U.S. Climate Change Science Program

Synthesis and Assessment Product 5.3

Decision-Support Experiments and Evaluations using Seasonal to Interannual Forecasts and Observational Data: A Focus on Water Resources

Lead Agency:

National Oceanic and Atmospheric Administration

Contributing Agencies:

Environmental Protection Agency National Aeronautics and Space Administration National Science Foundation U.S. Geological Survey

Note to Reviewers: This report has not yet undergone rigorous copy editing and will do so prior to layout for publication

CCSP 5.3 Page 1 of 426 Public Review Draft

Table of Contents

PREFACE	5
P.1 REPORT MOTIVATION AND GUIDANCE FOR USING THIS	
SYNTHESIS AND ASSESSMENT REPORT	5
P.2 BACKGROUND	7
P.3 FOCUS OF THIS SYNTHESIS AND ASSESSMENT PRODUCT.	8
P.4 THE SYNTHESIS AND ASSESSMENT WRITING TEAM	.10
P.5 HOW THIS SYNTHESIS AND ASSESSMENT PRODUCT IS	
ORGANIZED AND WHY	11
EXECUTIVE SUMMARY	15
ES.1 WHAT IS DECISION SUPPORT AND WHY IS IT	
NECESSARY?	15
ES.2 CLIMATE AND HYDROLOGIC FORECASTS: THE BASIS	
FOR MAKING INFORMED DECISIONS.	19
ES.3 DECISION-SUPPORT EXPERIMENTS IN THE WATER	
RESOURCE SECTOR.	22
ES.4 MAKING DECISION-SUPPORT INFORMATION USEFUL,	
USEABLE, AND RESPONSIVE TO DECISION-MAKER NEEDS	24
ES.5 LOOKING TOWARD THE FUTURE; RESEARCH	
PRIORITIES	26
ES.5.1 Key Themes	
ES.5.2 Research Priorities	
CHAPTER 1. THE CHANGING CONTEXT	29
1.1 INTRODUCTION	
1.2 INCREASING STRESS AND COMPLEXITY IN WATER	
RESOURCES	31
1.2.1 The Evolving Context: The Importance of Issue Frames	36
1.2.2 Climate Forecasting Innovations and Opportunities in Wate	
Resources	
1.2.3 Organizational Dynamics and Innovation	
1.2.4 Decision Support, Knowledge Networks, Boundary	
Organizations, and Boundary Objects	48
1.3 OUTLINE OF THE REPORT AND WHERE PROSPECTUS	
QUESTIONS ARE ADDRESSED.	50
CHAPTER 1 REFERENCES.	
CHAPTER 2. A DESCRIPTION AND EVALUATION OF HYDROLOGIC	
AND CLIMATE FORECAST AND DATA PRODUCTS THAT SUPPORT	
DECISION-MAKING FOR WATER RESOURCE MANAGERS	59
KEY FINDINGS	
2.1 INTRODUCTION	

	IYDROLOGIC AND WATER RESOURCES: MONITORIN	
AND	PREDICTION	
	2.2.1 Prediction Approaches	
	2.2.2 Forecast Producers and Products	
	2.2.3 Skill in SI Hydrologic and Water Resource Forecasts	
2.3 C	CLIMATE DATA AND FORECAST PRODUCTS	100
	2.3.1 A Sampling of SI Climate Forecast Products of Interes	t to
	Water Resource Managers	100
	2.3.2 Sources of Climate-Forecast Skill	108
2.4 II	MPROVING WATER RESOURCES FORECAST SKILL A	ND
PRO	DUCTS	111
	2.4.1 Improving SI Climate Forecast Use for Hydrologic	
		112
	2.4.2 Improving Initial Hydrologic Conditions for Hydrologi	ic and
	Water Resource Forecasts	117
	2.4.3 Calibration of Hydrologic Model Forecasts	123
2.5 T	THE EVOLUTION OF PROTOTYPES TO PRODUCTS AN	D
THE	ROLE OF EVALUATION IN PRODUCT DEVELOPMEN	T 126
	2.5.1 Transitioning Prototypes to Products	127
	2.5.2 Evaluation of Forecast Utility	135
CHA	APTER 2 REFERENCES	140
KEY	ESOURCE MANAGEMENT SECTOR Y FINDINGS	155
3.1 II	NTRODUCTION	157
	VHAT DECISIONS DO WATER USERS MAKE, WHAT A	
THE	IR DECISION-SUPPORT NEEDS, AND WHAT ROLES CA	AN
DEC	ISION-SUPPORT SYSTEMS PLAY IN MEETING THESE	i 1
NEE	DS?	159
	3.2.1 Range and Attributes of Water Resource Decisions	
	3.2.2 Decision-support Needs of Water Managers for Climat	e
	Information	173
	3.2.3 How Does Climate Variability Affect Water	
	8	176
	3.2.4 Institutional Factors that Inhibit Information Use in	
	Decision-Support Systems	198
	3.2.5 Reliability and Trustworthiness as Problems in	
	Collaboration	204
3.3 V	VHAT ARE THE CHALLENGES IN FOSTERING	
COL	LABORATION BETWEEN SCIENTISTS AND DECISION	1 -
MAF	KERS?	215
	3.3.1 General Problems in Fostering Collaboration	215
	3.3.2 Scientists Need to Communicate Better and	
	Decision-Makers Need a Better Understanding of	
	Uncertainty - It Is Embedded In Science	228

