3413	Chapter 3. Decision-support Experiments within the
3414	Water Resource Management Sector
3415	
3416	Convening authors: David L. Feldman, Univ. of California, Irvine; Katharine L. Jacobs,
3417	Arizona Water Institute
3418	
3419	Lead Authors: Gregg Garfin, Univ. of Arizona; Aris Georgakakos, Georgia Institute of
3420	Technology; John Kochendorfer, Riverside Technology, Inc. & NOAA; Barbara
3421	Morehouse, Univ. of Arizona; Robin Webb, NOAA; Brent Yarnal, Penn. State Univ.
3422	
3423	Contributing authors: Cynthia Rosenzweig, NASA; Michael Sale, Oak Ridge National
3424	Laboratory; Brad Udall, NOAA; Connie Woodhouse, Univ. of Arizona
3425	
3426	KEY FINDINGS
3427	Decision-support experiments that test the utility of SI information for use by water
3428	resource decision-makers have resulted in a growing set of successful applications.
3429	However, there is significant opportunity for expansion of applications of climate-related
3430	data and decision support tools, and for developing more regional and local tools that
3431	support management decisions within watersheds. Among the constraints that limit tool
3432	use are:

3433	• the range and complexity of water resources decisions. This is compounded by
3434	the numerous organizations responsible for making these decisions, and the
3435	shared responsibility for implementing them.
3436	• inflexible policies and organizational rules that inhibit innovation. Government
3437	agencies historically have been reluctant to change practices; in part because of
3438	value differences, risk aversion, fragmentation and sharing of authority. This
3439	conservatism impacts how decisions are made as well as whether to use newer,
3440	scientifically generated information, including SI forecasts and observational data.
3441	• different spatial and temporal frames for decisions. Spatial scales for decision-
3442	making range from local, state, and national levels to international. Temporal
3443	scales range from hours to multiple decades impacting policy, operational
3444	planning, operational management, and near real-time operational decisions.
3445	Resource managers often make multi-dimensional decisions spanning various
3446	spatial and temporal frames.
3447	• lack of appreciation of the magnitude of potential vulnerability to climate impacts.
3448	Communication of the risks differs among scientific, political, and mass media
3449	elites – each systematically selecting aspects of these issues that are most salient
3450	to their conception of risk, and thus, socially constructing and communicating its
3451	aspects most salient to a particular perspective.
3452	
3453	Decision-support systems are not often well integrated into planning and management
3454	activities, making it difficult to realize the full benefits of these tools. Because use of
3455	many climate products requires special training or access to data that are not easily

Page 156 of 426

3456	available, decision-support products may not equitably reach all audiences. Moreover,
3457	over-specialization and narrow disciplinary perspectives make it difficult for information
3458	providers, decision-makers, and the public to communicate with one another. Three
3459	lessons stem from this:
3460	
3461	• Decision-makers need to understand the types of predictions that can be made, and
3462	the tradeoffs between longer-term predictions of information at the local or regional
3463	scale on the one hand, and potential decreases in accuracy on the other.
3464	
3465	• Decision-makers and scientists need to work together in formulating research
3466	questions relevant to the spatial and temporal scale of problems the former manage.
3467	
3468	• Scientists should aim to generate findings that are accessible and viewed as useful,
3469	accurate and trustworthy by stakeholders.
3470	3.1 INTRODUCTION
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483	Over the past century, the U. S. has built a vast and complex infrastructure to provide clean water for drinking and for industry, dispose of wastes, facilitate transportation, generate electricity, irrigate crops, and reduce the risks of floods and droughts To the average citizen, the nation's dams, aqueducts, reservoirs, treatment plants, and pipes are taken for granted. Yet they help insulate us from wet and dry years and moderate other aspects of our naturally variable climate. Indeed they have permitted us to almost forget about our complex dependences on climate. We can no longer ignore these close connections. – From: Peter Gleick and Briane Adams, <i>Water: The Potential Consequences of Climate Variability and Change for the Water Resources of the United States</i> (2000), p. 1.
3484	This chapter synthesizes and distills lessons for the water resources management sector
3485	from efforts to apply decision-support experiments and evaluations using seasonal to

3486	inter-annual forecasts and observational climate data. Its thesis is that, while there is a
3487	growing, theoretically-grounded body of knowledge on how and why resource decision-
3488	makers use information, there is little research on barriers to use of decision-support
3489	products in the water management sector. Much of what we know about these barriers
3490	comes from case studies on the application of seasonal to inter-annual forecast
3491	information and by efforts to span organizational boundaries dividing scientists and users.
3492	Research is needed on factors that can be generalized beyond these single cases in order
3493	to develop a strong, theoretically-grounded understanding of the processes that facilitate
3494	information dissemination, communication, use, and evaluation – and to predict effective
3495	methods of boundary spanning between decision-makers and information generators.
3496	
3497	Decision support is a three-fold process that encompasses: (i) the generation of climate
3498	science products; (ii) the translation of those products into forms useful for decision-
3499	makers; and, (iii) the processes that facilitate the dissemination, communication, and use
3500	of climate science products, information, and tools (NRC, 2007). As shall be seen,
3501	because users include many private and small, as well as public and large users serving
3502	multiple jurisdictions and entities, effective decision support is difficult to achieve.
3503	
3504	Section 3.2 describes the range of major decisions water users make, their decision
3505	support needs, and the role decision support systems can play in meeting them. We
3506	examine the attributes of water resource decisions, their spatial and temporal
3507	characteristics, and the implications of complexity, political fragmentation, and shared
3508	responsibility on forecast use. We also discuss impediments to forecast information use

Do Not Cite or Quote

Page 158 of 426

3509	by decision-makers, including mistrust, uncertainty, and lack of agency coordination, and
3510	discuss four cases – whose problem foci range from severe drought to flooding – where
3511	efforts to address these impediments are being undertaken with mixed results.
3512	
3513	Section 3.3 examines challenges in fostering closer collaboration between scientists and
3514	decision-makers in order to communicate, translate, and operationalize climate forecasts
3515	and hydrology information into integrated water management decisions. We review what
3516	the social and decision sciences have learned about barriers in interpreting, deciphering,
3517	and explaining climate forecasts and other meteorological and hydrological models and
3518	forecasts to decision-makers, including issues of relevance, accessibility, organizational
3519	constraints on decision-makers, and compatibility with users' values and interests. Case
3520	studies reveal how these issues manifest themselves in decision-support applications.
3521	Chapter 4 – which is a continuation of these themes in the context of how to surmount
3522	these problems - examines how impediments to effectively implementing decision-
3523	support systems can be overcome in order to make them more useful, useable, and
3524	responsive to decision-maker needs.

3526 **3.2 WHAT DECISIONS DO WATER USERS MAKE, WHAT ARE THEIR**

3527 DECISION-SUPPORT NEEDS, AND WHAT ROLES CAN DECISION-SUPPORT

- 3528 SYSTEMS PLAY IN MEETING THESE NEEDS?
- 3529
- 3530 This section reviews the range and attributes of water resource decisions, including
- 3531 complexity, political fragmentation, shared decision-making, and varying spatial scale.

Page 159 of 426

We also discuss the needs of water resource managers for climate variability forecast information, and the multi-temporal and multi-spatial dimensions of these needs. Finally, we examine how climatic variability affects water supply and quality. Embedded in this examination is discussion of the risks, hazards, and vulnerability of water resources (and human activities dependent on them) from climatic variability.

3537

3538 **3.2.1 Range and Attributes of Water Resource Decisions**

As discussed in Chapter 1, and as illustrated in Table 1.1, decisions regarding water

3540 resources in the U.S. are many and varied, and involve public and private sector decision-

3541 makers. Spatial scales for decision-making range from local, state, and national levels to

- 3542 international political jurisdictions the latter with some say in the way U.S. water
- resources are managed (Hutson *et al.*, 2004; Sarewitz and Pielke, 2006; Gunaji, 1993;
- 3544 Wagner, 1995. These characteristics dictate that information must be tailored to the
- 3545 particular roles, responsibilities, and concerns of different decision-makers to be useful.
- 3546 Chapter 1 also suggests that the way water issues are framed a process determined
- 3547 partly by organizational commitments and perceptions, and in part by changing demands
- 3548 imposed by external events and actors determines how information must be tailored to
- 3549 optimally impact various decision-making constituencies and how it will likely be used
- 3550 once tailored. Here we focus on the implications of this multiple-actor, multi-
- 3551 jurisdictional environment for delivery of climate variability information.

3552

3553 3.2.1.1 Institutional Complexity, Political Fragmentation, and Shared Decision-

3554 Making: Impacts on Information Use

Do Not Cite or Quote

Page 160 of 426

3555	The range and complexity of water resource decisions, the numerous organizations
3556	responsible for making these decisions, and the shared responsibility for implementing
3557	them affect how water resource decision-makers use climate variability information in
3558	five ways: (1) a tendency toward institutional conservatism by water agencies, (2) a
3559	decision-making climate that discourages innovation, (3) a lack of national-scale
3560	coordination of decisions, (4) difficulties in providing support for decisions at varying
3561	spatial and temporal scales due to vast variability in "target audiences" for products, and
3562	(5) growing recognition that rational choice models that attempt to explain information
3563	use as a function of decision-maker needs for "efficiency" are overly simplistic. These
3564	are discussed in turn.
3565	
3566	First, institutions that make water resource decisions, particularly government agencies,
3567	operate in domains where they are beholden to powerful constituencies. These
3568	constituencies have historically wanted public works projects for flood control,
3569	hydropower, water supply, navigation, and irrigation. They also have worked hard to
3570	maximize their benefits within current institutional structures, and are often reluctant to
3571	change practices that appear antiquated or inefficient to observers.
3572	
3573	The success of these constituencies in leveraging federal resources for river and harbor
3574	improvements, dams, and water delivery systems is in part due to mobilizing regional
3575	development interests. Such interests commonly resist change and place a premium on
3576	engineering predictability and reliability (D. Feldman, 1995; D. Feldman, 2007; Ingram
3577	and Fraser, 2006; Merritt, 1979: 48; Holmes, 1979). This conservatism not only affects

Do Not Cite or Quote

Page 161 of 426

3578	how these agencies and organizations make decisions, it also impacts how they employ,
3579	or do not employ, scientifically generated information, including that related to seasonal
3580	and inter-annual climate variability. Information that conflicts with their mandates,
3581	traditions, or roles may not be warmly received, as surveys of water resource managers
3582	has shown (e.g., O'Connor et al., 1999 and 2005; Yarnal et al., 2006; Dow et al., 2007)
3583	
3584	Second, the decision-making culture of U.S. water resources management has
3585	traditionally not embraced innovation. It has long been the case that value differences,
3586	risk aversion, fragmentation, and sharing of authority has produced a decision-making
3587	climate in which innovation is discouraged. When innovations have occurred, they have
3588	usually resulted from, or been encouraged through, outside influences on the decision-
3589	making process, including extreme climate events or mandates from higher-level
3590	government entities (Hartig et al., 1992; Landre and Knuth, 1993; Cortner and Moote,
3591	1994; Water in the West, 1998; May et al., 1996).
3592	
3593	Third, throughout the history of U.S. water resources management there have been
3594	various efforts to seek greater synchronization of decisions at the national level, in part,
3595	to better respond to environmental protection, economic development, water supply, and
3596	other goals. These efforts hold many lessons for understanding the role of climate change
3597	information and its use by decision-makers, as well how to bring about communication
3598	between decision-makers and climate information producers. While there has been
3599	significant investment of federal resources to provide for water infrastructure
3600	improvements, there has been little national-scale coordination over decisions, or over the

Do Not Cite or Quote

Page 162 of 426

3601	use of information employed in making them (Kundell, DeMeo, and Myszewski, 2001).
3602	The system does not encourage connectivity between the benefits of the federal
3603	investments and those who actually pay for them, which leaves little incentive for
3604	improvements in efficiency and does not reward innovation.
3605	
3606	3.2.1.2 Implications of the federal role in water management
3607	In partial recognition of the need to coordinate across state boundaries to manage
3608	interstate rivers, in the 1960s groups of Northeastern states formed the Delaware River
3609	Basin Commission (DRBC) and the Susquehanna River Basin Commission (SRBC) to
3610	pave the way for conflict resolution. These early federal interstate commissions
3611	functioned as boundary organizations that mediated communication between supply and
3612	demand functions for water and climate information (Sarewitz and Pielke, 2007). They
3613	relied on frequent, intensive, face-to-face negotiations; coordination among politically-
3614	neutral technical staffs; sharing of study findings among partners; willingness to sacrifice
3615	institutional independence when necessary; and commission authority to implement
3616	decisions so as to transcend short-term pressures to act expediently (Cairo, 1997; Weston,
3617	1995) ¹ .
3618	

3619 An ambitious effort to coordinate federal water policy occurred in 1965 when Congress

³⁶²⁰ established the Water Resources Council (WRC), under the Water Resources Planning

¹ Compact entities were empowered to allocate interstate waters (including groundwater and inter-basin diversions), regulate water quality, and manage interstate bridges and ports. DRBC includes numerous federal partners such as the Interior Department and Corps of Engineers officials (DRBC, 1998; DRBC, 1960; Weston, 1999; Weston, 1995; Cairo, 1997). One of the forces giving rise to DRBC was periodic *drought* that helped exacerbate conflict between New York City and other political entities in the basin. This led to DRBC's empowerment, as the nation's first federal interstate water commission, in all matters relating to the water resources of its basin, ranging from flooding to fisheries to water quality.

3621	Act, to coordinate federal programs. Due to objections to federal intervention in water
3622	rights issues by some states, and the absence of vocal defenders for the WRC, Congress
3623	de-funded WRC in 1981 (Feldman, 1995). Its demise points out the continued frustration
3624	in creating a national framework to coordinate water management, especially for optimal
3625	management in the context of climate variability. Since termination of the WRC,
3626	coordination of federal programs, when it has occurred, has come variously from the
3627	Office of Management and Budget, White House Council on Environmental Quality, and
3628	ad hoc bodies (e.g., Task Force on Floodplain Management) ² .
3629	
3630	Fourth, the physical and economic challenge in providing decision support due to the
3631	range of "target audiences" (e.g., Naim, 2003) and the controversial role of the federal
3632	government in such arenas is illustrated by efforts to improve the use of seasonal to inter-
3633	annual climate change information for managing water resources along the U.SMexico
3634	border, as well as the U.SCanadian border. International cross-boundary water issues in
3635	North America bring multiple additional layers of complexity, in part because the federal
3636	governments of Canada, Mexico and the U.S. often are ill equipped to respond to local
3637	water and wastewater issues. Bringing the U.S. State Department into discussions over
3638	management of treatment plants, for example, may not be an effective way to resolve
3639	technical water treatment or supply problems.

²Today the need for policy coordination, according to one source, "stems from the . . . environmental and social crises affecting the nation's rivers" (Water In the West, 1998: xxvii). In nearly every basin in the West, federal agencies are responding to tribal water rights, growing urban demands, endangered species listings, and Clean Water Act lawsuits. Climate change is expected to exacerbate these problems.

3641	In the last decade, climate-related issues that have arisen between Mexico and the U.S.
3642	regarding water revolve around disagreements among decision-makers on how to define
3643	extraordinary drought and how to allocate shortages – and over how to cooperatively
3644	prepare for climate extremes. These issues have led to renewed efforts to better consider
3645	the need for predictive information and ways to use it to equitably distribute water under
3646	drought conditions. Continuous monitoring of meteorological data, consumptive water
3647	uses, calculation of drought severity, and detection of longer-term climate trends could,
3648	under the conditions of these agreements, prompt improved management of the cross
3649	boundary systems (Gunaji, 1995; Mumme, 2003; Mumme, 1995; Higgins, Chen and
3650	Douglas, 1999). The 1906 Rio Grande Convention and 1944 Treaty between the U.S. and
3651	Mexico - the latter established the International Boundary Water Commission - contain
3652	specific clauses related to "extraordinary droughts." These clauses prescribe that the U.S.
3653	government appraise Mexico of the onset of drought conditions as they develop, and
3654	adjust water deliveries to both U.S. and Mexican customers accordingly (Gunaji, 1995).
3655	However, there is some reluctance to engage in conversations that could result in
3656	permanent reduced water allocations or reallocations of existing water rights.
3657	
3658	For the U.S. and Canada, a legal regime similar to that between the U.S. and Mexico has
3659	existed since the early 1900s. The anchor of this regime is the 1909 Boundary Waters
3660	Treaty that established an International Joint Commission with jurisdiction over threats
3661	to water quality, anticipated diversions, and protection of instream flow and water supply

3662 inflow to the Great Lakes – the latter being a region in which climate change-related

3663 concerns have grown in recent years due, especially, to questions arising over calls to

Do Not Cite or Quote

Page 165 of 426

3664	treat its water resources as a marketable commodity, as well as concerns over what
3665	criteria to use to resolve disputes over these and other questions (Wagner, 1995;
3666	International Joint Commission, 2000).
3667	
3668	3.2.1.3 Institutions and decision-making
3669	Fifth, there is growing recognition of the limits of so-called rational choice models of
3670	information use, which assume that decision-makers deliberately focus on optimizing
3671	organizational performance when they use climate variability or other water resource
3672	information. This recognition is shaping our understanding of the impacts of institutional
3673	complexity on use of climate information. An implicit assumption in much of the
3674	research on probabilistic forecasting of seasonal and inter-annual variation in climate is
3675	that decision makers on all levels will value and use improved climate predictions,
3676	monitoring data, and forecast tools that can predict changes to conditions affecting water
3677	resources (e.g., Nelson and Winter, 1960). Rational choice models of decision-making
3678	are predicated on the assumption that decision makers seek to make optimal decisions
3679	(and perceive that they have the flexibility and resources to implement them).
3680	
3681	A widely-cited study of four water management agencies in three locations – the
3682	Columbia River system in the Pacific Northwest, Metropolitan Water District of Southern
3683	California, and Potomac River Basin and Chesapeake Bay in the greater Washington,
3684	D.C. area - examined the various ways water agencies at different spatial scales use
3685	probabilistic climate forecast information. The study found that not only the multiple

3686 geographic scales at which these agencies operate – but the complexity of their decision-

Do Not Cite or Quote

Page 166 of 426

3687	making systems - dramatically influences how, and to what extent, they use probabilistic
3688	climate forecast information. An important lesson is that the complexity of these systems'
3689	sources of supply and infrastructure, and the stakeholders they serve are important
3690	influences on their capacity to use climate information. Decision-systems may rely on
3691	multiple sources of data, support the operation of various infrastructure components,
3692	straddle political (and hydrological) boundaries, and serve stakeholders with vastly
3693	different management objectives (Rayner, Lach, and Ingram, 2005). Thus, science is only
3694	one of an array of potential elements influencing decisions.
3695	
3696	The cumulative result of these factors is that water system managers and operations
3697	personnel charged with making day-to-day decisions tend toward an overall institutional
3698	conservatism when it comes to using complex meteorological information for short-to
3699	medium term decisions. Resistance to using new sources of information is affected by the
3700	complexity of the institutional setting within which managers work, dependency on craft
3701	skills and local knowledge, and a hierarchy of values and processes designed to ensure
3702	their political invisibility. Their goal is to smooth out fluctuations in operations and keep
3703	operational issues out of the public view (Rayner, Lach, and Ingram, 2005).
3704	In sum, the use of climate change information by decision makers is constrained by a
3705	politically fragmented environment, a regional economic development tradition that has
3706	inhibited – at least until recently – the use of innovative information (e.g., conservation,
3707	integrated resource planning), and multiple spatial and temporal frames for decisions. All
3708	this makes the target audience for climate information products vast and complex.
3709	

Do Not Cite or Quote

- The interplay of these factors, particularly the specific needs of target audiences and the
 inherently conservative nature of water management, is shown in the case of how
 Georgia has come to use drought information to improve long-term water supply
 planning. As shall be seen later (section 3.3.1), while the good news in this case is that
 information is beginning to be used by policymakers, the downside is that *some*information use is being inhibited by institutional impediments namely, inter-state
 political conflicts over water.
- 3717

3718Box 3.1: Georgia Drought3719

3720 Background

3721 Two apparent physical causes of the 2007-08 Southeast drought include a lack of tropical storms and 3722 hurricanes, which usually can be counted on to replenish declining reservoirs and soil moisture, and the 3723 development of a La Niña episode in the tropical Pacific, which continues to steer storms to the north of the 3724 region (see Figure 3.1). Drought risk is frequently modeled as a function of hazard (e.g., lack of 3725 precipitation) and vulnerability (*i.e.*, susceptibility of society to the hazard) using a multiplicative formula, 3726 risk = hazard *vulnerability (Hayes et al., 2004). In 2007, Atlanta, Georgia received only 62% of its 3727 average annual precipitation, the second driest calendar year on record; moreover, streamflows were among 3728 the lowest recorded levels on several streams. By June 2007, the National Climatic Data Center reported 3729 that December-May precipitation totals for the Southeast were at new lows. Spring wildfires spread 3730 throughout southeastern Georgia which also recorded its worst pasture conditions in 12 years. Georgia's 3731 Governor Purdue extended a state of emergency through June 30; however, the state's worst drought 3732 classification, accompanied by a ban on outdoor water use, was not declared until late September. 3733

While progressive state drought plans, such as Georgia's (which was adopted in March, 2003), emphasize
drought preparedness and mitigation of impacts through mandatory restrictions in some water use sectors,
they do not commonly factor in the effect of population growth on water supplies. Moreover, conservation
measures in a single state cannot address water allocation factors affecting large, multi-state watersheds,
such as the Apalachicola- Chattahoochee-Flint (ACF), which encompasses parts of Georgia, Alabama, and
Florida.

