Responses to Fresh Aerosols in Sensitive Subjects

Mechanisms of Particle-Induced Cardiac Ischemia

September 21, 2004

EOHSI is a joint Institute of ROBERT WOOD JOHNSON THE STATE UNIVERSITY OF NEW LESSEY

Particles and MI

- MI risk increased 50% for 25 mcg/m3 PM2.5 elevations in 2 hours preceding onset of symptoms. 1
 - UF particles increase thrombosis within one hour of intratracheal instillation by platelet activation.²
- These effects occur too quickly for lung inflammation to manifest and explain
- 1.Peters et al, Increased Particulate Air Pollution and the Triggering of Myocardial Infarction. Circulation 103:2810 2815 (2001).
- 2. Nemmar et al Diesel Exhaust Particles in Lung Acutely Enhance Experimental Peripheral Thrombosis. Circulation 107:1202-1208 (2003).

Current Knowledge

- MI's are felt to be due to inflammatory mechanisms
 UF and Fine particles provoke alveolar inflammation leading to increased blood coagulability over hours to days
- Measured as increases in viscosity, fibrinogen, Factor VII, plasminogen activator inhibitor, CRP, WBC, and platelet activation

Endothelial Function and ASCVD

Endothelial dysfunction precedes plaque formation and may <u>acutely</u> promote abnormal reactions between vessel walls, platelets & WBC

Can be assessed <u>noninvasively</u> by USG: brachial artery reactivity (flow mediated dilation) following ischemia

Acutely responds to ascorbic acid, tea, ETS, or 150mcg/m3 PM2.5 + 120ppb ozone

Endothelial Susceptibility

- Low concentrations of NO are important to endothelial function; also inhibit platelet aggregation
 - Variant eNOS (Glu298Asp) variably increases risk of ASCVD; +/- decreases FMD
- 10% homozygous prevalence in UK and Italy

Hypothesis

The acute increase in risk of cardiac events following inhalation of ultrafine and fine particles is mediated by <u>a rapid and direct</u> <u>passage of the particles</u> from the lung into the blood, leading immediately to <u>platelet</u> <u>activation and endothelial dysfunction</u>.

Individuals with <u>genetically increased</u> risk for ASCVD and endothelial dysfunction will be more sensitive to the effects of ultrafine and fine particles on the endothelium.

Specific Aims

Determine if exposure of 50 healthy, young, non-smoking volunteers for two hours to <u>freshly generated aerosols</u> will lead to abnormalities in endothelial, platelet and cardiac function that are <u>independent of</u> <u>pulmonary inflammation</u>

Determine if individuals with <u>genetically</u> increased risk for ASCVD and endothelial dysfunction exhibit <u>enhanced sensitivity</u> to freshly generated aerosols.

Two Different Fresh Fine and Ultrafine Aerosols

Diesel Exhaust

200 mcg/m3

Secondary Organics

200mcg/m3

RESULTS:

Time

RESULTS:

Two Different Subject Groups

 Healthy, Young, Random Volunteers
 Independent of Cardiac Risk Factors Healthy, Young, Volunteers
 Carrying 2 Alleles for endothelial Nitric Oxide Synthase (eNOS) Single Nucleotide Polymorphism (SNP)

Controlled Environmental Facility at EOHSI

Outcomes

IMMEDIATELY (2h)*

- Platelet Activation
- Vascular Reactivity Dec

Pulmonary / Systemic Inflammation

- Induced Sputum (inc WBC, IL-1, IL-6, TNF-a)
- Blood (inc WBC, IL-1, IL-6, TNF-a)
- Spirometry

DELAYED (6h)

Platelet Activation

- Pulmonary / Systemic Inflammation
 - Induced Sputum (inc WBC, IL-1, IL-6, TNF-a)
 - <u>Blood</u>
 <u>(inc WBC, IL-1, IL-6, TNF-a)</u>

Spirometry

Underline indicates an expected result

Investigators

Howard M. Kipen, MD, MPH, EOHSI Tina Fan, PhD, EOHSI Debra Laskin, PhD, EOHSI Paul Lioy, PhD, EOHSI Pamela Ohman-Strickland, PhD, EOHSI Claire Philipp, MD, RWJMS-Dept of Medicine Daniel Shindler, MD, RWJMS-Dept of Medicine Jim Zhang, PhD, EOHSI