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Unstable waves in a western boundary current are investigated in a full three-dimensional,
numerical model. A numerical integration is carried out which traces the evolution of a
growing wave on an initially uniform current with vertical shear. As indicated in earlier
analytic studies based on simpler 2-layer models (Orlanski, 1969) the current is baroclini-
cally unstable for the observed parameter range of the Gulf Stream.

Large meanders of the jet in the western boundary current are noticeable within 10 days.
Finite amplitude effects, which can be investigated by the numerical model, reduce the
growth rate of the disturbance by nearly an order of magnitude compared to linear theory.
Comparison with observations indicate that the meanders of the Florida Current between
Miami and Hatteras are probably baroclinically unstable waves.

Introduction

It has been recognized for some time that the dynamics of the ocean and
atmosphere are closely analgous. Similar phenomena take place from the
high frequency range characterized by internal gravity waves to the low
range of frequencies dominated by quasi-geostrophic motion. Detailed tem-
perature measurements indicate that the ocean has relatively large-scale
density discontinuities that are very much like atmospheric fronts. The
oceanic fronts have a characteristic slope which is determined by the density
difference, rotation and vertical shear of the currents parallel to the front.
Meandering currents are observed in those parts of the ocean where strong
density gradients are strongest, such as the Gulf Stream and Kuroshio regions.
Since atmospheric fronts are known to be baroclinically unstable, it appears
to be appropriate to suspect the same mechanism may be present in the
ocean. This point has been investigated in an earlier analytic study by the
author of the stability on a two-layer model. Before going into the details
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of this study, we shall try to describe in a very simple way how a baro-
clinically unstable wave can develop when horizontal density gradients are
present.

The argument is not a new one (Charney (1947), Smagorinsky (1963),
Pedlosky (1964), etc.). It has been used to describe the instability mechanism
for large scale quasi-geostrophic atmospheric waves. Here, we shall point .
out that we do not restrict ourselves to waves that have very low frequencies
(quasi-geostrophic waves). In fact, they can even have frequencies close to the
inertial frequency; but we shall return to this point later.Assume that we have a cross section of the density field as shown in '

Figure l(a) where the constant density lines have an angle oc with the
horizontal. Since any type of motion with any type of slope is possible, we
will look at four different trajectories to see when the system can be unstable.

Suppose we force a particle to move in a plane, A to A'. Since the particle
is heavier at A than when it is displaced to A I where the environment is

lighter, it will feel a restoring force proportional to the difference in density.
Consequently, the particle will return to its original position, and if the fluid
is inviscid, it will overshoot the original position and oscillate. This type of
motion can be called an internal gravity wave.

If the particle is displaced in the plane, H to H' where the particle density
at H is heavier than at H', but the gravity force due to this difference acts
perpendicular to the plane, the particle will feel no restoring force and will
remain in its new position.

Now, if we consider the plane C to C/,- again the particle is heavier at C
than at C/o However, in this case the gravity force will act to accelerate the
particle past C/ and conversely, a particle in C/ that moves to C will feel the
gravity force lifting the particle. Therefore, motion in these planes will be
amplified. It is possible to see that in this case the velocity is continuously
increasing as well as the kinetic energy, but since lighter fluid moves to regions .
of heavier fluid and vice-versa in average, the horizontal density gradient will
diminish. Accordingly, the available potential energy will decrease and a
clear conversion from potential energy to kinetic energy can be deduced by .
these unstable processes (Baroclinic Instability).

Finally, since the particles in the last plane, D to D', have the same density,
they will not feel any restoring force and the plane will be neutral.

We can deduce then from this simple argument that any motion between
Hand D or with trajectory planes where the angle will be less than oc, the
system must be unstable regardless of the frequency or the horizontal scale
that the motion has. The only restrictions for frequencies or scales are that
the time variation of the mean density pattern, which we have described, is
larger than the wave period and also that the uniformity in the horizontal
scale must be larger than the wavelength of the unstable waves. On the basis
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of these restrictions, the most unstable slope for the waves will be given by:

w 1
-~ --oc
u 2

where wand u are the vertical and horizontal velocity respectively and ~ is
the slope of constant density and can be written:

oc = Px/pz

Charney (1947) and Pedlosky (1964) demonstrate that either the variation
in the Coriolis parameter (/1) or a slope in the topography in the lower
boundary will reduce the angle oc where the waves can be unstable. They
conclude that if these elements are included, the system will be more stable.

Z

X

(0) (b)
FIGURE l(a) Different trajectories that could be unstable (shaded area) in a baroclinic
fluid. (b) The bottom slope in relation to slope of the maximum instability.

