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ABSTRACT

A numerical experiment is carried out to investigate the circulation of an ocean, driven by a prescribed
density gradient and wind stress at the surface. The mathematical formulation includes in one model most
of the physical effects that have been considered in previous theoretical studies. Starting out from conditions
of uniform stratification and complete rest, an extensive numerical integration is carried out with respect
to time. Care is taken in the final stages of the calculation to use a finite difference net which resolves the
very narrow boundary layers which form along the side walls of the basin.

A detailed description is made of the three-dimensional velocity and temperature patterns obtained from
the final stage of the run. Since inertial effects play an important role in the western boundary current, it
is possible to verify with a baroclinic model two results obtained previously with barotropic ocean models:
1) a concentrated outflow from the western boundary takes place along the upper boundary of the subtropic
wind gyre; and 2) inertial recirculation may increase the total transport of the boundary current to a value
well above that given by linear theory. In addition to the western boundary current, a strong eastward flow-
ing current is found along the equator. Taking into account a difference in Rossby number between model
and prototype, the intensity of the computed currents agrees very closely to observations in the Gulf Stream

and the Equatorial Current.

1. Introduction

The problem of the large-scale circulation of the
ocean driven by differential heating and mechanical
stresses exerted by wind at the surface has been the
subject of many investigations, dating back to the 18th
century. Several different flow regimes occur in the
time-averaged flow within a typical basin. In particular,
there is a striking difference between the intense western
boundary currents of the Northern Hemisphere oceans
and the type of flow over the rest of the basin. These
differences, in addition to the complex geometry of
actual ocean basins, make the ocean circulation very
difficult to treat using conventional analytic methods.

The present knowledge of the dynamics of the large-
scale motions is based largely on studies undertaken in
the last two decades. A comprehensive review of current
progress in this field is given by Stommel (1965) in
The Gulf Stream. A basic difficulty encountered in
recent studies is that it has been relatively easy to
formulate relevant mathematical models for the study
of large-scale ocean circulation, but very difficult to
find solutions. Some insight has been gained through
the study of hydrodynamic experiments, and much
remains to be done in this promising field of research.
In addition, the physics of large-scale flow in the ocean
has much in common with large-scale flow in the
atmosphere. This suggests that the direct computational

approach based on the hydrodynamic equations which
has been successfully applied in studies of the atmo-
spheric general circulation (Phillips, 1956 ; Smagorinsky,
1963) can be carried over to the study of the oceans.
Pioneering work along these lines has been carried out
by Sarkisyan (1954, 1962) and Gormatyuk and
Sarkisyan (1965) in the Soviet Union. Studies of
barotropic models also based on a numerical method
have been made by Bryan (1963), Fischer (1965) and
Veronis (1966) in the United States.

The present investigation is an extension of a series
of calculations for a baroclinic ocean model by the
authors (Bryan and Cox, 1967), hereafter referred to
as A. A motivation for study A was a controversy,
which has existed for over a century, as to whether wind
or differential heating is the primary factor in driving
the ocean circulation. Up to the present these two
factors usually have been treated separately. Implicit
in the thinking of many oceanographers about the
ocean circulation is a linear superposition of two solu-
tions, one based on thermocline theory, and the other
based on wind-driven theory. Due to important non-
linearities that exist in the more general mathematical
models of large-scale ocean currents, such a superposi-
tion is not strictly valid. In study A an attempt was
therefore made to include in one model the various
factors that had been treated separately in previous
studies.
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The results of A indicated that qualitatively many
features of the Northern Hemisphere ocean basins
could be explained on the basis of a model driven by
differential heating alone. A weak western boundary
current and a well developed thermocline are present,
as well as a deep southward drift of surface waters in
the subtropical .gyre. However, the addition of wind
brings the solutions into much better agreement with
observations. The topography of the thermocline is
changed so that it takes on the characteristic tilt
upward to the east which is a striking feature of east-
west hydrographic sections in the subtropical gyre of
the North Atlantic. The western boundary current is
also greatly increased in strength, and the wind pattern
provides a mechanism for an outflow from the western
boundary current to take place at middle latitudes,

A shortcoming of the calculations of A is that, due
to computational limitations, only rather viscous cases
are considered. Nonlinear effects are important in
determining the density field, but not in the transfer of
momentum. The present study is a detailed investiga-
tion of a single numerical experiment in which the
parameters are chosen so that inertial effects are really
significant in the western boundary. This allows a com-
parison with the nonlinear wind-driven calculations
based on simpler barotropic models. As the three-
dimensional velocity and density fields are very difficult
to describe, attention is focused on a single numerical
experiment. In Part II of this investigation (Bryan and
Cox, 1968) the solution is analyzed in some detail to
determine the vorticity and heat balance of both the
interior and boundary current regions.

2. Equations of the model

Except for certain details, the equations of the
mathematical model and the numerical method are the
same as that used in the previous investigation A. In
order that the present paper may be read independently,
however, a brief description of the model is given in this
section. The numerical scheme will be given in the
following section.

The principal approximations are: 1) assumption of
hydrostatic balance; 2) neglect of density variations,
except where they occur as a coefficient of the gravi-
tational constant; and 3) the replacement of molecular
viscosity and diffusion with new terms representing
“turbulent” viscosity and diffusion due to scales of
motion too small to be resolved by the numerical grid.
These approximations are discussed by Fofonoff (1962).
The first two may be shown to be quite accurate for the
study of ocean circulation problems. Since very little is
known about the turbulence characteristics of the
ocean, the third assumption is less certain. Let
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where ) is longitude, ¢ latitude, @ the earth’s radius, and

w' = acose A, (2.2}
' =ag, (2.3)
w'=3", (2.4)
With this notation the momentum equations are:
tang
D'y — (29 sin -’ )v”
‘a
1 s -
=— (p/po)"+FY 4 xu,,”  (2.5)
acosg

(double primes being understood where z and ¢ are used

as subscripts),
tan gp)
u/ 14
a

1
=—=(p/p0)o"+F*"Fxv.,", (2.6)
a

D"v”—{—(ZSZ sing+u"”

g(1—ad")=— (p/po)."". 2.7
The equation of continuity is
sece
w+— "+ (v" cose),=0. (2.8)
a
The change ¢’/ in apparent temperature is
< .
D”l?”zQ”“i“’ﬁM”. (2’9)
6

In anticipation of scaling, dimensioned variables are
denoted with double primes. The effect of the horizontal
components of turbulent viscosity and diffusion are
indicated by FY’, F¢'/  and Q”, i.e.,

ane

A 3 2t
F)\// _ ____[Au//_'_ (1 —_ tan2 go)u”—
a? Ccos¢@

'L'x”], (210)

Ay 2 tane
F«P”:—[Av”—f— (1—tan?p)v’'+ ux”], (2.11)
a? cosp
An
Q=—A%", (2.12)
@
where
A=sec?p( hatsece[cosep( oo (2.13)

In the model « is the coefficient of vertical diffusion of
both heat and momentum in the case of stable stratifi-
cation, and Ay and A, are the coefficients of lateral
diffusion of heat and momentum, respectively.
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The derivation of the proper form of the viscous terms
for a spherical geometry in the nonisotropic caseis given
by Saint-Guilly (1956). In (2.9), § introduces the effect
of convective processes when the stratification is
unstable, Thus,

{1, z‘}z>0}
6= .
0, 4.<0

For unstable stratification, vertical mixing becomes
effectively infinite. The boundary conditions at the
lateral walls of the basin are:

O'=u"=1"=0, A=\, s,

8 =u"=1"=0, o=, &y

(2.14)

(2.15)
(2.16)

In the present calculation the basin is taken to be 45°
of longitude across, and extends from the equator to a
latitude of 67°. A condition of mirror symmetry at the
equator means that calculations only have to be carried
out for one hemisphere. At the lower boundary,

&' =w=0, z=-—H, (2.17a)

(2.17b)

In the numerical experiment most of the calculations
are carried out with the condition that the bottom
stress components rz*, 7p¢ are zero. A short test
calculation is also carried out in which 75* and 75¢ were
calculated from Ekman theory. Some of the results of
this test are shown in Part II.

