Journal of Marine Research, 51, 843-868, 1993

Coupled effectsof vertical mixing and benthic grazing
on phytoplankton populationsin shallow, turbid estuaries

by Jeffrey R. Koseff!, Jacqueline K. Holen!, Stephen G. Monismith!
and James E. Cloern’

ABSTRACT

Coastal ocean waters tend to have very different patterns of phytoplankton biomass
variability from the open ocean, and the connections between physical variability and
phytoplankton bloom dynamics are lesswell established for these shallow systems. Predictions
of biological responses to physical variability in these environments is inherently difficult
because the recurrent seasonal patternsof mixing are complicated by aperiodic fluctuations in
river discharge and the high-frequency componentsof tidal variability. We might expect, then,
less predictable and more complex bloom dynamicsin these shallow coastal systemscompared
with the open ocean. Given this complex and dynamic physical environment, can we develop a
quantitative framework to define the physical regimes necessary for bloom inception, and can
we identify theimportani mechanisms of physical-biological coupling that lead totheinitiation
and termination of blooms in estuaries and shallow coastal waters? Numerical modeling
provides one approach to address these questions. Here we present results of simulation
experiments with a refined version of Cloern's (1991) model in which mixing processes are
treated morc realistically to reflect the dynamic nature of turbulence generation in estuaries.
We investigated several simple models for the turbulent mixing coeflicient. We found that the
addition of diurnal tidal variation to Cloern's model greatly reduces biomass growth indicating
that variations of mixing on the timescale of hoursare crucial. Furthermore, we found that for
conditions representative of South San Francisco Bay. numerical simulations only allowed for
bloom development when the water column was stratified and when minimal mixing was
prescribed in the upper layer. Stratification, however, itself is not sufficient to ensure that a
bloom will develop: minimal wind stirring is a further prerequisite to bloom development in
shallow turbid estuaries with abundant populations of benthic suspension feeders.

1. Introduction

Phytoplankton populationsare dynamic; the prominent annual feature of biomass
change in the open ocean is the spring bloom, which has been a focus of research
since the beginnings of biological oceanography. Phytoplankton blooms occur when
the rate of primary production temporarily exceeds the cumulative rates of all
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biomass losses;, hence, they are departures from population ‘quasi-equilibrium'’
(Evans and Parslow, 1985). A rich history of observation and theory has established
firmly the physical basis for oceanic spring blooms. which accompany seasonal
changesin the depth of the upper mixed layer. Following earlier works by Gran and
Braarud (1935), Riley (1942), and Sverdrup (1953), Platt et al. (1991) conclude that:
"Incipient stabilization of the water column by surface heating can then be seen as
the fundamental process that promotes the rapid growth of phytoplankton that leads
to theincidence of abloom." Rapid population growth at bloom inception isadirect
result of theincreased light exposure to algal cellsin the upper mixed layer once the
seasonal thermocline develops. For the deep ocean, numerical models describe well
the spatial and temporal evolution of the spring bloom (e.g. in the North Atlantic;
Wroblewski, 1989), and a quantitative framework exists to define the physical regime
necessary for bloom inception (Platt et al., 1991).

Shallow shelf waters and estuaries have very different physical regimes from the
open ocean, and the connections between physical variabllity and phytoplankton
bloom dynamics are lesswell established for these systems. Furthermore, the coasta
ocean waters tend to have very different patterns of phytoplankton biomass variabil-
ity. For example, winter blooms of diatoms (Hitchcock and Smayda, 1977) or
dinoflagellates (Seliner et al., 1991) are recurrent seasonal eventsin some estuaries.
Large, episodic blooms dominated by onc or severa taxa, including toxic species. are
global occurrences in coastal waters (Smayda, 1989). Finally, seasonal fluctuationsin
phytoplankton biomass can be difficult to resolve in coastal waters where high-
frequency variabllity is observed over periods of hourc (Fortier and Legendre, 1979)
to days (Sinclair et a/, 1981). These varied patterns of phytoplankton biomass
fluctuation might result, in part, from the unique physical regime of coastal ecosys
tems where (1) the water depth is shallow, and (2) the physical and chemical
environments are strongly influenced by river runoff. Eor cxample, Simpson €t al.
(1990; 1991) have explored the complex nature of vertical mixing in coastal regions
under freshwater influence, where density structure is highly dynamic and controlled
by the balance between buoyancy inputs from surface heating plus freshwater and
stirring from tidal plus wind stresses. Predictions of biological responses to physical
variabllity in these environments are inherently difficult because the recurrent
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discharge and the high-frequency components of tidal variability (SlmpSOn e aI.,
1991). We might expect, then, less predictable and more conpiex bloom dynamics i
these shallow coastal systems compared with the open ocean.

Other distinctions between the physical regimes of the deep and coastal ocean
directly influence the observed differences in phytoplankton dynamics in the coastal
systems. Shallow coastal waters have high concentrations of suspended particulate
matter (SPM) that originate from wind-wave or tidal resuspension of bed sediments
aswell as riverine inputs of terrigenous SPM. Consequently, coastal ecosystems are
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characterized by large spatial variability of turbidity (e.g. Gieskes and Kraay, 1975)
and temporal variability from hours to seasons (e.g. Cloern & al., 1989). Light
attenuation by SPM acts as a major control on phytoplankton photosynthesis (and
population growth rate) in shallow marine systems (e.g., Colijn, 1982), so much of the
spatial and temporal variability of phytoplankton primary production is associated
with variability in SPM concentration (Cloern, 1987). However, nutrient availability
isrelatively high in coastal waters because of terrigenousinputs (e.g. Malone, 1992)
as well as rapid rates of recycling, both in the water column and benthos (Nixon,
1981; Kemp and Boynton, 1984). Finally, the benthos can act as an important sink for
phytoplankton biomass through consumption by macrofaunal suspension feeders.
Much of the primary production in some shallow marine systems is apparently
consumed hy the benthos (e.g. Cloern, 1982), and this process of benthic-pelagic
coupling can be a control mechanism of phytoplankton population variability in
estuaries.

Given this complex and dynamic physical environment, can we develop a quantita-
tiveframework to define the physical regimes necessary for bloom inception, and can
we identify the important mechanismsof physical-biological coupling that lead to the
initiation and termination of blooms in estuaries and shallow coastal waters?
Numerical modeling provides one approach to addressthese questions. For example,
Cloern (1991) used simulation experiments with a simple 1-D vertical model to
suggest how phytoplankton bloom dynamics in shallow estuaries, such as South San
Francisco Bay, might be controlled by daily fluctuations in the intensity of tidal
stirring. (Cloern used a sinusoidal variation over a period of 14 days as afirst-order
approximation to the spring-neap tidal cycle, hereafter referred to asM,,.) However,
that model incorporated a rudimentary treatment of the complex mixing processesin
estuaries and did not include, for example, vertical variability in turbulent mixing
intensity, effects of density stratification, wind stirring, or high-frequency compo-
nents of variability associated with the semidiurnal (M,) tides. Here we present
results of simulation experiments with a refined version of Cloern's (1991) model in
which mixing processes are treated more realistically to reflect the dynamic nature of
turbulence generation in estuaries. These differences are described more fully in
Section 3. The numerical experiments described here were motivated by three
specific questions:

Q1: In shallow coastal systems, what combinations of coupled physical-biological
processesare necessary for phytoplankton biomass increase—i.e., can we make generali-
zations about the sets of conditions that are necessary for bloom initiation? What are the
controlling parumeters?

