 \end{array}$	$\begin{array}{r} 699,135 \\ 544,698 \\ 113,262 \\ 71,889 \\ 2,337,633 \end{array}$	$\begin{array}{r} 501,449 \\ 399,381 \\ 79,955 \\ 56,712 \\ 1,704,024 \end{array}$	$\begin{array}{r} 197,686 \\ 14,317 \\ 33,307 \\ 15,177 \\ 633,609 \end{array}$
Georgia Hawaii Idaho Illinois Indiana	$\begin{array}{r} 7,788 \\ 1,185 \\ 1,252 \\ 12,128 \\ 5,943 \end{array}$	$\begin{array}{r} 1,477 \\ 209 \\ 258 \\ 2,304 \\ 1,115 \end{array}$	$\begin{array}{r} 1,401,291 \\ 188,069 \\ 244,722 \\ 2,011,530 \\ 988,094 \end{array}$	$\begin{array}{r} 1,029,386 \\ 134,685 \\ 168,604 \\ 1,451,579 \\ 696,832 \end{array}$	$\begin{array}{r} 371,905 \\ 53,384 \\ 76,118 \\ 559,951 \\ 291,262 \end{array}$
	$\begin{aligned} & 2,869 \\ & 2,654 \\ & 3,961 \\ & 4,372 \\ & 1,253 \\ & 5,172 \end{aligned}$	$\begin{aligned} & 537 \\ & 515 \\ & 706 \\ & 876 \\ & 223 \\ & 963 \end{aligned}$	$\begin{aligned} & 498,214 \\ & 472,353 \\ & 655,687 \\ & 768,734 \\ & 210,503 \\ & 841,671 \end{aligned}$	$\begin{aligned} & 336,696 \\ & 327,474 \\ & 464,567 \\ & 558,473 \\ & 150,860 \\ & 606,560 \end{aligned}$	$\begin{array}{r} 161,518 \\ 144,879 \\ 191,120 \\ 210,261 \\ 59,643 \\ 235,111 \end{array}$
Massachusetts Michigan Minnesota Mississippi Missouri	$\begin{aligned} & 6,175 \\ & 9,864 \\ & 4,776 \\ & 2,769 \\ & 5,468 \end{aligned}$	$\begin{array}{r} 1,076 \\ 1,906 \\ 950 \\ 550 \\ 1,036 \end{array}$	$\begin{array}{r} 962,317 \\ 1,720,266 \\ 855,119 \\ 502,379 \\ 912,445 \end{array}$	$\begin{array}{r} 704,624 \\ 1,245,299 \\ 585,553 \\ 365,497 \\ 650,545 \end{array}$	$\begin{aligned} & 257,693 \\ & 474,967 \\ & 269,566 \\ & 136,882 \\ & 261,900 \end{aligned}$
Montana Nebraska Nevada New Hampshire New Jersey	$\begin{array}{r} 883 \\ 1,666 \\ 1,809 \\ 1,201 \\ 8,143 \end{array}$	$\begin{array}{r} 171 \\ 329 \\ 348 \\ 231 \\ 1,460 \end{array}$	$\begin{array}{r} 159,988 \\ 291,140 \\ 311,061 \\ 204,713 \\ 1,268,996 \end{array}$	$\begin{aligned} & 109,535 \\ & 199,754 \\ & 229,275 \\ & 146,722 \\ & 936,428 \end{aligned}$	$\begin{array}{r} 50,453 \\ 91,386 \\ 81,786 \\ 57,991 \\ 332,568 \end{array}$
New Mexico New York North Carolina North Dakota Ohio	$\begin{array}{r} 1,740 \\ 18,197 \\ 7,651 \\ 634 \\ 11,257 \end{array}$	$\begin{array}{r} 364 \\ 3,227 \\ 1,407 \\ 121 \\ 2,104 \end{array}$	$\begin{array}{r} 328,753 \\ 2,877,143 \\ 1,254,821 \\ 114,597 \\ 1,842,559 \end{array}$	$\begin{array}{r} 232,485 \\ 2,028,167 \\ 920,838 \\ 76,860 \\ 1,301,438 \end{array}$	$\begin{array}{r} 96,268 \\ 848,976 \\ 333,983 \\ 37,737 \\ 541,121 \end{array}$
Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota	$\begin{array}{r} 3,358 \\ 3,316 \\ 11,994 \\ 991 \\ 3,886 \\ 733 \end{array}$	$\begin{array}{r} 649 \\ 608 \\ 2,140 \\ 179 \\ 702 \\ 148 \end{array}$	$\begin{array}{r} 628,492 \\ 524,809 \\ 1,866,414 \\ 154,785 \\ 664,592 \\ 132,495 \end{array}$	$\begin{array}{r} 447,906 \\ 379,770 \\ 1,267,226 \\ 112,483 \\ 477,850 \\ 90,887 \end{array}$	$\begin{array}{r} 180,586 \\ 163,039 \\ 549,188 \\ 42,302 \\ 186,742 \\ 41,608 \end{array}$
Tennessee Texas Utah Vermont Virginia	$\begin{array}{r} 5,484 \\ 2,044 \\ 2,130 \\ 594 \\ 6,873 \end{array}$	$\begin{array}{r} 974 \\ 4,080 \\ 497 \\ 107 \\ 1,214 \end{array}$	$\begin{array}{r} 905,442 \\ 3,945,367 \\ 481,176 \\ 105,120 \\ 1,124,022 \end{array}$	$\begin{array}{r} 664,570 \\ 2,868,209 \\ 328,522 \\ 73,257 \\ 815,266 \end{array}$	$\begin{array}{r} 240,872 \\ 1,007,158 \\ 152,654 \\ 31,863 \\ 308,756 \end{array}$
Washington West Virginia Wisconsin Wyoming	$\begin{array}{r} 5,756 \\ 1,807 \\ 5,250 \\ 480 \end{array}$	$\begin{array}{r} 1,096 \\ 303 \\ 1,016 \\ 96 \end{array}$	$\begin{array}{r} 998,053 \\ 297,530 \\ 879,542 \\ 95,241 \end{array}$	$\begin{array}{r} 695,950 \\ 205,840 \\ 600,703 \\ 63,940 \end{array}$	$\begin{array}{r} 302,103 \\ 91,690 \\ 278,839 \\ 31,301 \end{array}$

