text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 04-154
Carbon Nanotubes Yield a New Class of Biological Sensors

Glucose sensor provides real-time readouts without the need to draw blood samples

glucose sensor

This glass capillary tube has been loaded with glucose-sensitive nanotubes.
Credit and Larger Version

December 13, 2004

 

Arlington, Va.--Nanotechnology researchers at the University of Illinois in Urbana-Champaign have demonstrated a tiny, implantable detector that could one day allow diabetics to monitor their glucose levels continuously—without ever having to draw a blood sample.

The work, which is the first application of a whole new class of biological sensors, was funded by the National Science Foundation (NSF) and announced December 12 in the online edition of the journal Nature Materials.

Principal investigator Michael Strano, a professor of chemical and biomolecular engineering at Illinois, explains that the new sensors are based on single-walled carbon nanotubes: cylindrical molecules whose sides are formed from a lattice of carbon atoms. The idea is to exploit the nanotubes’ ability to fluoresce, or glow, when illuminated by certain wavelengths of infrared light—“a region of the spectrum where human tissue and biological fluids are particularly transparent,” says Strano.

To make a sensor, Strano and his collaborators first coat the nanotubes with a “molecular sheath”: a one-molecule-thick layer of compounds that react strongly with a particular chemical—in this case, glucose. The mix of compounds is chosen so that the reaction also changes the nanotubes’ fluorescent response. Then the researchers load the coated nanotubes into a needle-thin capillary tube that can safely be implanted into the body. The capillary keeps the nanotubes from directly touching living cells but still allows glucose to enter.

The Illinois researchers tested their glucose sensor by inserting it into a human tissue sample. Then they illuminated the sample with an infrared laser and verified that the strength of the fluorescence from the buried sensor was directly related to the glucose concentrations in the tissue.

-NSF-

 

Media Contacts
M. Mitchell Waldrop, NSF (703) 292-8070 mwaldrop@nsf.gov
James E. Kloeppel, University of Illinois, Urbana-Champaign (217) 244-1073 kloeppel@uiuc.edu

Program Contacts
Glenn L. Schrader, NSF (703) 292-8371 gschrade@nsf.gov

Principal Investigators
Michael S. Strano, University of Illinois, Urbana-Champaign (217) 333-3634 strano@uiuc.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
December 17, 2004
Text Only


Last Updated: December 17, 2004