3.4 SUMMARY	233
CHAPTER 3 REFERENCES.	236
CHAPTER 4. MAKING DECISION-SUPPORT INFORMATION	
USEFUL, USEABLE, AND RESPONSIVE TO DECISION-MAKER	
NEEDS	260
KEY FINDINGS	
4.1 INTRODUCTION	
4.2 DECISION-SUPPORT TOOLS FOR CLIMATE FORECAST	
SERVING END-USER NEEDS, PROMOTING	19:
USER-ENGAGEMENT AND ACCESSIBILITY	264
	204
4.2.1 Decision-Support Experiments on Seasonal to	265
Interannual Climate Variability	203
4.2.2 Organizational and Institutional Dimensions of	205
Decision-Support Experiments	.285
4.3 APPROACHES TO BUILDING USER KNOWLEDGE AND	200
ENHANCING CAPACITY BUILDING	290
4.3.1 Boundary-Spanning Organizations as Intermediaries	200
Between Scientists and Decision Makers	290
4.3.2 Regional Integrated Science and Assessment Teams	
(RISAs) – An Opportunity for Boundary Spanning, and a	
Challenge	296
4.3.3 Developing Knowledge-Action Systems – a Climate	
for Inclusive Management	.299
4.3.4 The Value of User-Driven Decision Support	
4.3.5 Pro-Active Leadership – Championing Change	
4.3.6 Funding and Long-Term Capacity Investments Must B	
Stable and Predictable	.311
4.3.7 Adaptive Management for Water Resources Planning -	
Implications for Decision Support	313
4.3.8 Integrated Water Resources Planning – Local Water	
Supply and Adaptive Management	316
4.3.9 Measurable Indicators of Progress to Promote	
Information Access and Use	
4.3.10 Monitoring Progress	
4.4 SUMMARY FINDINGS AND CONCLUSIONS	333
4.5 FUTURE RESEARCH NEEDS AND PRIORITIES	337
4.5.1 Understanding Decision-Makers' Perceptions of Clima	te
Vulnerability	
4.5.2 Possible Research Methodologies	340
4.5.3 Public Pressures, Social Movements and Innovation	341
CHAPTER 4 REFERENCES	346
CHAPTER 5. LOOKING TOWARD THE FUTURE	364
5.1 INTRODUCTION.	
5.2 OVERARCHING THEMES AND FINDINGS	

5.2.1 The "Loading Dock Model" of Information Transfer is	
Unworkable	366
5.2.2 Decision Support is a Process Rather Than a Product	367
5.2.3 Equity May Not Be Served	369
5.2.4 Science Citizenship Plays an Important Role in Develop Appropriate Solutions	
5.2.5 Trends and Reforms in Water Resources Provide New Perspectives	
5.2.6 Useful Evaluation of Applications of Climate Variation	
Forecasts Requires Innovative Approaches	
5.3 RESEARCH PRIORITIES	
5.3.1 A Better Understanding of Vulnerability is Essential	383
5.3.2 Improving Hydrologic and Climate Forecasts	
5.3.3Better Integration of Climate Information Into Decision	
Making	386
5.3.4 Better Balance Between Physical Science and Social Science	389
5.3.5 Better Understanding of the Implications of Small-Scale	
Tailored Decision Support Tools Is Needed	
5.3.6 Understand Impacts of Climate Variability and Change on Other Resources	
5.4 THE APPLICATION OF LESSONS LEARNED FROM THIS	
PRODUCT TO OTHER SECTORS.	
CHAPTER 5 REFERENCES	
APPENDIX A. TRANSITIONING NWS HYDROLOGIC RESEARCH I OPERATIONS	
APPENDIX B. HOW THE NATIONAL WEATHER SERVICE	
PRIORITIZES THE DEVELOPMENT OF IMPROVED HYDROLOGIC	\mathbb{C}
FORECASTS	414
GLOSSARY AND ACRONYMS	419
GLOSSARY	
ACRONYMS	424