[^56]Table C.1b: School System Characteristics from Non-NAEP Sources

	Poverty status of 5- to 17-year olds: 1998 ${ }^{1}$		Number of children (birth to age 21) served under state-operated Individuals with Disabilities Education Act and Chapter 1of the Education Consolidation and Improvement Act Programs ${ }^{2}$	
	Number in Poverty (in thousands)	Percent in Poverty	1998-99 School Year	Percent Change: 1990-91 to 1998-99
Nation	9,167	17.8	6,055,343	27.2
Alabama Alaska Arizona Arkansas California	$\begin{array}{r} 156 \\ 13 \\ 222 \\ 57 \\ 1,459 \end{array}$	$\begin{array}{r} 21.8 \\ 9.0 \\ 23.6 \\ 13.1 \\ 22.3 \end{array}$	$\begin{array}{r} 99,813 \\ 17,712 \\ 88,598 \\ 59,110 \\ 623,651 \end{array}$	$\begin{array}{r} 5.1 \\ 20.1 \\ 54.8 \\ 23.6 \\ 32.9 \end{array}$
Colorado Connecticut Delaware District of Columbia Florida	$\begin{array}{r} 93 \\ 82 \\ 24 \\ 33 \\ 474 \end{array}$	$\begin{aligned} & 12.5 \\ & 13.4 \\ & 15.7 \\ & 46.0 \\ & 20.5 \end{aligned}$	$\begin{array}{r} 75,037 \\ 76,740 \\ 16,233 \\ 8,162 \\ 345,171 \end{array}$	$\begin{aligned} & 31.4 \\ & 18.9 \\ & 13.6 \\ & 29.8 \\ & 46.3 \end{aligned}$
Georgia Hawaii Idaho Illinois Indiana	$\begin{array}{r} 377 \\ 32 \\ 50 \\ 308 \\ 140 \end{array}$	$\begin{array}{r} 24.7 \\ 14.5 \\ 17.4 \\ 12.16 \\ 12.6 \end{array}$	$\begin{array}{r} 155,754 \\ 20,551 \\ 27,553 \\ 281,915 \\ 146,559 \end{array}$	$\begin{aligned} & 52.7 \\ & 56.1 \\ & 25.1 \\ & 17.9 \\ & 27.8 \end{aligned}$
	$\begin{array}{r} 73 \\ 59 \\ 118 \\ 244 \\ 27 \end{array}$	$\begin{array}{r} 14.2 \\ 13.26 \\ 16.7 \\ 29.8 \\ 12.0 \end{array}$	$\begin{aligned} & 70,958 \\ & 58,425 \\ & 87,973 \\ & 95,245 \\ & 34,294 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 29.2 \\ & 10.8 \\ & 29.3 \\ & 22.5 \end{aligned}$