3741 Institutional barriers and problems

3742 The source of water woes in this Southeastern watershed dates back to a 1987 decision by the Army Corps 3743 of Engineers to reallocate 20% of power generation flow on the Chattahoochee River to municipal supply 3744 for Atlanta, which sits near the headwaters of the river. Alabama and Florida soon demanded an assessment 3745 of the environmental and economic effects of that decision, which set off a series of on-again, off-again 3746 disputes and negotiations between the three states, known as the "Tri- State Water Wars," that have not 3747 been resolved (as of January, 2008). At the heart of the disputes is a classic upstream-downstream water 3748 use and water rights dispute, pitting municipal water use for the rapidly expanding Atlanta metropolitan 3749 region against navigation, agriculture, fishing, and environmental uses downstream in Alabama and 3750 Georgia. The situation is further complicated by water quality concerns, as downstream users suffer 3751 degraded water quality, due to polluted urban runoff and agricultural waste, pesticide, and fertilizer 3752 leaching. Despite the efforts of the three states and Congress to create water compacts, by engaging in joint 3753 water planning and developing and sharing common data bases, the compacts have never been

3754 implemented as a result of disagreements over what constitutes equitable water allocation formulae
3755 (Feldman, 2007).

Political and sectoral disputes continue to exacerbate lack of coordination on water-use priorities, and there
is a continuing need to include climate forecast information into these activities, as underscored by
continuing drought in the Southeast. The result is that water management decision-making is constrained,
and there are few opportunities to insert effective decision support tools, aside from the kinds of multistakeholder shared-vision modeling processes developed by the Army Corps of Engineers Institute for
Water Resources.

Figure Box 3.1 Georgia statewide precipitation: 1998-2007
(end box)
(end box)

3767

- 3768 Spatial scale of decisions
- 3769 In addition to the challenges created by institutional complexity, the spatial scale of
- 3770 decisions made by water management organizations ranges from small community water
- 3771 systems to large, multi-purpose metropolitan water service and regional water delivery

```
Do Not Cite or Quote
```

Page 169 of 426

3772	systems (Rayner, Lach, and Ingram, 2005). Differences in spatial scale of management
3773	also affect information needed – an issue discussed in chapter 4 when we analyze
3774	Regional Integrated Science Assessment (RISA) experiences. These problems of diverse
3775	spatial scale are further compounded by the fact that most water agencies do not conform
3776	to hydrological units. While some entities manage water resources in ways that conform
3777	to hydrological constraints (<i>i.e.</i> , watershed, river basin, aquifer or other drainage basin –
3778	Kenney and Lord, 1994; Cairo, 1997), basin-scale management is not the most common
3779	U.S. management approach. Because most hydrologic tools focus on watershed
3780	boundaries, there is a disconnect between the available data and the decision context.
3781	
3782	Decision-makers often share authority for decisions across local, state, and national
3783	jurisdictions. In fact, the label "decision maker" embraces a vast assortment of elected
3784	and appointed local, state, and national agency officials, as well as public and private
3785	sector managers with policy-making responsibilities in various water management areas
3786	(Sarewitz and Pielke, 2007). Because most officials have different management
3787	objectives while sharing authority for decisions, it is likely that their specific seasonal to
3788	inter-annual climate variability information needs will vary not only according to spatial
3789	scale, but also according to institutional responsibilities and agency or organization goals.
3790	Identifying who the decision makers are is equally challenging. The Colorado River basin
3791	illustrates the typical array of decision-makers on major U.S. streams. A recent study in
3792	Arizona identified an array of potential decision makers affected by water shortages
3793	during drought, including conservation groups, irrigation districts, power providers,
3794	municipal water contractors, state water agencies, several federal agencies, two regional

Do Not Cite or Quote

Page 170 of 426

3795 water project operators (the Central Arizona and Salt River projects), tribal 3796 representatives, land use jurisdictions, and individual communities (Garrick, Jacobs, 3797 Garfin, 2006). This layering of agencies with water management authority is also found 3798 at the national level. 3799 3800 There is no universally agreed-upon classification system for defining *water users*. 3801 Taking as one point of departure the notion that water users occupy various "sectors" 3802 (*i.e.*, activity areas distinguished by particular water uses), the U.S. Geological Survey 3803 monitors and assesses water use for eight user categories: public supply, domestic use, 3804 irrigation, livestock, aquaculture, industrial, mining, and thermo-electric power. These 3805 user categories share freshwater supplies withdrawn from streams and/or aquifers and, 3806 occasionally, from saline water sources as well (Hutson et al., 2004). However, the 3807 definitions of these classes of users vary from state to state. 3808 3809 One limitation in this user-driven classification scheme in regards to identifying 3810 information needs for seasonal to inter-annual climate forecasts is that it inadvertently 3811 excludes in-stream water users – those who do not remove water from streams or 3812 aquifers. Instream uses are extremely important, as they affect aquatic ecosystem health, 3813 recreation, navigation, and public health (Gillilan and Brown, 1997; Trush and McBain, 3814 2000; Rosenberg et al., 2000; Annear et al., 2002). Moreover, instream uses and wetland 3815 habitats have been found to be among the most vulnerable to impacts of climate variability and change $(USGCRP, 2001)^3$. 3816

³In general, federal law protects instream uses only when an endangered species is affected. Protection at the state level varies, but extinction of aquatic species suggests the relatively low priority given to

3817	
3818	Finally, decision-makers' information needs are also influenced by the time frame for
3819	decisions – and to a greater degree than scientists. For example, while NOAA researchers
3820	commonly distinguish between weather prediction information, produced on an hours-to-
3821	weeks time frame, and climate predictions, which may be on a seasonal to inter-annual
3822	time frame, many managers make decisions based on annual operating requirements or
3823	on shorter time frames that may not match the products currently produced.
3824	
3825	Two important points stem from this. First, as longer-term predictions gain skill, use of
3826	longer-term climate information is likely to expand, particularly in areas with economic
3827	applications. Second, short-term decisions may have long-term consequences. Thus,
3828	identifying the information needed to make better decisions in all time frames is
3829	important – especially since it can be difficult to get political support for research that
3830	focuses on long-term, incremental increases in knowledge that are the key to significant
3831	policy changes (Kirby, 2000). This poses a challenge for decision-makers concerned
3832	about adaptation to global change.
3833	
3834	Multi-decadal climate-hydrology forecasts and demand forecasts (including population
3835	and economic sector forecasts and forecasts of water and energy demand) are key inputs
3836	for policy decisions. Changes in climate that affect these hydrology and water demand
3837	forecasts are particularly important for policy decisions, as they may alter the anticipated

protecting flow and habitat. Organizations with interests in the management of instream flows are diverse, ranging from federal land management agencies to state natural resource agencies and private conservation groups, and their climate information needs widely vary (Pringle, 2000; Restoring the Waters, 2000).

3838	streams of benefits and impacts of a proposal. Information provided to the policy
3839	planning process is best provided in the form of tradeoffs assessing the relative
3840	implications, hazards, risks, and vulnerabilities associated with each policy option ⁴ .
3841	
3842	3.2.2 Decision-support Needs of Water Managers for Climate Information
3843	As we have noted, the decision-support needs of water resource decision-makers for
3844	information on climate variability depend upon the temporal and spatial scale of the
3845	decisions that they make. The complexity of the decision process is graphically illustrated
3846	in Figure 3.2 (Georgakakos, 2006a; HRC-GWRI, 2006). This figure includes four
3847	temporal scales ranging from multiple decades to hours. The <i>first</i> decision level includes
3848	policy decisions pertaining to multi-decadal time scales and involving infrastructure
3849	changes (e.g., storage projects, levee systems, energy generation facilities, waste water
3850	treatment facilities, inter-basin transfer works, sewer/drainage systems, well fields, and
3851	monitoring networks), as well as water sharing compacts, land use planning,
3852	environmental sustainability requirements and targets, regulations, and other legal and
3853	institutional requirements. Policy decisions may also encompass many political entities.
3854	Decisions pertaining to trans-boundary water resources are particularly challenging, as
3855	noted in section 3.2.1.1, because they aim to reconcile benefits and impacts measured and
3856	interpreted by different standards, generated and accrued by stakeholders of different

⁴ Ideally, the purpose of the participatory planning processes is to formulate policies benefiting stakeholders. The process is highly interactive and iterative with stakeholder groups formulating policy options for assessment by the decision support systems and experts, in turn, interpreting the assessment results for the stakeholders who evaluate and refine them. It is acknowledged, however, that water resource decisions are often contentious, and stakeholder decision processes may fail to reach consensus.

- 3857 nations, and regulated under different legal and institutional regimes (Naim, 2003;
- 3858 Mumme, 2003; Mumme, 1995; Higgins, Chen and Douglas, 1999).

3860

· Flood/Drought Emergency Response, etc.

3861 Figure 3.2 Water Resources Decisions: Range and Attributes

3862

- 3863 The second decision level involves operational planning decisions pertaining to inter-
- 3864 annual and seasonal time scales. These and other lower level decisions are made within
- 3865 the context set by the policy decisions and pertain to inter-annual and seasonal reservoir
- 3866 releases, carry-over storage, hydro-thermal energy generation plans, agreements on
- 3867 tentative or final water supply and energy contracts, implementation of drought
- 3868 contingency plans, and agricultural planning decisions, among others. The relevant
- 3869 spatial scales for operational planning decisions may be as large as those of the policy

3870	decisions, but are usually associated with individual river basins as opposed to political
3871	jurisdictions. Inter-annual and seasonal hydro-climatic and demand forecasts (for water
3872	supply, energy, and agricultural products) are critical inputs for this decision level.
3873	
3874	The third decision level pertains to operational management decisions associated with
3875	short and mid range time scales of 1-3 months. Typical decisions include reservoir
3876	releases during flood season, spillway operations, water deliveries to urban, industrial, or
3877	agricultural areas, releases to meet environmental and ecological flow requirements,
3878	power facility operation, and drought conservation measures. The benefits and impacts of
3879	these decisions are associated with daily and hourly system response (high resolution).
3880	This decision level requires operational hydro-climatic forecasts and forecasts of water
3881	and power demand and pricing. The decision process is similar to those of the upper
3882	decision layers, although, as a practical matter, general stakeholder participation is
3883	usually limited, with decisions taken by the responsible operational authorities. This is an
3884	issue relevant to several cases discussed in chapter 4.
3885	
3886	The final decision level pertains to near real time operations associated with hydrologic
3887	and demand conditions. Typical decisions include regulation of flow control structures,
3888	water distribution to cities, industries, and farms, operation of power generation units,
3889	and implementation of flood and drought emergency response measures. Data from real
3890	time monitoring systems are important inputs for daily to weekly operational decisions.
3891	Because such decisions are made frequently, stakeholder participation may be

Do Not Cite or Quote

3892	impractical, and decisions may be limited to government agencies or public sector
3893	utilities according to established operational principles and guidelines.
3894	While the above illustration addresses water resources complexity (<i>i.e.</i> , multiple temporal
3895	and spatial scales, multiple water uses, multiple decision makers), it cannot be
3896	functionally effective (<i>i.e.</i> , create the highest possible value) unless it exhibits
3897	consistency and adaptiveness. Consistency across the decision levels can be achieved by
3898	ensuring that (1) lower level forecasts, decision support systems, and stakeholder
3899	processes operate within the limits established by upper levels (as represented by the
3900	downward pointing feedback links in Figure 1, and (2) upper decision levels capture the
3901	benefits and impacts associated with the high resolution system response (as represented
3902	by the upward pointing feedback links in Figure 3.2). Adaptiveness, as a number of
3903	studies indicate, requires that decisions are continually re-visited as system conditions
3904	change and new information becomes available, or as institutional frameworks for
3905	decision-making are amended (Holling, 1978; Walters, 1986; Lee, 1993).

3906 **3.2.3 How Does Climate Variability Affect Water Management?**

Water availability is essential for human health, economic activity, ecosystem function, and geophysical processes. Climate variability can have dramatic seasonal and interannual effects on precipitation, drought, snow-pack, runoff, seasonal vegetation, water quality, groundwater, and other variables. Much recent research on climate variability impacts on water resources is linked to studies of long-term climate change, necessitating some discussion of the latter. In fact there is a relative paucity of information on the potential influence of climate change on the underlying patterns of climate variability

Do Not Cite or Quote

Page 176 of 426

3916	adaptive capacity, risk perception, and communication of hazard.
3915	the Colorado River basin – exemplifying several dimensions of this problem, including
3914	(e.g., CCSP, 2007). At the close of this section, we explore one case – that of drought in

3918

3919 According to the Intergovernmental Panel on Climate Change, while total annual 3920 precipitation is increasing in the northern latitudes, and average precipitation over the 3921 continental U.S. has increased, the southwestern U.S. (and other semi-tropical areas 3922 worldwide) appear to be tending towards reduced precipitation, which in the context of 3923 higher temperatures, results in lower soil moisture and a substantial effect on runoff in 3924 rivers (IPCC, 2007b). The observed trends are expected to worsen due to continued 3925 warming over the next century. Observed impacts on water resources from changes that 3926 are thought to have already occurred include increased surface temperatures and 3927 evaporation rates, increased global precipitation, an increased proportion of precipitation 3928 received as rain rather than snow, reduced snowpack, earlier and shorter runoff seasons, 3929 increased water temperatures and decreased water quality (IPCC, 2007a, b). 3930 3931 Additional effects on water resources result from sea level rise of approximately 10-20 cm since the 1890s (IPCC, 2007a)⁵, an unprecedented rate of mountain glacier melting, 3932 3933 seasonal vegetation emerging earlier in the spring and a longer period of photosynthesis, 3934 and decreasing snow and ice cover with earlier melting. Climate change is also likely to

- 3935 produce increases in intensity of extreme precipitation events (*e.g.*, floods, droughts, heat
- 3936 waves, violent storms) that could "exhaust the social buffers that underpin" various

⁵ According to the IPCC 2007 Fourth Assessment Report, sea level has risen an average of 1.8 mm per year over the period 1961-2003 (IPCC, 2007: 5).

3937	economic systems such as farming; foster dynamic and interdependent consequences
3938	upon other resource systems (e.g., fisheries, forests); and generate "synergistic" outcomes
3939	due to simultaneous multiple human impacts on environmental systems (<i>i.e.</i> , an
3940	agricultural region may be simultaneously stressed by degraded soil and changes in
3941	precipitation caused by climate change) (Homer-Dixon, 1999).
3942	
3943	Studies have concluded that changes to runoff and stream flow would have considerable
3944	regional-scale consequences for economies as well as ecosystems, while effects on the
3945	latter are likely to be more severe (Milly et al., 2005). If elevated aridity in the western
3946	U.S is a natural response to climate warming, then any trend toward warmer temperatures
3947	in the future could lead to serious long-term increase in droughts - highlighting both the
3948	extreme vulnerability of the semi-arid west to anticipated precipitation deficits caused by
3949	global warming, and the need to better understand long term drought variability and its
3950	causes (Cook <i>et al.</i> , 2004).
3951	
3952	The impacts of climate variability are largely regional, making the spatial and temporal
3953	scale of information needs of decision-makers likewise regional. This is why we focus
3954	(section 3.2.3.1) on specific regional hazards, risks, and vulnerabilities of climate
3955	variability on water resources). TOGA and RISA studies focus on the regional scale
3956	consequences of changes to runoff and stream flow on economies as well as ecosystems
3957	(Milly <i>et al.</i> , 2005).
3958	
3959	3.2.3.1 Hazards, risks, and vulnerabilities of climate variability

Do Not Cite or Quote

Page 178 of 426

3960	A major purpose of decision-support tools is to reduce the risks, hazards, and
3961	vulnerabilities to water resources from seasonal to inter-annual climate variation, as well
3962	as to related resource systems, by generating climate science products and translating
3963	these products into forms useful to water resource managers (NRC, 2008). In general,
3964	what water managers need help in translating is how changes resulting from weather and
3965	seasonal to inter-annual climate variation can affect the functioning of the systems they
3966	manage. Numerous activities are subject to risk, hazard, and vulnerability, including fires,
3967	navigation, flooding, preservation of threatened or endangered species, and urban
3968	supplies. At the end of this section, we focus on three less visible but nonetheless
3969	important challenges: water quality, groundwater depletion, and energy production.
3970	Despite their importance, hazard, risk, and vulnerability can be confusing concepts. A
3971	hazard is an event that is potentially damaging to people or to things they value. Floods
3972	and droughts are two common examples of hazards that affect water resources. Risk
3973	indicates the probability of a particular hazardous event occurring. Hence, while the
3974	hazard of drought is a concern to all water managers, drought risk varies considerably
3975	with physical geography, management context, infrastructure type and condition, and
3976	many other factors so that some water resource systems are more at-risk than others
3977	(Stoltman et al., 2004; Stern and Fineberg, 1996; Wilhite, 2004).
3978	

3979 A related concept—vulnerability—is more complex and can cause further confusion⁶.

3980 Although experts dispute precisely what the term means, most agree that vulnerability

3981 considers the likelihood of harm to people or things they value and it entails a physical as

⁶ Much of this discussion on vulnerability is modified from Yarnal (in press). See also Polsky *et al.*, and Dow *et al.*, (in press) for definitions of vulnerability, especially in relation to water resource management.

