text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 04-004
If We Are What We Eat, Some Lake Fish Are Made of Maple Leaves

Study Shows Fallen Leaves Play a Role in the Food Web.

image of study lakes.

Image of study lakes.
Credit and Larger Version

January 14, 2004

Arlington, Va.—Aquatic plants form the base of the food web. The energy they create supports aquatic life, from invertebrates to the largest sport fish. Now, a study shows that aquatic plants are receiving a little help from trees. In a paper in this week's issue of the journal Nature, Michael Pace and Jonathan Cole of the Institute of Ecosystem Studies in Millbrook, New York, along with colleagues from Wisconsin and Sweden, indicate that a significant part of the aquatic food chain is supported by terrestrial organic matter that originates on shore.

A building block of life, organic carbon is essential to aquatic food webs. In lakes, aquatic plants produce organic carbon by harnessing the sun's energy (photosynthesis); some of this carbon supports the growth of fish and invertebrate populations. Scientists have long suspected that organic carbon from land is also significant to aquatic life, but the idea is difficult to demonstrate. By tracing the fate of carbon through large-scale lake manipulations, Pace, Cole, and their colleagues have revealed that in some waters terrestrial organic carbon significantly subsidizes the aquatic food web.

"These scientists have found an ingenious method of teasing apart the carbon cycle of lakes," says James Morris, program director in the National Science Foundation (NSF)'s division of environmental biology, which funded the research. "Their study reveals a surprising degree of dependence of lake food webs on sources of organic matter transported into the lakes from the surrounding watershed. These findings reinforce the concept that the ecology of lake ecosystems is tightly coupled with that of the surrounding terrestrial landscape."

That maple tree leaves many eventually become perch, and that the vegetation around a water body can have profound impacts on the animal life within the body of water blur the perceived ecological boundaries between aquatic and terrestrial systems.

The impetus behind the study, which involved manipulating two Michigan lakes, was to better understand the aquatic food chain. Pace explains, "We wanted to reveal what many ecologists have long thought- aquatic life is partly dependent on organic matter produced in the watershed." Using a chemical tracer, Pace and his colleagues set out to quantify this assumption. "The moral of the story," Pace comments, "is, yes, fish are made from algae, but fish are also partly made from maple leaves."

In Lakes Peter and Paul located at the University of Notre Dame Research Center, the scientists tested whether lake plant production was sufficient to support resident aquatic life.

They found that 40-55 percent of particulate carbon and 2250 percent of zooplankton (small animals that live in the water column) in the lakes are derived from terrestrial sources, which confirms that terrestrial carbon fuels aquatic production. The carbon in the zooplankton reflects their dependence on both lake plant production and terrestrial organic matter. Zooplankton are a dietary staple of many fish, especially in very young life stages.

"Our results," notes Cole, "tell us there is not nearly enough aquatic carbon to support these animals. They are dependent on terrestrial inputs."

Pace comments, "We now have direct experimental evidence that confirms that aquatic food chains are supported not just by the production of plants in the water but also by the production of plants on the land surrounding lakes and ponds. The leaves and organic matter that enter lakes are ultimately incorporated into aquatic animals." These findings challenge traditional views of the aquatic food web and may help watershed managers. "Organic matter from the watershed subsidizes lake food webs, allowing more animal life in the lakes than if they were simply isolated water bodies," Pace concludes.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov

Program Contacts
James Morris, NSF (703) 292-8481 jmorris@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

scientists conduct research in lakes
Scientists conduct research in study lakes.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
December 9, 2004
Text Only


Last Updated: December 9, 2004