Maryland Massachusetts Michigan Minnesota Mississippi	$\begin{array}{r} 66 \\ 163 \\ 311 \\ 130 \\ 108 \end{array}$	$\begin{aligned} & 8.10 \\ & 15.0 \\ & 14.8 \\ & 12.6 \\ & 19.3 \end{aligned}$	$\begin{aligned} & 111,688 \\ & 168,964 \\ & 208,403 \\ & 106,194 \\ & 61,778 \end{aligned}$	$\begin{array}{r} 22.4 \\ 9.3 \\ 24.8 \\ 31.3 \\ 1.4 \end{array}$
Missouri Montana Nebraska Nevada New Hampshire	$\begin{array}{r} 136 \\ 42 \\ 54 \\ 49 \\ 34 \end{array}$	$\begin{aligned} & 14.4 \\ & 21.2 \\ & 14.8 \\ & 12.8 \\ & 13.3 \end{aligned}$	$\begin{array}{r} 131,565 \\ 18,797 \\ 43,400 \\ 33,319 \\ 27,502 \end{array}$	$\begin{array}{r} 29.0 \\ 9.7 \\ 32.5 \\ 80.7 \\ 39.9 \end{array}$
New Jersey New Mexico New York North Carolina North Dakota	$\begin{array}{r} 194 \\ 101 \\ 848 \\ 277 \\ 28 \end{array}$	$\begin{aligned} & 13.2 \\ & 23.5 \\ & 28.9 \\ & 21.3 \\ & 17.2 \end{aligned}$	$\begin{array}{r} 210,114 \\ 5,113 \\ 432,320 \\ 165,333 \\ 13,181 \end{array}$	$\begin{array}{r} 15.9 \\ 44.6 \\ 40.6 \\ 34.3 \\ 5.3 \end{array}$
Ohio Oklahoma Oregon Pennsylvania Rhode Island	$\begin{array}{r} 339 \\ 120 \\ 121 \\ 382 \\ 36 \end{array}$	$\begin{aligned} & 16.0 \\ & 19.9 \\ & 19.4 \\ & 18.0 \\ & 20.5 \end{aligned}$	$\begin{array}{r} 230,155 \\ 80,289 \\ 69,919 \\ 227,771 \\ 27,911 \end{array}$	$\begin{array}{r} 12.0 \\ 22.0 \\ 26.8 \\ 3.8 \\ 32.4 \end{array}$
South Carolina South Dakota Tennessee Texas Utah	$\begin{array}{r} 129 \\ 13 \\ 156 \\ 809 \\ 55 \end{array}$	$\begin{array}{r} 17.6 \\ 9.2 \\ 14.5 \\ 20.1 \\ 11.8 \end{array}$	$\begin{array}{r} 99,033 \\ 15,702 \\ 128,273 \\ 486,749 \\ 55,252 \end{array}$	$\begin{array}{r} 27.3 \\ 4.8 \\ 22.3 \\ 38.8 \\ 15.7 \end{array}$
Vermont Virginia Washington West Virginia Wisconsin Wyoming	$\begin{array}{r} 13 \\ 92 \\ 118 \\ 65 \\ 109 \\ 13 \end{array}$	$\begin{array}{r} 12.2 \\ 7.9 \\ 10.8 \\ 25.7 \\ 11.5 \\ 13.0 \end{array}$	$\begin{array}{r} 12,709 \\ 153,716 \\ 114,144 \\ 49,934 \\ 116,328 \\ 13,333 \end{array}$	$\begin{array}{r} 3.6 \\ 34.9 \\ 33.7 \\ 15.8 \\ 33.8 \\ 19.8 \end{array}$