3982 well as social dimension (e.g., Cutter 1996; Schröter et al., 2005; Handmer, 2004). 3983 Physical vulnerability has to do with exposure to harmful events, while social 3984 vulnerability entails the factors affecting a system's sensitivity and capacity to respond to 3985 exposure. Moreover, experts accept some descriptions of vulnerability more readily than 3986 others. One commonly accepted description considers vulnerability to be a function of 3987 exposure, sensitivity, and adaptive capacity (Schneider and Sarukhan, 2001). Exposure is 3988 the degree to which people and the places or things they value, such as their water supply, 3989 are likely to be impacted by a hazardous event, such as a flood. The "things they value" 3990 include not only economic value and wealth but also cultural, spiritual, and personal 3991 values. This concept also refers to physical infrastructure (*e.g.*, water pipelines and dams) 3992 and social infrastructure (e.g., water management associations and the Army Corps of 3993 Engineers). Valued components include intrinsic values like water quality and other 3994 outcomes of water supply availability such as economic vitality. 3995 3996 Sensitivity is the degree to which people and the things they value can be harmed by 3997 exposure. Some water resource systems, for example, are more sensitive than others 3998 when exposed to the same hazardous event. All other factors being equal, a water system 3999 with old infrastructure will be more sensitive to a flood or drought than one with new 4000 state-of-the-art infrastructure; in a century, the newer infrastructure will be considerably 4001 more sensitive to a hazardous event than it is today because of aging.

4002

4003 *Adaptive capacity* is the least explored and most controversial aspect of vulnerability.

4004 The understanding of adaptive capacity favored by the climate change research

Do Not Cite or Quote

Page 180 of 426

4005	community is the degree to which people can mitigate the potential for harm-that is,
4006	reduce vulnerability-by taking action to reduce exposure or sensitivity, both before and
4007	after the hazardous event. The physical, social, economic, spiritual, and other resources
4008	they possess, including such resources as educational level and access to technology,
4009	determine the capacity to adapt. For instance, all things being equal, a community water
4010	system that has trained managers and operators with and up-to-date computer technology
4011	will be less vulnerable than a neighboring system with untrained volunteer operators and
4012	limited access to computer technology ⁷ .
4013	
4014	Some people or things they value can be highly vulnerable to low-impact events because
4015	of high sensitivity or low adaptive capacity. Others may be less vulnerable to high-impact
4016	events because of low sensitivity or high adaptive capacity. A hazardous event can result
4017	in a patchwork pattern of harm due to variation in vulnerability over short distances
4018	(Rygel et al., 2006). Such variation means that preparing for or recovering from flood or
4019	drought may require different preparation and recovery efforts from system to system.
4020	
4021	3.2.3.2 Perceptions of risk and vulnerability – Issue frames and risk communication
4022	Much of the research on vulnerability of water resources to climate variability has
4023	focused on physical vulnerability, i.e., the exposure of water resources and water resource
4024	systems to harmful events. Cutter et al., (2002) and many others have noted, however,

⁷ A slightly different view of adaptive capacity favored by the hazards and disaster research community is that it consists of two subcomponents: coping capacity and resilience. The former is the ability of people and systems to endure the harm; the latter is the ability to bounce back after exposure to harmful events. In both cases, water resource systems can take measures to increase their ability to cope and recover, again depending on the physical, social, economic, spiritual, and other resources they possess or have access to.

4025	that social vulnerability—the social factors that affect a system's sensitivity to exposure,
4026	and that influence its capacity to respond and adapt in order to lessen its exposure or
4027	sensitivity—can often be more important than physical vulnerability. Understanding the
4028	social dimensions of vulnerability and related risks is therefore crucial to determining
4029	how climate variation and change will affect water resources.
4030	
4031	The perception of risk is perhaps the most-studied of the social factors relating to climate
4032	information and the management of water resources. At least three barriers stemming
4033	from their risk perceptions prevent managers from incorporating weather and climate
4034	information in their planning; each barrier has important implications for communicating
4035	climate information to resource managers and other stakeholders (Yarnal et al., 2005). A
4036	fourth barrier relates to the underlying public perceptions of the severity of climate
4037	variability and change – and thus, implicit public support for policies and other actions
4038	that might impel managers to incorporate climate variability into decisions.
4039	
4040	The first conceptual problem is that managers who find climate forecasts and projections
4041	to be reliable appear in some cases no more likely to use them than managers who find
4042	them to be unreliable (O'Connor et al., 1999 and 2005) ⁸ . Managers most likely to use
4043	weather and climate information may have experienced weather and climate problems in
4044	the recent past – their heightened feelings of vulnerability are the result of negative

⁸ Based on findings from two surveys of community water system managers (N>400 in both studies) in Pennsylvania's Susquehanna River Basin. The second survey compared Pennsylvania community water system managers to their counterparts in South Carolina (N>250) and found that managers who find climate forecasts and projections to be reliable are no more likely to use them than are those who find them to be unreliable. Thus, unless managers feel vulnerable (vulnerability being a function of whether they have had adverse experience with weather or climate), they are statistically less likely to use climate forecasts.

4045	experiences with weather or climate. The implication of this finding is that simply
4046	delivering weather and climate information to potential users may be insufficient in those
4047	cases in which the manager does not perceive climate to be a hazard – at least in humid,
4048	water rich regions of the U.S. that we have studied ⁹ . Purveyors of weather and climate
4049	information may need to convince potential users that, despite the absence of recent
4050	adverse events, their water resources have suffered historically from-and therefore are
4051	vulnerable to—weather and climate.
4052	
4053	The second barrier is that managers' perceptions about the usefulness of climate
4054	information varies not only with their exposure to adverse events, but also with the
4055	financial, regulatory, and management contexts of their decisions (Yarnal et al., 2006;
4056	Dow et al., 2007). The implication of this finding is that assessments of weather and
4057	climate vulnerability and of climate information needs must consider the institutional
4058	contexts of the resource systems and their managers. Achieving a better understanding of
4059	these contexts and of the informational needs of resource managers requires working with
4060	them directly.
4061	
4062	The third barrier is that managers expect more difficulties to come from associated
4063	financial and water quality impacts of climate challenges associated with floods and
4064	droughts than from their ability to find water and supply it to their customers (Yarnal et
4065	al., 2006; Dow et al., 2007). Combined with the second barrier, the implication is that

4066 managers view weather and climate forecasts as more salient when put into the context of

⁹Additional research on water system manager perceptions is needed, in regions with varying hydrometeorological conditions, to discern if this finding holds true in other regions.

4067	system operations and management needs. Presenting managers with a climate forecast
4068	for the United States showing the regional probability of below-normal precipitation for
4069	the coming season may not generate much interest; presenting those managers with a
4070	Palmer Drought Severity Index tailored to their state that suggests a possible drought
4071	watch, warning, or emergency will grab their attention (Carbone and Dow, 2005). The
4072	Southwest drought case discussed at the end of this section exemplifies how this salience
4073	worked to prod decision-makers to partner closely with water managers, and how the
4074	latter embraced climate knowledge in improving forecasts and demand estimates.
4075	
4076	The fourth barrier is the way climate variability and change are framed as public policy
4077	issues, and how their risks are publically communicated. Regardless of the "actual" (if
4078	indeterminate) risks from climate change and variability, communication of the risks
4079	differs among scientific, political, and mass media elites – each systematically selecting
4080	aspects of these issues that are most relevant to their conception of risk, and thus, socially
4081	constructing and communicating its aspects most salient to a particular perspective. Thus,
4082	climate variability can be viewed as: a phenomenon characterized by probabilistic and
4083	consequential uncertainty (science); an issue that imposes fiduciary or legal responsibility
4084	on government (politics); or, a sequence of events that may lead to catastrophe unless
4085	immediate action is taken (Weingart et al., 2000).
4086	

4087 Related to this is considerable research which suggests that when risk information – such
4088 as that characteristic of climate change or variability modeling and forecasting – is
4089 generated by select groups of experts who work in isolation from the public (or from

Do Not Cite or Quote

Page 184 of 426

4090	decision-makers) – the risks presented may sometimes be viewed as untrustworthy or as
4091	not fully warranting a reposing of credibility. This research also suggests that building
4092	trust requires the use of public forums designed to facilitate open risk communication that
4093	is clear, succinct, and jargon-free, and that affords groups ample opportunity for
4094	questions, discussion, feedback, and reaction (e.g., Freudenburg and Rursch, 1994;
4095	Papadakis, 1996; Jasanoff, 1987; Covello, Donovan and Slavick, 1990; NRC, 1989).
4096	
4097	Research on these barriers also shows that personal experience has a powerful influence
4098	on perceptions of risk and vulnerability. They suggest that socioeconomic context is
4099	important in shaping perceptions, and, thus, the perceptions they produce are very
4100	specific. They also show that climate information providers must present their
4101	information in ways salient to potential users, necessitating customizing information for
4102	specific user groups. Finally, they suggest ways that perceptions can be changed.
4103	
4104	Research on the influence of climate science on water management in western Australia
4105	(Power et al., 2005) suggests that water resource decision-makers can be persuaded to act
4106	on climate variability information if a strategic program of research in support of specific
4107	decisions (e.g., extended drought) can be wedded to a dedicated, timely risk
4108	communication program. In this instance, affected western Australian states formed a
4109	partnership between state agencies representing economic interests affected by drought,
4110	national research institutions engaged in meteorology and hydrology modeling, and water
4111	managers. This partnership succeeded in influencing decision-making by: being sensitive
4112	to the needs of water managers for advice that was seen as "independent," in order to

Do Not Cite or Quote

Page 185 of 426

4113	assure the public that water use restrictions were actually warranted; providing timely
4114	products and services to water users in an accessible way; and, directly involving water
4115	managers in the process of generating forecast information. The Georgia drought case
4116	(section 3.2.1) also illustrates the need to be sensitive and responsive to decision-maker
4117	needs. As in Australia, ensuring scientific "independence" facilitated the efforts of
4118	managers to consider climate science in their decisions, and helped ensure that climate
4119	forecast information was "localized" through presentation at public meetings and other
4120	fora so that residents could apply it to local decisions (Power et al., 2005). In sum, to
4121	overcome barriers to effective climate information communication, information must be
4122	specific to the sectoral context of managers and enhance their ability to realize
4123	management objectives threatened by weather and climate.
4124	
4125	We now examine three particularly vulnerable areas to climate variability: water quality,
4126	groundwater depletion, and energy production. Following this discussion, we feature a
4127	case study on <i>drought responses in the Southwest U.S.</i> which is instructive about the role
4128	that perceived vulnerability has played in adaptive responses.
4129	
4130	Water Quality: Assessing the vulnerability of water quality to climate variability and
4131	change is a particularly challenging task, not only because quality is a function – partly –
4132	of water quantity, but because of the myriad physical, chemical and biological
4133	transformations that non-persistent pollutants undergo in watersheds and water bodies.

4134 One of the most comprehensive literature reviews of the many ways in which water

Do Not Cite or Quote

4135 quality can be impacted by climate variability and change was undertaken by Murdoch et

4136 *al.* (2000). A synopsis of their major findings is depicted in Table 3.1.

4137

4138

4139 Table 3.1 Water Quality, Climate Variability, and Climate Change*

41	40
----	----

Impacts associated with increases in temperature alone
• Decreased oxygen-holding capacity due to higher surface-water temperatures
• In arctic regions, the melting of ice and permafrost resulting in increased erosion, runoff, and <i>cooler</i>
stream temperatures.
• Changes in the seasonal timing and degree of stratification of temperate lakes.
• Increased biomass productivity leading to increased rates of nutrient cycling, eutrophication and anoxia.
• Increased rates of chemical transformation and bioaccumulation of toxins.
• Changes in the rates of terrestrial nutrient cycling and the delivery of nutrients to surface waters.
Impacts associated with drought and decreases in streamflow
• Increased concentration of pollutants in streams, but decreased total export of those pollutants to the
receiving water body.
• Decreases in the concentration of pollutants that are derived from the flushing of shallow soils and by
erosion.
• Increases in the concentration of pollutants that are derived from deeper flow paths and from point
sources.
• Decreased stratification and increased mixing in estuaries and other coastal waters, leading to decreased
anoxia of bottom waters and decreased nutrient availability (and eutrophication).
• Movement of the freshwater-saltwater boundary up coastal river and intrusion of saltwater into coastal
aquifers—impacts which would be exacerbated by sea-level rise.
Impacts associated with flooding and increases in streamflow
• In general, mitigation of the impacts associated with drought and decreases in streamflow

Increases in the spatial extent of source areas for storm flow, leading to the increased flushing of pollutants from both point and non-point sources of pollution.

Increased rates of erosion

• Increased rates of leaching of pollutants to groundwater

• Greater dilution of pollutants being countervailed by decreased rates of chemical and biological

transformations owing to shorter residence times in soils, groundwater and surface waters.

* From Murdoch, et. al., 2003

4141

- 4142 One conclusion to be drawn from Table 3.1 is that climate variability and change can
- 4143 have both negative and positive impacts on water quality. In general, warmer surface-
- 4144 water temperatures and lower flows tend to have a negative impact through decreases in
- 4145 dissolved oxygen (DO). In contrast, decreased flows to receiving water bodies—
- 4146 especially estuaries and coastal waters—can improve water quality, while increased
- 4147 flows can degrade water quality of the receiving water bodies, particularly if they carry

4148	increased total loads of nutrients and sediments. In healthy watersheds that are relatively
4149	unimpacted by disturbances to the natural vegetation cover, increased stream flow may
4150	increase water quality in the given stream by increasing dilution and DO.
4151	
4152	Increased runoff and flooding in urbanized areas can lead to increased loads of nonpoint-
4153	source pollutants (Kirshen et al., 2008) such as pesticides and fertilizer from landscaped
4154	areas, and point-source pollutants, from the overflow of combined sewer systems (Furlow
4155	2006). In addition to increasing pesticide and nutrient loads (Chang et al., 2001), increase
4156	in runoff from agricultural lands can lead to greater sediment loads from erosion and
4157	pathogens from animal waste (Dorner et al., 2006). Loads of non-point pollution may be
4158	especially large during flooding if the latter occurs after a prolonged dry period in which
4159	pollutants have accumulated in the watershed.
4160	
4161	The natural vegetation cover that is integral to a healthy watershed can be disturbed not
4162	only by land-use but by the stresses of climate extremes directly (e.g., die off during
4163	drought and blow down of trees during tropical storms and hurricanes) and climate-
4164	sensitive disturbances indirectly (e.g., pest infestations and wildfire). Climate change and
4165	variability can also lead to both adaptive human changes in land use and land cover that
4166	can impact water quality (e.g. for example changes in cropping patterns and fertilizer
4167	use), as well as to mitigative ones (e.g., increased production of bio-fuels.) Hence there is

- 4168 a tight and complex coupling between land use changes and the potential impacts of
- 4169 climate variability and change on water quality.
- 4170

4171 Water quality can also be indirectly impacted by climate variability and change through
4172 changes in water-use. Withdrawals from streams and reservoirs may increase during a
4173 drought thereby degrading stream water quality through lower in-stream flows, polluted
4174 return flows, or both. Under the water rights system of the western United States, junior
4175 agricultural users may be cut off during drought thereby actually reducing return flows
4176 from agricultural lands, further lowering in-stream flows.

4177

4178 Perhaps the most common water-quality-related, climate-sensitive decisions undertaken

4179 by water-resource managers in the U.S. are in relation to the regulation of dams and

4180 reservoirs. Very often, reservoir releases are made to meet low flow requirements or

4181 maintain stream temperatures in downstream river reaches. Releases can also be made to

4182 improve water quality in downstream reservoirs, lakes and estuaries. Any operating

4183 decisions based on water quality usually occur in the context of the purpose(s) for which

4184 the dam and reservoir were constructed—typically some combination of hydropower,

4185 flood control, recreation, and storage for municipal supply and irrigation. Thus decision

4186 support systems for reservoir operation that include water quality usually do so in a

4187 multi-objective framework (*e.g.*, Westphal *et al.*, 2003).

4188

4189 Municipal water providers would also be expected to respond to water quality

4190 degradation forecasts. Some decisions they might undertake include stockpiling treatment

4191 chemicals, enhanced treatment levels, *ad hoc* sediment control, preparing to issue water

4192 quality alerts, increasing water quality monitoring, and securing alternative supplies (see

4193 Denver and New York City case studies in Miller and Yates (2005) for specific examples

4194	of climate-sensitive water-quality decision-making by water utilities). Managers of
4195	coastal resources such as fisheries and beaches also respond to water-quality forecasts.
4196	
4197	Decision-making with regards to point sources will necessarily occur within the context

of the permitting process under the National Pollution Discharge Elimination System and
the in-stream water quality standards mandated by the Clean Water Act (Jacoby, 1990).
Regulation of non-point sources falls entirely to the states and is therefore highly variable
across the nation, but is in general done to a lesser degree than the regulation of point
sources. Examples of actions—either voluntary or mandatory—that could be taken in
response to a seasonal forecast of increased likelihood of flooding include: decreased

4204 fertilizer and pesticide application by farmers, measures for greater impoundment of

4205 runoff from feedlots, and protection of treatment ponds of all kinds from overflow.