Orlan ski (1969) previously discussed this type of instability for the Gulf
Stream showing that, in the opposite sense, the bottom topography can
destabilize the system. Furthermore, from the argument we are following,
if we assume that the ground has a certain slope, as in Figure 1 b, it will
seem natural to say that any type of horizontal motion will induce a vertical
motion proportional to the bottom slope by the continuity equation:

w=WHVh~uhx'

Then, if hx is equal to 1/2 Px/pz, which is the slope of maximum instability,
the slope of the bottom topography will induce the waves to always have a
plane that corresponds to the maximum unstable waves. This last criterion
will only be true if the strong horizontal density gradients are close to the
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bottom topography. For example, consider the coastal boundary currents
in the ocean.

Using an argument similar to the one previously discussed, we can predict
the scale of the baroclinically unstable waves. Let us assume that the mean
state is in geostrophic balance, then the horizontal density gradient will be
related to the vertical shear flow as follows:

-fVz
Px=-.

g

Substituting in the expression for the slope of the isopycnics:

-fVz
oc=~,N

where [N2 = (-gPzlpo)] is the square of the Brunt-Vaisala frequency.
Now, if the Rossby number is defined as [Ro = (VlfA)], where A is the scale of
horizontal length in which V varies, oc can be expressed by:

-p Aoc = ~ Ro if ' where

H is the height of the vertical variation of V, or the depth of the fluid. Then
the slope of the maximum unstable waves is:

w Ip A
-=--R-.u 2 N2 0 H

We must distinguish two different cases to evaluate the ratio of (wlu)
from the continuity equation. If we are looking in a regime of small Ro,
it can be shown from potential vorticity arguments that the magnitude of w
will be:

H .

w~Ro7u,

where 1 is the horizontal wavelength. Using the previous relation, the magni-
tude of the horizontal wavelength will be given by:

l~~ (~ ) ~~
A P A'

where a is the Rossby radius of deformation for a stratified flow. We can see
then that for atmospheric waves where a = 1000 km (H = 104 m,
N = 10-2S-1) as well as A = 1000 km, the wavelength for cyclone waves,
is on the order of 2000 km. For the Gulf Stream over the continental shelf,
with a = 70km (H = 103 m, N,...,7x 10-3S-1) and A = lOOkm, the wave-
length will be on the order of 100 km. On the other hand, for a region of the
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Gulf Stream in the deep ocean where 0 = 120km (H = 4 x 103 m, N;::::
3 x IO-3S-1) and again A = 100 km, the wavelength will be about 300km.
A similar estimation can be made for the Antarctic circumpolar current;
there the wavelength will be on the order of 1000 km.

Notice that we previously assumed Ro to be small in finding the scale of I;
however, this is not necessary because if Ro is on the order of unity,
[w = (H/I)u], then 1 will be given by:

2021=-.
RoA

However, since Ro is the order of unity, the expression of 1 will be the same as
used before.

In order to present a representative model of this type of wave in the ocean,
we will use a three-dimensional model with continuous stratification and
similar characteristics as those in the area of the Gulf Stream over the conti-
nental shelf. The dynamics in this region has been discussed by many scientists
and a complete reference can be seen in Orlanski. (1969). In each discussion
linear theories were used to describe the unstable waves. In this paper, we
will present the integration of a completely non-linear system.

1. Description of the model

The numerical model used in this study is ~asically that described in Bryan
(1969) with only minor variations. The equations of motion are the Navier-
Stokes equations with three basic modifications. The Boussinesq approxi-
mation is made in which variations of density are neglected except in the
buoyancy term. Hydrostatic balance is assumed.

Viscosity and conductivity are replaced by new terms representing the
diffusion of momentum and heat by small scale transient disturbances.
A p-plane coordinate system is used in which both the vertical component
of rotation and its latitudinal derivative appear in the equations as constants.

Let
no = sin 350

u = x

v = y (1.1)

The equations of motion are:

ut+ffu-2Qnov = -(pJPo)x+Fx (1.2)

vt+:?l'v+2Qnou = -(pJPo)y+FY (1.3)
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where the advection operator is defined by:

ff,u = (u,u)x+(v,u)y+(w,u)z (1.4)

and the effects of turbulent diffusion and viscosity are:

FX = Avuzz + Ah(Uxx + Uyy) (1.5)

FY = Avvzz+Ah(Vxx+Vyy) (1.6)

where Av and Ah are coefficients of vertical and horizontal diffusion respec-
tively. The continuity equation is:

Wy+ux+Vy = 0 (1.7)

and the hydrostatic relation is:

pg= -Pz (1.8)