[^57]Table C.1c: School System Characteristics from Non-NAEP Sources

	Elementary and secondary education expenditures per pupil: 1997-98'	Estimated annual salaries of teachers in public elementary and secondary schools by state: 1998-99²	Pupil-teacher ratios in public elementary and secondary schools: Fall 1998^{3}
Nation	\$6,189	\$40,582	16.5 \#
Alabama	4,849	35,820	15.7 \#
Alaska	8,271	46,845	16.7
Arizona	4,595	35,025	20
Arkansas	4,708	32,350	16.2
California	5,644	45,400	21 \#
Colorado	5,656	38,025	17.7
Connecticut	8,904	51,584	14
Delaware	7,420	43,164	16
District of Columbia	8,393	47,150	13.9
Florida	5,552	35,196	18.4
Georgia	5,647	39,675	15.8
Hawaii	5,858	40,377	17.7
Idaho	4,721	34,063	18.2
Illinois	6,242	45,569	16.5
Indiana	6,318	41,163	17
lowa	5,998	34,927	15.2
Kansas	5,727	37,405	14.8
Kentucky	5,213	35,526	16.1
Louisiana	5,188	32,510	16.6
Maine	6,742	34,906	13.2
Maryland	7,034	42,526	16.9
Massachusetts	7,778	45,075	13.8
Michigan	7,050	48,207	18.5 \#
Minnesota	6,388	39,458	16.9
Mississippi	4,288	29,530	16.1
Missouri	5,565	34,746	14.7
Montana	5,724	31,356	15.7
Nebraska	5,958	32,880	14.3
Nevada	5,295	38,883	18.9
New Hampshire	6,156	37,405	15.4
New Jersey	9,643	51,193	13.8
New Mexico	5,005	32,398	16.5
New York	8,852	49,437	14.6
North Carolina	5,257	36,098	15.8
North Dakota	5,056	28,976	14.4
Ohio	6,198	40,566	16.2
Oklahoma	5,033	31,149	15.4
Oregon	6,419	42,833	20
Pennsylvania	7,209	48,457	16.4
Rhode Island	7,928	45,650	13.9
South Carolina	5,320	34,506	15.2 \#
South Dakota	4,669	28,552	14.3
Tennessee	4,937	36,500	15.3 \#
Texas	5,444	35,041	15.2
Utah	3,969	32,950	22.4
Vermont	7,075	36,800	12.8
Virginia	6,067	37,475	14.2 ₹
Washington	6,040	38,692	20.1
West Virginia	6,323	34,244	14.2
Wisconsin	7,123	40,657	14.4
Wyoming	6,218	33,500	14.2

NOTE: Constant 1997-98 dollars based on the Consumer Price Index, prepared by the Bureau of Labor Statistics, U.S. Department of Labor, adjusted to a school year basis. These data do not reflect differences in inflation rates from state to state. Beginning in 1980-81, expenditures for state administration are excluded. Beginning in 1988-89, survey was expanded and coverage of state expenditures for public school districts was improved. Some data revised from previously published figures.
\ddagger Includes imputations for underreporting
${ }^{1}$ U.S. Department of Education, National Center for Education Statistics, Revenues and expenditures for public elementary and secondary schools, statistics of state school systems, and common core of data surveys.
${ }^{2}$ National Education Association, Estimates of School Statistics; and unpublished data (© 2000 by the National Education Association. All rights reserved).
${ }^{3}$ U.S. Department of Education, National Center for Education Statistics, Common Core of Data surveys.

Appendix D Members of the NAEP Science Standing Committee

Michael Burton
Discovery Junior High School
Fargo, ND
Lucy Caballero
Hereford Junior High School
Hereford, TX

Audrey Champagne

State University of New York
Albany, NY

Russ Conner

Cranbrook Kingswood School
Bloomfield Hills, MI
Patricia Dung
LA Educational Partnership
Los Angeles, CA

Ed Hendry

New Hampshire Department of Education
Concord, NH
Michael Jojola
Isleta Elementary School
Isleta, NM

Brett Moulding

Utah State Office of Education
Salt Lake City, UT

Kelly Poling

Logan-Hocking Local School District
Union Furnace, OH

Senta Raizen

National Center for Improving Science Education
Washington, DC
Realista Rodriguez
South Lakes High School
Reston,VA