4206

4207 **Groundwater Depletion:** The vulnerability of groundwater resources to climate 4208 variability and change is very much dependent on the hydrogeologic characteristics of the 4209 given aquifer. In general, the larger and deeper the aquifer, the less inter-annual climate 4210 variability will impact groundwater supplies. On the other hand, shallow aquifers that are 4211 hydraulically connected to surface waters tend to have shorter residence times and 4212 therefore respond more rapidly to climate variability. The vulnerability of such aquifers 4213 should be evaluated within the context of their *conjunctive use* with the surface waters. 4214

4215 Seasonal and inter-annual variability in water-table depths are a function of natural

4216 climate variability as well as variations in human exploitation of the resource. During

Do Not Cite or Quote

Page 190 of 426
4217 periods of drought, water tables in unconfined aquifers may drop because of both reduced 4218 recharge and increased rates of pumping. Reduced hydraulic head at well intakes then 4219 decreases the potential yield of the given well or well field and increases the energy 4220 required for pumping. In extreme cases the water table may drop below the well intake, 4221 resulting in complete drying of the well. Municipal supply and irrigation wells tend to be 4222 developed in larger aquifers and at depths greater than wells supplying individual 4223 domestic users. Therefore, they are in general less vulnerable to interannual climate 4224 variability. In addition to the reduction in the yield of water-supply wells, drops in water 4225 table depths during droughts may result in the drying of springs and worsening of low 4226 flow conditions in streams. Greater withdrawals may result because of the shifting of 4227 usage from depleted surface waters, as well as because of an overall increase in demand 4228 due to lower precipitation and greater evapotranspirative demand from the land surface 4229 and water bodies. Morehouse et al. (2002) find this to be the case in southern Arizona. To 4230 the extent that climate change reduces surface water availability in the Southwest U.S. it 4231 can be anticipated that pressure on groundwater supplies will increase as a result. 4232

When long-term average pumping rates exceed recharge rates the aquifer is said to be in *overdraft*. Zekster *et al.* (2005) identify four major impacts associated with groundwater extraction and overdraft: (1) reduction of stream flow and lake levels, (2) reduction or elimination of vegetation, (3) land subsidence, and (4) seawater intrusion. Additional impacts include changes in water quality due to pumping from different levels in aquifers and increased pumping costs. The karst Edwards Aquifer in south-central Texas, which supplies over 2 million people in the San Antonio metropolitan area, is identified by

Do Not Cite or Quote

Page 191 of 426

4240	Loáiciga (2003) as particularly vulnerable to climate change and variability because it is
4241	subject to highly variable rates of recharge and has undergone a steady increase in
4242	pumping rates over the last century. While groundwater overdraft is most common in the
4243	arid and semi-arid western U.S. (Roy et al., 2005; Hurd et al., 1999), it is not uncommon
4244	in the more humid East. Lyon et al. (2005) study the causes of the three drought
4245	emergencies that have been declared in Rockland County, New York since 1995. 78% of
4246	the county's public water supply is from small regional aquifers. Rather than increased
4247	frequency or intensity of meteorological or hydrologic drought, the authors attribute
4248	drought emergencies to development and population growth overtaxing local supplies
4249	and to failure of aging water-supply infrastructure. The former is an example of demand-
4250	driven drought. The Ipswich River Basin in northeast Massachusetts is another example
4251	in the east where population growth is taxing groundwater resources. Because of reliance
4252	on ground water and in-stream flows for municipal and industrial supply, summer low
4253	flows in the Ipswich frequently reach critical levels (Zarriello and Ries, 2000).
4254	
4255	A few researchers have studied the potential application of seasonal-to-interannual
4256	climate forecasting to forecasting of groundwater recharge and its implications for water
4257	management. For example, using U.S. Geological Survey recharge estimates for the
4258	Edwards Aquifer from 1970-1996, Chen et al. (2005) find that recharge rates during La
4259	Niña years average about twice those during El Niño years. Using a stochastic dynamic
4260	programming model, they show that optimal water use and allocation decision-making
4261	based on ENSO forecasts could result in benefits of \$1.1 to \$3.5 million per year, mainly
4262	to agricultural users as a result of cropping decisions.

Do Not Cite or Quote

Page 192 of 426

4263	
4264	Hanson and Dettinger (2005) evaluate the seasonal-to-interannual predictability of
4265	groundwater levels in the Santa Clara-Calleguas Basin in coastal Southern California
4266	using a regional groundwater model (RGWM) as driven by a general circulation model
4267	(GCM). In agreement with other studies, they find a strong association between
4268	groundwater levels and the Pacific Decadal Oscillation (PDO) and ENSO. Their results
4269	lead them to conclude that coupled GCM-RGWM modeling is useful for planning and
4270	management purposes, particularly with regard to conjunctive use of surface and ground
4271	water and the prevention of saltwater intrusion. They also suggest that GCM forecast skill
4272	may at times be strong enough to predict groundwater levels. Forecasts of greater surface
4273	water availability may allow utilities to reduce reliance on over-utilized and expense
4274	groundwater resources. Bales et al. (2004) note that a forecast for heavy winter snowpack
4275	during the 1997/1998 El Niño led the Salt River Project in Arizona to reducing
4276	groundwater pumping in the fall and winter in favor of greater releases from reservoirs,
4277	thereby saving about \$1 million.

Water Supply and Energy Production: Adequate water supplies are an essential part of
energy production, from energy resource extraction (mining) to electric-power generation
(DOE, 2006). Water withdrawals for cooling and scrubbing in thermoelectric generation
now exceed those for agriculture in the U.S. (Hutson *et al.*, 2004), and this difference
becomes much greater when hydropower uses are considered. Emerging energy sources,
such as biofuels, synfuels, and hydrogen, will add to future water demands. Another new
energy-related stress on water resource systems will be the integration of hydropower

Do Not Cite or Quote

Page 193 of 426

4286	with other intermittent renewables, such as wind and solar, at the power system level.
4287	Hydropower is a very flexible, low-cost generating source that can be used to balance
4288	periods when other renewables are not available (e.g., times of calm winds) and thus
4289	maintain electricity transmission reliability. As more non-hydro renewables are added to
4290	transmission grids, calls for fluctuating hydropower operation may become more frequent
4291	and economically valuable, and may compete with other water demands. If electricity
4292	demand increases by 50% in the next 25 years, as predicted by the Energy Information
4293	Administration, then energy-related water uses can also be expected to expand greatly -
4294	an ominous trend, especially where available water resources are already over allocated.
4295	
4296	The Climate Change Science Program's Synthesis and Analysis Product 4.5 examined
4297	how climate change will affect the energy sector (CCSP, 2007). Some of the most direct
4298	effects of climate change on the energy sector will occur via water cycle processes
4299	(CCSP, 2007). For instance, changes in precipitation could affect prospects for
4300	hydropower, either positively or negatively at different times and locations. Increases in
4301	storm intensity could threaten further disruptions of the type experienced in 2005 with
4302	Hurricane Katrina. Also, average warming can be expected to increase energy needs for
4303	cooling and reduce those for warming. Concerns about climate change impacts could
4304	change perceptions and valuations of energy technology alternatives. Any or all of these
4305	types of effects could have very real meaning for energy policies, decisions, and
4306	institutions in the U.S., affecting discussions of courses of action and appropriate
4307	strategies for risk management and energy's water demands will change accordingly.
4308	

4309	The energy-related decisions in water management are especially complex, because they
4310	usually involve both water quality and quantity aspects, and they often occur in the
4311	context of multiple-use river basins. The Tennessee Valley is a good example of these
4312	complexities. The Tennessee Valley Authority (TVA) operates an integrated power
4313	system of nuclear, coal, and hydropower projects along the full length of the Tennessee
4314	River. TVA's river operations include upstream storage reservoirs and mainstem locks
4315	and dams, most of which include hydropower facilities. Cold water is a valuable resource
4316	that is actively stored in the headwater reservoirs and routed through the river system to
4317	maximize cooling efficiencies of the downstream thermoelectric plants. Reservoir
4318	releases are continuously optimized to produce least-cost power throughout the river
4319	basin, with decision variables of both water quantity and quality.
4320	
4201	
4321	Case Study: Southwest drought – climate variability, vulnerability, and water
4322	management
4323	Introduction
4324	Climate variability affects water supply and management in the Southwest through
4325	drought, snowpack runoff, groundwater recharge rates, floods, and temperature-driven
4326	water demand. The region sits at a climatic crossroads, at the southern edge of reliable
	-

4327 winter storm tracks and at the northern edge of summer North American monsoon

penetration (Sheppard *et al.*, 2002). This accident of geography, in addition to its
continental location, drives the region's characteristic aridity. Regional geography also
sets the region up for extreme vulnerability to subtle changes in atmospheric circulation

- and the impacts of temperature trends on snowmelt, evaporation, moisture stress on
- 4332 ecosystems, and urban water demands. The instrumental climate record provides ample
- 4333 evidence of persistent regional drought during the 1950s (Sheppard et al., 2002; Goodrich
- 4334 and Ellis, 2006), and its influence on Colorado River runoff (USGS, 2004); in addition
- 4335 the impact of the 1950s drought on regional ecosystems is well documented (Allen and

Do Not Cite or Quote

Page 195 of 426

- Breshears, 1998; Swetnam and Betancourt, 1998). Moreover, it has been well known for
 close to a decade that interannual and multi-decade climate variations, forced by
 persistent patterns of ocean-atmosphere interaction, lead to sustained wet periods and
 severe sustained drought (Andrade and Sellers, 1988; D'Arrigo and Jacoby, 1991; Cayan
 and Webb, 1992; Meko *et al.*, 1995; Mantua *et al.*, 1997; Dettinger *et al.*, 1998).
- 4341

4342 Sources of vulnerability

4343 Despite this wealth of information, interest in the effects of climate variability on 4344 southwestern water supplies has been limited by dependence on seemingly unlimited 4345 groundwater resources, which are largely buffered from inter-annual climate fluctuations. 4346 Evidence of extensive groundwater depletion in Arizona and New Mexico, from a 4347 combination of rapid urban expansion and sustained pumping for irrigated agriculture, 4348 has forced changes in water policy, resulting in a greater reliance on renewable surface 4349 water supplies (Holway, 2007; Anderson and Woosley, Jr., 2005; Jacobs and Holway, 4350 2004). The distance between southwest urban water users and the sparsely-populated 4351 mountain sources of their surface water in Wyoming, Utah, and Colorado, reinforces a 4352 lack of interest in the impacts of climate variations on water supplies (Rango, 2006; 4353 Redmond, 2003). Until Southwest surface water supplies were substantially affected by 4354 sustained drought, beginning in the late 1990s, water management interest in climate 4355 variability seemed to be focused on the increased potential for flood damage during El 4356 Niño episodes (Rhodes et al., 1984; Pagano et al., 2001).

4357

4358 Observed vulnerability of Colorado River and Rio Grande water supplies to recent sustained drought, has generated profound interest in the effects of climate variability on 4359 water supplies and management (e.g., Sonnett et al., 2006). In addition, extensive 4360 4361 drought-driven stand-replacing fires in Arizona and New Mexico watersheds have 4362 brought to light indirect impacts of climate variability on water quality and erosion 4363 (Neary et al., 2005; Garcia et al., 2005; Moody and Martin, 2001). Prompted by these 4364 recent dry spells and their impacts, New Mexico and Arizona developed their first 4365 drought plans (NMDTF, 2006; GDTF, 2004); in fact, repeated drought episodes, 4366 combined with lack of effective response, compelled New Mexico to twice revise its

Do Not Cite or Quote

Page 196 of 426

4367 drought plan (NMDTF, 2006; note, these workshops are discussed in chapter 4 in case 4368 study H). Colorado River Basin water managers have commissioned tree-ring 4369 reconstructions of streamflow, in order to revise estimates of record droughts, and to 4370 improve streamflow forecast performance (Woodhouse and Lukas, 2006; Hirschboeck 4371 and Meko, 2005). These reconstructions and others (Woodhouse et al., 2006; Meko et al., 4372 2007) reinforce concerns over surface water supply vulnerability, and the effects of 4373 climate variability and trends (e.g., Cayan et al., 2001; Stewart et al., 2005) on 4374 streamflow.

4375

4376 Decision-support tools

4377 Diagnostic studies of the associations between El Niño-Southern Oscillation (ENSO)

4378 teleconnections, multi-decade variations in the Pacific Ocean-atmosphere system, and

4379 Southwest climate demonstrate the potential predictability of seasonal climate and

4380 hydrology in the Southwest (Cayan et al., 1999; Gutzler, et al., 2002; Hartmann et al.,

4381 2002; Hawkins et al., 2002; Clark et al., 2003; Brown and Comrie, 2004; Pool, 2005).

4382 ENSO teleconnections currently provide an additional source of information for

4383 ensemble streamflow predictions by the National Weather Service Colorado Basin River

4384 Forecast Center (Brandon et al., 2005). The operational use of ENSO teleconnections as a

4385 primary driver in Rio Grande and Colorado River streamflow forecasting, however, is

4386 hampered by high variability (Dewalle *et al.*, 2003), and poor skill in the headwaters of

4387 these rivers (Udall and Hoerling, 2005; FET, 2008).

4388

4389 **Future prospects**

4390 Current prospects for forecasting beyond ENSO time-scales, using multi-decade "regime 4391 shifts" (Mantua, 2004) and other information (McCabe *et al.*, 2004) are limited by lack of

- spatial resolution, the need for better understanding of land-atmosphere feedbacks, and
 global atmosphere-ocean interactions (Dole, 2003; Garfin *et al.*, 2007). Nevertheless,
- 4394 Colorado River and Rio Grande water managers, as well as managers of state
- 4395 departments of water resources have embraced the use of climate knowledge in
- 4396 improving forecasts, preparing for infrastructure enhancements, and estimating demand
- 4397 (Fulp, 2003; Shamir et al., 2007). Partnerships among water managers, forecasters, and

Page 197 of 426

t Systems
entine and
other
1

- 4403 In section 3.1, decision-support was defined as a process that generates climate science
- 4404 products *and* translates them into forms useful for decision-makers through dissemination
- 4405 and communication. This process, when successful, leads to institutional *transformation*
- 4406 (NRC, 2008). Five factors are cited as impediments to optimal use of decision-support
- 4407 systems' information: (1) lack of integration of systems with expert networks; (2) lack of
- 4408 institutional coordination; (3) insufficient stakeholder engagement in product
- 4409 development; (4) insufficient cross-disciplinary interaction; and, (5) expectations that the
- 4410 expected "payoff" from forecast use may be low. The *Red River flooding and flood*
- 4411 *management case* following this discussion exemplifies some of these problems, and
- 4412 promising efforts being expended in overcoming them.
- 4413
- 4414 Some researchers (Georgakakos *et al.*, 2005) note that because water management
- 4415 decisions are subject to gradual as well as rapid changes in data, information, technology,
- 4416 natural systems, uses, societal preferences, and stakeholder needs, effective decision-
- 4417 support processes regarding climate variability information must be adaptive and include
- 4418 self-assessment and improvement mechanisms in order to be kept current (Fig.3.3).

- 4420 These assessment and improvement mechanisms, which produce transformation, are
- 4421 denoted by the upward-pointing feedback links shown in Figure 3.3, and begin with

Page 198 of 426

4422	monitoring and evaluating the impacts of previous decisions. These evaluations ideally
4423	identify the need for improvements in the effectiveness of policy outcomes and/or legal
4424	and institutional frameworks. They also embrace assessments of the quality and
4425	completeness of the data and information generated by decision support systems and the
4426	validity and sufficiency of current knowledge. Using this framework as a point of
4427	departure makes discussing our five barriers to information use easier to comprehend.
4428	
4429	First, the lack of integrated decision support systems and expert networks to support
4430	planning and management decisions means that decision-support experts and relevant
4431	climate information are often not available to decision-makers who would otherwise use
4432	this information. This lack of integration is due to several factors, including resources
4433	(e.g., large agencies can better afford to support modeling efforts, consultants, and large-
4434	scale data management efforts than can smaller, less-well funded ones), organizational
4435	design (expert networks and support systems may not be well-integrated administratively
4436	from the vantage point of connecting information with users' "decision routines"), and
4437	opportunities for interaction between expert system designers and managers (the strength
4438	of communication networks to permit decisions and the information used for them to be
4439	challenged, adapted, or modified – and event to frame scientific questions). This
4440	challenge embraces users and producers of climate information, as well as the boundary
4441	organizations that can serve to translate information (Hartmann, 2001; National Research
4442	Council, 1996; Sarewitz and Pielke, 2007; NRC, 2008).
4443	

Planning and Management Decisions

- 4445 Figure 3.3 Water Resources Decision Processes
- 4446
- 4447 Second, the lack of coordination of institutions responsible for water resources
- 4448 management means that information generated by decision support networks must be
- 4449 communicated to various audiences in ways relevant to their roles and responsibilities
- 4450 (see section 3.2.1). Figure 3.3 – and discussion of the factors that led to development of
- 4451 better decision-support for flood hazard alleviation on the *Red River of the North* – reveal
- 4452 how extreme environmental conditions compounds the challenge in conveying
- 4453 information to different audiences given the dislocation and conflict that may arise.

4454

4455	Third, limited stakeholder participation and political influence in decision making
4456	processes – a problem discussed in chapter 1 in the context of the typically low public
4457	interest in water policy given the traditional, technical framing of water issues in
4458	American society – means that decision support products may not equitably penetrate to
4459	all relevant audiences. It also means that because water issues typically have low
4460	visibility for most of the public, the economic and environmental dislocations caused by
4461	climate variability events (e.g., drought, floods), or even climate change, may exacerbate
4462	these inequities and draw sudden, sharp attention to the problems resulting from failure to
4463	properly integrate decision-support models and forecast tools, since disasters often strike
4464	disadvantaged populations disproportionately (e.g., Hurricane Katrina on 2005)
4465	(Hartmann, et al., 2002; Carbone and Dow, 2005; Subcommittee on Disaster Reduction,
4466	2005; Leatherman and White, 2005).
4467	
4468	Fourth, the lack of adequate cross-disciplinary interaction between science, engineering,

4469 public policy-making, and other knowledge and expertise sectors – across agencies, 4470 academic institutions, and private sector organizations – exacerbates these problems by 4471 making it difficult for decision support information providers to communicate with one 4472 another. It also exacerbates the problem of information overload by inhibiting use of 4473 incremental additional the sources and benefits of which are unclear to the user. In short, 4474 certain current decision support services are often narrowly focused, developed by over-4475 specialized professionals working in a "stovepipe" system of communication within their 4476 organizations. While lack of integration can undermine the effectiveness of decision

Do Not Cite or Quote

Page 201 of 426

- 4477 support tools and impede optimal decisions, it may create *opportunities* for design,
- 4478 development and use of effective decision support services.
- 4479

4480 Case Study: Red River of the North – Flooding and Water Management

4481 **Overview**

This case study of climate variability information use focuses on flooding. Model outputs
to better encompass seasonal precipitation, snowmelt and other factors, are increasingly
being incorporated into operations decisions. Lessons include how to translate complex
data into useable warning and alert systems for decision-making and, are deterministic
forecasts an effective mechanism for communicating information for use water resource
planning and management?

4488 Background and Context

4489 Flooding on the Red River of the North in April 1997 resulted in losses estimated to be 4490 four billion dollars. The Red River crested about 5 feet higher than the maximum flood 4491 height of 49 feet predicted by the NOAA National Weather Service North Central River 4492 Forecast Center (NCRFC) and the public outcry was that the NWS had failed to render a 4493 correct forecast (Pielke, 1999). With snowmelt as the dominant contributor to spring 4494 flooding, in February 1997, the NCRFC had issued an outlook assuming average 4495 temperatures and no additional precipitation for the next few months of 47.5 feet and a 4496 second outlook assuming average temperature and precipitation of 49 feet. In early April 4497 1997, there was a record snowfall in the region, which neither outlook scenario 4498 anticipated. On April 14, 1997, a crest forecast of 50 feet was issued for East Grand 4499 Forks to occur in the April 19-22 time period; the river actually crested at 54 feet on 4500 April 19, breaching levees. A critical issue identified in the NOAA Office of Hydrology 4501 1999 report is that the previous record flood stage height was 48.8 feet and NWS 4502 outlooks were based on extrapolations of the rating curves and there was no way to know 4503 that experimental rating curves being developed by the Army Corps of Engineers would 4504 have been more accurate.