Q2: Are simulation resultsfundamentally different when turbulent mixing is treated as
a spatially-variable process that reflects(a) the importance of both tidal stressar the bed
and wind dress at the surface, and (b) effects of salinity (density) stratification on the
vertical distribution of turbulence?
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Table 1. Description of variables.

[51, 4

Name Value Units Description

z m Depth

t d Time

B(z, t) mg m~3 Phytoplankton biomass (chl a)

u(z, 1) d-! Phytoplankton growth rate

K m? d-! Turbulent mixing coefficient

o 8 m*m—2d-! Benthic grazing rate

w, 0.5 md-! Phytoplankton sinking rate

H 10 m Water column height

r 0.05 Phytoplankton respiration rate as
percentage of Pmax

G 0.1 d-! Zooplankton grazing rate

1z, 1) Einst. m=2d~! Solar radiation

(0) 40 Einst. m=2d-! Mean daily incident solar radiation

k 1.3 m~! Light attenuation coefficient

Pz, 1) mgCmg-'ehlad™! Biomass-specific rate of photo-
synthesis

Prax 100 mg Cmg~!chlad! Light-saturation rate of photo-
synthesis

Uavg 5 ms™! Average flow velocity

Q83: Are simulation results sensitive to the frequencies ofphysical variability included in
coupled physical-biological models? In particular, Cloem (1997), Winter et al. (1975),
and others have specified a mean daily rate of vertical mixing. However, the rate of
turbulent mixing isa continuous function of time; isthe high-frequency (M,) variability iz
mixingintensity critical to the details of bloom evolution?

We begin with a scaling analysis of the model used by Cloern to address Question
1. Then we present refinements of the constructs used to simulate vertical mixing,
and use resultsfrom this more realistic numerical model to address Questions 2 and
3. Our emphasis hereison spatial and high-frequency variability in mixing processes,
short-term fluctuations in biological processes (e.g. photosynthetic efficiency) may
also be important (e.g. Fortier and Legendre, 1979).

2. Nondimensional analysisof the simple 1-d model

a. The general model. As presented in Cloern (1991), phytoplankton biomass mea-
sured aschlorophyll aismodeled by aone-dimensional advcction-diffusion equation.
The model includes biomass production, losses to respiration and zooplankton
grazing in the water column and benthic grazing at the bed, and transport (vertical
only) due to sinking and turbulent mixing (referred to as eddy diffusivity in Cloern,
1991) in the water column. With the variables described in Table 1, the governing
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equation relating the variation of phytoplankton biomassB is

0B 5.l
o Ml T

aB a
KBZ) = o, (wB) (1
where d/dz(w.B) is the gradient of the advective flux of biomass due to sinking,
a/0z(K (aB/az) isthegradient of the diffusive transport due to turbulent mixing, and
e 1S the net biomass-specific rate of population growth including losses to respira-
tion and zooplankton grazing (G),

Moper = B ™ G (2)

We consider awater column of 10 m depth in which the net compensation depth, the
depth at which p,., = 0, is3 m (a condition typical of South San Francisco Bay in
spring). Thus the top 3 m of the water column is a net source of biomass, and the
bottom 7 m are a net sink. At the surface there isa no flux boundary condition

Bk 0
-wB+K = (z =0, 3)

and at the bottom boundary the flux of biomass due to sinking and mixingequals the
flux due to benthic grazing parameterized as a community filtration rate «

oB
—WAB+K‘(§E‘“= - (z=H). (4)

In the model, the phytoplankton sinking rate, w,, and the benthic grazing rate. a,
are constants. and, as explained below, we investigated a range of values of both w,
and a. For spring conditions in South San Francisco Bay, Cloern (1991) specified a
sinking rate of 0.5 md-! and abenthic grazing rateof 8m m-2d-".

b. Ihe phytoplankton production model. The phytoplankton production model is
based on the photosynthesis-irradiance equation of Jassby and Platt (1976). The
growth rate . is computed as a function of depth from the productivity P described

by:
P(z,t) = P, ftanh [al(2)] - 1,), (%)

where a = 0.1 defines photosynthetic efficiency at low irradiance, r; = 0.05 is the
respiration loss rate (5% of the maximum rate of photosynthesis), and all other
variables (following Cloern, 1991) are defined in l'able 1

The depth-distribution of photosynthetically-active solar irradiance, /(z), is calcu-
lated from

1(z) = I(0)exp [~ (k FkB(L 0)z], (6)
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where J{) 18 mean daily incident solar radiation: k 1s the mean hght attennanon
coeflicient from abiotic sources of light absorption and scattering; k, is the compo-
nent of light attenuation from phytoplankton biomass taken as 0.016 m? mg~!
chlorophyll a (Bannister, 1974), and B(1, t) isthe biomass at a depth of 1 m.

Finaly. the specific growth rate can be determined from productivity by assuming
that the ratio 0 of phytoplankton cellular carbon to chlorophyll a is a constant equal
to 50 (Wienke and Cloern, 1987)from

h(z 1) = P(z.1)/6. (7

Valuesfor al parameters were chosen to represent spring conditions in South San
Francisco Bay (Cole and Cloern 1984; 1987). 1 he simulations began with a uniform
biomass distribution, B(z,t = 0) = B,, where By isaconstant. Asexplained in Section
2d, the governing equations do not depend on thevalue of B; the results simply scale
according to the initial biomass distribution. Thus, it is convcnicnt to choose B, =
1.0 mg m~3 chlorophyll a. I'he baseline level of mean chlorophyll a observed in South
San Francisco Bay isabout 2.0-3.0 mg m 7,

¢. Scaling. To understand the roles of the various source and physical transport
termsin the problem, we performed afractional analysis (e.g., Lyne, 1983) to identify
the important parameter ratios. For this part of the anaiysis we assume that the
sinking rate w, and the benthic grazing rate « are constant. We define the nondimen-
sional parameters B *(z,t) ,z*, t* , K*(z,t),and pnk.(z, t) by

B = B)B* (8)

t = at* 9)
z=Hz* (10)

K =eK* (11)
Poet = PonetHner- (12)

By, 7, H. €, p areconstants: B, istheinitial depth-averaged biomass, Hi s the depth
of the water column, € is a characteristic value of the turbulent mixing. ., is the
depth-averaged rate of phytoplankton growth att = 0,

1 pru
Mnet = [T]j; Mnel(zs U) dz (13)

and we choose 7 to be the time scale of phytoplankton production,

1
T = Tpr()d = }i::- . (]4)

net
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The other nondimensional time scales of Eqs. (1), (3), and (4) are those of
phytoplankton diffusion, sinking, and grazing respectively:

Taig = HZ/K (15)
Tsink = H/WY (]6)
Tgraze = H/OL (17)

T 1S the approximate time it takes for the turbulence in the water column
(characterized by K') to mix the biomass over the water column of depth H; 7, is the
approximate time that it would take a phytoplankton cell to sink at a rate w ; over the
depth H; and 7,,,. is the approximate time it would take to deplete a water column of
depth H of biomass if benthic consumption were occurring at rate o.