The boundary conditions specified at the surface are
the most important for determining the character of
the solutions. Here we have

A

174 123
pok (. 0. ) =718 T8%.

17"=0X'Gl((p)
T*

u) ' =—=Ga(p) p2=0, (2.17¢)
PoK

v, =w=0

where G; and G are simple functions of latitude of order
unity. The shape of these functions is shown in Fig. 1.
Conditions (2.17¢) imply two different driving mecha-
nisms, differential heating and wind. The condition that
w=0 at the surface is the “rigid lid”’ approximation.
Variations in surface pressure are taken into account,
but the kinematic effects of displacements of the free
surface are neglected in the continuity equation. The
effects is to filter out external gravitational-inertial
waves.

The geostrophic relation differentiated with respect
to z is

. g
20 sinpu,” = ——4,"".
a

Thus, a scale velocity connected with differential heat-
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ing may be defined as
gab*d
V*=

200’

(2.18a)

where d is the scale depth of the thermocline.
A scale velocity due to wind is based on the familiar
Sverdrup formula for meridional transport,

2Q cose [0
/ povdz=curl,z*. (2.18b)
a —~H
Thus,
7.*
Ve= [(G9) e Jmax, (2.18c)
2de0

[(G2) ¢ Jmax being the maximum gradient of G, equal to
5.5 for the curve shown in Fig. 1.

To reduce the equations to nondimensional form the
following substitutions may be made:

w, v, W' =V*(undw/a), (2.19)
7'=dz, (2.20)
t'=at/V*, (2.21)
(p/po)’=2QV*aP, (2.22)
&= 3. (2.23)
Egs. (2.5)-(2.9) thus become
Ro(Du—tang uwv—u,,)
=y sing—sece Px\+RoRe™1FY,  (2.24)
Ro(Dy+taneg uu—v..)
=—using— P,+RoRe™1F?, (2.25)
d=P,, (2.26)
w,+sece[ur+ (v cosp), =0, (2.27)
1
(2.28)

Dy =—9,,+Pé1AS.
s

604
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A .
2
= | 409
-
<
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F16. 1. Temperature distribution and the A component of the
wind stress specified as boundary conditions at the surface.
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The above equations have been greatly simplified by
setting D''=V*D/a, d= (xa/V*)?}, and by using the
terms,

Fr=Au+ (1—tan?p)u~—2 tane sece
Fe=Av+4 (1—tanp)v+2 tane seco ua

}. (2.29)

The system (2.24)-(2.28) is governed by 5 parameters.
Three appear explicitly in the equations, i.e.,

Ro=T1*/(2Qa), (2.30)
Re=V*/Ay, (2.31)
Pé=V*a/An, (2.32)

and two others come in through the boundary
conditions

v=(V*+V**)/V*,
H/d=total depth/scale depth.

(2.33)
(2.34)

Readers not interested in the details of the numerical
method may wish to proceed directly to Section 4.

3. Method of calculation

a. Formulation of lhe finile difference equations

The numerical method makes use of the Mercator
projection. If we let

n=sing,
m=secp,
dx=ad\,

dy=asece deo,

the equations of motion become

du
;— (2Q+mu/ a)nv— F*— xit,,= —m(Pp/po)s, (3.1a)
{

J .
d—v—}— (2Q4-mu/ a)nu— Fv— xv.=—m(p/po)y. (3.1b)
2

The numerical method will be set down in terms of the
unscaled equations of the system. Double primes will
be understood on the variables in (3.1a,b) as well as in
the remainder of this section. Differentiating (3.1a) and
(3.1b) with respect to z, and substituting (2.7), we
obtain

du
[;— (2Q+mu/ a)ynv— F— Kuzz:| =—gamd,, (3.2a)
t

3

d
[;v-I- (2Q+mu/ a)ynu— Fv— K'vu] =—gamd,. (3.2b)
1

z
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The “rigid lid” approximation given by (2.17c) requires
that

0
(V-v)dz=0.

—I

- (3.3)

It is possible to define a transport stream function,

0
(oott,pov)dz= —m¥,, m¥,, (3.4)

~Ir

which is obtained by first integrating (3.1a) and (3.1b)
with respect to 2, and dividing the resulting equations
by m. If the two integrated equations are cross-differ-
entiated with respect to « and y, we obtain

2Q
\Ilzzt_l_‘I/yyt: __\I/a:
am?

0 du 1 '
+/ { ':(——— wy——uvmn— F*— xu,z)m_1:|
—H dt a v

dv 1
— [:(——— v+ —uumn— Fv— szz)m—l] } dz. (3.5)
di a z

The finite difference scheme is based on a three-
dimensional array of points with indices ¢, j, k. Where »
is used as a superscript, it will indicate the time step.
In order to resolve boundary layer phenomena, the grid
allows for variable spacing. The coordinates of each
grid point are:

x2=Ax2/2 Al
i , (3.6)
=%+ (Ax+Ax 1)/2, i=3,4,5 -
=3
)
y2=Ay2/2 1.
) . _ ] <37)
yi=yot 2, (DyrtAyi)/2, j=3,4,5 -
1=3
21=—Az/2
1 , (3.8)
s=z—2 (Az+Az1)/2, k=2,34---
1=
J

where the points x; and ¥, lie outside of the basin,

The arrangement of variables in the vertical is shown
in Fig. 2a, where the W values are given ‘along the
boundaries between layers. The variables Uy, Vi, Tk,
calculated at integral values of £ may be thought of as
average values for these layers, i.e.,

1 poet
Up=— / Uds, (3.9)
AkJ s
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Fic. 2. The arrangement of variables in the vertical plane, a., and horizontal plane, b.

and T is the finite difference equivalent of the apparent
temperature ¢. To simplify (3.9) and the remaining
equations of this section, Az, Awx;, and Ay; will be
written as Ak, Az, Aj, respectively.

In formulating the finite difference equations, the
rule adopted for computing U, V and T on the surfaces
between the layers is

Urpy= (Uit Usr1)/2,

while that for computing derivatives on the surfaces
between layers is

(UDkr3=2(Ur—Usr)/ (Ak+AR+1).

Within each layer the horizontal transport terms are
approximated by the product of vertical averages
within the layer. Thus,

(3.10)

(3.11)

1 pad
sk

In writing out the finite difference equations, it is
convenient to introduce some shorthand notation for
the finite difference operators. As a compromise between
an overly cumbersome system and a notation which
may be too concise, operations with respect to z and ¢
will be written out in full while horizontal averages and
derivatives will be indicated by special symbols.
For this purpose we define:

02( )iy =20 ( Jixa— ( )1/ (Ai+4Ai+1), (3.13)
5.0 )i=L( is— ( )ims /i, (3.14)
Oin=LOint+ ()12, (3.15)

Ois=[A1( Jsprt Ai( D)/ (A 1+46).  (3.16)

Note that repeated use of these operators may be used
to obtain higher derivatives, or three-point averages.

COX 949
i=1 i=2 i=3 i.=4
Y AL {4 2
i=J uv,T uvT uv.T
v oy v 4
i=J-1° uvT uv,T uv,T
A 4 v 134 37
“
b.
For example,
8:82( )i={L( Jira— ( )il/Ai+3
—L(O)i—=( )imad/Ai—3}/4d, (3.17)
OV =Lt Oert2()iV/4 (3.18)

The horizontal arrangement of variables is given in
Fig. 2b, the variables U, V and T being specified at
integer grid points.