4505

4506 Although the NWS outlooks contained a disclaimer that there was a 50 percent chance of 4507 the forecast stage height being equaled or exceeded, they provided no measure of 4508 uncertainty, and were interpreted as either an exact or maximum estimate of expected 4509 river crest height. The communication and interpretation of these rather precise flood 4510 outlooks, with no updates prior to mid-April, led local officials to assume they were 4511 prepared to deal with worse-case flood scenarios. 4512 4513 In fall 2006, the NRC released a report entitled "Completing the Forecast: Characterizing 4514 and Communicating Uncertainty for Better Decisions Using Weather and Climate 4515 Forecasts," noting that all predictions are inherently uncertain, and that effective 4516 communication of uncertainty information in weather, seasonal climate, and hydrological 4517 forecasts benefits users' decisions (e.g., AMS, 2002; NRC, 2003b). The chaotic character 4518 of the atmosphere, coupled with inevitable inadequacies in observations and computer 4519 models, results in forecasts that always contain uncertainties. These uncertainties 4520 generally increase with forecast lead time and vary with weather situation and location. 4521 Uncertainty is thus a fundamental characteristic of weather, seasonal climate, and 4522 hydrological prediction, and no forecast is complete without a description of its 4523 uncertainty. Nonetheless, for decades, users of weather, seasonal climate, and 4524 hydrological (collectively called "hydrometeorological") forecasts have not provided 4525 complete information about the certainty or likelihood of a particular event. 4526 4527 Users became comfortable with single-valued forecasts and applied their own experience 4528 in determining how much confidence to place in the forecast. The evolution of the media 4529 as the primary vehicle for conveying weather information in the United States 4530 compounded this trend. The inclusion of uncertainty information in a forecast was 4531 viewed by some as a weakness or disadvantage instead of supporting a more 4532 scientifically sound and useful product. 4533 4534 Most forecast products from the weather and climate enterprise including those from the 4535 National Oceanic and Atmospheric Administration's (NOAA's) National Weather 4536 Service (NWS), continue this deterministic legacy. Decisions by users at all levels, but

Page 203 of 426

- 4537 perhaps most critically those associated directly with protection of life and property, are
 4538 being made without the benefit of knowing the uncertainties of the forecasts upon which
 4539 they rely.
- 4540

4541 The complex hydraulic characteristics of the Red River of the North at Grand Forks and

- 4542 East Grand Forks were difficult to model with the NWS forecast methods in place during
- 4543 the April 1997 flood. This was the primary reason for the forecast error at that location.
- 4544

4545 Lessons learned

4546 As the NWS RFC move to develop probabilistic forecasts, making sure that these climate 4547 variability forecasts are of use to decision makers will be critical. In this regard, a number 4548 of useful lessons emanate from this case, including: incorporating the latest rating curves 4549 for flooding to reflect recent data, conducting inter-agency review of available data that 4550 might be applicable to future flooding, moving toward real-time forecasting to the extent 4551 that dynamic routing procedures permit, warning decision-makers when a forecast 4552 exceeds the top of the rating curve – so that appropriate risk responses can be better 4553 contemplated, modeling the impact of temporary meltwater storage on flood hazard, 4554 supporting aerial snow cover surveys, incorporating user feedback to improve 4555 communication of forecast information, and conducting post-flooding technical 4556 assessment workshops among relevant agencies to assess how, and how effectively 4557 climate forecast information was used.

4558

4559 **3.2.5 Reliability and Trustworthiness as Problems in Collaboration**

- 4560 The collaborative process for decision-support must be believable and trustworthy, with
- 4561 benefits to all engaged in it. One of the challenges in ensuring that information is
- 4562 perceived by decision-makers as trustworthy is that trust is the result of an interactive
- 4563 process of long-term, sustained effort by scientists to respond to, work with, and be
- 4564 sensitive to the needs of decision-makers and users, and of decision-makers becoming

4565	sensitive to – and informed about – the process of research. In part, trust is also a matter
4566	of the perceived credibility of the outcomes generated by decision-support systems.
4567	
4568	The Red River Flood warning case (section 3.2.4) provides an excellent example of this
4569	problem – users are becoming comfortable with single-valued forecasts and applied their
4570	own experience in determining how much confidence to place in them. Coupled with the
4571	dependence on media as the tool for conveying weather information, the inclusion of
4572	uncertainty information in a forecast was viewed by some as a weakness, or
4573	disadvantage, in providing adequate warning of impending flood conditions, instead of an
4574	advantage in ensuring a more sound and useful forecast product.
4575	
4576	Two other case vignettes featured below - the Yakima and Upper Colorado River basins
4577	- reveal the inverse dimensions of this problem. In effect, what happens if forecast
4578	information proves to be incorrect in its predictions, because predictions turned out to be
4579	technically-flawed, overly (or not sufficiently) conservative in their estimate of hazards,
4580	contradictory in the face of other information, or simply insufficiently sensitive to the
4581	audiences to whom forecasts were addressed?
4582	
4583	As these cases suggest, given the different expectations and roles of scientists and
4584	decision-makers, what constitutes credible information to a scientist involved in climate
4585	prediction or evaluation may differ from what is considered credible information by a
4586	decision-maker. To a decision-maker forecast credibility is often unfortunately perceived
4587	as hinging upon its certainty. The more certain and exact a forecast, in other words, the

Page 205 of 426

4588	more trusted it will be by decision-makers, and the more trustworthy the developers of
4589	that information will be perceived. As shown below, improvements in forecast
4590	interpretation and translation, communication and institutional capacity to adjust to
4591	changing information and its consequences, are essential to addressing this problem. A
4592	basic characteristic of much forecast information is that even the best forecasts rarely
4593	approach close to absolute certainty of prediction – we discuss this issue in section 3.3.2.
4594	
4595	Case Study: Credibility and the Use of Climate Forecasts: Yakima River Basin/El
4596	Nino and Colorado Basin Case Studies
4597	<u>Yakima Case – Background</u>
4598	Establishing credibility is essential to fostering the use of climate forecasts in water
4599	management decisions. Although daily weather forecasts, relied upon by millions of
4600	people, can be extremely accurate the majority of the time, the most memorable forecasts
4601	are ones that miss the mark. This is especially true where operational risk tolerance is
4602	low, and the consequences are costly, such as the case of the Yakima River basin in 1977

4603 (Glantz, 1982). At risk in this well documented case were the livelihoods of hundreds in a

- 4604 heavily irrigated agricultural region in the lee of Washington's Cascade Mountains.
- 4605

4606 The Problem – Relating Forecast to Allocation Decisions

4607 Low snowpack in the late winter of 1977 prompted the U.S. Bureau of Reclamation to 4608 issue a forecast for summer runoff below the threshold established in a legal precedent 4609 (U.S. District Court, 1945), with the consequence that junior water rights holders would 4610 receive irrigation allocations as low as 6% of normal. In fact, the forecast issued by 4611 Reclamation was exceedingly conservative, well below runoff estimates by the National 4612 Weather Service and Soil Conservation Service. As noted by Glantz (1982), such low 4613 allocations "were noted by all observers as insufficient to protect perennial plants and 4614 trees from drought-related destruction. The loss of perennial plants and trees could mean 4615 a loss of production for up to eight years...[with] replacement costs...on the order of \$7-4616 \$8000 per acre." Orchardists and others were forced to pursue expensive tactics to protect

Do Not Cite or Quote

Page 206 of 426

4617 their investments, including well digging and deepening, leasing water rights, and 4618 transplanting crops. As it turned out, Reclamation's forecast suffered from technical 4619 deficiencies: calculations failed to include return flows and treated some reservoir storage 4620 as flow. In addition, changes in operations that differed from Reclamation policy within 4621 memory of Yakima basin farmers, and poor communications, left water users and the 4622 public frustrated and uninformed. The aftermath of the forecast, actions taken by 4623 agriculturalists, and subsequent investigations, resulted in animosity between senior and 4624 junior water rights holders, a loss of confidence in Reclamation, and lawsuits against the 4625 agency (Allen Orchards et al., 1980).

4626

4627 Lessons

4628 Glantz surmises that greater transparency in forecast methods, including issuing forecast 4629 confidence limits, better communication between agencies and the public, and 4630 consideration of the consequences of potential actions taken by users in the event of an 4631 erroneous forecast, would have improved the value of the forecast and the actions taken 4632 by Reclamation. Twenty years later, NOAA made a similar error when issuing a *perfectly* 4633 confident forecast of intensifying drought conditions for the Midwestern U.S. in 2000 4634 (Changnon, 2002). Based on the forecasts, state water officials took actions they felt were 4635 needed anyway, and were not harmed by the lack of predictive skill and over-confidence 4636 in the forecast; however, agricultural producers may have sustained losses on the order of 4637 \$1 billion, depending on the extent to which they employed particular pricing strategies. 4638 The upshot of this case of a failed forecast, once again, was increased skepticism in long-4639 term climate forecasts and government institutions (Changnon, 2002).

4640

4641 El Nino and the Lower Colorado River basin

4642 Background

4643 Incorporating probabilistic climate forecast information into water management actions is

- 4644 more difficult than most climate researchers expect. Pagano *et al.* (2001; 2002)
- 4645 documented Arizona water and emergency management use of climate forecasts during
- 4646 the 1997-98 El Niño. Studies determined that issues in interpretation of the NOAA
- 4647 Climate Prediction Center's three category probabilistic forecasts presented a major

Page 207 of 426

4648 barrier to forecast use (Pagano et al., 2002). Despite the fact that the climate forecasts 4649 expressed a 50% probability of seasonal precipitation totals being in the wettest one-third 4650 of the 1961-90 distribution of precipitation, agencies prepared for an array of outcomes 4651 ranging from "business as usual," to 100% above normal precipitation. Some 4652 stakeholders, such as the U.S. Bureau of Reclamation, took action, by reducing reservoir 4653 levels, in order to avoid potential structural damage. The 1982-83 El Niño events 4654 threatened to undermine Glen Canyon dam (Rhodes et al., 1984), and the memory of 4655 nearly losing the dam was still fresh in the Bureau's institutional memory.

4656

4657 **Problem: Conflicting predictions**

4658 Another noteworthy barrier to forecast use was noted in the 1997-98 ENSO event, when 4659 ENSO-based climate forecasts contradicted historical regression-based water supply 4660 outlooks, and it became difficult for stakeholders to reconcile differences between the 4661 forecasts. One stakeholder noted "the man with two watches never knows what time it is" 4662 (Pagano et al., 2001). Salt River Project (SRP), the major surface water manager in the 4663 Phoenix metropolitan area, relied upon in-house research and a history of tracking ENSO 4664 in their decision to shift from groundwater to surface water supplies in anticipation of the 4665 1997-98 El Nino. However, SRP chose to [correctly] ignore forecasts for an East Pacific 4666 hurricane to track across their region of interest, based on a greater perceived margin of 4667 error in such forecasts (Pagano et al., 2001). These examples resonate, in part, with the 4668 Yakima, 1977, case study, because they demonstrate decision-makers' ability to 4669 substitute their own judgment after previously relying on information with a poor track 4670 record or insufficient interpretation of potential outcomes.

4671

4672 Lessons

- 4673 The Arizona examples illustrate the need for capacity building to promote understanding
- 4674 of uncertainty in forecasts, and to avoid the outcome of "once burned, twice shy,"
- 4675 identified by Adeel and Glantz (2001), especially where agencies or operations have little
- 4676 capacity to recover from poor decisions based on "blown" (*i.e.*, failed) forecasts.
- 4677

4678 3.2.5.1 Other Reliability and Trustworthiness Issues: The Need for High Resolution 4679 Data 4680 Research on the information needs of water decision-makers has increasingly brought 4681 attention to the fact that use of climate-related decision support tools is partly a function 4682 of the extent to which they can be made relevant to site-specific conditions and specific 4683 managerial resource needs, such as flow needs of aquatic species; the ability to forecast 4684 the impact of climate variability on orographic precipitation; and, the ability to fill in 4685 gaps in hydrologic monitoring (Proceedings of the Western Governors Association, 4686 2007). In effect, proper integration of climate information into a water resource 4687 management context means developing high-resolution outputs able to be conveyed at 4688 the watershed level. It also means predicting changes in climate forecasts through the 4689 season and year, and regularly updating predictions. Specificity of forecast information 4690 can be as important as reliability for decision-making at the basin and watershed level 4691 (Proceedings of the Western Governors Association, 2007). The Southwest drought case 4692 discussed in section 3.2.3 illustrates this importance of information specificity in the 4693

4694

4695 **3.2.5.2 Uncertainty in the regulatory process**

4696 While uncertainty is an inevitable part of the water resource decision-makers' working 4697 environment, one source of lack of trust revolves around multi-level, multi-actor

context of water managers' responses, particularly within the Colorado River basin.

4698 governance (see section 3.2 1). Shared governance for water management, coupled with

4699 the risk-averse character of traditional public works-type water agencies in particular,

4700 leads to situations where – while parties may act together for purposes of shared

4701	governance, "they may not have common goals or respond to common incentives" (NRC,
4702	2008). Moreover, governance processes that cross various agencies, jurisdictions, and
4703	stakeholder interests are rarely straightforward, linear, or predictable because different
4704	actors are asked to provide information or resources peripheral to their central functions.
4705	In the absence of clear lines of authority, trust among actors and open lines of
4706	communication are essential (NRC, 2008).
4707	
4708	As shown in chapter 4 in the discussion of the South Florida water management case,
4709	one regulatory change introduced to guide water release decisions helped increase
4710	certainty and trust in the water allocation and management process. The South Florida
4711	water management district uses a Water Supply and Environment (WSE) schedule for
4712	Lake Okeechobee that employs seasonal and multi-seasonal climate outlooks as guidance
4713	for regulatory releases (Obeysekera, 2007). The WSE schedule, in turn, uses ENSO and
4714	Atlantic Multi-decadal Oscillation (AMO; Enfield et al., 2001) to estimate net inflow.
4715	While uncertainty in regional hydrology remains and is attributable to natural climatic
4716	variation, long-term global climate change, changes in precipitation patterns associated
4717	with drainage and development, and rainfall-runoff relationships altered by infrastructure
4718	change, the overall decision-making process is effective (Obeysekera, 2007).
4719	

4720 **3.2.5.3 Data problems**

4721 Lack of information about geographical and temporal variability in climate processes is

4722 one of the primary barriers to adoption and use of specific products. An important

4723 dimension of this lack of information problem – relevant to discussions of reliability and

Page 210 of 426

4724	trust – revolves around how decision-makers make decisions when they have poor, no, or
4725	little data. Decision research from the social and behavioral sciences suggests that when
4726	faced with such problems, individual decision makers typically omit or ignore key
4727	elements of good decision processes. This leads to decisions that are often ineffective in
4728	bringing about the results they intended (Slovic, Fischhoff, and Lichtenstein, 1977).
4729	Furthermore, decision-makers, such as water managers responsible for making flow or
4730	allocation decisions based on incomplete forecast data, may respond to complex tasks by
4731	employing professional judgment to simplify them in ways that seem adequate to the
4732	problem at hand – sometimes adopting "heuristic rules" that presume different levels of
4733	risk are acceptable based on their prior familiarity with a similar set of problems (Tversky
4734	and Kahneman, 1974; Payne et al., 1993).
4735	
4736	Decision-makers and the public also may respond to probabilistic information or
4737	questions involving uncertainty with predictable biases that ignore or distort important
4738	information (Kahneman, Slovic, and Tversky, 1982) or exclude alternative scenarios and
4739	possible decisions (e.g., Keeney, 1992; NRC, 2005). El Nino/Southern Oscillation
4740	(ENSO) forecasts illustrate some of these problems ¹⁰ . Operational ENSO-based forecasts
4741	
	have only been made since the late 1980s – while ENSO-related products that provide
4742	have only been made since the late 1980s – while ENSO-related products that provide information about which forecasts are likely to be most reliable for what time periods, in

- 4744 has been limited. Essential knowledge for informed use of ENSO forecasts includes

¹⁰ El Ninos tend to bring higher than average winter precipitation to the U.S. Southwest and Southeast while producing below-average precipitation in the Pacific Northwest. By contrast, La Ninas produce drier than average winter conditions in the Southeast and Southwest while increasing precipitation received in the Pacific Northwest.

4745	understanding of the temporal and geographical domain of ENSO impacts. Yet making a
4746	decision based only on this information may expose a manager unnecessarily to
4747	consequences from that decision.
4748	
4749	3.2.5.4 Changing environmental, social and economic conditions
4750	Over the past three decades, a combination of economic changes (e.g., reductions in
4751	federal spending for large water projects), environmental conditions (e.g., demands for
4752	more non-structural measures to address water problems, and heightened emphasis on
4753	environmental restoration practices), and public demands for greater participation in
4754	water resource management have led to new approaches to water management. In
4755	Chapter 4 we address two of these approaches – adaptive management and integrated
4756	resource management. These approaches emphasize explicit commitment to
4757	environmentally-sound, socially just outcomes; greater reliance upon drainage basins as
4758	planning units; program management via spatial and managerial flexibility, collaboration,
4759	participation, and peer-reviewed science (Hartig et al., 1992; Landre and Knuth, 1993;
4760	Cortner and Moote, 1994; Water in the West, 1998; May et al., 1996; McGinnis, 1995;
4761	Miller et al., 1996; Cody, 1999; Bormann et al., 1993; Lee, 1993). As shall be seen, these
4762	approaches place added demands on water managers regarding use of climate variability
4763	information, including adding new criteria to decision processes such as: managing in-
4764	stream flows/low flows, climate variability impacts on runoff, water quality, fisheries,
4765	and water uses.
4766	

4767 **3.2.5.5 Public perception and politics may outweigh facts and professional judgment**

Do Not Cite or Quote

Page 212 of 426

4768	Climate variability and its risks are viewed through perceptual frames that affect not only
4769	decision-makers and other policy elites, but members of the general public. Socialization
4770	and varying levels of education contribute to a social construction of risk information that
4771	may lead the public to view extreme climate variability as a sequence of events that may
4772	lead to catastrophe unless immediate action is taken (Weingart et al., 2000). Extreme
4773	events may heighten the influence of sensational reporting, impede reliance upon
4774	professional judgment, lead to sensationalized reporting, and a sudden rise in public
4775	attention that may even shut off political discussion of the issue (Weingert et al., 2000:
4776	7).
4777	
4778	3.2.5.6 Decision-makers may be vulnerable when they use information
4779	Decision-makers can lose their jobs, livelihoods, stature, or reputation by relying on
4780	forecasts that are wrong. Likewise, similar consequences can come about from untoward
4781	outcomes of decisions based on correct forecasts. This fact tends to make decision-
4782	makers risk aversive, and sometimes politically over-sensitive when using information, as
4783	noted in section 4. As Jacobs (2005) notes in her review, much has been written on the
4784	reasons why decision-makers and scientists rarely develop the types of relationships and
4785	information flows necessary for full integration of scientific knowledge into the decision-
4786	making process (Kirby, 2000; Pagano et al., 2001; Pulwarty and Melis, 2001 Rayner,
4787	Lach and Ingram, 2005). The primary reasons are problems with relevance (are the
4788	scientists asking and answering the right questions?), accessibility of findings (are the
4789	data and the associated value-added analysis available to and understandable by the
4790	decision-makers?), acceptability (are the findings seen as accurate and trustworthy?)