Elise Russo

New York State Education Dept.
Albany, NY
Gerald Weaver
Philadelphia Federation of Teachers
Philadelphia, PA

Gerald Wheeler

National Science Teachers Association
Arlington, VA

cknowledgments

This report is the culmination of the efforts of many individuals who contributed their considerable knowledge, experience, and creativity to the NAEP 2000 science assessment. The assessment was a collaborative effort among staff from the National Center for Education Statistics (NCES), the National Assessment Governing Board (NAGB), Educational Testing Service (ETS), Westat, and NCS Pearson. Most importantly, NAEP is grateful to the students and school staff whose participation made the assessment possible.

The NAEP 2000 science assessment was funded through NCES, in the Institute of Education Sciences of the U.S. Department of Education. The Deputy Commissioner of Education Statistics, Gary W. Phillips, and the NCES staff-Peggy Carr, Arnold Goldstein, Steven Gorman, Carol Johnson, Andrew Kolstad, Taslima Rahman, and Marilyn Seastrom-worked closely and collegially with the authors to produce this report.

The NAEP project at ETS is directed by Stephen Lazer and John Mazzeo, with assistance from John Barone. Sampling and data collection activities were conducted by Westat under the direction of Rene Slobasky, Nancy Caldwell, Keith Rust, and Dianne Walsh. Printing, distribution, scoring, and processing activities were conducted by NCS Pearson under the direction of Brad Thayer, William Buckles, Mathilde Kennel, Linda Reynolds, and Connie Smith.

Test development activities were conducted by ETS under the direction of Christine O'Sullivan with the assistance of Will Pfeiffenberger, Ann Marie Zolandz, Irene Kijak, Hessie Taft, Tom Corley, Don Lipinski, John Economou, and Beth Nichols.

The complex statistical and psychometric activities necessary to report results for the NAEP 2000 science assessment were directed by Jiahe Qian and Jinming Zhang, and were advised by Catherine Hombo and John Mazzeo.

The extensive data processing and computer programming activities underlying the statistical and psychometric analyses conducted at ETS are under the direction of David Freund, Edward Kulick, Bruce Kaplan, and Steven Isham. Data analyses presented in this report were managed by Steve Isham with assistance from Lois Worthington, Satwinder Thind, Norma Norris, Youn-hee Lim, and Alfred Rogers. The complex database work for this assessment was managed by Katherine Pashley with assistance from Gerry Kokolis.

The design and production of this report was overseen by Loretta Casalaina. Joseph Kolodey and Rick Hasney contributed invaluable design and production expertise to the effort. Wendy Grigg coordinated the documentation and data checking procedures with assistance from Janice Goodis, Andrea Bergen, and Alice Kass. Shari Santapau coordinated the editorial and proofreading procedures with assistance from Valerie Mukuna and Trish Hamill. The web version of this report was coordinated by Rick Hasney and Loretta Casalaina.

Many thanks are due to the numerous reviewers, both internal and external to NCES and ETS. The comments and critical feedback of the following reviewers are reflected in the final version of this report: James Carlson, Patrick Gonzales, Peirce Hammond, Edward Hendry, and Larry Suter.

Official Business Only
Penalty for Private Use, \$300

[^0]: SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^1]: 1 These 14 blocks were distributed across the student booklets in a Balanced Incomplete Block (BIB) design that is described later in this section.

[^2]: ${ }^{1}$ Multiple-choice questions.
 ${ }^{2}$ Short constructed-response questions.
 ${ }^{3}$ Extended constructed-response questions.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^3]: 4 The student samples from American Samoa, Department of Defense Domestic Dependent Elementary and Secondary Schools, Department of Defense Dependents Schools (Overseas), Guam, and the Virgin Islands are not included in the national sample.
 5 Additional details regarding the design and structure of the national and state samples will be included in the forthcoming NAEP 2000 Technical Report. In addition, the reader may consult the NAEP 1998 Technical Report for a discussion of sampling procedures that are mostly common to all NAEP assessments.

[^4]: * The 1996 accommodations-permitted sample included additional non-SD and/or LEP students.