The temperature equation is represented by the
simplest finite difference formula, all indices being i, 7,
k, n unless otherwise indicated. Thus,

TH_ Tr=3AI0— LA™, (3.19)
where
2 (To1—Tx) (To—Trr)
N — £T+-—— al }
ARLAR—14-Ak  Ak+AR+-1
+Aum?(8.0,+8,8,)T. (3.20)
In the description of the model it is specified that
k (k, T,>0
= { ] (3.20a)
8 w, T,<0

Eq. (3.20) for Q” only allows for the stable case. The
infinite mixing which occurs in the unstable case is
included by testing to see if

Ty 1" =T H>0 (320b)

for all £, ie., let (T:—1"")’ and (Ti**')’ be corrected
estimates of Tp_y"™ and T, respectively. If this
condition on the static stability is not fulfilled,

(Trea™t) = (TymH1y
Ak— 1T, "M AR T ™+
B Ak—1+4Ak

(3.20¢)
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After (3.20b) has been used to test all values of %, and
corrections have been made according to (3.20c), the
entire process is repeated for all £ for as many times as
is necessary to insure that (3.20b) is satisfied at every
point in the water column.

The operator £ in (3.20) is

v v
N )
m m
LW ey (st ) — Wes (it pas) I/ AR, (3.21)

As indicated by (3.21) the advection terms have been
combined with the continuity equation in order to be
written in flux form. As shown by Arakawa (1966), this
is necessary to obtain a form which conserves both the
average value and the variance of an advected quantity.
Arakawa’s ideas may be easily extended to an irregular
net. The finite difference form of the continuity equation
is equivalent to

T

v

£(1)=0.

Integrating from the top downwards,

(3.22)

z
~yy ~ET

weem [ ea D) o 029

since W =0 at the surface.
The formulae representing (3.1) and (3.2) are more
complicated. In this case we have.

(Ur=Upp)" '~ (Us—Us)"
—ZQ%At[f(Vk~ Vk+1)”+l+ (1 —'f) (Vk— Vkr;—l)"]
= (3At/2)G"— (At/2)G™, (3.24)

(Vk"‘ VHl)"'H—‘ (Vk—‘ Vk+1)"
+ZQnAt[r(Uk—- Uk+1)”+1+ (1 —7) (Uk— Uk+])"]
— (3A1/2)T— (Al/2)J™,  (3.25)

where 7 is a computational parameter which is set equal
to 2 in this study. Egs. (3.24) and (3.25) must be
solved simultaneously to obtain (Ux—Uk1)™ and
(V= Vs1)"* in terms of the variables at previous time
levels. This method is preferred for an ocean circulation
model because it permits a time step which is long com-
pared to the inertial period (one-half pendulum day).

The terms on the right-hand side are defined by

Y

—

Aj LT Ny
Gr=—mga|l —— J(Br—241)8a(Ti+Ti41)/2

vy

Aj
+BUs—BUss, (3.26)
Al /\/“’u
Jn=—mgo| — J(@—241)8y (Tt Te41)/2
Ai
FRVi—RVir, (3.27)
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1 U Ups—Us  Us=U
BU= — SUA-UVmnt—f —— =~ "“]
a ARLAR—1+Ak  Ak+Ak+1

1
+A M[m? (8.6.+6,8,) U—I——2(1 —mn?)U
a

1 —z
——2m*nd.V 1 (3.28)
)

The expression for RV is similar.
The transport vorticity equation may be written as

(8:8516,0,) (¥ mH —¥™) :

= (3At/2)E*— (At/2)E™,  (3.29)
where
= — )/ ma)s. T
k(1 Y
+3 Ak [—a,<m-1R va; — )
k=1 A_jy Al
1 —._nz Z}w
—:By(m”’B UAi —_ )} . (3.30)
Ai Ag

At each time step (3.29) is solved for ¥*! by relaxa-
tion, a method which could be easily applied to the
irregular grid used in the present study. The relation
between U, V and ¥ is

—y K
8. =73 poVAk/m, (3.31)
k=1
—_ K
8,0=—72 polUAk/m. (3.32)

k=1

b. Formulation of the boundary conditions

As shown in Fig. 2b the boundary is taken to coincide
with points at which the transport stream function
is carried and between points at which the velocity is
carried.

At the western boundary the normal component is
set equal to zero by

Uyj=—Ua, T=0. (3.-33)

In computing the advection terms in the momentum
and thermal energy equation, the velocity parallel to
the boundary is treated as

Vii=Vas, V="Vas (3.34)

and is equivalent to a free-slip condition. However, in
computing the viscous terms, the boundary value is
reset, so that

—
V=0,

Vii=—Va,; (3.35)
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this being consistent with the continuous equations.
The only reason for using (3.34) is the finite difference

~zz ~~vy
form of the advection operator, ( ) and ( ) . Because
of these operators, pseudopoints outside the boundary
are involved in the computation of advection for points
lying inside the boundary.

The boundary conditions on U and V for the north
and east walls are similar to that on the west wall.
Temperature on all walls is set so that the gradient
normal to the wall vanishes, i.e.,

T1,j="Ts4 6,I'=0. (3.36)

The transport stream function is simply set to zero at
all wall points. At the equator the symmetry condition
requires that

\I,J'+1= —W_y (337)

U,D)yra=U,T) 5

where J’ is the latitude index that coincides with the
equator.

The procedure used to calculate new values of U, V
and T at each time step is to first solve (3.19) to obtain
T7*, and combine (3.24) and (3.25) to obtain new
values of (Up—Ui)™ and (Vi— Vi)™t Then
(3.29) is used to find ¥+, The transport stream func-
tion determines a reference velocity through (3.31) and
(3.32), allowing a computation of new values for U»t!
and Vnt,

Vyip=—Visy }
2

At the lower boundary of the model, the boundary
condition is

Uk—Ugs1 (0
o . (3.38)
Zrx—Zgq

— Qu) (U~ V)k

the second condition being for the bottom friction case.
This formula serves to define a fictitious velocity Ugyz
in terms of the velocity in the lowest layer and the stress
at the bottom.

For temperature at the lower boundary we have

Twrr=Th, (3.39)

since there is no heat flow through the bottom boundary.
At the surface

Up— U,
x( )= 7%/ po, (3.40)

AT A
To=T*(y), (3.41)

where Tg and U, are the temperature and velocity of
fictitious boundary points lying above the surface of the
ocean, Uy being defined in terms of the prescribed stress
at the surface. The definition of Z, is arbitrary, since
variations in this constant will only effect the definition
of U,, but not the momentum flux at the surface. The
same argument applies to Zz41.
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In the actual computations the vertical layering is
fine enough to resolve the main thermocline, but not
fine enough to resolve the relatively shallow planetary
boundary layer at the surface. The consequences of this
feature of the calculations is discussed in the Appendix
through a comparison of continuous solutions based on
Ekman profiles with the corresponding solutions based
on the finite difference scheme.

c. The energetic properties of the numerical scheme
Let

0

O==[ O,

—H

and () indicate a departure from the vertical mean.

Also let
X p¥ o0 dzdydx
o= [ [ o=
0 0 —~H m

indicate an integral over the entire volume. Then the
kinetic energy of the system may be written as

2

1 |
{sc}={ <w,2+wy2>+po<ﬁ2+ﬁ2>], (3.42)

2 pol®
and the potential energy as

R=po(1—aT)gz. (3.43)

In the absence of any dissipation or work done, the sum
of kinetic and potential energy is conserved. We now let
=TT —yyY

I J K AkAi A
{®}=2 2 X drpo(l—al)gs—,

i=2 j=J’ k=1 m?

(3.44)

where
1, AT
5J'={ / }’
5 i=

and J’ is the index of the equatorial point. Similarly,
we let

I-1 J—-1 — —
(B)=—3F 5 (ooH) ™0 (5.0,4+5,0,)¥40 Aj.
=2 fHi=J’

(3.45)

I J K oz ——
(R)=3 T 3 brpo(D+V)ARAT 47" /m?. (3.46)
=2 j=J’ k=1

The numerical scheme has been designed to insure that
the sum of {®}, {X} and {R} is conserved within the
limitations imposed by the method of time-stepping,
and the implicit method of treating the Coriolis terms.
All energy is exactly accounted for in the conversion
from one form of energy to another. This is a valuable
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check on the physical consistency of our numerical
system, and the reliability of the machine code.