Do Not Cite or Quote

Page 213 of 426

4791	conclusions being drawn from the data (is the analysis adequate?) and context (are the
4792	findings useful given the constraints in the decision process?)
4793	
4794	Scientists have some authority to overcome some of these sources of uncertainty that
4795	result in distrust (e.g., proper diagnosis of a problem, providing adequate data, regularly
4796	updating forecasts, and drawing correct forecast conclusions). Other constraints on
4797	uncertainty, however, may be largely out of their control. Sensitivity to these sources of
4798	uncertainty – and their influence upon decision-makers, is important.
4799	
4800	The Yakima case, discussed earlier in the context of forecast credibility, further illustrates
4801	how decision-makers can become vulnerable by relying on information that turns out to
4802	be inaccurate, or a poor predictor of future climate variability events. It underscores the
4803	need for trust-building mechanisms to be built into forecast translation projects, such as
4804	issuing forecast confidence limits, communicating better with the public and agencies,
4805	and considering the consequences of potential actions taken by users in the event of an
4806	erroneous forecast. The next section discusses particular challenges related to translation.
4807	
4808	3.3 WHAT ARE THE CHALLENGES IN FOSTERING COLLABORATION
4809	BETWEEN SCIENTISTS AND DECISION-MAKERS?

4810 This section examines problems in translating climate forecasts and hydrology

4811 information into integrated water management decisions, forecast communication, and

4812 operationalizing decision-support systems. This discussion focuses on translation of

4813 scientific information into forms useful and useable by decision-makers.

Page 214 of 426

4814	
4815	3.3.1 General Problems in Fostering Collaboration
4816	The social and decision sciences have learned a great deal about the obstacles,
4817	impediments, and challenges in translating scientific information, especially forecasts, for
4818	decision makers generally, and resource managers in particular. Simply "doing research"
4819	on a problem does not assure in any way that the research results can or will contribute to
4820	solving a societal problem; likewise "more research does not necessarily lead to better
4821	decisions" (e.g., Cash et al., 2003; Jacobs et al., 2005; Sarewitz and Pielke, 2007;
4822	Rayner, Lach, and Ingram, 2005). Among the principal reasons information may not be
4823	used by decision makers are the following:
4824	
4825	The information may be viewed as irrelevant to the user or inappropriate to the decision
4826	context: While scientists' worldviews are strongly influenced and affected by the
4827	boundaries of their own research and disciplines, decision-makers' worldviews are
4828	conditioned by the "decision space" (Jacobs et al., 2005). Decision space refers to the
4829	range of realistic options available to a given decision maker to resolve a particular
4830	problem. While a new scientifically derived tool or source of information may have
4831	obvious applications when viewed from a theoretical perspective, a decision maker may
4832	be constrained from using these tools and information by external factors.
4833	
4834	External constraints such as laws and regulations may limit the range of options available
4835	to the decision-maker: Policies, procedures, and precedents relevant to a given decision -
4836	including decisional rules and protocols, expectations imposed by decision makers

Do Not Cite or Quote

Page 215 of 426

4837	through training and by peer and supervisory expectations, sufficiency of resources (e.g.,
4838	time and money) within organizations to properly integrate information and tools into
4839	decision-making, and the practicality of implementing various options prescribed by tools
4840	and/or information given the key questions the decision-maker must manage on a daily
4841	basis – are all factors that limit decision-makers use of information. These factors can
4842	also limit the range of options available to decision-makers.

4844 Political scientists who study administrative organizations cite three principal ways the 4845 rule-making culture of administrative organizations hinders information use, ranging 4846 from the nature of policy "attentiveness" in administrative organizations in which cues 4847 awareness of alternatives are often driven by demands of elected officials instead of 4848 newly available information (e.g., Kingdon, 1995), to organizational goals and objectives 4849 which often frame or restrict the flow of information and "feedback." Another set of 4850 reasons revolves around the nature of indirect commands within organizations - that 4851 evolve through trial and error. Over time, these commands take the form, of rules and 4852 protocols which guide and prescribe appropriate and inappropriate ways of using 4853 information in bureaucracies (Stone, 1997; Torgerson, 2005).

4854

4856 U.S., describes the influence of institutional constraints on information use. In this

- 4857 instance, the problem of drought is nested within a larger regional water dispute among
- 4858 three states. By describing the challenges in incorporating drought and water shortage
- 4859 information into basin wide water planning this case also helps clarify a number of

Do Not Cite or Quote

Page 216 of 426

4860 salient problems faced by water managers working with complex information in a 4861 contentious political or legal context. In short, information usefulness is determined in part by social and political context or "robustness." To be "socially robust," information 4862 4863 must be valid outside, as well as inside the laboratory where it is developed; and, involve 4864 an extended group of experts, including lay 'experts' (Gibbons, 1999). 4865 4866 Case Study: The Southeast Drought: Another Perspective on Water Problems in the 4867 Southeastern U.S. 4868 **Introduction and context** 4869 As mentioned earlier, drought risk consists of a hazard component (e.g., lack of 4870 precipitation, along with direct and indirect effects on runoff, lake levels and other 4871 relevant parameters) and a vulnerability component. Some aspects of vulnerability 4872 include the condition of physical infrastructure, economics, awareness and preparedness, 4873 institutional capability and flexibility, policy, demography, access to technology (Wilhite 4874 et al., 2000). Thus, there are clearly non-climatic factors that can enhance or decrease the 4875 likelihood of drought impacts. Laws, institutions, policies, procedures, precedents and regulations, for instance, may limit the range of options available to the decision-maker, 4876 4877 even if armed with a perfect forecast. 4878 4879 In the case of the ongoing drought in the southeastern United States, the most recent 4880 episode (beginning in 2006 and intensifying in 2007, see Figure 3.1), impacts to 4881 agriculture, fisheries, and municipal water supplies were likely exacerbated by a lack of 4882 action on water resources compacts between Georgia, Alabama, and Florida (Feldman, 4883 2007). The hazard component was continuously monitored at the state, regional, and 4884 national level by a variety of institutions, including state climatologists, the Southeast 4885 Regional Climate Center, the Southeast Climate Consortium, the USGS, the National 4886 Weather Service, the U.S. Drought Monitor and others. In some cases, clear decision 4887 points were specified by state drought plans (Steinemann and Cavalcanti, 2006; Georgia

4888 DNR, 2003). (Florida lacks a state drought plan.) During spring 2007, as record

Do Not Cite or Quote

Page 217 of 426

4889 precipitation deficits mounted, water supplies declined, and drought impacts, including 4890 record-setting wildland fires accumulated (Georgia Forestry Commission, 2007). Georgia 4891 decision-makers faced the option of relying on a forecast for above-average Atlantic 4892 hurricane frequency, or taking more cautious, but decisive, action to stanch potentially 4893 critical water shortages. Public officials allowed water compacts to expire, because they 4894 could not agree on water allocation formulae; hence, unresolved conflicts regarding the 4895 relative priorities of upstream and downstream water users, such as streamflows intended 4896 to preserve endangered species and enrich coastal estuaries, versus reservoir holdings 4897 intended to drought-proof urban water uses, impeded the effective application of climate 4898 information to mitigate potential impacts.

4899

4900 <u>The Apalachicola-Chattahoochee-Flint River basin compact negotiations</u>

4901 The Apalachicola-Chattahoochee-Flint (ACF) River Basin Compact was formed to 4902 address the growing demands for water in the region's largest city, Atlanta, while at the 4903 same time balancing off-stream demands of other users against in-stream needs to 4904 support fisheries and minimum flows for water quality (Hull, 2000). While the basin is 4905 rapidly urbanizing, farming – and the rural communities that depend upon it – remain 4906 important parts of the region's economy. Conflicts between Georgia, Florida, and 4907 Alabama over water rights in the basin began in the late 1800s. Today, metro Atlanta 4908 currently draws more than 400 million gallons of water per day from the river and 4909 discharges into it more than 300 million gallons of wastewater each day.

4910

4911 Following protracted drought in the region in the 1990s, decision-makers in Alabama, 4912 Florida, and Georgia dedicated themselves to avoiding lengthy and expensive litigation 4913 that likely would have led to a decision that would have pleased no one. In 1990, the 4914 three states began an 18-month negotiation process that resulted, first, in a Letter of 4915 Agreement (April, 1991) to address short term issues in the basin and then, in January 4916 1992, a *Memorandum of Agreement* that, among other things, stated that the three states 4917 were in accord on the need for a study of the water needs of the three states. The three 4918 states' governors also agreed to initiate a comprehensive study by the Corps of Engineers 4919 (Kundell and Tetens, 1998).

4920	
4921	At the conclusion of the 1998 compact summit chaired by former Representative
4922	Gingrich, the three states agreed to: protect federal regulatory discretion and water rights;
4923	assure public participation in allocation decisions; consider environmental impacts in
4924	allocation and, develop specific allocation numbers - in effect, guaranteeing volumes "at
4925	the state lines." Water allocation formulas were to be developed and agreed upon by
4926	December 31, 1998. However, negotiators for the three states requested at least a one-
4927	year extension of this deadline in November of 1998, and several extensions and requests
4928	for extensions have subsequently been granted over the past dozen years – often at the
4929	11th hour of stalemated negotiations.
4930	
4931	Opportunities for a breakthrough came in 2003. Georgia's chief negotiator claimed that
4932	the formulas posted by Georgia and Florida, while different, were similar enough to
4933	allow the former to "accept Florida's numbers (and to work to resolve language
4934	differences in the terms and conditions of the formula." Alabama representatives
4935	concurred that the numbers were workable and that differences could be resolved.
4936	Nonetheless, within days of this tentative settlement, negotiations broke off once again
4937	(Georgia Environmental Protection Division, 2002a). In August 2003, Governors Riley,
4938	Bush, and Perdue from Alabama, Florida, and Georgia, respectively, actually signed a
4939	memorandum of understanding detailing the principles for allocating water for the ACF
4940	over the next 40 years; however, as of this writing, Georgia has lost an appeal in the
4941	Appellate Court of the District of Columbia to withdraw as much water as it had planned
4942	to do – lending further uncertainty to this dispute (Goodman, 2008).
4943	
4944	Policy impasse
4945	Three issues appear to be paramount in the failure to reach accord. First, various demands

imposed on the river system may be incompatible, such as protecting in-stream flow while permitting varied off-stream uses. Second, many of the prominent user conflicts facing the three states are really up- versus down-stream disputes. For example, Atlanta is a major user of the Chattahoochee. However, it is also a "headwaters" metropolis. The same water used by Atlanta for water supply and wastewater discharge is used by "up-

Do Not Cite or Quote

Page 219 of 426

4951 streamers" for recreation and to provide shoreline amenities such as high lake levels for
4952 homes (true especially along the shoreline of Lake Lanier) – and provides downstream
4953 water supply to other communities. Without adequate drawdown from Lanier, for
4954 example, water supplies may be inadequate to provide for all of Atlanta's needs.
4955 Likewise, water quality may be severely degraded because of the inability to adequately
4956 dilute pollution discharges from point and non-point sources around Atlanta. This is
4957 especially true *if* in-stream water volumes decline due to growing off-stream demands.

4958

4959 Finally, the compact negotiating process itself lacks robustness – technically, the compact 4960 does not actually take effect until an allocation formula can be agreed upon. Thus, instead 4961 of agreeing on an institutional framework that can collect, analyze, translate, and use 4962 information to reach accord over allocation limits and water uses – the negotiations have 4963 been targeted on first determining a formula for allocation based on need (Feldman, 4964 2007). As we have seen in the previous case on drought management in Georgia, climate 4965 forecast information is being used to enhance drought preparedness and impact 4966 mitigation. Nevertheless, as noted in that case, conservation measures in one state alone 4967 cannot mitigate region-wide problems affecting large, multi-state watersheds. The same 4968 holds true for regional water supply dispute-resolution. Until a cooperative decision-4969 making platform emerges whereby regional climate forecast data can be used for conjoint 4970 drought planning, water allocation prescriptions, and incorporation of regional population 4971 and economic growth (not currently done on an individual state-level), effective use of 4972 decision-support information (i.e., transformation) will remain an elusive goal.

4973

4974 **3.3.1.1** Researchers often develop products and tools that they believe will be useful,

4975 and make them available for use without verifying whether they are needed:

4976 This is sometimes referred to as the "loading dock" phenomenon (Sarewitz and Pielke,

4977 2005), and generally results from one-way communication, without sufficient evaluation

4978 of the needs of stakeholders. As seen below in the case of northeast *Brazil*, this challenge

4979 in integrating information and tools into decision-making is a problem endemic to all

Do Not Cite or Quote

Page 220 of 426

4980	societies – but in the case of climate variability and water management is exacerbated by
4981	sufficiency of resources in developing nation contexts.
4982	
4983	Case Study: Policy learning and seasonal climate forecasting application in
4984	Northeast Brazil – integrating information into decisions
4985	Introduction
4986	The story of climate variability forecast application in the state of Ceará (N.E. Brazil)
4987	chronicles a policy process in which managers have deployed seasonal climate
4988	forecasting experimentally for over ten years for water and agriculture, and have slowly
4989	learned different ways in which seasonal forecasting works, does not work, and could be
4990	improved for decision making (Lemos et al., 2002; Lemos, 2003 Lemos and Oliveira,
4991	2004; Taddei 2005; Pfaff et al., 1999).
4992	
4993	The Hora de Plantar ("Time to Plant") Program, begun in 1988, aimed at distributing
4994	high-quality, selected seed to poor subsistence farmers in Ceará and at maintaining a
4995	strict planting calendar to decrease rain-fed farmers sensitivity to climate variability
4996	(Lemos, 2003). In exchange for selected seeds, farmers "paid" back the government with
4997	grain harvested during the previous season or received credit to be paid the following
4998	year. The rationale for the program was to provide farmers with high quality seeds (corn,
4999	beans, rice, and cotton), but to distribute them only when planting conditions were
5000	appropriate. Because farmers tend to plant with the first rains (sometimes called the "pre-
5001	season") and often have to replant, the goal of this program was to use a simplified
5002	soil/climate model, developed by the state meteorology agency (FUNCEME) to orient
5003	farmers with regard to the actual onset of the rainy season (Andrade, 1995).
5004	
5005	While the program was deemed a success (Golnaraghi and Kaul, 1995), a closer look
5006	revealed many drawbacks. First, it was plagued by a series of logistical and enforcement
5007	problems (transportation and storage of seed, lack of enough distribution centers, poor
5008	access to information and seeds by those most in need, fraud, outdate client lists, etc)
5009	(Lemos et al., 1999). Second, local and lay knowledge accumulated for years to inform

Page 221 of 426

5010 its design was initially ignored. Instead the program relied on a model of knowledge use 5011 that privileged the use of technical information imposed on the farmers in a exclusionary 5012 and insulated form that alienated stakeholders and hampered buying in from clients 5013 (Lemos, 2003). Third, farmers strongly resented *Hora de Plantar*'s planting calendar and 5014 its imposition over their own best judgment. Finally, there was the widespread perception 5015 among farmers (and confirmed by a few bank managers) that a "bad" forecast negatively 5016 affected the availability of rural credit (Lemos et al., 1999). And while many of the 5017 reasons farmers disliked the program had little to do with climate forecasting, the overall 5018 perception was that FUNCEME was to blame for its negative impact on their livelihoods 5019 (Lemos et al., 2002; Lemos, 2003; Meinke et al., 2006). As a result, there was both a 5020 backlash against the program and a relative discredit of FUNCEME as a technical agency 5021 and of the forecast by association. The program is still active, although by 2002, the strict 5022 coupling of seed distribution and the planting calendar had been phased out (Lemos, 5023 2003).

5024

5025 In 1992, as part of Ceará's modernizing government administration, and in response to a 5026 long period of drought, the state enacted Law 11.996 that defined its policy for water 5027 resources management. This new law created several levels of water management, 5028 including watershed Users' Commissions, Watershed Committees and a state level Water 5029 Resources Council. The law also defined the watershed as the planning unit of action; 5030 spelled out the instruments of allocation of water permits and fees for the use of water 5031 resources; and regulated further construction in the context of the watershed (Lemos and 5032 Oliveira, 2004; Formiga-Johnsson and Kemper, 2005; Pfaff et al., 1999).

5033

5034 Innovation – Using Information More Effectively

5035 One of the most innovative aspects of water reform in Ceará was creation of an

5036 interdisciplinary group within the state water management agency (COGERH) to develop

5037 and implement reforms. The inclusion of social and physical scientists within the agency

solved for the combination of ideas and technologies that critically affected the way the

5039 network of *técnicos* and their supporters went about implementing water reform in the

5040 state. From the start, COGERH sought to engage stakeholders, taking advantage of 5041 previous political and social organization within the different basins to create new water 5042 organizations (Lemos and Oliveira, 2005). In the Lower Jaguaribe-Banabuiú river basin, 5043 for example, the implementation of participatory councils went further than the suggested 5044 framework of River Basin Committees to include the Users Commission to negotiate 5045 water allocation among different users directly (Garjulli, 2001; Lemos and Oliveira, 5046 2004; Taddei, 2005; Pfaff et al., 1999). COGERH técnicos specifically created the 5047 Commission independently of the "official" state structure to emphasize their autonomy 5048 vis-à-vis the state (Lemos and Oliveira, 2005). This agenda openly challenged a pattern 5049 of exclusionary water policymaking prevalent in Ceará and was a substantial departure 5050 from the top-down, insulated manner of water allocation in the past (Lemos and Oliveira, 5051 2004). The ability of these *técnicos* to implement the most innovative aspects of the 5052 Ceará reform can be explained partly by their insertion into policy networks that were 5053 instrumental in overcoming the opposition of more conservative sectors of the state 5054 apparatus and their supporters in the water user community (Lemos and Oliveira, 2004).

5055

5056 The role of knowledge in building adaptive capacity in the system was also important 5057 because it helped democratize decision-making. In Ceará, the organization of stakeholder councils and the effort to use technical knowledge, especially reservoir scenarios to 5058 5059 inform water release, may have enhanced the system's adaptive capacity to climate 5060 variability as well as improved water resources sustainability (Formiga-Johnson and 5061 Kemper, 2005; Engle, 2007). In a recent evaluation of the role of governance institutions 5062 in influencing adaptive capacity building in two basins in NE Brazil (Lower Jaguaribe in 5063 Ceará and Pirapama in Pernambuco), Engle (2007) found that water reform played a 5064 critical role in increasing adaptive capacity across the two basins. And while the use of 5065 seasonal climate knowledge has been limited so far (the scenarios assume zero inflows 5066 from future rainfall), there is great potential that use of seasonal forecasts could affect 5067 several aspects of water management and use in the region and increase forecast value.

5068

5069 In the context of Ceará's Users Commissions, the advantages are twofold. First, by 5070 making simplified reservoir models available to users, COGERH is not only enhancing 5071 public knowledge about the river basin but also is crystallizing the idea of collective risk. 5072 While individual users may be willing to "free-ride", collective decision-making 5073 processes may be much more effective in curbing overuse. Second, information can play 5074 a critical role in democratization of decision-making at the river basin level by training 5075 users to make decisions, and dispelling the widespread distrust that has developed as a 5076 result of previous applications of climate information. Finally, the case suggests that 5077 incorporating social science into processes that are being designed to optimize the use of 5078 climate forecast tools in specific water management contexts can enhance outcomes by 5079 helping poorer communities better adapt to, and build capacity for managing climate 5080 variability impacts on water resources.