If a linear equation of state is assumed, then salinity may be eliminated
from the model by the use of an apparent temperature T (Bryan and Cox
1967) such that:

p = po(I-IXT) .(1.9)

where IX is the thermal expansion coefficient. The conservation equation is:

Ay )Tt+ffT = 7; Tzz + Ah(Txx + Tyy) (1.10

where [) is defined by:
1 (p)z<O

[) = (1.11)

0 (p)z>O

The boundary conditions at lateral walls are: Non-slip condition for velocity
field and the adiabatic condition

oT
u, v = Oand- = 0 (1.12)

oXm
for the temperature field.
Where Xm is the coordinate normal to the wall. It seems justified to use those
conditions over the left wall but on the right hand side it is rather artificial
since the channel does not cover the entire ocean. However, we assume that
most of the disturbance will be generated in the left of the channel (the place
in which the baroclinicity is maximum) and will decay exponentially to the
right wall. At upper and lower boundaries,

~,~,!!.! = 0 (1.13)
oz oz oz
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The vertical velocity is taken to be zero at the surfa~ ("rigid lid" approxi-
mation) permitting a more efficient calculation. This restriction filters out
high speed surface gravitational-inertial waves which would otherwise limit
the length of the timestep of integration. At the bottom,

w = uHx+vHy (1.14)

where H is depth.
Having specified a rigid lid, it is possible to define a transport stream func-

tion such that:
I/Ix = f o Povdz

-H

l/Iy = - f 0 Poudz (1.15)

-H

and
The velocities are then calculated in two parts:

u=ii+u
and

v = v+fj

where ii, v represent the vertically averaged motion and u, fj are the deviations
from the vertically averaged motion. The deviations u, fj are calculated from
a vertically differentiated form of equations (1.2 and 1.3). The vertical
differentiation permits the elimination of pressure from the equations by
use of Eq. (1.8). The questions are then integrated vertically to obtain a
solution for 1/1, which in turn yields the vertically averaged motion ii, v. The
equations are transformed to finite difference form and integrated over time
from an arbitrary initial state. The differencing scheme is the same as that
of Bryan (1969).

2. Initial conditions

In order to achieve an idealization of the steady state condition of the Gulf
Stream, in the area of Miami to Cape Hatteras, it is assumed that the North-
South velocity is in geostrophic balance with the temperature field. This
assumption is used as an initial condition for the model. Accordingly, a
suitable analytic expression of the temperature can be defined as follows:

T(x) = To-dT(3-2«5x+ 1)e-clX)(z8-l)e2£Z (2.1)

in which the parameters <5,8, To, and dT can be fixed in such a way that they
will meet the realistic conditions. The horizontal gradient of temperature at



304 I. ORLANSKI AND M. D. COX I

the surface is about 12°/500 km and by using Eq. 2.1, we find that the surface ,
temperature is given by:

T(x,o) = To+LlT[3-(2<5x+ 1)e-6X] (2.2)

where To will be fixed by the deep water temperature (4°C) and <5, which is
the inverse of the horizontal scale length, is equal to 1.25x 10-sm-1; then,

2 m/sec 1 m/sec

220

5 180

.100

.150 100

t .200

Zlm)

.250

60

300

.350

.400

500

X(km) -
FIGURE 2 A cross section of V and T and the bottom topography in the region con-
sidered at the intial time.

LlT will be approximately 7°C. Also, the vertical variation of the temperature
field is given by B, which is the inverse of the scale height, and is equal to
0.65 x 10- 3m -1. This profile just described corresponds roughly to the condi-
tions of the Gulf Stream at 35°N latitude.

The Equations (1.2), (1.8), and (1.9) give the relationship between V and
T. For a flow which is steady state and in geostrophic balance, the vertical
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shear is related to the horizontal temperature gradient (thermal wind relation): I

Pxz -glXT xVz = _21""\ = 21""\ .(2.3)
~~pono ~~no

Using the temperature profile definition, Eq. 2.1, and integrating the vertical
shear, V z, we obtain the corresponding velocity profile:

glX ( 2 -6x )ilT (3 ) 2tz V(X,Z) = ~ <5 xe 7 2-ez e (2.4)

The cross section of V and T and the bottom topography in the area
considered are shown in Figure 2. With the initial conditions discussed, we
let the system run for about 100 time steps or until the system is in complete
equilibrium [notice that the geostrophic balance does not account for the
dissipation terms in Equations (1.2) and (1.3)]. Now, in order to let the system
choose the proper scale of motion, we disturb the equilibrium state, at one
time only, with a small random perturbation in all fields.