4. Choice of parameters and the time-dependent
behavior of the model

a. Scale considerations

One of the goals of the present study is to find a
solution for a baroclinic ocean in which the nonlinear
terms in the equations of motion are important.
Previous studies (Stommel, 1965, p. 207) indicate that
inertial effects alter the classical theories of a wind-
driven ocean in a significant way, but these results are
based on barotropic models. A scale analysis is necessary
to make a rational choice of parameters for the present
study. For this purpose we will consider the steady-
state equations corresponding to (2.24) and (2.25). To
find the thickness of the side wall boundary layers, A
will be replaced with a new coordinate \*, such that

A=L\* (4.1)

where L is the ratio of the width of the side wall boun-
dary to the radius of the earth. -

In what follows L will be determined as a function of
the external parameters of the problem. We let

Ro=Ls, 4.2)
Ro/Re=L?, (4.3)
(Pé)1=Lr, (4.3a)

where the constants ¢ and b are to be determined from
the condition that the boundary current is quasi-
geostrophic; that is, the primary balance of the down-
stream component along the boundary is geostrophic,
but inertial and viscous terms are important in the case
of the transverse velocity component. The remaining
constant ¢ is specified by the condition that near the
coast lateral mixing of heat is of the same order as other
terms in the heat balance.

In what follows all derivatives with respect to A will
be understood to be derivatives with respect to A*.
Substituting (4.1)-(4.3a) into (2.24) and (2.25), we
obtain

L1 sec o uupn+ Lo (vit,+wit, — tan ¢ 4v—u,,)
=y9sing—L1seco P
+ L¥[ L2 sec?p thn+seco(cose tg) gt + ],
Lo sec puny+ Lo (v ,+wo.+tane uu—1v,.;)
= —using—Peo
+ LY L% secp vatsece(cosev,) ot - -+ ). (4.5)

The continuity and thermal equations are

(4.4)

secel Luy+ (v cosg)y I+w.=0, (4.6)
seCy LYud+ w(p_l_ WP ,— 2.
= L L2 sec’p hatseco(cose do)pl. (4.7)
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Expanding the boundary layer variables in powers of
the small parameter L, we then have

Up= g+t L+ usL? - - -
vp=voL o1+ v LA - -
wy=woL '+ witw. L+ -
Py=Py+-P,L+P, L+ - - -
Spy=0+h L+ 2+

(4.8)

The sum of the interior velocity and the boundary layer
velocity must match the boundary conditions. Note that

the interior and transverse components of velocity are

O(1), while the vertical velocity and the downstream
velocity in the boundary layer are of O(L™). This is
determined by the continuity equation (4.6).

Substituting (4.8) in (4.4), (4.6) and (4.7), we obtain
to O(L7Y),

(4.9)
(4.10)

sing vo=sece¢ Pa,
sece[ uo+t (vo cos@) o |+ wo.=0,

4o seco Foatvotootwoto.
=Jc1 seczga Forn- (4.11)

To O(1) we obtain from (4.5),

Lo2(ug seco v+ vovost+wovos)

= —ug sing— Poo+ Lt 3 sec?p v, (4.12)

The conditions specified initially are that the down-
stream component Vg is geostrophic, but inertial and
viscous effects are primary in determining the transverse
component. The latter condition is satisfied if a=2 and
b»=3. The condition that lateral mixing is of primary
importance adjacent to the boundary is satisfied if
¢=1in (4.11).

From (4.3) we now have a measure of the boundary
layers associated with the external parameters. Thus,

Lp=(RoRe 1)}
L1= Ro? )
LM= (Pé —1

(4.13)

where Ly, Lr and Ly are measures of the boundary
layers associated with friction, inertia effects and lateral
mixing. Thus, Lz is the width of the viscous western
boundary current of the Munk-type (see Stommel,
1965, p. 97), Ly is also a familiar feature of the wind-
driven ocean theory, and Ly is a new type of boundary
layer width which depends on the baroclinic structure
and lateral mixing.

We wish to solve for a case in which the inertial
effects in the western boundary current are not over-
whelmed by lateral mixing. This will only be the case if
the inertial width Ly is of the same order as Lyr and L.
In Table 1 the parameters chosen for the present study
are compared with a typical case in the previous
study 4.

From Table 1 it can be seen that by choosing a larger
Rossby number the inertial width Ly is larger relative
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TaBiE 1. The parameters of the computation compared with
those of Bryan and Cox (1967).

Present study Previous study A

Ro 2X 10~ 3X1075
Re 150 8.0

Pé 150 32

14 V*/ Ve 2 2

H/d 10 13

Lt 0.014 0.006
Lr 0.011 0.019
Ly 0.007 0.031
ASt 0.005

1 The spacing of points in the numerical net adjacent to the
side wall boundaries in the final stage of the calculation.

to Ly and Ly without making the problem of resolving
the boundary current with the numerical grid greater.
In the final part of the computation a refined net is
used with a spacing of 0.3° or 0.005 rad along the
lateral boundaries.

b. Time scales

From the adjustment theory for large-scale motions
in the ocean it is known that the longer time scales of
response in the ocean are associated with the density
field. The geostrophic adjustment of the velocity field
takes place within a few days or less. For this reason
we can get considerable insight into the longer time
scales of the system by just looking at the density
equation. To compare our nondimensional time scale to
real time, a typical scale velocity can be calculated from
(2.18a). We thus let g=10° cm sec?, §*=18° a=2.5
X104 deg™, 2Q=1.47X107* sec™?, d=4X10* cm, and
=21 dyn cm~2 These parameters give V* and V**
equal to 2 cm sec™.. From (2.21) our nondimensional
unit of time is

a 6.37X10% cm

=8.7 yr.
V¥  2cmsec!

For purposes of scale analysis we neglect lateral gradi-
ents, and write the equation for apparent temperature
in the form

A AY A
—=——t—. (4.14)
At VAR A

The first and second term on the right are the effects of
vertical advection and diffusion, respectively. In the
initial response to some change in boundary conditions,
the term on the left would be of the same order as the
terms on the right. Therefore, the time scale! given by
(4.14) is Z2 In the present numerical calculation, the
temperature is calculated at six different levels, the
vertical spacing of these levels and the time scale
associated with each level being shown in Table 2.

1The authors are indebted to the reviewers for pointing out
this time scale.
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TABLE 2. The position of levels in the present numerical experi-
ment and the adjustment time scale based on (4.14). The time
scale in years is based on a rotation rate and scale velocity ap-
propriate for the real ocean.

Level
1 2 3 4 5 6
—Z 0.25 0.50 1.00 2.00 4.00 8.00
At 0.06 0.25 1.00 4.00 16.00 64.00
Years 3 2 9 35 139 557

Temperature differences tend to be very small at
levels well below the thermocline. The deep part of the
basin tends to be filled with water, the temperature of
which is very close to the minimum temperature found
at the surface in the vicinity of the north wall. In any
case, Table 2 predicts that the small changes that do
take place at lower levels will occur very slowly.

c. Plan of the initial value calculation

In order to keep the amount of calculation within
reasonable limits the numerical integration is carried
out in two stages. In the first stage the spacing of the
numerical net is given by the curves labeled “A grid”’ in
Fig. 3. The spacing is a little over 3° or 0.05 rad in each
direction with a slightly finer spacing in the X direction
near the western boundary. The initial, horizontally
uniform stratification is specified in Table 3.