Substituting the relations (8)-(12) and (14) into Eqgs. (1), (3) and (4) yields the
nondimensional form of the governing equations:

0BT o (€ )[BT (w )8 5
at* = Pnet + ,J.,HEIHZ oz az* - ,J«ne(H az* ( )
W € aB*
= = =0 @ =0 (19)
net: net
LT PP (R O I PO A 20
Hned? [T | HonerH az* =1 (20)

Egs. (18) through (20) do not include the initial depth-averaged biomass B, which
cancels out. Hence, the behavior of the system does not depend on the magnitude of
the initial biomass. Eqgs. (18) through (20) show that the solution depends on three
nondimensional parameters

€ T,
K'=——u= Zprod (21)
Poed™  Tai
W, T
W= —— = P (22)
“‘ncrH Tsink
a T
OL’ - _ prod (23)
Mne[H Toruze

which are the ratios of the time scales of production:diffusion, production:sinking,
and production:grazing, respectively.

The above analysis identifies three important time scales (and time scale ratios) in
our formulation of the problem. We have implicitly assumed that the physiological
time scales are much longer than the physical time scales, i.e., physiologicaf changes
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occur dowly compared to physical changes, and we have ignored them in our analysis
(we discuss this assumption in Section 5). By comparing the ratios of the physical
time scales we can determine under what general conditions phytoplankton biomass
is likely to increase (bloom) and under what conditions it will decrease (decay). For
example, if K’ islarge (diffusion time scale shorter than the production time scale) a
surface bloom is unlikely because the phytoplankton will be mixed over the water
column depth in a much shorter time than it can be produced in the euphotic zone,
thereby enhancing the losses to aphotic zone respiration and benthic grazing.
Similarly, if o’ is large (grazing time scale much shorter than the production time
scale) a bloom is unlikely because grazing at the bed would occur much faster than
phytoplankton production, thereby minimizing phytoplankton biomass at the bottom
boundary.

We can formalize thisanalysisand illustrate it analytically by integrating equation
(18) over depth and time. Letting B(+*) be the nondimensional depth-averaged
biomass at timet*,

B = [ B )z, (24)

and using boundary conditions (19) and (20), integration over depth of Eq. (18)
yields an evolution equation for the nondimensional depth-integrated biomass:

arr Jo et ‘ Monedd =1 (25)
e (D
0o TR Pnedd B

whereB * and p%,, are functions oft" and z*,and B isafunction oft*. If therate of
phytoplankton mixing is rapid compared to its production and sinking rates (i.e. if
Tair << Tproa @ANA Tgni), then the biomass will be essentially uniformly distributed in
depth. This meansthat B*(1,t") = B*(z*, t*) = B(t*), so using

1
J ity azr =1,

Eq. (25) smplifies to

aB(r*) « \o
ot (1 - unetH)B([ )
or
B(t*) = B(t* = 0) exp[(1 - o')*]. (26)

Eq. (26) shows that given the assumption of rapid mixing, whenever benthic grazing
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is weak (Tgrze > Tporoas @ < 1) then the depth averaged biomass increases exponen-
tialy, i.e. a bloom can occur. If, however, thegrazingisrapid (Tgraze < Tproas @ > 1)
then B decreases exponentialy, i.e. a bloom is not possible. Therefore, in water
columns actively mixed by turbulence, a bloom can only occur if the benthic grazing
pressure isrelatively weak.

If, however, mixing is slow, then gradients in concentration induced near the bed
by benthic grazing will not be mixed out and aconcentration boundary layer will form
sothatB*(z* = 1) < B, and

- B *
antwg‘dz' > 1.

0

Hence, the critical value of benthic grazing rate required to suppress biomass
increase in slower mixing conditions is larger than that in rapid mixing conditions.
This means that blooms are more likely to occur in water columns where mixing is
lessvigorousor, if the water column isstratified, above the parts of the water column
where the stratification suppresses the mixing (see Section 3a). In addition, this
analysis shows that hydrodynamic processes can directly affect the strength of
benthic-pelagic coupling, and it illustrates the importance of the time variance in the
mixing model. These issueswill be discussed in more detail in Section 3.

d. The numerical model. The numerical model uses the Crank-Nicolson finite
difference method to discretize the governing equations (1), (3), and (4). Because
these equations are in conservative form, the numerical solutioniseffectively afinite
volume scheme. This method is appropriate because the diffusion term in equation
(1) generally dominates the transport for the range of parameters used here. This
scheme is second order accurate in time and space, and it does not introduce
numerical diffusion. However, the solution scheme is extremely sensitive to very low
values of the turbulent mixing coefficient K. 'lI'hus, the case of K = 0 is not permitted
in our turbulent mixing models, and we add the factor K, taken to be 0.1 m3d-', to
our computedK in Eq. (28) (see Section 3c¢).

The Crank-Nicolson scheme involvescentral differences in the spatial coordinate,
so the top and bottom boundaries require specia trcatment. To model the boundary
conditions in a consistent and grid-independent fashion, we used phantom points
above and below the upper and lower boundaries, respectively. We performed
extensive numerical experiments to validate the discretization and grid indepen-
dence of the numerical scheme aswell asto confirm the mass conservation properties
of the scheme.

The spatial discretization step used in al these simulations was 0.05 m, and the
time step used was 0.0005 days. Based on the sinking velocity, w, the Courant
number for these simulations varies from 0.005 to 0.03. The Crank-Nicolson scheme
does not have a Courant number limitation for stability, but a very small time step
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Spatial Distributions of the Turbulent Mixing Coefficient, K
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Figure 1. Schematic showing vertical distributions of the turbulent mixing coefficient K: (a)
uniforin distribution, (b) parabolic distribution, (c) parabolic with stratification function.
and (d) parabolicwith stratification and zero upper layer mixing.

was used to preserve the max-min property of the solution (see Greenspan and
Casulli, 1988) especially in regionswhere the turbulent diffusivity issmall and Eq. (1)
becomes more hyperbolic in nature.

e. Nutnencal investigation d the nondimensional equations. To quantitatively investi-
gate the relative effects of mixing and grazing on phytoplankton dynamics, we ran
numerical tests with a range of values for the diffusion and grazing parameters of
Eqgs. (27) and (29), with several values of w,, and with K constant in time and uniform
in space (see Fig. 1a). I'hese numerical tests show that regardless of the values of a'
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Behavior of Depth-Integrated Biomass
Sinking Rate w_' = 0.37
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Figure 2. Behavior of depth-integrated biomass as a function of turbulent diffusivity and
grazing strength at a fixed value of sinking rate. All variables are non-dimensionalized
according to Egs. (21) to (23). and turbulent diffusivity distribution is uniform (Fig. la).
Curveisdividingline between the growth and decay regions.

and K' (but with K constant), after a possible initial transient (over less than one
day), theintegrated biomass B either increases or decreases monotonically.