Unfortunately, due to the limitations of the computer, we are able to choose
only four different cases; these differences are shown in Table 1. (D X, D Y, DT
are the cross stream, down stream and time intervals respectively; L is the
length of the channel). In all four experiments there were 60 grid points
North to South, 25 grid points East to West, and 15 layers in which the first
10 upper layers are 72 m apart and each consecutive layer thereafter has a
depth equal to twice the depth of the previous layer. The first experiment has
a coarse resolution in the N-S direction, but this was done to determIne which
horizontal length would be most predominant. Experiments II and III differ
only in their value of horizontal eddy viscosity, Ah whereas, experiments III
and IV differ only in the p term of the vorticity equation. In the next section
we will discuss the field patterns of the solutions for the different cases.

3. Field pattern characteristics

The response to the initial conditions of the numerical model were quite
similar, that is to say, at least for the most predominant scale which develops
as a result of the instability in the mean conditions. Therefore, we will only
describe the solution for one of the experiments (IV). Figure 3 shows the
horizontal pattern for temperature and the N-S velocity, both for the first
layer (72 m) and for different time integrations (400-1000 time steps). It is
obvious that the initial conditions did not have any y variation and after the
perturbation is introduced, the system does not show any distortion after
400 time step integrations. We can see that from time step 400 on, the small
random scale imposed begins to organize into larger waves until time step
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1000 where a fully developed wave pattern is clearly seen. The contours of
the N-S velocity have the same evolution from random noise to a full wave-
like behavior after 1000 time step integrations. A more comprehensive view
of the wave development can be seen in Figure 4 in which the horizontal
patterns of the E-W velocity component are shown for different times
(600-1200 time steps) and at two depths (72 m and 360 m). At time step 600
we can see a weak wavy pattern in the first layer for u and as time progresses
the pattern becomes more intense having a characteristic wavelength of
L{4 (112.5 km). It should be noted that the maximum intensity of the u
velocity is about 60 cmjsec. A similar pattern can be seen in the deep layer
(360 m); however, the amplitude is much smaller. The short extension of
the ellipsoids as compared to the upper layer is because part of layer 5 has
already intercepted the bottom topography (see Fig. 2).

The perturbation temperature, defined as the total temperature minus the
mean y average temperature, exhibits the same type of wave characteristics.
Accordingly, Figure 5 shows the horizontal pattern of perturbation tempera-
ture for two layers as before, but with differe~t times; the patterns are similar
to those of Figure 4. It is interesting to note that the artificial East wall at
500 km from the coast will not have any effect on the wave development.
Also, we can deduce that the P effect on the waves of the order of 100 km
scale will have little consequence. This deduction is clearly supported by the
similarity of the results in Experiments III and IV. The scale of the waves will
become more evident when we discuss the energy spectrum in the next section.

A small portion of the total channel is shown in Figure 6 with velocity
vectors for the two different layers and three different times. The size of the
region is 150 km North-South and 250 km East-West; the shaded part denotes
the West wall. The most significant feature in this figure is that after 8 days
the wave is developed enough to produce a large meandering of the jet.

Data for temperature and velocity at one latitude was stored for every time
step. With the use of this data, a cross section (Fig. 7) was made for tempera-
ture and V velocity corresponding to 1000 time steps. We can notice that the
center of the jet oscillates west to east about 20 km as compared to the
initial conditions in Figure 2. The temperature field at this time step (1000)
looks similar to the initial conditions; however, the isotherms are somewhat
more wavy. It should be pointed out though, that a small positive slope of the
isotherms is developed at the eastern boundary. Consequently, an eastern
counter-current, (north-south), will develop and produce profound dynamical
differences due to the fact that horizontal shear in this area will cause a baro-
tropic instability to develop; this is noticeable in the right side of Figure 5.
The development of the counterflow can be explained by our artificial eastern
wall. Since the total transport is constant across the channel and also because
the baroclinic waves in the left side of the channel have the net effect of
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increasing the transport there, it is natural to expect that the counter-current
will exist, such that the transport will remain constant. This effect is only
noticeable after 1000 time integrations. In the energetics section, further
information will be given to support this transport effect.

Figure 8 shows the temperature, T and (u,v) velocities, at a fixed point
(x = 100 km) in space as a function of time. As with the previous figures
discussed, the response in these fields is fairly steady for about 500 time steps.
Thereafter, a large oscillation is noticeable in all fields. The period of the
oscillation is about one day which is close to the natural period. We should
like to mention that the waves are a product of baroclinic instability which
will be shown later. The remarkable difference between the period for those
baroclinic waves and the baroclinic waves of the atmosphere, which have
periods of a few days, is the horizontal wavelength of such waves; the atmos-
pheric ones have scales on the order of a thousand kilometers and the
oceanic ones are on the order of a hundred kilometers in agreement with our
previous scale analysis.

