text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 06-118
Stellar Pinwheels at Our Galaxy's Core

Mystery Quintuplets' Identity Crisis Resolved

Pinwheels (enlarged) are shown against a background image of the cluster.

Pinwheels (enlarged) are shown against a background image of the cluster.
Credit and Larger Version

August 18, 2006

Astronomers have finally learned the identity of a mysterious "Quintuplet Cluster" of stars situated near the supermassive black hole at our galaxy's core: At least two of the objects are not individual stars, but binary pairs that live fast and die young, forming fiery pinwheels as they spin around one another.

A multinational team led by Peter Tuthill of the University of Sydney in Australia, used the extraordinary resolution of the 10-meter telescope at the W.M. Keck Observatory in Hawaii, to determine the nature of the enigmatic objects. They report their findings in the Aug. 18 issue of the journal Science.

Until these observations, researchers had not known whether the extremely red "cocoon" quintuplets were aging stars surrounded by shells of dust, or young stars accompanied by disks of bright gas. Neither hypothesis was convincing, and neither fully explained the enormous light output: Each quintuplet emits 10,000 to 100,000 times as much radiation as the Sun.

The new findings indicate the quintuplets are members of a rare class called "Wolf-Rayet colliding-wind binaries" -- massive, fast-burning star pairs that live only a few million years before exploding in terminal supernovae. By contrast, the Sun is about 5 billion years old and only middle-aged. The pinwheel effect is caused by the way each star's dusty mantle is affected by that of its partner, producing spiral plumes.

"The discovery of spiral plumes, the size of our entire solar system, has solved the enigma of the bright red stars in the Quintuplet Cluster located right next door (within 100 light-years) to the center of our Galaxy," says study co-author Andrea Ghez of the University of California, Los Angeles. "Within the astronomy world, there has been a surge of interest in these stars. Wolf-Rayets are very massive stars at the very end-point of their normal lives: they are the last stable phase before a supernova explosion. Massive binary systems such as these pinwheel stars will, in fact, explode three times: two explosions as each of the pair separately undergoes a core-collapse supernova, then a third explosion as the two fall into each other in an inspiral-merger event -- possibly in the quite-distant future."

The team also included researchers from the University of Michigan, the Jet Propulsion Laboratory at Caltech, Rochester Institute of Technology (RIT) and NASA's Goddard Space Flight Center. The research was funded by the Australian Research Council and the National Science Foundation's astronomy division.

For more information, see the RIT news release.

-NSF-

Media Contacts
Curt Suplee, NSF (703) 292-8070 csuplee@nsf.gov
Susan Gawlowicz, Rochester Institute of Technology (585) 475-5061 smguns@rit.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
August 18, 2006
Text Only


Last Updated: August 18, 2006