Recall that our scaling arguments show that with the assumption of rapid mixing
(K' = 1) then if o’ < 1 the depth averaged biomass B increases exponentially,
indicating a bloom. If, however, grazing is rapid (a' > 1) then B decreases exponen-
tialy, indicating a decay. | he coupled effects of vertical mixing and benthic grazing
areillusirated in Figure 2which summarizestheresults of our numerical simulations,
and in particular the behavior of B for a range of pointsin the a'-K' plane for the
case of w! = .37 (w, = .5 m d-1). The figure shows a separation of the a'-K' plane
into distinct regions of biomassincrease or decrease corresponding to the conditions
defined by the scaling analysis. For example, when K is7.4 (correspondsin Eq. 21to
acharacteristic value of turbulent diffusivity of e = 100 m? d-'), biomasswill increase
only when a' is less than 1.1, (a < 1.5m' m~2d-"), and it will decay whenever «’ is
greater than 1.5, (a> 2.0 mi m~2d-!"). For a' aslow as0.7 (a-- 1.0m*m~2d™"),a
valueof K' = 37 (e — 500 m?2 d—!) still resultsin a biomass increase. However, when
a' isvery large then the only way abloom can form isif valuesof K" arevery small, i.e.
mixing isvery slow. For example, when &' isas high as 22.2 (a= 30 m' m~>d~"), the
biomass decaysevenwith K’ aslow as1.5 (e = 20 m2d-!). Although these resultsare
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Behavior of Depth-Integrated Biomass
Plotted for different values of w_'
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Figure 3. Behavior d depth-integrated biomass as a function o turbulent diffusivity and
grazing strength for various values o sinking rate. All variables are non-dimensionalized
according to Egs. (21) to (23) and turbulent diffusivity distribution is uniform (Fig.la). The
curves are the dividing lines between the growth and decay regionsfor each w;. In the case
o w = 2.2 (+) thegrowth region liesto theleft o the curve.

for a highly simplified model of K, they indicate the type of behavior to expect from
more complex turbulent mixing models.

The above results were all for a constant sinking rate w, of .5 m d-!. For
comparison the resultsfor four other sinking rates (1, 1.5, 2, and 3md-!, correspond-
ingtow), of 0.74,1.1,1.48, and 2.2 respectively) are shown in Figure 3. For increasing
values of w); up to 1.48 the plot shows that for a given a' (a' > 3) a progressively
smaller K' isrequired to produce a biomass decay. Biomassincrease can occur over a
wide rangc of a' aslong as K' is small. At w} of 2.2, however, thc bchavior is
completely different and the results show that the growth regionin thea'-K' domain
is greatly reduced. This means that for sinking rates greater than 3 m d-!, the only
way for biomass to increase is under conditions of very mild mixing and very small
benthic grazing.

Resultsin Figure 3 confirm that benthic grazing, vertical mixing, and sinking are all
important in determining the sign of phytoplankton biomass change in shallow
marine systems. | he coupled effectsof the three processes can be expressed as maps
ina'-K’'-w' space that define the separate regions of potential biomassincrease and
biomass decrease.
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3. Stepstoward physical realism

Cloern’s model results demonstrated iliat phytoplankton population fluctuations
can be sensitive to fluctuationsin vertical mixing at the time scale of days (e.g., over
spring-neap, My, cycle). However, the model did not incorporate spatial variability in
K, the effects of density stratification and wind stirring, or the higher frequency
componentsof variability associated with the semidiurnal (M,) tides. Here we follow
the results from Section 2 and describe an approach in which the spatial and
temporal variability of turbulent mixing can be included in a more realistic model of
coupled mixing, production, and grazing processes.

a. Vertical variation of K- a simple model. Turbulence in estuarine water columns is
generated primarily by shear stresses at the surface by thewind and at the bottom by
thetidal currents(Simpson et al., 1990; 1991). In simple transport models, such asthe
one described here, the effect of the turbulence on mixing is typicaly parameterized
by an eddy diffusivity (turbulent mixing coeflicient), K. Following the arguments of
Taylor (1954), the eddy diffusivity ischaracterized by a turbulent velocity scale and a
length scale. In estuaries these parameters are typically the shear velocity u* and the
depth of the estuary H.

When there isonly one primary source of turbulence, the vertical distribution of K
is parabolic in shape with a maximum at mid-depth. For example, we can derive the
vertical mixing coefficient for estuarine or riverine flow from the fluid velocity profile
(Fischer et al., 1979). Using the logarithmic law velocity profile, the vertical mixing
coefficient for both momentum and mass transport becomes

-l

where k = 0.4 is the von Karman constant and u .. is the shear velocity. The shear
velocity isdefined asu, = \/@uavg, where C; isthe drag coefficient at the bottom (we
use C, = .0015), and u,, is a velocity representative of the tidally induced free-
stream velocity.

With both sources of turbulence, the distribution of K is likely to be given by a
superposition of two parabolic distributions and will, therefore, be similar in shape
but with higher values (see big. Ib). The parabolic distribution is not unique to the
model formulation we have used for K in this paper; the same distribution isobtai ned
using a Mellor-Y amada turbulence model (see Blumberget al., 1992).

The parabolic distribution issignificant from abiological point of view because the
peak turbulent diffusivity occurs at mid-depth in an unstratified water column, and
thispeak is1.5 times greater than the depth-averaged diffusivity. Furthermore, in the
region5 of maximum biological productivity (upper 1 or 2 min South San Francisco
Bay) and in the regions near the bed where the benthic grazing pressure is a
maximum, the turbulent diffusivity is relatively small.

K(z) = vHu ,
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b. Effects of stratification. When stratification (gradient zone or pycnocline) is
present, the buoyancy force constrains the turbulent eddies, reduces the intensity of
the turbulence, and thereby reduces the eddy diffusivity (see, for example, Rodi,
1987; Holt et a/., 1992). This effect islocal, and the effect of the buoyancy diminishes
with distance from the stratified region. For example, in a 10 m water column with
stratification (due to salinity or temperature variation) at around 3 or 4 m from the
surface, one expects the peak turbulent diffusivity generated by the bottom shear
stresses at about 5 m. Although this peak diffusivity is close in value to that at a
corresponding point in a similar, unstratified, column the diffusivities above the
stratification will be close to molecular values. The resulting turbulent diffusivity
distribution has biological relevance because the region of maximum production
(euphotic zone) now liesin the zone of minimal mixing.

Ideally, one would solve for the turbulent diffusivities using a time-dependent
hydrodynamic simulation of the physical system (e.g., that of Blumberg et al., 1992).
Typically, such a simulation involves a turbulent closure model and. thereby, an
equation for the turbulent diffusivity as a function of the flow parameters including
stratification. It is necessary to solve the time-dependent problem because not only
are the flow parameters time-dependent in a estuary, but the mixing action of the
turbulence tends to modify the strength of the pycnocline aswell asitslocation.