4. Spectral analysis

Due to the periodic boundary conditions at the north-south boundaries,
we can Fourier decompose the solutions and follow the physical characteris-
tics of each independent wave. Any of the physical quantities, temperature,
velocity, etc., will be decomposed in the following way:

.n2n n2n
lp(x,y,z,t) = ~ lp~ sm Ty+lpN cos TY (4.1)

where lp~(x,z,t) and lpN(X,z,t) are
defined as follows:

.n2n
sm-y

1 f 2" L
lpN(x,t)l~ = :-i2; lp(x,y,z,t) dy (4.2)

v 0 n2n
cosT y

The data was analyzed every 50 time steps. However, we will only discuss
the results at a fixed x of 100 km, (I = 5), where the maximum baroclinic
zone occurs. The amplitude of the Fourier components, ([(lp~)2+(lpN)2]t),
will grow exponentially in time for those waves which are unstable. Figure 9
shows the amplitude of the faster growing wave for the experiments performed,
that is, Experiment I, where N = 7 and), = 128 km and Experiments II,
III, and IV where N = 4 and), = 112.5 km. It can be seen that the growth
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rate is constant for the first 600 times steps, thus indicating that the instability
develops as the linear theory predicts (Orlanski, 1969). However, at longer
times, the wave amplitude levels off and the growth rate diminishes. This
effect shows the invalidity of some interpretations of the observational
analysis dealing with finite amplitude waves (D. Hansen, 1970) in which a
growth rate was inferred for those waves and compared to the linear theories.

If we assume the amplitude has an exponential growth rate, let us say:

<p = <p(x,z)e"it ,

then from the slope of the curves we can infer how much the value of 0" i will be
in the two regions, that is, the linear one (from 200 to 600), .96 x 10- 5 sec-1
for Experiment I, for II, III, and IV about 1.2 x 10- 5 sec-1; for the finite
amplitude region, the value is about .085 x 10- 5 sec-1 and for II, III, and IV

about .22 x 10- 5sec- 1. A more descriptive picture of the growth rates, for
wave numbers in the linear and non-linear range, 0" 1 and 0"2 respectively, is
shown in Table II; the change in amplitude from the initial conditions to
the point where the amplitude levels off as well as ,the elapsed tim~ to reach
the maximum amplitude are shown. We can see that all of the wave numbers
reach a maximum amplitude in an interval of about 8 days. A comparison
will be made with the values obtained by Orlanski (1969) irrespective of the

""O'
,I.,
"
.,..

..', '

-c:;:i:=--'.""-'i~+~~1
.:1-'= ~ ",: %--::-:::;:~t;-::~C:- -

5 .4//-:. ~-

~ EXP,I N;7 // ~~'.. ~ x' ."
w /" ~'
~ "..
~ /' . r'...' '-,.~ '" ,'/ " ~ ," ~_o' EXP// N;4

~ .' _.~( /

.~EXP. //1 N;4
EXP.IV N;4

"~'o'
I

.

.
"
,
,

..'.0"
0 1$00

TIME STEP

FIGURE 9 The amplitude for the most unstable wave as a function of time is shown for
the different experiments.
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large difference between the simplified two-layer case and this multi-layer
model. The most similar configurations correspond to Figure 17 in the pre-
vious paper in which the growth rate of the most unstable wave was estimated
to be Ui = .046 for a wavelength of 246 km. For similar wavelengths, say for
wave number N = 2, the estimated initial growth rate corresponds to Ui = .1
which is double that predicted by the linear model. Keeping in mind the
large difference between the two models, we must conclude that the agree-
ment is reasonably good. Unfortunately, there are no direct oceanic measure-
ments to compare with out solutions; however, a unique set of satellite

v
L..
0
~--
~
Go
~
<

~
~--<«
~~
~

FIGURE 10 The spectral distribution of the temperature amplitude from 100 to 1200
time steps (Experiment IV). ,

pictures (Rao, 1971) shows that a full wave in the Gulf Stream can develop
in less than 15 days. In addition, from the clear wave pattern, we can estimate
a wavelength of 120 km. More satellite pictures could reveal the transient
behavior of such waves and a better comparison would then be possible.

Figure 10 shows the spectral distribution of the wave amplitude for all the
different times in Experiment IV. During the initial times a strong instability
is noticeable at wave number 4. From time step 700 on, the mean unstable
wave (N = 4) decreases its growth rate and reaches a maximum around time
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step 1200; also at the former time, another wave (number I with a wavelength

of 450 kIn) starts to grow. It is noteworthy to say that, in Experiment I

with the channel length doubled, the most unstable waves were N = 7 and 2,

corresponding roughly to N = 4 and I in this case (IV). As with wave number

7, wave number I reaches a maximum at time step 1200."

