text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 08-205
Small Satellite Takes on Large Thunderstorms

'Firefly' CubeSat Mission to Study Lightning's Link to Terrestrial Gamma Ray Flashes

Illustration shows gamma rays emitted from lightning and spreading out into space.

Firefly satellite mission will study lightning and gamma rays.
Credit and Larger Version

November 17, 2008

Firefly, it's called, this new small satellite mission sponsored by the National Science Foundation (NSF). It's designed to help solve the mystery of the most powerful natural particle accelerator in Earth's atmosphere: TGFs, or terrestrial gamma-ray flashes. TGFs likely result from thunderstorms.

The mission is the second project under the new NSF CubeSat program. A CubeSat satellite, about the size of a loaf of bread, consists of three cubes attached end to end in a rectangular shape.

The Firefly team is a collaboration of scientists and students at the NASA Goddard Space Flight Center, Greenbelt, Md.; Siena College, Loudonville, N.Y.; Universities Space Research Association, Columbia, Md.; Hawk Institute for Space Science, Pocomoke City, Md.; and University of Maryland Eastern Shore, Princess Anne, Md.

"Integrating innovative and creative educational efforts with front-line research is what NSF is all about," said NSF Deputy Director Kathie L. Olsen. "The new CubeSat program uses the transformational technology of CubeSats to do just that. The Firefly mission is a terrific example of a program that will pursue scientific discovery, while providing unique and inspiring educational opportunities."

TGFs are short, powerful bursts of gamma rays emitted into space from Earth's upper atmosphere. The gamma rays are thought to be emitted by electrons traveling at or near the speed of light when they are slowed down by interaction with atoms in the upper atmosphere. These events may occur much more often than realized and may be associated with a significant fraction of the roughly 60 lightning strokes per second that occur worldwide. They could have a large effect on the upper atmosphere and near-Earth space, scientists say.

Build-up of electric charge at the tops of thunder clouds from lightning discharges can create a large electric field between the tops of clouds and the ionosphere, the outer layer of Earth's atmosphere. But how this might lead to the generation of these extremely energetic electrons is not well understood.

"This mission could provide the first direct evidence for the relationship between lightning and TGFs, and addresses an important research question in atmospheric electricity," said Anne-Marie Schmoltner, head of NSF's Atmospheric Sciences Division's Lower Atmosphere Research Section. "Identifying the source of terrestrial gamma ray flashes would be a great step toward fully understanding the physics behind lightning and its effect on the Earth's atmosphere." To accomplish these goals, Firefly will carry a gamma-ray detector along with a suite of instruments to detect lightning.

Students will be involved in all aspects of the project, from design and development, through fabrication and test, to mission operations and data analysis.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Rani Gran, NASA/GSFC 301-286-2483 rani.c.gran@nasa.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
November 17, 2008
Text Only


Last Updated: November 17, 2008