Because we wished to focus on the transport issues first we chose the more direct
and simpler approach of modelling (rather than solving for) the turbulent diffusivity
using Eq. (27). and representing the effects of stratification in the “ad-hoc” manner
depicted in Figure 1. As shown in Figure |c we impose a loca minimum onto the K
profile by multiplying the K (z) function (27) by a stratification function

SI‘RA'I(Z) = e*(-’l‘w)(: a’)2

where z is the local depth, w is the depth of the water column affected by the
stratification (region of imposed density gradient), and d isthe depth from the water
surface at which the stratification effect is centered. | he distribution shown 1n
Figure 1c, therefore, represents awater column where there is stirring from both the
wind at the surface and the tidal currents at the bottom, and where stratification
reduces the diffusivity over some region of the water column.

We can further modify this distribution to model the effects of "'no wind.” In this
case the only stirring comes from the bottom stresses, the turbulence will be
destroycd by buoyancy in the region of the stratification, and there will be effectively
no turbulence above the stratified region. We model this effect by setting the
turbulent diffusivity to zero (actualy K, see Section 2d) at depth & and above
(Fig. 1d).

c. Temporal variability of K. The semidiurnal (M,) tide can generate bottom shear
stresses which are comparable in magnitude to the peak spring tide stresses but at a
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time scale of hours rather than days. Thus, there are repeated periods of intense
mixing on a daily basis which are extremely important to the dynamics of stratifica-
tion breakdown and, thereby, phytoplankton population dynamics. In order to treat
both the M,, and M, variation we define the general form of the turbulent mixing
coeflicient model as

Kz, t) = U (1)SHAPE(z) + K| (28)
where

U (0) = kHVC,| U],

- [2mt o2t
U(t) = g, SIN ('(TSN)(] + 0.5Sin (14)) (M; and M,,), or

+ o (2wt
= U1 T 0.5S8in 14 (M,, only),

\ z z .
SHAPE(z) = (ﬁ)(l - ﬁ) (parabolic K), or

=1 (uniform K);

where K, is asmall value included for the numerical solution scheme (so that K(z, t)
is never equal to zero) (see Section 2b). The magnitude of U(¢) using the above
formulation is consistent with values published for South San Erancisco Bay (see
Waltersetal., 1985).

Finaly. to simulate the breakdown of stratification, we specify the length of time
for which the stratification function remains "on" and then a period of time over
which the function decays linearly. l'his is done by multiplying the paramater
STRA'I(2) by adecay function D(¢) such that

STRAT(z, 1) = STRAT(Z)D(?). (29)

For u,, = 0.5 ms~!, and a parabolic shape function, K{(z, t) reaches a maximum of
2510 m? d~! at mid-depth. If we average K(z, t) over the depth and the tidal cyclewe
obtain a (K) of 530 m? d~! which is still one to two orders of magnitude higher than
the values used by Cloern (between 5 and 50 m? d~1). | he primary reason for the
differenceisthat Cloern’s values are adjusted to include the effects of stratification
and are consistent with what would be calculated (for South San Francisco Bay) from
empirical formulae given by Uncles and Joint (1982) for tidally-averaged, stability-
dependent, depth-averaged mixing coefficients. The importance of the magnitude of
this number and itseffect on the resultswill be discussed later.

Before examining the results of our model it is necessary to discuss some of the
issuesraised by Grosset /. (1992) concerning the validity of eddy diftusivity models
based on drag coeflicients and shear velocities. In their paper Gross et al. state that
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such models areinaccurate because they (i) predict zero turbulent diffusivity at slack
water, (ii) show the peak diffusivity dwaysto be at the same spatial location, and (iii)
do not account for phase shifts that may arise in the distribution of the diffusivity.
Their comments are based on simulations done for a 100 m water column. These
points are well-taken but we are satisfied that the approach used in this paper is
appropriate for the following reasons. First, our simulations are of water columns
only 10 m deep, so the turbulence mixing time, H/u ., is an order of magnitude
smaller than for the 100 m case. The water column, therefore, should respond more
rapidly to any changes induced by changing tides. Therefore, while the turbulent
diffusivity may not be zero at slack water, as predicted by our model, our assumption
that the turbulence is exactly in phase with the tidal signal will not produce a large
error. Second, the reduced inertia of the 10 m water column (compared to the 100 m
case) and the reduced H/u, means that the shallow water column will respond
uniformly to changesin tidal signal. Thus, the phase shifts in the location of the peak
diffusivity noted by Gross et al. (1992) should not be an issue for the simulations
described below.

4. Nuinerical analysis of therefined 1-d model

In Section 2e we used results from numerical simulation$to determine the general
conditions necessary for bloom inception in estuaries such as San Francisco Bay.
However, these simulations were for conditions of no vertical or temporal variation
in K, and no stratification. Here we build on that analysis by examining the conditions
necessary for bloom inception when we consider temporal and spatial variation of
mixing and the effects of stratification.

a. Scaling revisited. First, we dircctly extend the analysis in Section 2e for the case of
a parabolic distribution of K* with both M, and M,, temporal variation. We
performed asimilar set of experiments to those summarized in Figure 2 to determine
the conditions in which the depth-averaged biomass increases or decreases. The
results of these experiments are summarized in Figure 4, which shows that the
simulated biomass either increases, decreases, or oscillates about a mean value. In
order to plot the results such that Figure 4 could be compared with fig. 2 (wherethe
turbulent diffusivity is uniform in space and time) we had to choose a representative
value of the characteristic turbulent diffusivity, €, to calculate K’ (Eq. 27). We used
the time-averaged (over afull tidal cycle) value of e at mid-depth, and we define this
value to be eqeqn.

Once again, the regions of behavior in the «’-K' plane are distinct. as shown in
Figure 4 for w; of 0.37. When a' = 3.0 (a= 4.0 m d-!) the biomass increases
whenever K' islessthan 22 (e, < 300m?d~'), it oscillateswhenever K ' isbetween
30 and 37 (€ ean between 400 and 500 m2 d-1), and it decays whenever K is greater
than 44 (epe., > 600 m? d-1). The result of Cloern (1991) which showed a bloom is
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Behavior of Depth-Integrated Biomass
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Figure 4. Behavior of depth-integrated biomass as a function of turbulent diffusivity and
grazing strength at a fixed value of sinking rate. All variables are non-dimensionalized
according to Eqgs. (21) to (23), and the turbulent diffusivity distribution is parabolic in space
(Fig. 1b) and varies temporally with the M, and M;, tides. Curve is dividing line between the
growth and decay regions.

also plotted. Cloern used a depth-uniform distribution of K, which varied sinusoi-
dally over a two-week period (M, tidal simulation). Despite the fact that this
distribution tends to overemphasize mixing in the upper regions of the water column
where net production is positive, Cloern’s model simulated a bloom event by using
values for turbulent mixing (5 and 50 m? d~') which are reasonable as depth-
averaged values but are unrealistically low as local values. For this particular case o’
= 6,0 and K’ = 2, and according to the results presented in Figure 4 this combination
of parameters lies in the region of biomass increase. This result is consistent with the
results presented in Figure 4 despite the fact that this figure was generated using
both M, and M, time-scale variation, whereas Cloern’s simulation only used M.
When, however, the semi-diurnal variation (M;) was added to the spring-neap
variation (o’ and K’ are still 6 and 2 respectively), the revised model did not produce
a bloom of the same magnitude with the same values of turbulent diffusivity K used
by Cloern.

