text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 05-214
Ancient Jawless Vertebrates Used Novel Immune Responses

Scientists sink their teeth into lamprey immune system to probe alternate pathogen protection mechanism

Studying the lamprey immune system is providing insight into our own defense mechanisms.

Studying the lamprey immune system is providing insight into our own defense mechanisms.
Credit and Larger Version

December 22, 2005

Researchers recently discovered that the sea lamprey, a modern representative of ancient jawless vertebrates, fights invading pathogens by generating up to 100 trillion unique receptors.  These receptors, referred to as VLRs, are proteins and function like antibodies and T-cell receptors, sentinels of the immune system in all jawed vertebrates, including humans.

The results, reported in the Dec. 23 Science by Zeev Pancer at the University of Maryland Biotechnology Institute's Center of Marine Biotechnology in Baltimore, and his colleagues, proved ancient vertebrates--both jawed and jawless--used more than one strategy to develop an immune system that would recognize and defend against their myriad bodily invaders.

They studied a type of immune defense mechanism called "adaptive," because as the name implies, it adapts to the incredible number of pathogens in the environment by producing 100 trillion potentially different receptor proteins in order to recognize at least one of the invader's molecules.  Recognition of the pathogen is a first step in mounting a defensive response against it.

Some 450 million years ago, both jawed and jawless vertebrates began relying on cells called lymphocytes to support the burgeoning adaptive immune system.  But within the lymphocytes from the two types of animals, very different mechanisms evolved to reach very similar ends. Comparing the two immune systems is the basis of Pancer's research.

As in jawed vertebrate immune systems, he found, the diversity of the VLR proteins occurs when thousands of genetic modules go through multiple rounds of random mixing, insertion and deletion.  Each new VLR gene functions as a blueprint for the corresponding VLR protein.  Thus, through a mixture of chance and necessity, both jawed and jawless vertebrates stay ahead of the pathogens in their ever-evolving battle.

To test the adaptability of this alternative immune mechanism, the researchers immunized lampreys with the anthrax-causing bacterium, a pathogen not normally encountered by fish of any type.  Within four weeks, the lamprey immune system had recognized the spores as foreign and responded by producing anthrax-specific VLR proteins that circulated throughout its body.

"By understanding the development and role of the lamprey immune system we can learn about our own immune system and how it functions," said Pancer.  "Comparing these two systems is an unparalleled way to look at a basic biological process and also may hold promise for novel diagnostic tools."

Pancer credits the National Science Foundation, which supported this work, as enabling new discoveries that have the potential to unravel such mysteries of biology.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF (703) 292-7963 rvines@nsf.gov
Alicia Moran, UMBI (410) 385-6310 moran@umbi.umd.edu

Program Contacts
Eve Barak, NSF (703) 292-7113 ebarak@nsf.gov

Principal Investigators
Zeev Pancer, UMBI Center for Marine Biotechnology (410) 234-8834 pancer@umbi.umd.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
December 22, 2005
Text Only


Last Updated: December 22, 2005