 SD = Students with Disabilities.
 LEP $=$ Limited-English-Proficient students.
 NA = Not applicable. No accommodations were permitted in this sample.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^5]: ${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^6]: 7 In the state assessments, 25 percent of the administration sessions were observed by quality control monitors.

[^7]: 8 As described in the following section, a second sample in the 1996 national and the 2000 national and state assessments was assessed that included students who required and were provided with accommodations.

[^8]: 11 The two samples are described as "overlapping" because in 2000 the same group of non-SD and/or LEP students were included in both samples. In 1996, all of the non-SD and/or LEP students in the sample that did not permit accommodations were included in the analysis of results for the sample that did permit accommodations, with the inclusion of additional non-SD and/or LEP students selected for the accommodations-permitted sample only.

[^9]: SD $=$ Students with Disabilities.
 LEP $=$ Limited-English-Proficient students.
 NOTE: Within each grade level, the combined SD and/or LEP portion of the table is not a sum of the separate SD and LEP portions because some students were identified as both SD and LEP. Such students would be counted separately in the bottom portions, but counted only once in the top portion.
 Within each portion of the table, percentages may not sum properly due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^10]: ${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 SD = Students with Disabilities.
 LEP $=$ Limited-English-Proficient students.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: Percentages may not sum properly due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^11]: ${ }^{\dagger}$ Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 SD $=$ Students with Disabilities.
 LEP = Limited-English-Proficient students.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: Percentages may not sum properly due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^12]: 12 For information on DIF studies of items assessed with accommodations in the 1996 mathematics and science assessments, see Mazzeo, J. M., Carlson, J. E.,Voelkl, K. E., \& Lutkus, A. D. (1999). Increasing the participation of special needs students in NAEP: A report on 1996 NAEP research activities. Washington, DC: U.S. Department of Education, Office of Educational Research and Improvement, National Center for Education Statistics.

[^13]: SD = Students with Disabilities. LEP = Limited-English-Proficient students.
 NA $=$ Not Applicable. Accommodation was not offered.
 NOTE: The combined SD and/or LEP portion of the table is not a sum of the separate SD and LEP portions because some students were identified as both SD and LEP. Such students would be counted separately in the bottom portions, but counted only once in the top portion.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^14]: 13 These procedures are described more fully in the "Weighting and Variance Estimation" section later in this document. For additional information about the use of weighting procedures, see the forthcoming NAEP 2000 Technical Report. In addition, the reader may consult the NAEP 1998 Technical Report for a discussion of weighting procedures that are common to all NAEP assessments.

[^15]: 14 Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
 15 Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement (16)2, 159-176.

[^16]: 16 More detailed information regarding the IRT analyses used in NAEP assessments will be provided in a forthcoming technical report on the 2000 NAEP assessments. In addition, the reader may consult the NAEP 1998 Technical Report for a discussion of analysis procedures that are common to all NAEP assessments.
 17 Donoghue, J. R. (1994). An empirical examination of the IRT information of polytomously scored reading items under the generalized partial credit model. Journal of Educational Measurement (31)4, 295-311.
 18 For theoretical and empirical justification of the procedures employed, see Mislevy, R. J. (1988). Randomizationbased inferences about latent variables from complex samples. Psychometrika (56)2, 177-196.
 For computational details, see the forthcoming NAEP 2000 Technical Report.

[^17]: 19 Huynh, H. (1994, October). Some technical aspects of standard setting. Paper presented at the Joint Conference on Standard Setting for Large-Scale Assessment, Washington, DC.
 20 Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more latent categories. Psychometrika, 37, 29-51.
 21 Donoghue, J. R. (1997, March). Item mapping to a weighted composite scale. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.

[^18]: 22 For further details, see Johnson, E. G., \& Rust, K. F. (1992). Population inferences and variance estimation for NAEP data. Journal of Educational Statistics (17)2, 175-190.

[^19]: 23 Miller, R. G. (1966). Simultaneous statistical inference. New York, NY: Wiley.
 24 Benjamini, Y., \& Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, No. 1., pp 289-300.
 25 Williams, V. S. L., Jones, L. V., \& Tukey, J.W. (1994, December). Controlling error in multiple comparisons with special attention to the National Assessment of Educational Progress. Research Triangle Park, NC: National Institute of Statistical Sciences.

[^20]: * The part of Virginia that is included in the Northeast region is the Washington, DC metropolitan area; the remainder of the state is included in the Southeast region.