Why then is our “theory” not entirely consistent with Cloern’s result. The answer
probably lies in the fact that the depth-uniform distribution of K tends to overempha-
size mixing in the euphotic zone where the net production is positive. (Recall that the
values of K' used in Figure 4 are based on a parabolic distribution of turbulent



860 Journal of Marine Research [51,4

diffusivity which goes to zero at the water surface.) 1his effect is minimized when
only the M,, variation 1s considered because there are periods of about 1 to 3 days
when K issmall (~5m?d~!) even inthc cuphotic zone. However, when we add the
M, timescale these periods may be reduced to 1 to 3 hours! l'his greatly shortened
period of time may not be sufficient for phytoplankton production to have any
pronounced effect on biomass before the increased mixing rates redistribute the
biomass through the water column. It may be reasonable, then, to hypothesize that
the biomass 1s mixed down and consumed far more rapidly during the periods of
intense mixing then it can be produced during the periods of weak mixing.

The diflerence between our results and those of Cloern's. therefore, underscores
the Importance of the M, tidal variability in estuarine phytoplankton dynamics, as
well as that of the spatial distribution of the turbulent diffusivity, especially in the
upper regions of the water column where net production is positive. In the following
sections. then, we explore the sensitivity of the phytoplankton dynamicsto the spatial
and temporal variationsin turbulent diffusivity. Specifically, we shall concentrate on
the interplay between the distribution (in time and space) of the turbulence in the
water column, the effect of stratification on this distribution, and the grazing by
benthic suspension feeders. We focusfirst on the role of stratification and turbulent
mixing.

b. Role of stratification und wind mixing. From the previous section it is clear that in
order to simulate phytoplankton blooms with a redlistic distribution of turbulent
diffusivity, some physical mechanism must be present to reduce the value of K in the
upper region of the water column. There are two nccessary conditions leading to
reduced mixing in the upper water column. The first is minimal stirring by the wind
(see Section 4c). The second is the presence of stratification which (as described
above) effectively prevents the turbulence generated at the bed from penetrating
into the upper reaches of the water column. Without this stratification, biomass
decreases rapidly in simulations run with a benthic grazing rate of 8 m* m-2d-! and
with a parabolic K which includes M, and M, tidal variation and corresponds to a
0.5m s~ ! flow velocity.

Our modifications of K to model the effects of stratification are shown in Figure 1.
I'ne distribution shown in Figure Ic is representative of a water column with
turbulence generated by bottom shear as well as wind stirring. A stratification
function (see Section 3b) is used to effectively produce a'hole" (rcgion of reduced
turbulence) in the parabolic distribution at alevel corresponding to the presence of a
pycnocline. The stratification function is held constant for six days, with the pycno-
cline3 m from the surface, and then allowed to decay linearly during day seven.

Howecvcr, adding stratification in this manner, with al other parameters the same,
again yields a biomass decrease. Figure 5 shows that the depth-averaged biomass for
this case and the case of no stratification are nearly identical. To understand the
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Behavior of Depth-Integrated Biomass for Three Hydrodynamic Models
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Figurc 5. Behavior of dcpth-integrated biomass for three o the hydrodynamic conditions

(b, ¢, d) shown in Figure I. The curvesfor the stratified case (Fig. |¢) and the unstratified
casc (Fig. 1b) arc thesame.

interaction between the turbulent diffusionand the biomass concentration we plot,
in Figure 6, gray-scale contours of turbulent diffusivity and of biomass as a function
of depth and time for two different rates of benthic grazing. The distribution of
turbulent diffusivity is shown in Figure 6a and the biomass distribution correspond-
ing to a benthic grazing rate of 8 m® m~2 d~! which correspondsto a’ of 6isshown in
Figure 6b. (The resultsfor a benthic grazing rate ot 0 m> m~- d-f(a ot ¢) shown in
Figure 6c are discussed in the next section.) We see in Figure 6b that the biomass
decreases at a constant rate with time. Biomass decreases because the values of K in
the region of stratification (centered around height of 7min Figure 6a) are still high
enough that they correspond to K’ values in the decay region of the «'-K' plane of
Figure 2. Asaresult, biomass mixesthrough the stratified zone and isnot confined in
the photic zone during the period of stratification. We can conclude, therefore, that,
even with stratification, as long as wind is stirring the water column a bloom is
unlikely.

Next, we modeled the effects of zero wind stirring and stratification by reducing
the turbulent diffusivity above the pycnocline to 0 (see Section 3b). The resulting
distribution of K isshown qualitatively in Eigure 1d. The distribution was derived by
taking Eq. (28) with a tidal velocity of 0.5 m s~! and setting the turbulent diffusivity
above the pycnocline (z = 3m)to 0. This distribution would occur if the stratification
attenuated the turbulence generated at the lower boundary at the pycnocline, and no
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Figure 6. Digtribuiion o turbulent diffusivity (a) and phytoplankton biomass (b,c) as a
function d depth and time for two different benthic grazing rates. Turbulent diffusiviiy
distributionisinitidly specified according to Figurelc.

wind stirring generated turbulence above the pycnocline. This distribution is actually
produced by the turbulence model described by Blumberg et a/. (1992) when used to
simulate tidal flows (see Monismith et /., 1993). T'his distribution was allowed to
persist for 6 days and then "decay" over a period of one day to the case shown in
Figure 1b and described in Section 4a.

Figure 5 shows that the depth-averaged biomass increases over the period for
which there is zero wind-induced mixing, but it decreases as soon as the turbulent
mixingin the upper 3 mof thewater column becomessignificant. In asimilar fashion
to the results in Figure 6 we plot, in Figure 7, gray-scale contours of turbulent
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Figure 7. Distribution of turbulent diffusivity (a) and phytoplankton biomass (b, c) as a
function of depth and time for two different benthic grazing rates. Turbulent diffusivity
distribution isinitially specified according to Figure 1d.

diffusiviiy and biomass as a function of depth and time for the same two values of
benthic grazing used in Figure 6. This figure shows that regions of high biomass
correspond to regions of low turbulent mixing. | h e peak concentration at a depth of
1.25 m is a result of the combined effects of sinking and light limitation; sinking
reduces the biomass above 1.25 m, while light limitations reduce the production
below thislevel. While thisstratification lasts (for six days), reduced mixing abovethe
pycnocline retains phytoplankton in the photiczone so that biomassincreases rapidly
in the upper layer. However, as soon as the stratification breaks down during day
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seven, turbulent mixing (generated at the lower boundary and by wind stirring)
rapidly mixes the biomass leading to a nearly uniform distribution, which is then
depleted by benthic grazing.

c. Coupling between stratification and benthic grazing In both Figures 6 and 7 we
compare results for two different values of «'. Careful examination of these cases
showsthat while benthic grazing isan important factor in determining the phytoplank-
ton biomass in the water column. it does not control the occurrence of a bloom. In
Figure 6¢ we see that even with zero benthic grazing the biomass does not increase
much above its initial value. Furthermore, in Figure 7c we see that after the
stratification breaks down the biomass distribution remains essentially uniform and
does not increase after day 8. Even though there is no benthic grazing to deplete the
water column of biomass, the turbulent mixing is too strong to alow significant
biomass increase. It is clear, therefore, that regardless of benthic grazing rate,
stratification and minimal wind stirring are both necessary conditions for bloom
inception in thismodel.