In concluding this section, we mention that the phase velocity of the waves

(multi-layer model) is close to the mean velocity, 1.5 mis, corresponding to

the layer of strongest baroclinicity. This may appear artificially high but a

more realistic profile will give mean velocities on the order of .4 m/s.

5. Energetics of the unstable waves

An important factor in understanding the physics of unstable waves in the

coastal boundary jet is the energetics involved in such dynamic processes.

Orlanski (1969) discusses the energetics of the analogous two-layer model in

great detail. The energetics of the multi-layer model in this case will be

analyzed in a similar manner.

Suppose that we define a mean quantity as follows:

I yO+L

<I>(x,z,t) = -f <fJ(x,y,z,t) dy (5.1)

L yO

then the fluctuation quantities are:

<fJ'(x,y,z,t) = <fJ(x,y,z,t) -<I>(x,z,t) (5.2)

The same averaging procedure can be applied to the equations of motion

(1.2-1.10) and then substituting them into the original system (1.2-1.10) will

result in a new system for fluctuation quantities defined as follows:

U't+(.Pu)'-2Qllov' = - ( f. ) '+F'X (5.3)

Po x

V't+(.Pv)'-2Qllov' = - ( f. ) '+F'Y (5.4)

Po Y

T't+(.PT)' = ~ T'zz+Ah (Txx+Tyy)' (5.5)

V. V' = 0 (5.6)

-p'z = gp' (5.7)

This system is such that the y average will be identically zero. The fluctuation

advective terms are:

(!I'll)' = V'. Vji+\!.Il'+V.VIl'-V'. VIl' (5.8)



318 I. O~LANSKI AND M. D. COX

It is easy to verify that:
(ff',u) = (fi',u)+(ff',u)'

where (5.9)
(fi',u) = V. VJi+V~.

The average of the advection terms is equal to the advection of mean quanti-
ties plus the integrated effect of the advection of the fluctuation quantities.

The total horizontal kinetic energy is given by the volume integral of the
density energy: (U2 + V2)KT = JJJpo ~ dzdydx (5.10)

Since u = il+u' and v = O+v', KT can be expressed as:

il2+02 U'2+V'2KT = JJS~ Podv+JJJ -r-podv = Km+Ke, (5.11)

where Km is the mean kinetic energy and Ke is the eddy kinetic energy.
With the help of the system (5.3-5.7) we can derive the .time variation of the
eddy kinetic energy by adding equations (5.3) multiplied by u' to (5.4)
multiplied by v' and integrating over the total volume.

LJJ(~+~ ) dz dx+LJJ[(~+'{¥;)f;;;]
2 2 t

= -LijJ(P;;J +i1;;;;) dx dz+ SS'ffiXu'+FYv' dx dz] (5.12)

Since the first term on the left represents the time variation of the eddy
kinetic energy, the other three integrals represent sources or sinks of eddy
kinetic energy. The second integral on the left in (5.12) can be expressed as
follows by using (5.8):

--il'2 u,i
(fi'u)'u'+(ff'v)'v' = u'\I'. Vil+\I. V2+\I'. VT

-'2 -'2-V v+v'\I'. vo+\7. V2+\I'. V2 = (5.13)

--U,2+V,2
u'\I'. Vil+v'\I'. vO+\I. V~

Notice that the average of the last term in (5.8) is multiplied by a fluctuation
quantity and is zero; therefore, is it not included in (5.13). The last term in
(5.13) is the advection of eddy kinetic energy by the total flow and the other
two terms are the conversion of energy between the mean and eddy kinetic
energy by Reynolds stresses. Then, the volume integral of the terms in (5.13),
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remembering that the periodic and rigid boundaries produce zero net flux
of kinetic energy, is

(U'2 +V'2)JJV. 2 dzdx=O.

Then the remaining terms are:

LJJ[~+~Jdzdx = LJJ[J;;:Ux+HUz

+;;;;'V x+-;;;;'Vz] dz dx (5.14)

Since the initial mean flow is characterized by a velocity V(x,z) and the
fluctuation vertical velocity is far smaller than the horizontal velocity, it is
convenient to split (5.14) into two terms:

JJ[(oCf'u)'u'+(oCf'v)'v'] = -JIl dx- JI2 dx (5.15)

0-
where 11 = -J u'v'V x dz

h(x)

0 -
and 12 = -J [U,2Ux+V'W'Uz+v'w'Vz] dz

h(x)

The next terms that we will expand are the integrals containing the pressure
terms in (5.12),

u'p'x+v'p'y = (p'u')x+ (p'v')y+ (P'w')z+gp'w' (5.16)

and since the total effect of work done by pressure forces at the surface of the
domain is zero, the volume integral of(5.l6) is:

LJJu'p'x+v'p'y dz dx = LJJg~ dz dx

= -LJJpoKtX"fi;;dzdx (5.17)

The dissipation of energy due to viscous forces are:

nx+~ = A ~+A uV+A ;;;VZ-;;;+A v7 (518)h v zz h v zz .

