Horticultural Crops Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Pseudomonas Fluorescens Pf-5
Small Fruit Breeding
Foliar Pathology
Food Chemistry
Grape Research
 

Research Project: Genome-Wide Functional Analysis of Small Rnas in Phytophthora

Location: Horticultural Crops Research

Project Number: 5358-22000-034-11
Project Type: Grant

Start Date: Jul 03, 2008
End Date: Jan 14, 2011

Objective:
The overall goal of our research is to identify the genetic mechanisms that enable oomycete pathogens to overcome host defenses, using the soybean pathogen Phytophthora sojae as a model. The genome sequence of P. sojae and several other Phytophthora species has revealed that their genomes contain an enormous repertoire of genes potentially involved in infection. However, information about the regulatory mechanisms controlling expression of these genes is greatly lacking. Oomycete species are notorious for their genetic variability, rapidly adapting to overcome chemical controls and host genetic resistance. However the underlying mechanisms governing this variability are not at all understood. Small RNAs, including siRNAs and miRNAs, have been demonstrated to play a major role in modulating the expression of eukaryotic genomes. Oomycete genomes encode the machinery necessary to generate several classes of small RNAs, but there is absolutely no information about the roles that small RNAs play in oomycete biology and pathology. The goal of this proposal is to fill in this major gap in our understanding of this important group of pathogens. The specific aims of the proposal include: 1. To use genome-wide, high-throughput sequencing to identify all small RNA-generating loci expressed specifically in mycelia, during germination of cysts, and during infection of plants; 2. Analyze the genome-wide distribution of loci encoding all small RNA classes; 3. Characterize the effects of mutations in the P. sojae Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) genes on small RNA classes, growth, morphology and pathology; 4. Develop a publicly accessible Phytophthora small RNA database that integrates with existing Phytophthora genome resources.

Approach:
Our project will start with genome-wide small RNA analysis in P. sojae lifestages and infected roots, followed by functional analysis of P. sojae mutants. First, we will document the small RNA repertoire in pure P. sojae lifestages and in infected soybean hypocotyls by deep sequencing using the Illumina 1G system. We will then identify and analyze TILLING mutants with defects in the DCL and RDR genes, which we propose catalyze biogenesis of the two P. sojae small RNA size classes. Collaborator Kurt Lamour will provide the mutants using his TILLING resource funded through NSF. Selected mutants will be analyzed in the mycelial lifestage and in life stages in which a phenotype is expressed. Throughout, the Phytophthora small RNA database will be expanded, updated and improved. This database will provide a repository for sequences of small RNAs identified from various Phytophthora spp., genotypes and tissues. The database will integrate tools to assist in small RNA identification and analysis. The comprehensive database will be publicly available through the current Phytophthora genome web interface at VBI and the small RNA database resources in the Carrington lab and CGRB at OSU. Documents Grant with Virginia Bioinformatics Institute.

   

 
Project Team
Grunwald, Niklaus - Nik
 
Project Annual Reports
  FY 2008
 
Related National Programs
  Plant Diseases (303)
 
 
Last Modified: 05/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House