5081

5082 **3.3.1.2 Information may not be available at the time it could be useful**

5083 It is well established in the climate science community that information must be timely in 5084 order to be useful to decision makers. This requires that researchers understand and be 5085 responsive to the time frames during the year for which specific types of decisions are 5086 made. Pulwarty and Melis (2001) and Ray and Webb (2000) have developed the concept 5087 of "decision calendars" in the context of the Western Water Assessment in Boulder, 5088 Colorado (see figure 3.4). Failure to provide information at a time when it can be inserted 5089 into the annual series of decisions made in managing water levels in reservoirs, for 5090 example, may result in the information losing virtually all of its value to the decisionmaker. Likewise, decision-makers need to understand the types of predictions that can be 5091 5092 made and tradeoffs between longer-term predictions of information at the local or 5093 regional scale and potential decreases in accuracy. They also need to help scientists in 5094 formulating research questions.

Do Not Cite or Quote

5108	through them will facilitate adoption of new applications and techniques. Recently hired
5109	water managers have been found to be more likely to take risks and deviate from
5110	precedent and "craft skills" that are unique to a particular water organization (Rayner, et
5111	al., 2005).
5112	
5113	The following vignette on the Advanced Hydrologic Prediction System (AHPS),
5114	established in 1997, exemplifies a conscious effort by the National Weather Service to
5115	respond to many of these chronic relational problems in a decisional context. AHPS is an
5116	effort to go beyond traditional river stage forecasts which are short-term (1-3 days), and
5117	are the product of applied historical weather data, stream gage data, channel cross-section
5118	data, water supply operations information, and hydrologic model characteristics
5119	representing large regions. It is an effort that has worked, in part, because it has many
5120	"champions" – however, questions remain over how extensively the initiative has been
5121	supported with resources.
5122	
5123	AHPS responds directly to the problem of timely information availability by: trying to
5124	provide forecasting information sooner, particularly on potential flooding – linking it
5125	directly to local decision-makers, providing the information in a visual format; and,
5126	perhaps most of all, providing a dedicated program within NOAA (and the National
5127	Weather Service) that has the capacity to work directly with the user community and
5128	monitor ongoing, evolving decision-support needs.
5129	

5130 Vignette: AHPS – Advantages over conventional forecasting

Do Not Cite or Quote

Page 226 of 426
- 5131 Applying the same hydrologic data used in current methods, AHPS also employs
- 5132 advanced hydrologic models with characteristics *specific to local watersheds and*
- 5133 *tributaries*. These advanced, localized hydrologic models increase forecast accuracy by
- 5134 20% over existing models. Its outputs are more accurate, detailed, and visually oriented –
- and are able to provide decision-makers and the public with information on, among other
- 5136 variables: how high a river will rise, when it will reach its peak, where properties will be
- subject to flooding, and how long a flood event will continue. It is estimated that national
- 5138 implementation of AHPS will save at least \$200 million per year in reduced flood losses
- and contribute an additional \$400 million a year in economic benefits to water resource
- 5140 users (Advanced Hydrologic Prediction Service/
- 5141 http://www.state.nj.us/drbc/Flood_Website/AHPS.htm).

5142 **Benefits and application**

- 5143 AHPS provides greater-detailed products in an improved format. Because it is visually
- 5144 oriented, it provides information in a format that is easier to understand and use by the
- 5145 general public as well as planners and scientists. AHPS depicts the magnitude and
- 5146 probability of hydrologic events, and gives users an idea of worst case scenario
- 5147 situations. Finally, AHPS provides forecasts farther in advance of current methods,
- allowing people additional time to protect themselves, their families, and their property
- 5149 from floods.
- 5150 Following the Great Flood of 1993 in the Midwest, the Des Moines River Basin in Iowa
- 5151 was selected to be the first phase toward national implementation of AHPS. Residents,
- 5152 via the Internet, can now access interactive maps displaying flood forecast points.
- 5153 Selecting any of the flood forecast points on the map allows Internet users to obtain river
- 5154 stage forecast information for the point of interest. Available information includes: river
- 5155 flood stages, flow and volume probabilities, site maps, and damage tables projecting
- 5156 areas are likely to be subject to flooding.

5157 Status and assessment

- 5158 A 2006 MRC report found AHPS to be an ambitious climate forecast program that
- 5159 promises to provide services and products that are timely and necessary. However, it

expressed concerns about "human and fiscal resources" – recommending that there is a
need for trained hydrologic scientists to conduct hydrologic work in the NWS. Regarding
fiscal resources, "the budgetary history and current allocation seem misaligned with the
ambitious goals of the program." Thus, the program's goals and budget should be
brought into closer alignment (NRC, 2006).

5165

5166 3.3.2 Scientists Need to Communicate Better and Decision-Makers Need a Better

5167 Understanding of Uncertainty – It Is Embedded In Science.

5168 Discussions of uncertainty are at the center of many debates about forecast information

5169 and its usefulness. Uncertainties result from: the relevance and reliability of data, the

5170 appropriateness of theories used to structure analyses, the completeness of the

- 5171 specification of the problem, and in the "fit" between a forecast and the social and
- 5172 political matters of fact on the ground (NRC, 2005). While few would disagree that
- 5173 uncertainties are inevitable, there is less agreement as to how to improve ways of
- 5174 describing uncertainties in forecasts to provide widespread benefits (NRC, 2005).

5175 It is important to recognize that expectations of certainty are unrealistic in regards to 5176 climate variability. Weather forecasts are only an estimate; the risk tolerance (sect. 3.2.3) 5177 of the public is often unrealistically low. As we have seen in multiple cases, one mistaken 5178 forecast (e.g., the Yakima basin case) can have an impact out of proportion to the gravity 5179 of its consequences. Some starting points from the literature include helping decision-5180 makers understand that uncertainty does not make a forecast scientifically flawed – only 5181 imperfect. Along these lines, decision-makers must understand the types of predictions 5182 that can be made and tradeoffs between predictions of information at the local or regional

5183	scale that are less accurate than larger scale predictions (Jacobs, 2005). They also need to
5184	help scientists formulate research questions that result in relevant decision support tools.
5185	
5186	Second, uncertainty is not only inevitable, but necessary and desirable. It helps to
5187	advance and motivate scientific efforts to refine data, analysis, and forecaster skills;
5188	replicate research results; revise previous studies – especially through peer review
5189	discussed below, and improve observation. As one observer has noted, "(un)certainty is
5190	not the hallmark of bad science, it is the hallmark of honest science (when) we know
5191	enough to act is inherently a policy question, not a scientific one" (Brown, 1997).
5192	
5193	Finally, the characterization of uncertainty should consider the decision relevance of
5194	different aspects of the uncertainties. Failure to appreciate such uncertainties results in
5195	poor decisions, misinterpretation of forecasts, and to diminish trust of analysts.
5196	Considerable work on uncertainty in environmental assessments and models make this
5197	topic ripe for progress (e.g., National Research Council, 1999a).
5198	
5199	Vignette: Interpreting Climate Forecasts – uncertainties and temporal variability
5200	Introduction
5201	Lack of information about geographical and temporal variability in climate processes is
5202	one of the primary barriers to adoption and use of specific products. El Niño/Southern
5203	Oscillation (ENSO) forecasts are an excellent example of this issue. While today El Niño
5204	and La Niña are part of the public vocabulary, operational ENSO-based forecasts have
5205	only been made since the late 1980s. Yet making a decision based only on the forecasts
5206	themselves may expose a manager to unanticipated consequences. Additional information
5207	can mitigate such risk. ENSO-related ancillary products, such as those illustrated in
5208	Figures 3.5 and 3.6, can provide information about which forecasts are likely to be most

Do Not Cite or Quote

Page 229 of 426

5209 reliable for what time periods, in which areas. As Figure 3.5 shows, informed use of 5210 ENSO forecasts requires understanding of the temporal and geographical domain of 5211 ENSO impacts. El Niño (EN) events tend to bring higher than average winter 5212 precipitation to the U.S. Southwest and Southeast while producing below-average 5213 precipitation in the Pacific Northwest. La Niña (LN) events (e.g., the El Nino Lower 5214 Colorado Basin case discussed earlier). Further, not all ENs or LNs are the same with 5215 regard to the amount of precipitation they produce. As illustrated in Figure 3.7, which 5216 provides this kind of information for Arizona, the EN phase of ENSO tends to produce 5217 above-average winter precipitation less dependably than the LN phase produces below-5218 average winter precipitation.

5219

5220 An example of the value of combining ENSO forecasts with information about how 5221 ENSO tended to affect local systems arose during the 1997-98 ENSO event. In this case, 5222 the Arizona-based Salt River Project (SRP) made a series of decisions based on the 1997-5223 98 EN forecast plus analysis of how ENs tended to affect their system of rivers and 5224 reservoirs. Knowing that ENs tended to produce larger streamflows late in the winter 5225 season, SRP managers reduced groundwater pumping in August 1997 in anticipation of a 5226 wet winter. Their contingency plan called for resuming groundwater pumping if 5227 increased streamflows did not materialize by March 1, 1998. As the winter progressed, it 5228 became apparent that the EN had produced a wet winter and plentiful water supplies in 5229 SRP's reservoirs. The long-lead decision to defer groundwater pumping in this instance 5230 saved SRP \$1 million (Pagano et al., 2001). SRP was uniquely well positioned to take 5231 this kind of risk because the managers making the decisions had the support of upper-5232 level administrators and because the organization had unusually straightforward access to 5233 information. First, a National Weather Service office is co-located in the SRP 5234 administrative headquarters, and second, key decision makers had been interacting 5235 regularly with climate and hydrology experts associated with the NOAA-funded Climate 5236 Assessment for the Southwest (CLIMAS) project, located at the University of Arizona. 5237 Relatively few decision makers have this level of support for using climate forecasts and 5238 associated information. The absence of such support systems may increase managers' 5239 exposure to risk, in turn generating a strong disincentive to use climate forecasts.

Do Not Cite or Quote

- 5244 Figure 3.6 La Nina precipitation anomalies (in.). Source: NOAA Earth System Research Laboratory 5245
- 5246

5249Figure 3.7 SOI (Jun-Nov) vs. Winter precipitation (Nov-Apr) for three phases of ENSO, El Nino, La5250Nina, and Neutral, for Arizona climate division 6. Note the greater variation in El Nino precipitation5251(blue) than in La Nina precipitation (red).

5252

5248

5253 **3.4 Summary**

5254 Decision-support systems are not often well integrated into policy networks to support

- 5255 planning and management, making it difficult to convey information. Among the reasons
- 5256 for this are a tendency toward institutional conservatism by water agencies, a decision-
- 5257 making climate that discourages innovation, lack of national-scale coordination of
- 5258 decisions, difficulties in providing support for decisions at varying spatial and temporal
- 5259 scales due to vast variability in "target audiences" for products, and growing recognition
- 5260 that rational choice models of information transfer are overly simplistic. The case of

Page 232 of 426

5261	information use in response to Georgia's recent drought brings to light problems that
5262	students of water decision-making have long predicated about resistance to innovation
5263	

5264	The use of climate products requires special training or access to data that are not easily
5265	available, making access to decision-support products challenging. As we have seen,
5266	equity of access is partly a function of the fact that decision-support tools are intended to
5267	translate risks, hazards, and vulnerabilities to water resources from seasonal to inter-
5268	annual climate variation. These factors are themselves subject to socially constructed
5269	processes of trust, confidence, and perceived credibility, reliability and certainty. Sources
5270	of distrust – including uncertainties that lead to wrong forecasts are underscored in the
5271	Yakima and upper Colorado basin cases, while the problems of drought and water supply
5272	along the Colorado and Rio Grande basins in the Southwest illustrate the challenges
5273	afforded by reliability and uncertainty. For their part, institutional factors that inhibit
5274	access to decision-support service to, for example, prevent flooding, are revealed by the
5275	Red River of the North case. In some respects, the discussion of the Advanced
5276	Hydrologic Prediction System is the reverse of this discussion – by showing how
5277	scientists and decision-makers can design a dedicated decision-support enterprise that
5278	incorporates useful information, in near real time, and which utilizes platforms accessible
5279	to the public - and generates information salient to the public and local decision-makers.
5280	
5281	Ensuring information relevance requires overcoming the barriers of over-specialization
5282	by encouraging inter-disciplinary collaboration in product and tool development.
5283	Decision-makers need to learn to appreciate the inevitability and desirability of forecast

Do Not Cite or Quote

Page 233 of 426

5284	uncertainties regional scale on the one hand, and potential decreases in accuracy on the
5285	other. Scientists must understand both internal institutional impediments (agency rules
5286	and regulations) as well as external ones (e.g., political-level conflicts over water
5287	allocation as exemplified in the Southeast U.S., asymmetries in information access in the
5288	case of Northeast Brazil) as factors constraining decision-support translation and decision
5289	transformation. Decision-makers and scientists must conjointly formulate research
5290	questions relevant to the spatial and temporal scale of problems the former manage and to
5291	ensure accessibility of information, while scientists should aim to generate findings
5292	viewed as accurate and trustworthy, contextually specific, and peer reviewed. While the
5293	nine cases discussed here have been useful and instructive, more generalizable findings
5294	are needed in order to develop a strong, theoretically-grounded understanding of
5295	processes that facilitate information dissemination, communication, use, and evaluation -
5296	and to predict effective methods of boundary spanning between decision-makers and
5297	information generators. We discuss this set of problems in Chapter 4.

5298 **CHAPTER 3 REFERENCES** 5299 Adeel, Z., and M. Glantz, 2001: El Niño of the Century: Once Burnt, Twice Shy? Global 5300 Environmental Change, 11: 171–174. 5301 Allen, C. D., and D. D. Breshears, 1998: Drought-induced shift of a forest-woodland 5302 ecotone: Rapid landscape response to climate variation. Proceedings of the 5303 National Academy of Sciences, 95, 14839-42. 5304 Allen Orchards H.F., et al., Elbert B. Schinmann, et al., R.E. Redman & Sons, Inc., 5305 Appellants, v. The UNITED STATES, Appellee. United States Court of Appeals, 5306 Federal Circuit. - 749 F.2d 1571 Dec. 10, 1984 5307 Anderson, M.T. and L.H. Woosley, Jr., 2005: Water Availability for the Western United 5308 States – Key Scientific Challenges. U.S. Geological Survey Circular, 1261, 85 p. 5309 Andrade, E.R., and W.D. Sellers, 1988: El Niño and its effect on precipitation in 5310 Arizona and Western New Mexico. Journal of Climate, 8, 403-410. 5311 Andrade, F.C., 1995: Modelo de Umidade do Solo para Atividades Agrícolas: Teoria e 5312 Prática. Fortaleza: FUNCEME. 5313 Annear, T., I. Chisholm, H. Beecher, A. Locke, P. Aarrestad, N. Burkhardt, C. Comer, 5314 C. Estes, J. Hunt, R. Jacobson, G. Jobsis, J. Kaufman, J. Marshall, K. Mayes, C. 5315 Stalnaker, and R. Wentworth, 2002: Instream Flows for Riverine Resource 5316 Stewardship. Instream Flow Council. 5317 Bales, R.C., D.M. Liverman, and B.J. Morehouse, 2004: Integrated Assessment as a Step 5318 Toward Reducing Climate Vulnerability in the Southwestern United States. 5319 Bulletin of the American Meteorological Society, 85, 1727–1734. 5320 Ban, R.J., 2006: Completing the Forecast: Characterizing and Communicating 5321 Uncertainty for Better Decisions Using Weather and Climate Forecasts. National 5322 Research Council Committee on Estimating and Communicating Uncertainty in 5323 Weather and Climate Forecasts. 124 pages.

Do Not Cite or Quote

Page 235 of 426

5324	Bormann, B.T., P.G. Cunningham, M.H. Brookes, V.W. Maning, and M.W. Collopy,
5325	1993: Adaptive Ecosystem Management in the Pacific Northwest. USDA Forest
5326	Service.
5327	Brandon, D., B. Udall, and J. Lowrey, 2005: An Overview of NOAA's Colorado Basin
5328	River Forecast Center. In Colorado River Basin Climate: Paleo, Present, Future,
5329	pp. 30-35. http://www.colorado.edu/resources/colorado_river/
5330	Brown, G., 1997: Environmental Science Under Siege in the U.S. Congress.
5331	Environment, 39, 13-30.
5332	Brown, D.P., and A.C. Comrie, 2004: A winter precipitation 'dipole' in the western
5333	United States associated with multidecadal ENSO variability. Geophysical
5334	Research Letters, 31 (L09203).
5335	Cairo, R.A., 1997: Dealing with Interstate Water Issues: The Federal Interstate Compact
5336	Experience, in Richard E. Just and Sinaia Netanyahu (eds.) Conflict and
5337	Cooperation on Trans-Boundary Water Resources. Boston: Kluwer.
5338	Carbone, G.J., and K. Dow, 2005: Water resource management and drought forecasts in
5339	South Carolina. Journal American Water Resources Association, 4, 44-155.
5340	Cash, D.W., W.C. Clark, F. Alcock, N.M. Dickson, N. Eckley, D.H. Guston, J. Jager,
5341	and R.B.H. Mitchell, 2003: Knowledge Systems for Sustainable Development.
5342	Proceedings of the National Academy of Science – Science and Technology for
5343	Sustainable Development 100: 8086-8091.
5344	Cayan, D.R., K.T. Redmond, and L.G. Riddle, 1999: ENSO and hydrologic extremes in
5345	the western United States. Journal of Climate, 12, 2881–2893.
5346	Cayan, D.R., S.A. Kammerdiener et al., 2001: Changes in the Onset of Spring in the
5347	Western United States. Bulletin of the American Meteorological Society, 399-415.
5348	Cayan, D.R., and R.H. Webb, 1992: El Niño/Southern Oscillation and Streamflow in the
5349	Western United States. Historical and Paleoclimate Aspects of the Southern

Page 236 of 426

5350	Oscillation. H. F. Diaz and V. Markgraf (eds), Cambridge University Press: 29-
5351	68.
5352	CCSP (Climate Change Science Program), 2007: Effects of climate change on energy
5353	production and use in the United States. U.S. Department of Energy,
5354	Washington, DC. <http: energy_impacts="" sap_4.5="" sci="" team.shtml="" www.ornl.gov=""></http:>
5355	Chang, H., B.M. Evans, and D.R. Easterling, 2001: Potential effects of climate change
5356	on surface-water quality in North America. Journal of the American Water
5357	Resources Association, 37(4), 973-985.
5358	Changnon, S.A., 2002: Impacts of the Midwestern Drought Forecasts of 2000. Journal
5359	of Applied Meteorology, 41 , 1042-1052.
5360	Chen, C.C., D. Gillig, B.A. McCarl, and R.L. Williams, 2005: ENSO Impacts on
5361	Regional Water Management: A Case Study of the Edwards Aquifer Region.
5362	<i>Climate Research</i> , 28 (2), 175-182.
5363	Clark, M.P., L.E. Hay, G.J. McCabe, G.H. Leavesley, M.C. Serreze, and R.L. Wilby,
5364	2003: The use of weather and climate information in management of water
5365	resources in the western United States. In: Lewis, W.M. (Ed.) Water and Climate
5366	in the Western United States, University Press of Colorado, 294pp.
5367	Cody, B.A., 1999: Western Water Resource Issues: A Congressional Research Service
5368	Brief for Congress. Washington, D.C.: Congressional Research Service, March
5369	18.
5370	Cook, E.R., C.A. Woodhouse, C.M. Eakin, and D.M. Meko, 2004: Long-Term Aridity
5371	Changes in the Western United States. Science 5, 306(5698), 1015-1018.
5372	Cortner, H.A., and M.A. Moote, 1994: Setting the Political Agenda: Paradigmatic Shifts
5373	in Land and Water Policy, pp. 365-377, in R.E. Grumbine, ed., Environmental
5374	Policy and Biodiversity. Washington, D.C.: Island Press.