[^21]: 27 For the national assessment, a PSU is a selected geographic region (a county, group of counties, or metropolitan statistical area). For the state assessment program, a PSU is most often a single school. Further details about the procedure for determining minimum sample size appear in the NAEP 1996 Technical Report and the forthcoming NAEP 2000 Technical Report.

[^22]: 28 Through a pilot study, more detailed breakdowns of nonpublic school results are available on the NAEP web site (http://nces.ed.gov/nationsreportcard/science/results/index.asp).

[^23]: Standard errors of the estimated scale scores appear in parentheses.

 * Significantly different from 2000.

 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^24]: The percentage of students is listed first with the corresponding average scale score presented below.
 Standard errors of the estimated percentages and scale scores appear in parentheses.

 * Significantly different from 2000.

 NOTE: Percentages may not add to 100 due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^25]: Standard errors of the estimated scale scores appear in parentheses.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: National results are based on the national sample, not on aggregated state assessment samples.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^26]: Standard errors of the estimated scale scores appear in parentheses.

 * Significantly different from 2000 if only one jurisdiction or the nation is being examined.
 \ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
 † Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
 - Indicates that the jurisdiction did not participate.

 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: National results are based on the national sample, not on aggregated state assessment samples.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^27]: Standard errors of the estimated percentages appear in parentheses
 (****) Standard error estimates cannot be accurately determined.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 A Percentage is between 0.0 and 0.5 .
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: Percentages within each science achievement-level range may not add to 100 due to rounding.
 National results are based on the national sample and not on aggregated state assessment samples.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^28]: Standard errors of the estimated percentages appear in parentheses.
 (****) Standard error estimates cannot be accurately determined.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 A Percentage is between 0.0 and 0.5 .
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 NOTE: Percentages within each science achievement-level range may not add to 100 due to rounding.
 National results are based on the national sample and not on aggregated state assessment samples.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^29]: Standard errors of the estimated percentages appear in parentheses.
 (****) Standard error estimates cannot be accurately determined.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 A Percentage is between 0.0 and 0.5 .
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). NOTE: National results are based on the national sample and not on aggregated state assessment samples.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^30]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000 if only one jurisdiction or the nation is being examined.
 \ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
 † Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 - Indicates that the jurisdiction did not participate.

 NOTE: National results are based on the national sample and not on aggregated state assessment samples.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^31]: Standard errors of the estimated difference in scale scores appear in parentheses.
 Score differences are calculated based on differences between unrounded average scale scores.

 * Significantly different from 2000.

 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Science Assessments.

[^32]: Standard errors of the estimated difference in scale scores appear in parentheses
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP) 1996 and 2000 Science Assessments.

[^33]: Standard errors of the estimated percentages appear in parentheses.
 NOTE: Percentages within each science achievement-level range may not add to 100, or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^34]: The percentage of students is listed first with the corresponding average scale score presented below.
 Standard errors of the estimated percentages and scale scores appear in parentheses.

 * Significantly different from 2000.

 NOTE: Percentages may not add to 100 due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^35]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000.
 (****) Standard error estimates cannot be accurately determined.
 A Percentage is between 0.0 and 0.5 .
 NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^36]: Standard errors of the estimated scale scores appear in parentheses.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^37]: Standard errors of the estimated percentages appear in parentheses.
 (****) Standard error estimates cannot be accurately determined.
 A Percentage is between 0.0 and 0.5
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^38]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000 if only one jurisdiction or the Nation is being examined.
 \ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
 - Indicates that the jurisdiction did not participate.
 (****) Standard error estimates cannot be accurately determined.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^39]: Standard errors of the estimated difference in scale scores appear in parentheses.
 Score differences are calculated based on differences between unrounded average scale scores.
 A Difference is between -0.5 and 0.5 .
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^40]: Standard errors of the estimated percentages appear in parentheses.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Percentages may not add to 100 due to rounding.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^41]: Standard errors of the estimated scale scores appear in parentheses.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic. ****(****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. ~Special analyses raised concerns about the accuracy and precision of the National grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas) SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^42]: Standard errors of the estimated difference in scale scores appear in parentheses.
 ****(****) Sample size is insufficient to permit a reliable estimate.
 Score differences are calculated based on differences between unrounded average scale scores.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^43]: Standard errors of the estimated scale scores appear in parentheses.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 ****(****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^44]: Standard errors of the estimated scale scores appear in parentheses.