Finally, we can express the time change of eddy kinetic energy (5.12) as
follows:

LO LO
J J Ket dz dx = J(Il +12) dx+ J J PogtX~ dz dx
OH OH

+ JJ(Ah~+AvV~) dz dx (5.19)

The interpretation is simple. The time rate of change of eddy kinetic energy
is given by a conversion of mean kinetic to eddy kinetic energy by Reynolds
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stresses:
(Km,Ke) = S(/1 +/2) d_~ ,

a conversion of potential to eddy kinetic energy:

(P e,Ke) = SSPolXT'w' dz dx = 13,

and the loss of energy by dissipation:

Diss = SS(V'. V2V' + ) .

A similar balance equation can be derived for the temperature squared which
is related to the potential energy contained in the fluctuation field. If we
multiply (5.5) by T' and integrate over the whole volume, we have:

(T'2 )SS"2 tdzdx = -USY;W'.VhTdzdx+SST'w'T.dzdx

+ SS~rv2T + SSAvT'T'zz dz dx] (5.20)

Moreover, if we compare Figs. 2 and 7, we notice that the mean temperature
does not change much with the evolution of the waves. Therefore, we are
justified in multiplying (5.5) by -glX(T' fT.) and integrating over the total
volume; thus we obtain a balance equation for the eddy potential energy:

glX- -
SSP et dz dx SS-T'V' VhT dz dx- SSgIXT'w' dz dx

Tz

+ Diss. of Pot. Energy, (5.21)

where the left term is the time rate of change of eddy potential energy which
is balanced by the conversion of mean potential to eddy potential energy:

) SSglX~, d(P m,P e = =-T V z dx ,
T.

minus the conversion of eddy potential to eddy kinetic energy (P e,Ke), plus
the dissipation of eddy potential energy. Notice that even though (5.20)
appears to be exactly the same as (5.21), they are not the same because the
mean temperature is not only a function of z, but also a function of x and t
as well. If we remove this assumption, there will be extra terms in (5.21)
that will be added to the conversion of mean potential to eddy potential
energy; however, those terms are very small and independent computation of
the four integrals in (5.21) shows a very good balance.
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The eddy potential energy equal to:

1'2
II -gIXT dy dz

z

as previously defined in (5.21) and the horizontal kinetic energy equal to:

(U'2 V'2 )IIpo 2+T dy dz

as previously defined in (5.11) are shown in Figure II as a function of the
cross stream variable, x, for different times; accordingly, at these times, we
can observe the exponential growth from the maximum peak. All of the eddy
energy is mostly concentrated in the zone of maximum baroclinicity; how-
ever, it is possible to notice that the amount of energy close to the east boun-
dary is not zero and this energy is mostly contained in the internal inertial
gravity waves which have scales smaller than the mean unstable wave. There
is a flux of energy from the baroclinic zone to the wall that excites these
gravity waves and even if the amount of energy is small compared wIth that
of the mean wave, the time rate of change of energy can be large.

In Figure 12 all of the terms of the mean square temperature (1' 2) are
shown for time step 400. There is a complete balance between the time
variation of the mean square temperature and -NT z on the right side of
the channel. On the left side, however, the time rate of change of mean square
temperature plus -fiW'Tz is equal to -Tii:i"T x' After 400 time steps, Figure 13
shows the same behavior. The primary difference is that the amplitude is
larger in the latter. It should also be noted that the mean square temperature
is related to the eddy potential energy; -Tiij'T x is related to the transfer of
mean potential energy to eddy potential energy and -fi'WiT z is related to the
conversion of eddy potential energy to eddy kinetic energy (see the definition
of 13), Keeping these things in mind, we can see that the mean potential
energy provides the source in the left side of the channel where the baro-
clinicity is strong, thus causing the system to become baroclinically unstable
and a small amount of energy flux to be induced to the right side of the channel
producing an internal gravity wave oscillation with a relatively high fre-
quency as compared to the baroclinic waves of the left side. This explains
why the time variation of the squared temperature is larger on the right side
of the channel (the period of those internal gravity waves is about 2 hours
and the wavelengths are on the order of 40 km).