5. Some generalities and conclusions

Cloern (1991) showed that hydrodynamic mixing could be a major mechanism
controlling the spring phytoplankton bloom in South San Francisco Bay, and in this
paper we have further investigated this hypothesis. Scaling analysis of the governing
mathematical equations and numerical tests of the behavior of the nondimensional
depth-averaged biomass in the a’-K’ plane reveal the ranges of a and K values for
which biomass can increase or decrease. For a bloom, conditions of mixing and
grazing must initially lie in the *growth region,” and for the rapid die-off these
conditions must then be in the decay region" of the «’-K’ domain.

Weinvestigated several simple modelsfor the turbulent mixingcoefficient. Cloern’s
(1991) model simulated a bloom with a turbulent mixing coefficient having a 14-day
period to model the spring-neap tide. We found that the addition of semi-diurnal
tidal variation to this model greatly reduces biomass growth, indicating that varia-
tions of mixing on the time scale of hours are crucial. In addition, with physicaly
realistic values for the turbulent mixing coetficient this model did not simulate a
bloom unless the effects of stratification were included. We found that the only way
to simulate a bloom was by including the effects stratification and, further, by
prescribing weak mixingin the upper layer.

The results of our numerical experiments indicate that the occurrence of large
blooms depends on siratification in two ways. First, stratification is required to
confine phytoplankton cells to the photic zone where biomass increase proceeds
rapidly. Second, as Cloern hypothesized, stratification removes the connection
between benthic grazers and near-surface phytoplankton biomass by decreasing the
vertical transport of the biomass. Thus, the occurrence of large bloomsis, in general,
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aresult of stratification providing a favorable light environment, while the eventual
disappearance of the biomass is due to benthic grazing coming into play once
stratification is eliminated.

Stratification itself isnot sufficient to ensurethat abloom will develop. Even if the
turbulent mixing coeflicients are very small in the region of a pycnocline, our model
results suggest that mixing rates in the photic zone above the pycnocline must be
small to allow significant biomass increase. This result implies that minimal wind
stirring is a further prerequisite to bloom development in shallow turbid estuaries,
especially those with abundant populations of benthic suspension feeders.

Finally, we wish to clarify our important simplifying assumption that the rate of
physiological adjustment to changing light intensity is much slower than the rate at
which vertical mixing causes individual cclls to sample the complete range of light
intensitiesin the water column (see Section 2c). Assuming first-order kinetics, Lewis
et al. (1984) show that photoadaptation can be neglected when

K
=5 > 1 -kt (30)
Ly
whcerc K isthe (constant) mixing coefficient, L isthe vertical scale over which mixing
takes place, y is the rate constant for photoadaptation, and %, is the attenuation
coefficient for PAR in thewater column. Assuming that k,L > 1, thisis equivalent to
saying that the mixing time-scale must be smaller than the photoadaptation time-
scale to neglect photoadaptation.
We can use Lewis et @/ ’s analysis to assess the validity of our assumption of no
photoadaptation. For cases without stratification, L = 10 m, K. = 1728 m” d-!, and
k, = 1.3. For caseswith stratification,L ~ 3mand K, ~ 1 m?d-!in the upper layer.

A1 . Atin
Ql\.luth an\_l I_A,W ) \17%%) SHow & xau?_}\, (\k Vulu\./\ \Jl\/ x\n e ‘vuA \A] (\f ';,“AGAS)':‘;'L‘“JH\,

parametersfor Thalassiosira pseudonana. For example, for Py, they find values of y
ranging from 2 x 10-3s-'to1 x 10~*s~!, depending on the type of adjustment (e.g.
high to low intensity) in light involved. If we use an intermediate value of v = 4 X
10~% s~ ! we find that for unstratified casesT" = 0.6, while for stratified casesI' =
0.003. Thus, because I' is not > 1 it is possible that photoadaptation may be
important for the conditions of our simulations.

It seemslikely that photoadaptation increases production for a given total amount
of light, as it would imply that photosynthetic processes in individual cells are
operating closer to some optimum level tor a given intensity ot hight. Indeed,
attempting to model the effects of light variability in the Neuse estuary by physically
cycling incubation bottles through the water column. Mallin and Paerl (1992) found
that vertical cycling enhanced productivity by as much as 15% over that found in
static incubations. Applied to our model results, Mallin and Paerl's results suggest
that photoadaptation would have little effect on biomass production in the presence
of grazing, essentially being equivalent to a 15% decrease in grazing, a factor well
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within the level of uncertainty of typical estimates of grazing pressure. For caseswith
stratification and strong blooms. one might hypothesize that photoadaptation might
lead to stronger blooms, something that certainly could be investigated by extending
the present model along linessimilar to those of the phytoplankton model developed
by Janowitz and Kamykowski (1991).

Acknowledgments. JRK and SGM wish to acknowledge the support of the US Environmen-
tal Protection Agency and the NSF Division of Biologica Oceanography through grant
numbers CE009605-01-0 and OCE-9102882-01 respectively. JKH was supported by a NASA
Fellowship for Global Change Research. The authors wish to acknowledge Graham McBride
for reviewing an earlier version of this manuscript, aswell as the two anonymous reviewers of
this manuscript for their helpful suggestions.

REFERENCES

Bannister. T. T. 1974. A general theory of steady-statc phytoplankton growth in a nutrient
saturated mixed layer. Limnol. Occanogr.,19, 13-30.

Blumberg, A. F., B. Galpcrin and D. J. O’Connor. 1992. Modeling vertical structure of
open-channel flows. J. Hydraulic Eng., 118, 1119-1134.

Cloern, J. E. 1982. Does the benthos control phytoplankton biomass in South San Francisco
Bay (USA)? Mar. Ecol. Progr. Ser., 9, 191-202.

— . 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries.
Cont. Shelf Res., 7, 1367-1381.

- 1991. Tidal stirring and phytoplankton bloom dynamics in an ¢stuary. J. Mar. Res., 49,
203-221.

Cloern, J.E.. T. M. Powell and L. M. Huzzey. 1989. Spatial and temporal variability in South
San Francisco Bay. II. Temporal changesin salinity, suspended sediments, and phytoplank-
ton biomass and productivity over tidal time scales. Est. Coast. Shelf Sci., 28, 599-613.

Cole, B. E. and J. E. Cloern. 1984. Significance of biomass and light availability to phytoplank-
ton productivity in San Francisco Bay. Mar. Ecol. Progr. Ser., 15, 15-24.