Near the boundaries the vertical motion may be as
much as one or two orders of magnitude larger than in
the interior. From (4.14) it can be seen that such a
large vertical motion leads to a very rapid response in
the thermal field. For this reason the strong density
gradients and associated currents appear at the bound-
aries long before the interior has come into adjustment.
Since the total kinetic energy integral is largely a mea-
sure of the intensity of just the strongest currents, it
reaches a level very near its maximum value very
rapidly. This is shown in Fig. 4.

Note that the poleward heat transport fluctuates
about a nearly steady value after about one unit of
nondimensional time. This is an indication that pole-
ward heat transport is largely determined by the upper
part of the ocean as well as the lateral boundary regions.
The general level of poleward heat transport is about
0.15 in units of 6*poc,V*ad, where ad is a measure of the
cross-sectional area. In the previous study A the heat
transport was more nearly 0.3, but in that case the
basin was nearly twice as wide.

TaBiE 3. The initial, horizontally uniform distribution
of apparent temperature.

Level
1 2 3 5 6
-z 0.25 0.50 1.00 2.00 4.00 8.00
¢ 0.72 0.58 0.38 0.20 0.03 0.00




954 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 25
4°4
. -1 “A-GRID"
| BO—J
A)‘ZO—/ "B-GRID"
1°
T T T
10 20 30 40
A -
4° *A-GRID"
3°- .
: “B~GRID"
Ad °
COS ¢ 2°] '
1°
t T T
20 a0 60
¢ -~

Fic. 3. Spacing of grid points in the horizontal plane. “A grid”’ refers to the net used in the first stage
of the calculation; “B grid”, the net used in the second.

Some insight into the adjustment of temperature over
the basin during the first stage of the calculations is
given by Fig. 5. The zonal average temperatures are
plotted for levels 2, 4, 5 and 6. The scale has been
expanded for the lower levels to show up the more
subtle changes that take place there. It is interesting to
compare the results given in Fig. 5 with the response
times predicted in Table 2. The predicted response
times at levels 2 and 4 are confirmed quite well in Fig. 5,
while at level 5 the temperature appears to reach a
steady value at closer to 10 units of time rather than
the 16 predicted. The run is not long enough to get the
full response at the bottom level. The results only
confirm that the response time is longer than 22 units.

An interesting aspect brought out by Fig. 5 is that
the isotherms at different latitudes change in a nearly
parallel fashion, except at 45.6°, This means that in the

southern portion of the basin the meridional tempera-
ture gradients are established quite early. The absolute
value of the temperature continues to adjust itself, but
the north-south gradient remains nearly constant. This
is significant from a dynamic standpoint, since it is the
lateral gradients of apparent temperature which are
important in determining the velocity pattern.

At the end of the first stage of the calculation the
fields are interpolated linearly from grid A to grid B
shown in Fig. 3. The time integration is then extended
for another unit of time. The behavior of the heat
transport during this final stage of the run is shown in
Fig. 6. The different types of time-dependent motions
responsible for the fluctuations in heat transport during
this second stage of the calculation are described in
Part II. A profile of the western boundary current
averaged over the interval shown in Fig. 6 is given in

TOTAL HEAT TRANSPORT
015 10
Z1 o0+ v,
0.05. KINETIC ENERGY L5
0 " T T T 0 .
0 5 10 20 22 :

Vt/a

F16. 4. The kinetic energy and poleward heat transport as a function of time during the first stage
of the calculation. The ordinates are in nondimensional units.
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F1G. 5. Changes in the zonally averaged temperatures for different layers during the first stage of the
calculation. Note the difference in response with respect to depth.

Fig. 7 as curve b, curve a being taken from the final
part of the first stage of the calculation. Fig. 7 shows
that the boundary current is adequately defined by the
grid used in the second stage of the calculation.

d. Machine requirements

The calculations are carried out on a UNIVAC 1108
computer. The high speed drums on this machine make
the calculations with large fields relatively easy. In the
first stage of the calculation it is possible to integrate
over one unit of nondimensional time in only 4256 time
steps, each time step requiring 5.8 sec on the machine.
In the final stage of the calculation 21,280 time steps

were required to integrate over one unit of time. In this
case each time step required 12.2 sec of machine time.
The method of this study does have the disadvantage
of requiring access to very powerful computing ma-
chines. If present trends in computer development
continue, large computing requirements by present-day
standards may appear in the future to be relatively
modest.

5. The density and velocity fields

To orient the description of the solution with respect
to previous studies, two important integrals of the
velocity will be discussed. One such integral is the total
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F16. 6. The heat transport at 45° latitude showing the transition from stage 1 to stage 2 of the calculation.
More details about the time dependent behavior will be given in Part IT of this study.

mass transport in the horizontal plane. A transport
stream function may be defined as

0
h= f pov¥ COSp dz,
—H/ld

0
‘l/¢= - / poudZ,
—~H/d

this function being the principal variable for which
solutions are obtained in the theory of a wind-driven
ocean. The pattern for the present baroclinic model is
given in Fig. 8a. For the interior region, the general
shape of the pattern could be predicted from the
Stommel-Sverdrup theory. The wind stress specified at

PROFILE OF THE BOUNDARY CURRENT
=-025
LAT. 28°

0° 20 4° 6° 8°

F1c. 7. Profiles of the western boundary current for the level
nearest the surface. Curve (a) is the final result of the first stage
of the calculations, (b), the average current in the second.

the surface shown in Fig. 1 exerts a counterclockwise
torque at very low latitudes, a clockwise torque in the
subtropical zone, and a counterclockwise torque at very
high latitudes. Correspondingly, tropical and sub-
tropical circulation gyres show up in the pattern of
transport stream function, but no organized flow
appears in the subarctic region. At the western bound-
ary, however, the transport pattern is markedly
different from the linear solution computed for the same
geometry and wind stress distribution shown in Fig. 9.
The linear solution indicates a symmetry in which the
pattern of transport stream function at the western
boundary is very much the same in regions of outflow
as it is in regions of inflow. Inertial effects greatly alter
this pattern so inflow spreads out along the boundary,
and the outflow is concentrated into a rather narrow
jet between the subtropical and subarctic gyre. Except
for the disorganized time-dependent flow in the sub-
arctic region, patterns similar to Fig. 8a have been
obtained previously in the study of a nonlinear baro-
tropic model by Bryan (1963). In the barotropic case,
the numerical solution showed that the outflow took
place almost exactly at the latitude separating the two
wind gyres. On the other hand, the present baroclinic
model shows an “overshoot” in which the outflow in
Fig. 8a takes place 3-4° north of the boundary separat-
ing the wind gyres.

Munk (1950) suggested that with accurate estimates
of wind stress over the North Atlantic and North
Pacific, the total transport of the western boundary
currents could be predicted quite accurately. This
hypothesis has never been tested, since measurements
of both transport and wind stress did not have the
required accuracy. The transport of the boundary
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Fi16. 8. Pattern of the total mass transport in the X = ¢ plane, a., the maximum transport being greater than 1.6 in the
intense gyre near the western boundary at 48° latitude, and in the ¢ = z plane, b. Both patterns must be multiplied by

V*adp, to obtain the transport in dimensional units.

current must balance the interior flow. An expression
for the transport in the linear case is obtained by
integrating the Sverdrup transport given by (2.18b)
across the basin, i.e,,

A2 0
/ f pava cose dzdh=—a () ,(\2—N\1)/2Q, (5.1)
A1 —H

where A\; and A, are the longitudes of the west and east
boundaries, respectively. Substituting from (2.18b) and
(2.18c), an expression for the total Sverdrup transport is

A2 0
/ f pova cosedzdh=V**peda(ha—Xy). (5.2)
A —H

The nondimensional transport is obtained by dividing
both sides of (5.2) by the scale transport, V*pead. Thus,

1 A2 0 A
pov@ cospdzdh=——(a—Ay). (5.3)
V*podd AL -~H V*

In the present case the basin is 0.8 rad wide. Since V**
has been chosen to be equal V* (see Table 1), the total
Sverdrup transport is 0.8,

The maximum transport shown in the linear solution
of Fig. 9 corresponds very closely to this estimate. On
the other hand, the nonlinear baroclinic case shown in
Fig. 8a has a maximum of 1.5. An inertial amplification
of transport is indicated here. This effect has already
been demonstrated very clearly in barotropic solutions
by Veronis (1966). On the basis of the present solution

it appears that linear theory only provides a minimum
estimate of the transport of the western boundary
current.