In Figures 14 and 15 all the terms which enter into the kinetic energy
equations are shown, that is, Ket which is the time rate of change of eddy
kinetic energy, 11, 12, 13, etc. A clear balance can be seen between the time
rate of change of kinetic and 13 = gIX fTi};;' dz which is the term responsible to
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convert eddy potential energy to eddy kinetic energy. The tota.l integral of
this term shows that there is a net transfer from eddy potential energy to
eddy kinetic energy, a characteristic result of a baroclinically unstable wave.
Comparitively speaking, these waves, as with baroclinic waves in the atmos-
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FIGURE 16 The conversion of eddy kinetic energy to mean kinetic energy due to the

Reynolds stress, after 1000 time steps.

phere, can be seen to drain energy from the mean potential energy and as the
eddy energy of the waves is increasing, a small amount of energy is lost by
feedback to the mean flow due to horizontal Reynolds stresses. Accordingly,
Figure 16 shows the conversion of eddy kinetic energy to mean kinetic energy
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due to the Reynolds stresses. A strong analogy can be seen between the curve

obtained by Webster (1961), for the energetics of the Gulf Stream which were

calculated from observed data, and the results of the two-layer model of

Orlanski (1969). The fact that eddies can lose energy to the mean flow

(the so-called negative viscosity) has been discussed by Starr (1968).
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FIGURE 18 The diagram shows the volume integrals and balance of energy after 800

time steps.
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We will now show the average volume integrals for the right side of equa-
tions (5.19) and (5.21) and also the amount of energy contained in the mean
and eddy terms. Figure 17 corresponds to the balance of energy for 400 time
step integrations and Figure 18 for 800 time step integrations. It is obvious
from these figures that the mean potential energy is the internal source which
provides energy to the eddies. This type of dynamic system is well known for
long wave atmospheric motion [Charney (1947 and others]. Since the source
of these unstable waves is due to the baroclinicity of the flow, it is justified to
call them baroclinic waves. As we mentioned before, the atmospheric waves
have scales one order of magnitude greater than those of the ocean. An ex-
planation of the difference in scales is that the radius of deformation is about
one order of magnitude larger in the atmosphere than in the ocean. Notice
that the wavelengths for the unstable waves here are on the order of the
radius of deformation and thus is in good agreement with the atmospheric
case. Moreover, we can say that baroclinic waves developing in deep sea will
have wavelengths of about 400 km; this has already been predicted by Orlan-
ski (1969) in which he compared the unstable waves for jets flowing off
the continental shelf and those in the middle of the ocean.

Another characteristic, previously mentioned, is that on the average the
waves are losing energy to the mean kinetic energy. Even if the amount of
energy is small, it could be enough to counteract the dissipation effects due
to viscosity.

In concluding this section, we will briefly discuss the role of baroclinic
unstable waves in the so-called eddy viscosity and eddy diffusivity that is
used in large scale numerical models. Obviously, numerical modeis with a
grid size of 100 km that cannot resolve wavelengths less than a few hundred
kilometers also will not include the baroclinic waves that could be generated
in most of the ocean currents. Therefore, in order to simulate the loss or
gain in the mean flow that is predicted due to those eddies, the effect is usually
parameterized assuming some type of eddy viscosity and eddy diffusivity.
The former is defined :;\s the Reynolds stresses divided by the mean shear flow
and the latter is the correlation between the temperature and velocity fluctu-
ations divided by the mean temperature gradient. We can then define the
eddy viscosity and eddy diffusivity as follows:

-' -'(U'V'Y) (TfUfY )VH = -V1 ' KH = -~ (5.22)

Since we have a way to compute the correlation between the temperature
and velocity fluctuations for the baroclinic waves, it would be interesting to
show how much those values will be. Accordingly, Figure 19 shows the eddy
viscosity as a function of the cross stream variable for different times (400,
B
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FIGURE 19 Eddy viscosity is shown as a function of the cross stream variable for 400,
800, and 1000 time integrations.
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800, 1000). It is possible to see that a very strong negative eddy viscosity is
in the region of a jet, thus implying that the jet itself gains momentum from

the eddies as we have already shown in Figures 17 and 18. Far from the zone

of maximum baroclinicity on the right side of the channel, an opposite effect

can be noticed in that the net effect of eddy viscosity is positive. This is caused

by a small scale barotropic instability which may have been artificially excited

by the model. The Reynolds stresses in this area are very small, but since

eddy viscosity is defined as the Reynolds stresses divided by the mean shear

(5.22) and the mean shear is practically zero due to a very small mean flow,

it may very well be that the eddy viscosity in this area is not meaningful.

In a similar manner, a positive eddy diffusivity is shown in Figure 20.

In being consistent with our previous arguments, a strong loss of heat can be

expected in the zone of maximum baroclinicity as the figure indicates.
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