- 1987. An empirical model of phytoplankton productivity in estuaries. Mar. Ecol. Progr.
Ser.. 36, 299-305.

Colijn, F. 1982. Light absorption in the waters of thc Ems-Dollard estuary and its conse-
quences for the growth of phytoplankton and microphytobenthos. Neth. J. Sca Res.. I5.
196-216.

Cullen, J. J. and M. R. Lewis. 1988. The kinetics of algal photoadaptation in the context of
vertical mixing. J. Plankton Rcs., 10, 1039-1063.

Evans. G.1".and J. S. Parslow. 1985. A modcl of annual plankton cycles. Biol. Oceanogr., 3,
327-347.

Fischer. H. B, E. J. List, R. C. Y. Koh. J. Imberger and N. H. Brooks. 1979. Mixing in Inland
and Coastal Waters. Academic Press, New Y ork, 106 pp.

Foriier, L. and L. Legendre. 1979. Le controle de lavariabilité acourtc terme du phytoplanc-
ton estuarien: stabilité verticale et profondeur critique. J. Fish. Res. Board Can., 36,
1325-1335.

Gieskes, W. W. C. and G. W. Kraay. 1975. The phytoplankton spring bloom in Dutch coastal
waters of the North Sea. Neth. J. Sea Res., 9, 166-196.

Gran, H. H. and T. Braarud. 1935. A quantitative study on the phytoplankton of the Bay of
Fundy and the Gulf of Maine including observations on hydrography, chcmisiry and
morbidity. J. Biol. Bd. Can., 1, 219- 467.



1993) Koseff et al.: Effecis of vertical mixing & benthic grazing 367

Greenspan. D. and V. Casulli. 1988. Numerical Analysis for Applied Mathematics, Science,
and Engineering. Addison-Wesley Publishing Company, Redwood City, California.

Gross, 1. F.. F. E. Werner and J. E. Eckman. 1992. Numerical modeling of larval settlement in
turbulent bottom boundary layers. J. Mar. Res., 50, 611-642.

Hitchcock, G. L. and T. J. Smayda. 1977. The importance of light in the initiation of the
1972-1973 winter-spring diatom bloom in Narragansett Bay. Limnol. Oceanogr., 22, 126-
131

Holt. S. E., J. R. Koseff and J. H. Ferziger. 1992. A numerical study of the evolution and
structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237, 499-
539.

Janowitz, G. S. and D. Kamykowski. 1991. An Eulerian model of phytoplankton photosyn-
thetic responsc in the upper mixed layer. J. Plankton Res., 13, 983-1002.

Jassby, A. D. and T. Platt. 1976. Mathematical formulation of the relationship between
photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21, 540-547.

Kemp, W. M. and W. R. Boynton. 1984. Spatial and temporal coupling of nutrient inputs to
esiuarine primary production: the role of particulate transport and decomposition. Bull.
Mar. Sci., 35, 522-535.

Lewis, M. R., J. J. Cullen, and T. Platt. 1984. Relationships between vertical mixing and
photoadaptation of phytoplankton: similarity criteria. Mar. Ecol. Prog. Ser., 15, 141-149.
Lyne, V. D.1983. 1983. The role of hydrodynamic processesin planktonic productivity. Report
ED-83-035. Dcpt. of Civil Eng., Univ. of Western Australia. Nedlands, Western Australia.
Mallin, M. A. and H. W. Paerl. 1992. Effects of variable irradiance on phytoplankton

productivity in estuaries. Limnol. Occanor., 37, 54-62.

Malone, T. C. 1992. Effccts of water column processes on dissolved oxygen. nutrients,
phytoplankton and zooplankton, in Oxygen Dynamics in the Chesapeake Bay. A Synthesis
of Research, D. E. Smith. M. Leffler and G. Mackiernan, eds.. Maryland Sea Grant, College
Park, Maryland, 61-112.

Monismith, S. G., D. Fong and M. Stacey. 1993. Simple model of vertical mixing in a stratified
tidal flow (in preparation).

Nixon, S. W. 1981. Remineralization and nutrient cycling in coastal marine ecosysiems. ixn
Estuaries and Nutrients, B. J. Neilson and L. E. Cronin, cds., Humana Press, Clifton, New
Jersey, 111-138.

Platt, T., D. F. Bird and S. Sathyendranath. 1991. Critical depth and marine primary
production. Proc. R. Soc. Lond. B, 246, 205-217.

Riley, G. A. 1942. The relationship of vertical turbulcnce and spring diatom flowerings. J. Mar.
Res., 5, 67-87.

Rodi. W. 1987. Examples of calculation methods for flow and mixing in stratified fluids. J.
Geophys. Res.. 92, C5, 5305-5328.

Sellner. K. G., R. V. Lacouture, S. J. Cibik, A.Brindley and S. G. Brownlece. 1991. Importance
of awinter dinoflagellate-microflagellate bloom in the Patuxent River estuary. Est. Coast.
Shelf Scai., 32, 27 42.

Simpson, J. H.. J. Brown. J. Matthews and G. Allen. 1990. Tidal straining, density currents,
and stirring in the control of estuarine stratification. Estuaries, 13, 125-132.

Simpson, J. H., J. Sharples and 1'. P. Rippeth. 1991. A prescriptive model of stratification
induced by freshwater runoff. Est. Coast. Shelf Sci., 33, 23-35.

Sinclair, M., D. V. Subba Rao and R. Couture. 1981. Phyioplankton temporal distribution in
estuaries. Occanol. Acta. 4, 239-246.



868 Journal of Marine Research {51, 4

Smayda, T J 1989 Primary production and the global epidemic of phytoplankton blooms in
thacs alink _ 2 so Nenal Phytoplinkton Blooms F M Cosper VM Briceliand F J

Carpenter. eds Sprmgcr Verlag, New York, 449-484.

Sverdrup, H U 1953. On conditions for vernal blooming of phytoplankton J Cons Perm Int
Explor Mer , 18, 287-295.

Taylor, G | 1954 The dispersion of matter in turbulent flow through a pipe Proc R Soc
London Ser A223. 446 448

Uncles, R.J and I. R. Joint 1982. Vertical mixing and iis effect on phytoplankton growth in a
turbid estuary CanadianJ Fisheries and Aquatic Sci , 40, 221-228

Walters, R A, R I Chengand T J Conomos. 1985 Time scales of circulation and mixing
processes of San Francisco Bay Waters, in | emporal Dynamics of an Estuary San Francisco
Ray,J E Cloern and F H. Nichols, eds, Dr W Junk Publishers. Dordrecht, 13-36

Wienke, S M. dnd J E Cloern 1987 The phytoplankton component ot scston in San
Francisco Bay Neth J Sca Res., 21, 25-33

Winter, D. |-, K Banse and G. C Anderson 1975 The dynamics of phytoplankton bloomsin
Puget Sound, afjord in the northwestern United States Mar Biol , 29, 139-176

Wroblewski, J S 1989 A model of the spring bloom in the North Atlantic and 1ts impact on
ocedn optics Limnol Oceanogr., 34, 1563-1571