After examining the transport component most
closely connected with the wind-driven ocean circula-
tion, we turn to the corresponding transport pattern in
the north-south vertical plane, which is most closely

30° 45°

o° 15°
EAST LONGITUDE

F16. 9. Linear solution for a wind-driven ocean pattern of mass
transport stream function corresponding to the nonlinear baro-
clinic case in Fig. 8a.
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F1c. 10. Horizontal temperature patterns of the final solution. The pattern at Z = 0.0 is specified
by the surface boundary condition.

connected with the thermohaline circulation. The
pattern of the meridional mass transport is shown in
Fig. 8b. Here the transport stream function is defined by

Ag
Y= — / PO COS@d\,
A

1

A2
¥,= f poV COS A,
A

1

In the previous case integration is carried out with
respect to the vertical. Here an integration is made with
respect to longitude. The pattern of transport shows a
concentrated downflow near the northern wall, and a
very broad region of upward motion over the rest of
the basin.

The small, nearly independent gyre at the surface in
low latitudes will be described in more detail in Part II.
It plays an important role in determining the velocity
structure at the equator. A similar surface gyre is also
indicated in study A. It is shown in A that this gyre
does not form when the wind stress is absent at the
surface. The results show that the main meridional
overturning is density-driven, but the small surface
gyre is primarily wind-driven.

In The Gulf Stream, Stommel estimates that the net

overturning of the thermohaline circulation in the
North Atlantic amounts to about 40 million tons, about
the same magnitude as the horizontal mass transport
of the western boundary current. In nondimensional
units, the amplitude of the meridional circulation of
Fig. 8b is shown to be 0.8, compared to the maximum
amplitude of 1.5 in the same units for Fig. 8a. The
present calculation, therefore, indicates a ratio of about
1:2 between the strength of the vertical overturning to
the maximum strength of the western boundary current.

The apparent temperature patterns from the surface
down to the 5th level are shown in Fig, 10, At the surface
the temperature is a function of latitude only as specified
by the boundary condition on temperature. The
deviations from zonal symmetry which appear at
Z=—0.25 are best developed in low latitudes. At higher
latitudes, cooling at the surface leads to very strong
convective mixing along the vertical coordinate. The
result is to tie the temperature below the surface more
closely to the pattern specified by the surface boundary
condition. The wavy pattern at high latitudes is
connected with the time-dependent eddies that show up
in the transport pattern of Fig. 8a. The principal fea-
tures of the thermocline configuration are best developed
at Z=—1.0. A warm pool at the western side of the
ocean is clearly shown. In addition, there is a warm
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Fic. 11. Horizontal velocity vectors for levels 1-3, respectively.

tongue extending northward along the path of the
western boundary current. Along the eastern wall down-
welling at middle latitudes and upwelling at low lati-
tudes may be inferred from warm and cold anomalies,
respectively (also see Fig. 13). The inferred upwelling
in the southeast corner of the basin appears to be an
analogue to the upwelling observed off the coast of
Africa and California.

- At the 4th level (Z=—2.00) the temperature pattern
is much weaker, but part of the warm tongue along the
western boundary remains. A cold mass of water bulges
out from the western wall at about 50N along the north
side of the main outflow from the wall as shown in
Fig. 8a. This feature may be related to the cold wedge
of water in the North Atlantic trailing off to the south-
east from the Grand Banks, documented in detail by
Worthington (1962).

According to Worthington, the cold wedge in the
North Atlantic separates the subtropical gyre from a
smaller independent clockwise gyre to the north.
Recent measurements indicate that during the south-
west monsoon, a similar cold ridge on a somewhat
smaller scale may exist in the Somali Current (Swallow
and Bruce, 1966).

Since the horizontal velocity is strongly convergent
and divergent near the boundaries, the velocity field
cannot be accurately represented by a stream function.
Therefore, vectors have been used to show the equilib-
rium fields in Figs. 11 and 12. To avoid crowding,
vectors have only been plotted at alternate grid points
in the north-south and east-west direction in the
vicinity of the western boundary. The flow in the upper
3 levels shown in Fig. 11 is basically the same. Strong
currents are located at the western boundary and along
the equator. A comparison of the results for different

levels shows that the current at the equator is much
shallower than the western boundary current. At the
eastern wall, the flow to the east has even reversed at
the 3rd level below the surface. Note that the flow at
level 1 is northward everywhere along the western
boundary except very close to the equator. The flow
is quite different from what would be predicted on the
basis of the pattern of total mass transport given in
Fig. 8a. Between 45 and 50N, the western boundary
current greatly diminishes in intensity. The outflow
from the wall splits into two branches, some continuing
northeastward, and some going into a lateral counter-
current flowing southward. Note that the weak north-
eastward flowing branch tends to make a counter-
clockwise recurvature back to the western wall. This
velocity pattern appears to be closely associated with
the cold wedge evident at Z= —2.0 in Fig. 10.

Eastward drift takes place over the entire northern
part of the basin at upper levels, while flow to the west
is confined to the tropics south of 20N. At the level
nearest the surface (Z=—0.25) there is a strong drift
away from the equator, except at the western wall. This
is largely Ekman drift caused by the surface stress
pattern. The surface drift away from the equator is
largely compensated by a southward drift in the layer
just below. This pattern shows up very clearly in the
meridional circulation diagram shown in Fig. 8b.

The circulation pattern at lower levels is shown in
Fig. 12, At the Z=—2.0 level, departures from the
upper level flow are just beginning to show up. At the
equator, flow is to the west rather than to the east. The
strong current at the equator is much shallower than
the western boundary current.

Mouch greater departures from the surface flow show
up at Z=—4.0 and Z=—8.0. Over the whole basin



960 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 25
— N - Y - ~ \ [/ -~ S — s NS e o e o W
’ - /S ~ [ - PR . -~
o 7 NN / \ Nl /N I~ N 7 VL \ I NN
NS~ e = s [/ NN 0 N~ - |~ A=~ =~ =
{,, - I - - ’ \ \ - ‘ ]A \ \ - N ~ - - - ./ // / / ~ - - - - \]
2 T I N 2 T T B A T A R
L Y N N ‘/40‘\\ I L R K [ S A
’] Y o— N \ : ] i ‘ 1 l' s ’ . . . P 1] Vo l\ ' ' ' ' ' ' ’ [
]\ .- . . - . . . Pl PR ]\ - - - - - . . \ r ot l\ - - - - - > ’ PR
201 201 20
]\ — e e - - - v J\ - - -~ ~ , - - - PR l/ - - - - - . ’ “ .- o~
e L Lz=20 Vo - ., Z=-40 y oo 2=-80
0 e — — - — - - - - 2] 04~ - 4 e e . - . . . 03.. L. - - - - - - -
0’ 18 30° 45" 0 15 30° 45" 0° 15° 30° a5’
EAST LONGITUDE EAST LONGITUDE EAST LONGITUDE
- = 0~.9 Incl
— = .9-=5
- = 5-10
- = 10~15
- — 15-20
w~p = 20-25

F1c. 12. Horizontal velocity vectors for levels 4-6, respectively.

the abyssal circulation is predominantly counterclock-
wise, and accords very well with the simplified two-layer
solution of the thermohaline circulation given by
Stommel (1965, p. 160). An intense southward flow
" occurs at the western boundary underneath the western
boundary current, and gentle northward drift occurs in
the interior. Other features of the abyssal flow which
are unique include a continuous westward flow along

the northern wall fed by strong sinking in the northeast
corner.