 * Significantly different from 2000 if only one jurisdiction or the Nation is being examined.
 \ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 ****(****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000.
 - Indicates that the jurisdiction did not participate.

 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools. DoDDS: Department of Defense Dependents Schools (Overseas). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^45]: Standard errors of the estimated percentages appear in parentheses. ! The nature of the sample does not allow accurate determination of the variability of the statistic. (****) Standard error estimates cannot be accurately determined. ${ }^{* * * *(* * * *) ~ S a m p l e ~ s i z e ~ i s ~ i n s u f f i c i e n t ~ t o ~ p e r m i t ~ a ~ r e l i a b l e ~ e s t i m a t e . ~}$
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 A Percentage is between 0.0 and 0.5 .
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^46]: Standard errors of the estimated percentages appear in parentheses.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 ****(****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^47]: Standard errors of the estimated percentages appear in parentheses.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 (****) Standard error estimates cannot be accurately determined.
 **** (****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 Δ Percentage is between 0.0 and 0.5 .
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^48]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 \ddagger Significantly different from 2000 when examining only one jurisdiction and when using a multiple comparison procedure based on all jurisdictions that participated both years. ****(****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation in 2000. - Indicates that the jurisdiction did not participate in 2000.
 A Percentage is between 0.0 and 0.5 .
 NOTE: Comparative performance results may be affected by changes in exclusion rates for students with disabilities and limited English proficient students in the NAEP samples. DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^49]: Standard errors of the estimated percentages appear in parentheses.
 **** (****) Sample size is insufficient to permit a reliable estimate.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 A Percentage is between 0.0 and 0.5 .
 NOTE: Percentages may not add to 100 due to rounding.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^50]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000.
 \dagger Significantly different from the result where accommodations were not permitted.
 NOTE: Percentages within each science achievement-level range may not add to 100 or to the exact percentages at or above achievement levels due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^51]: Standard errors of the estimated percentages appear in parentheses.

 * Significantly different from 2000.
 \dagger Significantly different from the result where accommodations were not permitted.
 NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding. SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^52]: Standard errors of the estimated percentages appear in parentheses

 * Significantly different from 2000.
 \sim Special analyses raised concerns about the accuracy and precision of the national grade 4 Asian/Pacific Islander results in 2000. As a result, they are omitted from the body of this report. See appendix A for a more detailed discussion.
 ! The nature of the sample does not allow accurate determination of the variability of the statistic.
 $(* * * *)$ Standard error estimates cannot be accurately determined.
 A Percentage is between 0.0 and 0.5 .
 NOTE: Percentages within each science achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding.
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 and 2000 Science Assessments.

[^53]: Standard errors of the estimated scale scores appear in parentheses.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^54]: Standard errors of the estimated percentages appear in parentheses.
 \dagger Indicates that the jurisdiction did not meet one or more of the guidelines for school participation.
 DDESS: Department of Defense Domestic Dependent Elementary and Secondary Schools.
 DoDDS: Department of Defense Dependents Schools (Overseas).
 SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2000 Science Assessment.

[^55]: The percentage of students is listed first with the corresponding average scale score presented below.

[^56]: ${ }^{1}$ U.S. Department of Commerce, Bureau of Census, Current Population Reports, Series P-25, No. 1095 at the national level, CPH-L-74 (1990 data); and unpublished data.
 ${ }^{2}$ U.S. Department of Education, National Center for Education Statistics, Common Core of Data surveys.

[^57]: ${ }^{1}$ U.S. Department of Commerce, Bureau of the Census, Decennial Census, Minority Economic Profiles, unpublished data; and Current Population Reports, Series P-60, "Poverty in the United States," "Money Income of Households, Families, and Persons in the United States," and "Income, Poverty, and Valuation of Noncash Benefits," various years, and "Money Income in the U.S.: 1998," P60-201.
 ${ }^{2}$ U.S. Department of Education, Office of Special Education and Rehabilitative Services, Annual Report to Congress on the Implementation of The Individuals with Disabilities Education Act, various years, and unpublished tabulations.

