Application Technology Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Evaluating the Role of Substrate Amendments
Greenhouse Production Research Group
Virtual Grower
 

Research Project: CROP PROTECTION AND PRODUCTION STRATEGIES FOR HORTICULTURAL CROPS

Location: Application Technology Research Unit

Project Number: 3607-21000-014-00
Project Type: Appropriated

Start Date: Oct 29, 2008
End Date: Oct 28, 2013

Objective:
The objective of this project is to enhance food and ornamental production through improved means for delivering agrochemicals such that utilization of the materials is maximized while losses from leaching, drift, or off-target loss are minimized. These methods will provide abundant, safe food and ornamental crops. These discoveries will minimize environmental impact, reduce production costs, and reduce worker exposure. The specific objectives for the next five years include: Objective 1: Develop new or enhanced delivery technologies that provide the most efficacious application of production materials, including nutrients and pest management materials. Sub-objectives: Identify application factors affecting distribution and quality of deposits of pest management materials applied to nursery, floricultural, vegetable, fruit, and field crops, and to integrate findings with Drift Reduction Technology (DRT) research into crop production programs. Develop automated or mechanized chemical delivery technologies for greenhouse production systems based on pest population information and/or plant development and plant stress information. Objective 2: Improve understanding of substrate chemical, physical, and biological properties to improve container crop production while minimizing agrichemical leaching. Sub-objectives: Evaluate the use of regional agricultural/forest byproducts and synthetic materials for use as a substrate in nursery containers. Determine the effects of irrigation parameters and hydraulic properties of soilless substrates on nutrient and pesticide leaching from pot-in-pot production systems.

Approach:
Application systems will be evaluated by examining deposition patterns on artificial targets and plant tissue, atomization characteristics, and off-target spray movement on passive ground and airborne collectors. The effect of air and travel speed and their interaction with droplet size on deposition patterns on artificial targets placed within different field crop canopies will be examined in field trials. Full assessment of the potential benefits of any DRT will be measured in the field under varying canopy conditions. The effect of air speed and its interaction with droplet size on deposition patterns on artificial targets placed within different field crop with horizontal and vertical target surfaces will be examined in field trials. Droplet size distributions and droplet velocities from atomizers will be determined using a particle/droplet laser image analysis system. Granular delivery systems will be evaluated for their ability to apply herbicides to potted surfaces. Pneumatic and mechanical means for aiding in movement through canopies will be incorporated into the delivery systems. The effectiveness of the delivery systems will be evaluated by examining the deposition granule patterns on the target surface as well as measurement of the amount of active ingredient. To improve safety, reduce production costs, and to put spray only where needed, a carrier system will be evaluated to automate spray delivery in greenhouse and sheltered environments. First studies will utilize a wheeled, hand-cart to evaluate technology to target spray delivery. Air-assist and electrostatic technology appropriate to a greenhouse production system will be evaluated. One or more synthetic materials and one or more agricultural materials will be compared with conventional pine bark for production of nursery plants. Polyethylene terephthalate (PET) is a synthetic material currently used for many applications that has potential as a substrate component. Another strategy will be to grow the substrate. Agricultural crops which produce large amounts of biomass will be grown, harvested, and processed into a substrate. PET, switchgrass chips and willow chips will be the first candidates tested for suitability as substrates. To determine the effects of irrigation parameters and hydraulic properties of soilless substrates on nutrient and pesticide leaching from pot-in-pot production systems a commercial pot-in-pot (PIP) system will be used. Pine bark will be amended with peat at three rates and irrigation will be applied either with a timer or automatically activated according to soil moisture readings from a neutron probe irrigation sensor. A complete fertilizer package and an insecticide will be incorporated into the substrate during the mixing process. A preemergence herbicide will be applied to the substrate surface of all containers after they are filled and planted. All production inputs and all climactic inputs will be recorded by data loggers. Leachates will be collected weekly and analyzed for all macro- and micro-nutrients using ICP analysis; insecticide and herbicide concentration in the leachates and plant tissue will be quantified with GC-MS analysis.

   

 
Project Team
Derksen, Richard - Rich
Krause, Charles - Chuck
Altland, James
 
Publications
   Publications
 
Related National Programs
  Air Quality (203)
  Crop Production (305)
 
Related Projects
   AGRICHEMICAL LEACHING FROM NURSERY CONTAINERS DURING WINTER MONTHS
   DEVELOPMENT OF ALTERNATIVE SUBSTRATES FOR CONTAINER NURSERY CROPS
 
 
Last Modified: 05/08/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House