Oceanographic cbservations only provide very in-
direct clues concerning vertical motion. In addition, the
pattern of vertical motion is extremely difficult to
predict for a rotating fluid by ordinary physical reason-
ing. Therefore, the vertical velocity components given
by the solution are of special interest. Fig. 13 shows
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F16. 13, Vertical profiles of the w component. Position is indicated by the heavy dots within the outline of
the basin. Note the scale of the abscissa is greatly expanded for interior points.
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the vertical profiles of the w component for 12 different
points in the basin. Half of the points are in the interior,
and the other half are located just adjacent to the
lateral boundaries.

The interior profiles (f), (g), (j) and (k) of Fig. 13 in
the tropics and the subtropics are basically similar.
Sinking occurs at the surface with rising motion at
mid-levels. In the subtropical gyre, sinking extends to
much lower levels than in the tropics. The deep pool of
warm water that results from this downward motion
forced by the convergence of the Ekman drift has
already been pointed out in connection with the tem-
perature patterns of Fig. 10.

The vorticity equation is a very useful tool in relating
the vertical motion to other features of the velocity
field. If (2.24) is multiplied by cos¢ and differentiated
with respect to ¢, and the result subtraced from (2.25)
differentiated with respect to A, we have ’

Ro[ Dv-tane unu—1v.,
—Ro[cose(Du—tane uv—u..) ],
-+ cos?p—w, sing cosg
=RoRe™ [Fy¢— (cosep F*),]. (5.4)
Dropping all terms of O(Ro) or less in (5.4) and
integrating with respect to sz,

z pCcose

w(z)= . (5.5)

~—1/d Siﬂ(p

As indicated by Fig. 12 the abyssal flow is northward
over most of the basin. Following the argument given
by Stommel (1965, p. 153), this northward flow is
consistent with general upwelling at the base of the
thermocline in the subtropical gyre. As indicated by
(5.5) the maximum value of w corresponds to the level
of no meridional motion.

The marked contrast between the vertical velocity
profiles (b) and (c) of Fig. 13 may also be explained in
terms of the differences in the meridional flow in the
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western part of the subarctic zone, and very weak
meridional flow in the vicinity of (c). Correspondingly
strong downwelling occurs at (b), but not at (c). The
pattern of wind stress implies a divergence of Ekman
drift in the subarctic gyre. Consequently, both points
show upwelling right at the surface, in contrast to the
downwelling at the surface in the subtropical zone.

The pattern of vertical velocity along the lateral
boundaries is more complicated. We see that very strong
upwelling takes place all along the western boundary
except right at the surface in the tropics. Evidence that
the simple relation (5.5) no longer applies at the wall
is given at point (e). Upwelling is strong at lower and
middle levels even though a strong southward flowing
undercurrent is present at the wall. In Part II of this
paper the vorticity balance in the western boundary
current is analyzed in detail. It will be shown that close
to the wall ageostrophic terms have the same magnitude
as the geostrophic terms, In particular, lateral friction
and inertia terms balance the divergence terms, leading
to the strong upwelling right at the wall.

Along most of the eastern wall, downwelling takes
place to absorb the strong inflow connected with the
general eastward drift at the surface. Only in the tropics
is the situation reversed. There an upwelling is required
to maintain the offshore flow in a westward current,
corresponding to the North Equatorial current. As
indicated by Fig. 10, this upwelling is highly significant
in changing the temperature patterns due to the strong
vertical stratification at low latitudes.

Up to this point only patterns of velocity and tem-
perature in the horizontal plane are examined. While
these patterns are sufficient to show most features of
the flow, additional insight can be gained by examining
vertical cross sections. This form is more convenient to
compare with actual observations, since oceanographic
data is usually presented this way.

First, three meridional sections of apparent tempera-
ture at different longitudes are shown in Fig. 14, the
patterns being very similar. Greater differences might
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Fi16. 14. Meridional cross sections for temperature. Very strong upwelling in the tropics
and convective mixing in the subarctic region are indicated.
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be expected if it were not for the zonally symmetric
boundary condition imposed on the temperature at the
surface. The stratification becomes shallower and more
intense in low latitudes. This effect has previously been
reproduced in the thermocline theories of Robinson and
Stommel (1959) and Welander (1959). A simple inter-
pretation in terms of a vorticity argument has been
given by Phillips (1963). For very slow motion in the

TABLE 4. Values of the sine of the latitude divided by the depth
interval between isotherms vs ¢, taken from Fig. 14, for A=21°,
This quantity is a measure of the absolute potential vorticity.

ocean it might be expected that potential vorticity
would be approximately conserved along trajectories.
For low Rossby number flow the relative vorticity term
can be neglected, and we have

do
— sing= constant.
dz

(3.6)

In the case of weak mixing, trajectories should approxi-
mately coincide with isothermal surfaces. To test how
well this idealized formula fits the present solution, the
quantity sing/Az, where Az refers to the vertical
distance between specific pairs of isotherms, is given

Isotherm Latitude . . .
interval 10° 20° 30° 40° in Table 4. Values have been picked off the temperature
cross section in Fig. 14 for A=21°, The thermal struc-
0.6-0.5 0.86 . . .
0.5-0.4 0.47 0.70 ture shows fair agreement with the absolute potential
0.4-0.3 0.43 0.56 0.61 vorticity conservation law for the region from 20°-40°
82:3% gi’g 8% 82? 0.36 of latitude. The reason for the discrepancies at 10° is
T ) ) ) ' not clear.
(6} - o] 5 .0 e |
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F16. 16. East-west temperature cross sections for the subarctic, a., the subtropics, b., and the tropics, c.
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The zonal flow is shown in Fig. 15 in three sections
which correspond to the previous temperature sections.
These sections show interesting differences in the verti-
cal penetration of various currents. Where isotachs
would have been too congested they have been omitted,
and only the maximum or minimum value is given.
The location of the maximum or minimum is designated
by a solid black dot. At the surface the counterpart of
the equatorial undercurrent and the equatorial counter-
current show up in the tropics of all three sections. Both
are shallow compared to the currents at higher latitudes.
Note that the complex eastward drift at middle lati-
tudes extends down to the bottom in some places.

Three vertical east-west sections of apparent tem-
perature are shown in Fig. 16. General features of the
North Atlantic thermocline structure are recognizable.
In the subarctic zone the isotherms slope downward to
the east, while in the subtropical zone they slope
upward towards the east, except at the surface. At mid-
latitudes a sharp gradient is present at the western
boundary, associated with the western boundary cur-
rent. At ¢=9° Fig. 16 shows that the thermocline is
nearly flat and very shallow.

The vertical cross sections of the v component of
velocity which correspond to the temperature sections
are given in the next figure. Starting with the subarctic
section in Fig. 17, we note that over most of the lower
part of the section, a counterclockwise circulation exists
with northward flow to the east and strong southward
flow along the western boundary. Right at the surface,
however, the sense of circulation is reversed and a
shallow clockwise circulation is present.

As noted previously, the subtropical section shows a
highly organized flow that conforms very well with
Stommel’s (1965, p. 160) predictions of the deep ocean
circulation. Both the abyssal and surface flow show
strong western intensification. Details of the boundary
current will be discussed in connection with Fig. 18.

The meridional flow in the tropics is much more
complex. The shallow northward drift right at the
surface has been discussed in connection with Fig, 11.
This is underlaid by a geostrophic flow toward the
equator. The southward flow forms a shallow continua-
tion of the southward drift in the subtropical gyre. At
greater depths, the abyssal currents are weak and
disorganized.

A comparison of the Gulf Stream with the computed
western boundary current is afforded by Fig. 18. A
marked difference exists in the horizontal scale of the
two figures, but a careful examination shows that the
computed current is about 3° wide. On the other hand,
the observed width according to Swallow and Worthing-
ton (1961) is about 1° of longitude. The simplified scale
theory of the preceding section indicates that for an
inertial current, the width should be proportional to
Rot. Tables 1 and 2 indicate that the present value of
Ro equal to 2X10™* is about an order of magnitude
greater than an appropriate one for the real ocean.
Using (3.3) this would correspond to a factor of 3.2
difference in width of the boundary current. The result
is not inconsistent with Fig. 18.

With respect to velocity, one would expect that
increased width is associated with a slower current. In
order to make a comparison the maximum speed of the
calculated boundary current should be multiplied by a

factor of V10 or 3.2. This gives a velocity of 77 non-
dimensional units. Based on the parameters given in
Section 4b an appropriate scale velocity V* for the real
ocean is about 2 cm sec™!, Thus, the calculated current
maximum would correspond to 154 cm sec™?, compared
to the observed velocity maximum of 180 cm sec™, a
discrepancy of about 159, being indicated.

A similar comparison between the computed pattern
of the equatorial current and observation is allowed by
Fig. 19. The computed pattern on the left shows the
zonally averaged pattern of the % component. The
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computed pattern is based on

velocity values at levels

placed —0.25, —0.50 and —2.00 units below the
surface. The resolution is not good enough to make

details in the computed pattern

significant. For example,

it is not possible to determine whether detailed vertical

~

o
N
A

resolution in the numerical net would allow a reversal
of flow in the surface layer. In Fig. 19 velocities com-
puted at the top level are simply extrapolated to the
surface. The width of the computed current is 3.5°
compared to an average width of about 1.5° in the
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Fic. 19. The zonally averaged » component of the velocity in nondimensional units, a., and the Pacific Equatorial
Undercurrent at 140W (Knauss, 1960), b. Units are cm sec™.
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observed pattern on the right. If the maximum velocity
of 15 units is multiplied by the same factor, V*V10,
used in the case of the western boundary current, the
result is 96 cm sec™!. This is about 759, of the observed
maximum shewn on the right.

6. Summary

In order to establish a basis for further work, a single
numerical solution of an ocean circulation model is
described in detail. Symimetry is assumed to exist at the
equator and the basin is bounded laterally by two
meridians 45° apart. The basin extends to a latitude of
67°, and is of uniform depth. The circulation is driven
by a north-south temperature gradient imposed at the
upper boundary and by a pattern of wind stress similar
to that observed ever the real ocean. The solution is
obtained by an extended numerical integration of the
time-dependent equations.

Many features of the thermocline and circulation
structure, which have been individually studied in
previous investigations, are included in a single solution
computed on the basis of very simple and straight-
forward boundary conditions. The thermal structure is
very similar to that found in a previous study by the
authors. A higher effective Reynolds number for the
lateral turbulent viscosity permits a much greater role
for the nonlinear terms in the vicinity of the western
boundary current. The solution confirms two interesting
results concerning nonlinear western boundary currents,
which up to now have been based solely on barotropic
models. One of these results (Bryan, 1963) is that
inertial effects concentrate the outflow between the
subtropical and subarctic circulation gyres into a
relatively narrow jet.

The second result, first obtained in solutions for a
barotropic model by Veronis (1966), is that inertial
effects produce a recirculation associated with a lateral
countercurrent which may amplify the mass transport
of the western boundary current by as much as a
factor of 2.

In addition to the western boundary current, a strong
jet occurs along the equator. The intensity is very much
the same as the western boundary current, but it tends
to be much shallower.

No tendency was found for the time dependent
motions in the solution to damp with increasing time,
and it appears likely that a stable steady state does not
exist in the present case. More details on the time
dependent motion are given in Part IT,
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APPENDIX

Finite Difference Treatment of the
Planetary Boundary Layer

The numerical errors involved in calculating upwell-
ing and the lateral advection of heat in the top layer of
the numerical model are examined in this appendix. In
particular, we consider the case in which the planetary
frictional boundary layer is much less than the thickness
of the top layer. Errors are estimated by determining
the integrated values of the drift current and the
advection of heat by the drift current from the Ekman
theory. The results are then compared to what would be
calculated with the finite difference method for the
same case,

Consider the drift current governed by the equation

2idg%q=q,., (A1)
where ¢g=u+i and the Ekman depth is defined as
dg= (x/Qn)}. We let the boundary conditions on (A.1)
be

Kq.== T*/pO; 2=0,
gzo) =,

The solution for the drift current is then

g= (1—1)7*(d 5/ 2xpp)e 9 z1dx, (A.2)
If we now let Az be the thickness of the top layer, the
total transport of the drift current in this layer is

0
[ gdz= —ir*dy?/ epot - - -0 (eb7148),  (A.3)
~Az

_ The finite difference equation corresponding to (A.1)
is

2id 57 (A2)*qr= gr—1— 21+ Qrs1. (A4)
As a simplification we will consider only a uniform
spacing of grid points with respect to depth with the
boundary conditions, i.e.,

Jo—q1= T*AZ/Kpo, k=1

. (A.5)
q:=0, k large
Substituting (A.5) into (A.4), we find the drift transport
in the top layer to be

qlAZ= —'iT*dEZ/ZKp0+ o 'O(dE/AZ)2 (A.6)
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In the case AZ>>dE the total drift transport in the top
layer is nearly the same in the finite difference solution
(A.6) as in the continuous case (A.3). Errors in the
total transport calculated by (A.6) will increase toward
the equator, since the Ekman depth is inversely
proportional to (sing)}. For the parameters used in the
present calculation the difference between (A.3) and
(A.6) at 20° away from the equator would be less than
197, while at 5° away from the equator the error would
be nearly 49,.

Errors in the computation of the lateral advection of
heat by the drift current in the top layer are more
serious. As indicated in Section 3 averages of products
in the equations are approximated by the product of
averages. For example,

1

0
—/ qVddz — qi Vi,
Az —Az

(A.7)

where q; and A¢ are averages of the horizontal velocity
and the horizontal gradient of heat in the top layer. To
calculate the error in the approximation (A.7), we must
consider a specific temperature distribution. Suppose
that a temperature gradient imposed at the surface
decreases linearly with depth and in proportion to
v/Az; that is,

Vi=G*(1+vz/Az). (A.8)

For 4=1 the surface temperature gradient would go
to zero at the base of the top layer.

Substituting (A.2) and (A.8) for q and V& in the
left-hand side of (A.7), we obtain

(1—4)r*dgG* [0 _
_______/ (1+’YZ/AZ)6(1+’)’/dEdZ
ZKAZpo Az
ir*dg’G*
= ——2—'5—[1—' (1—1)‘YdE/2AZ]
kAzpo

t++-0(e2eiae),  (A.9)

while the right-hand side of (A.7) may be obtained by

integrating (A.2) and (A.8) separately and multiplying
the integrals together, i.e.,

(1—i)r*dsG*p [0 s
————————l: / ( 1+—>dz:|
2k (Az)%p0 ~Az Az
0
X / D8 dBds = — {7*d 2G*(1—~v/2)/ (2kpoAz)
—Az

- O(eBel9E), (AlO)
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The final result gives the ratio of the right- and left-hand
sides of (A.7) as

1 0 1—v/2
0V / (— / qV0dz>= . (A1)
Az)_a. 1— (1—i)ydg/2Az

The error depends on the parameter 7. In the con-
tinuous solution the advection by the drift current is
concentrated near the surface where the horizontal
temperature gradient is largest. The finite difference
method may be interpreted physically as smearing out
the effect of the drift current throughout the entire
depth of the top layer. The result is a serious under-
estimate of advection by the drift current if the hori-
zontal temperature gradient decreases rapidly below the
surface. For example, if the temperature gradient im-
posed at the surface goes to zero at the base of the first
layer, the error will be about 50%. If the horizontal
gradient is only reduced by one-half at the base of
the first layer, the error is 259,
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