5375	Covello, V., E. Donovan, and J.E. Slavick, 1990: Community Outreach. Washington,
5376	D.C.: Chemical Manufacturers Association.
5377	Cutter, S.L., 1996: Vulnerability to environmental hazards. Progress in Human
5378	<i>Geography</i> , 20 , 529-39.
5379	Cutter, S.L., B.J. Boruff, and W.L. Shirley, 2002: Social vulnerability to environmental
5380	hazards. Social Science Quarterly, 84, 242-261.
5381	D'Arrigo, R.D., and G.C. Jacoby, 1991: A 1000-year record of winter precipitation from
5382	northwestern New Mexico, USA: a reconstruction from tree-rings and its relation
5383	to El Niño and the Southern Oscillation. <i>The Holocene</i> , 1 (2), 95-101.
5384	Dettinger, M.D., D.R. Cayan, H.F. Diaz, and D.M. Meko, 1998: North-south
5385	precipitation patterns in western North America on interannual-to-decadal
5386	timescales. Journal of Climate, 11, 3095-3111.
5387	Dewalle, D., J. Eismeier, and A. Rango, 2003: Early forecasts of snowmelt runoff using
5388	SNOTEL data in the upper Rio Grande Basin. In: Proceedings of the Western
5389	Snow Conference, April 21-25, 2003, Scottsdale, Arizona. p. 17-22.
5390	DOE (U.S. Department of Energy), 2006: Energy Demands on Water Resources. Report
5391	to Congress on the Interdependency of Energy and Water. Washington, DC.
5392	<http: congress_report.htm="" energy-water="" www.sandia.gov=""></http:>
5393	Dole, R.M., 2003: Predicting Climate Variations in the American West: What Are Our
5394	Prospects? In William M. Lewis, Jr. (ed.), Water and Climate in the Western
5395	United States. Boulder, CO: The University Press of Colorado.
5396	Dorner, S.M., W.B. Anderson, R.M. Slawson, N. Kouwen, and P.M. Huck, 2006:
5397	Hydrologic Modeling of Pathogen Fate and Transport. Environmental Science
5398	and Technology, 40(15) , 4746-4753.

5399	Dow, K., R.E. O'Connor, B.Yarnal, G.J. Carbone, and C.L. Jocoy, 2007: Why Worry?
5400	Community water system managers' perceptions of climate vulnerability. Global
5401	Environmental Change, 17, 228-237.
5402	(DRBC) Delaware River Basin Commission, 1998: Annual Report 1997. West Trenton,
5403	New Jersey: DRBC.
5404	Enfield, D.B., A.M. Nunez, and P.J. Trimble, 2001: The AMO and its Relationship to
5405	Rainfall and River Flow in the Continental U.S. Geophysical Research Letters,
5406	28, 2077-2080.
5407	Engle, N.L., 2007: Adaptive capacity of water management to climate change in Brazil:
5408	A case study analysis of the Baixo Jaguaribe and Pirapama river basins. Master's
5409	thesis, University of Michigan, United States.
5410	Feldman, D.L., 2007: Water Policy for Sustainable Development. Baltimore, MD:
5411	Johns Hopkins University Press.
5412	Feldman, D.L., 1995: Water Resources Management: In Search of an Environmental
5413	Ethic, Baltimore, Maryland: Johns Hopkins University Press.
5414	FET (Forecast Evaluation Tool), 2008; accessed 1-27-2008.
5415	<http: fet.hwr.arizona.edu="" forecastevaluationtool=""></http:>
5416	Formiga-Johnsson R.M., and K.E. Kemper, 2005: Institutional and policy analysis of
5417	river basin management – the Jaguaribe River Basin, Ceará, Brazil. World Bank
5418	Policy Research Working Paper 3649, June 2005, Washington, D.C.
5419	Freudenburg, W.R., and J.A. Rursch, 1994: The Risks of putting the Numbers in
5420	Context. Risk Analysis, 14(6), 949-958.
5421	Fulp, T., 2003: Management of Colorado River Resources. In William M. Lewis, Jr.
5422	(ed.), Water and Climate in the Western United States. Boulder, CO: The
5423	University Press of Colorado, pp. 143-152.

5424	Furlow, J., 2006: The future ain't what it used to be; climate change and water resources
5425	management. Water Resources IMPACT, 8(5), 5-7.
5426	Garcia, P., P.F. Folliott, D.G. Neary, 2005: Soil erosion following the Rodeo-Chediski
5427	wildfire: an initial assessment. Hydrology and Water Resources in Arizona and
5428	the Southwest, 34 , 51-56.
5429	Garfin, G., M.A. Crimmins, and K.L. Jacobs, 2007: Drought, Climate Variability, and
5430	Implications for Water Supply. In B. Colby and K. Jacobs (eds.) Arizona Water
5431	Policy: Management Innovations in an Urbanizing Arid Region. Washington, DC:
5432	Resources for the Future, pp. 61-78.
5433	Garrick, D., K. Jacobs, and G. Garfin, 2006: "Decision Making Under Uncertainty:
5434	Shortage, Stakeholders, and Modeling in the Colorado River Basin," submitted to
5435	Journal of the American Water Resources Association, March.
5436	Garjulli, R., 2001: Experiência de Gestão Participativa de Recursos Hídricos: a Caso do
5437	Ceará. In: Alves RFF, de Carvalho GBB (eds) Experiências de Gestão dos
5438	Recursos Hídricos. MMA/ANA, Brasília.
5439	Georgia Forestry Commission 2007: Georgia Wildfires of 2007 Summary of Facts and
5440	Costs for Recovery < http://www.gfc.state.ga.us/GFCNews/CFI.cfm> accessed 1-
5441	29-08
5442	Georgia Environmental Protection Division, Department of Natural Resources
5443	2002a: Progress on Interstate Water Compact. Atlanta: Georgia DNR, January
5444	16.
5445	GDTF (Governor's Drought Task Force), 2004: Arizona Drought Preparedness Plan:
5446	Operational Drought Plan. Phoenix: Arizona Department of Water Resources, 107
5447	p. <http: adpplan.html="" drought="" dwr="" www.azwater.gov=""></http:>
5448	Georgakakos, A., 2006a: Decision-Support Systems for Integrated Water Resources
5449	Management with an Application to the Nile Basin. Chapter 6 in Topics on

5450	System Analysis and Integrated Water Resources Management, eds. A. Castelletti
5451	and R. Soncini-Sessa, Elsevier.
5452	Georgakakos, K. P., N.E. Graham, T.M. Carpenter, A.P. Georgakakos, and H. Yao,
5453	2005: Integrating climate-hydrology forecasts and multi-objective reservoir
5454	management for Northern California. EOS, 86(12), 122-127.
5455	Georgia DNR (Department of Natural Resources), 2003: Georgia Drought Management
5456	Plan. 23 p., accessed 1-29-08.
5457	http://www.gaepd.org/Files_PDF/gaenviron/drought/drought_mgmtplan_2003.p
5458	df>
5459	Gibbons, M., 1999: Science's new social contract with society. Nature 402, C81-C84
5460	(Supplemental).
5461	Gillilan, D., and T.C. Brown, 1997: Instream Flow Protection: Seeking a Balance in
5462	Western Water Use. Washington, D.C.: Island Press.
5463	Glantz, M., 1982: Consequences and responsibilities in drought forecasting: the case of
5464	the Yakima, 1977. Water Resources Research, 18, 3-13.
5465	Gleick, P.H., D.B. Adams et.al., 2000: Water: The Potential Consequences of Climate
5466	Variability and Change for the Water Resources of the United States. Report of
5467	the Water Sector Assessment Team - National Assessment of the Potential
5468	Consequences of Climate Change. U.S. Global Change Research Program.
5469	Oakland, CA: Prepared by the Pacific Institute for Studies in Development,
5470	Environment, and Security, September.
5471	Golnaraghi, M, and R. Kaul, 1995: The Science of Policymaking: Responding to El
5472	Nino. Environment, 37(4), 16-44.
5473	Goodman, B., 2008: Georgia Loses Federal Case in a Dispute About water, New York
5474	Times, February 6.
5475	http://www.nytimes.come/2008/02/06/us/06water.html?ei=5070&en=5

5476	Goodrich, G.B., A.W. Ellis, 2006: Climatological Drought in Arizona: An Analysis of
5477	Indicators for Guiding the Governor's Drought Task Force. Professional
5478	<i>Geographer</i> , 58 (4), 460–469.
5479	Gunaji, N.N., 1995: Anatomy of the Extraordinary Drought at the U.S Mexico Border,
5480	pp. 139 – 148. In Management of Water Resources in North America III –
5481	Anticipating the 21st Century, edited by Nathan Buras. Proceedings of the
5482	Engineering Foundation Conference. New York: American Society of Civil
5483	Engineers.
5484	Gutzler, D.S., D.M. Kann et al., 2002: Modulation of ENSO-Based Long-Lead Outlooks
5485	of Southwestern U.S. Winter Precipitation by the Pacific Decadal Oscillation.
5486	Weather and Forecasting, 17, 1163-72.
5487	Handmer, J., 2004: Global Flooding, pp. 87-106, in J. P. Stoltman, J. Lidstone, and Lisa
5488	M. DeChano, eds. International Perspectives on Natural Disasters: Occurrence,
5489	Mitigation, and Consequences. Dordrecht, Netherlands: Kluwer Academic
5490	Publishers.
5491	Hanson, R.T. and Dettinger, M.D., 2005: Ground-water/surface-water responses to
5492	global climate simulations, Santa Clara-Calleguas basin, Ventura County,
5493	California, 1950-93: Journal of the American Water Resources Association, 43, p.
5494	517-536.
5495	Hartig, J. H., D.P. Dodge, L. Lovett-Doust, and K. Fuller, 1992: Identifying the Critical
5496	Path and Building Coalitions for Restoring Degraded Areas of the Great Lakes,
5497	pp. 823-830, in Water Resources Planning and Management: Saving a
5498	Threatened Resource. New York: Conference on Water Resources Planning and
5499	Management, ASCE.
5500	Hartmann, H., 2001: Stakeholder Driven Research in a Hydroclimatic Context,
5501	Dissertation, Dept. of Hydrology and Water Resources, University of Arizona.

5502	Hartmann, H.C., T.C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence Builders:
5503	Evaluating Seasonal Climate Forecasts from User Perspectives. Bulletin of the
5504	American Meteorological Society, 683-698.
5505	Hawkins, T.W., A.W. Ellis, J.A. Skindlov, and D. Reigle, 2002: Intra-annual Analysis of
5506	the North American Snow Cover-Monsoon Teleconnection: Seasonal Forecasting
5507	Utility. Journal of Climate, 15, 1743-1753.
5508	Hayes, M., O. Wilhelmi, and C. Knutson. 2004: Reducing drought risk: Bridging theory
5509	and practice. Natural Hazards Review, 5(2): 106-113.
5510	Higgins, R.W., Y. Chen, and A.V. Douglass, 1999: Internannual Variability of the North
5511	American Warm Season Precipitation Regime. Journal of Climate, 12(3), 653-
5512	680.
5513	Hirschboeck, K.K., and D.M. Meko, 2005: A Tree-Ring Based Assessment of
5514	Synchronous Extreme Streamflow Episodes in the Upper Colorado & Salt-Verde-
5515	Tonto River Basins. Tucson, AZ: University of Arizona Laboratory of Tree-Ring
5516	Research. <http: fpcluster.ccit.arizona.edu="" khirschboeck="" srp.htm=""></http:>
5517	Holling, C. S. (ed.). 1978: Adaptive Environmental Assessment and Management. New
5518	York, NY: John Wiley and Sons.
5519	Holmes, B.H., 1979: A History of Federal Water Resources Programs and Policies,
5520	1961-1970. Washington, D. C.: Economics, Statistics, and Cooperatives Service,
5521	U.S. Department of Agriculture.
5522	Holway, J., 2007: Urban growth and water supply. In B. Colby and K. Jacobs (eds.)
5523	Arizona Water Policy: Management Innovations in an Urbanizing Arid Region.
5524	Washington, DC: Resources for the Future, pp. 157-172.
5525	Homer-Dixon, T.F., 1999: Environment, Scarcity, and Violence. Princeton, NJ:
5526	Princeton University Press.

5527	HRC-GWRI, 2006: Integrated Forecast and Reservoir Management (INFORM) for
5528	Northern California: System Development and Initial Demonstration. California
5529	Energy Commission, PIER Energy-Related Environmental Research, CEC-500-
5530	2006-109, Sacramento, CA, 243pp. + 9 Appendices.
5531	<http: cec-500-2006-109.html="" final_project_reports="" pier="" www.energy.ca.gov=""></http:>
5532	Hull, J.W. 2000: The War Over Water. Regional Resource. Atlanta, Georgia: The
5533	Council of State Governments, October.
5534	Hurd, B.H., N. Leary, R. Jones, and J.B. Smith, 1999: Relative Regional Vulnerability of
5535	Water Resources to Climate Change. Journal of the American Water Resources
5536	Association (JAWRA), 35(6) , 1399-1410.
5537	Hutson, S.S., N.L. Barber, J.F. Kenny, K.S. Linsey, D.S. Lumia, and M.A. Maupin,
5538	2004: Estimated Use of Water in the United States in 2000. U.S. Geological
5539	Survey Circular 1268. Reston, VA: USGS.
5540	Ingram, H. and L. Fraser, 2006: Path dependency and adroit innovation: The case of
5541	California water. In R. Repetto, (Ed.). By fits and starts: Punctuated equilibrium
5542	and the dynamics of U.S. environmental policy. New Haven: Yale University
5543	Press.
5544	International Joint Commission, 2000: Protection of the Waters of the Great Lakes:
5545	Final Report to the Governments of Canada and the United States. Ottawa, CN:
5546	IJC.
5547	IPCC, 2007a: Climate Change 2007. The Physical Science Basis. Contribution of
5548	Working Group I to the Fourth Assessment Report of the Intergovernmental Panel
5549	on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,
5550	K.B. Averyt, M. Tignor, and H. L. Miller (eds.) Cambridge University Press,
5551	Cambridge, U.K., and New York, NY, U.S.A.
5552	IPCC, 2007b: Climate Change 2007. Impacts, Adaptation, and Vulnerability. Working
5553	Group II Contribution to the Intergovernmental Panel on Climate Change Fourth

5554	Assessment Report. Summary for Policymakers Geneva, Switzerland: IPCC
5555	Secretariat, April.
5556	Jacoby, H.D., 1990: Water quality. In P.E. Wagonner (ed.), Climate Change and U.S.
5557	Water Resources. John Wiley and Sons, New York, pp. 307-328.
5558	Jacobs, K.L., G.M. Garfin, and M. Lenart, 2005: More than Just Talk: Connecting
5559	Science and Decisionmaking, Environment, 47(9), 6-22.
5560	Jacobs, K.L., and J.M. Holway, 2004: Managing for sustainability in an arid climate:
5561	lessons learned from 20 years of groundwater management in Arizona, USA.
5562	Hydrogeology Journal, 12 ,52-65.
5563	Jasanoff, S., 1987: EPA's regulation of Daminozide: Unscrambling the messages of risk.
5564	Science, Technology, and Human Values, 12(3&4), 116-124.
5565	Kahneman, D., P. Slovic, and A. Tversky, eds., 1982: Judgment Under Uncertainty:
5566	Heuristics and Biases. New York: Cambridge University Press.
5567	Keeney, R.L., 1992: Value-Focused Thinking: A Path to Creative Decision-making.
5568	Cambridge, MA: Harvard University Press.
5569	Kenney, D.S., and W.B. Lord, 1994: Coordination Mechanisms for the Control of
5570	Interstate Water Resources: A Synthesis and Review of the Literature. Report for
5571	the ACF-ACT Comprehensive Study. U.S. Army Corps of Engineers, Mobile
5572	District, July.
5573	Kingdon, J., 1995: Agendas, Alternatives, and Public Policies, 2nd Edition. New York:
5574	Harper Collins.
5575	Kirby, K., 2000: Beyond Common Knowledge: The Use of Technical Information in
5576	Policymaking. Ph.D. Dissertation, University of California, Davis.
5577	Kirshen, P., M. Ruth, and W. Anderson. Climate's Long-term Impacts on Urban
5578	Infrastructures and Services: The Case of Metro Boston. Chapter 7 in Ruth, M.,

Page 245 of 426

5579	P.H. Kirshen, and K. Donaghy, (co-editors), Climate Change and Variability:
5580	Consequences and Responses, (on research conducted as part of the 1999 and
5581	2000 EPA STAR grant program), in press.
5582	Kundell, J E, and D. Tetens 1998: Whose Water Is It? Major Water Allocation Issues
5583	Facing Georgia. Public Policy Research Series, Campbell, R W. Series Editor.
5584	Athens, Georgia: Carl Vinson Institute of Government, The University of
5585	Georgia.
5586	Kundell, J.E., T.A. DeMeo, M. Myszewski, 2001: Developing a Comprehensive State
5587	Water Management Plan - A Framework for Managing Georgia's Water
5588	Resources. Sponsored by Home Depot and Georgia Power. Atlanta, GA:
5589	Research Atlanta, Inc./Georgia State University, Andrew Young School of Policy
5590	Studies.
5591	Landre, B.K., and B.A. Knuth, 1993: Success of Citizen Advisory Committees in
5592	Consensus Based Water Resources Planning in the Great Lakes Basin. Society
5593	and Natural Resources, 6(3), July-September: 229.
5594	Leatherman, S.P., and G. White, 2005: Living on the Edge: The Coastal collision
5595	Course. Natural Hazards Observer, 30(2), 5-6.
5596	Lee, K.N., 1993: Compass and Gyroscope: Integrating Science and Politics for the
5597	Environment. Washington, D.C.: Island Press.
5598	Lemos M.C., 2003: A tale of two polices: climate forecasting and drought relief in Ceará,
5599	Brazil. Policy Sciences, 36,101–123
5600	Lemos M.C., and J.L.F. Oliveira, 2004: Can water reform survive politics? Institutional
5601	change and river basin management in Ceará, Northeast Brazil. World
5602	Development, 32(12) , 2121-2137
5603	Lemos, M.C. and J.L.F. Oliveira, 2005: Water reform across the state/society divide: the
5604	case of Ceará, Brazil. International Journal of Water Resources Development,
5605	21(1) , 93-107.

Do Not Cite or Quote

5606	Lemos M.C., D. Nelson, T. Finan, R. Fox, D. Mayorga, and I. Mayorga, 1999: The social
5607	and policy implications of seasonal forecasting: a case study of Ceará. Northeast
5608	Brazil. NOAA Final Report, Award no. NA76GPO385.
5609	Lemos M.C., T. Finan, R. Fox, D. Nelson J. Tucker, 2002: The use of seasonal climate
5610	forecasting in policymaking: lessons from Northeast Brazil. Climatic Change, 55,
5611	479–507.
5612	Loáiciga, H.A., 2003: Climate Change and Ground Water. Annals of the Association of
5613	American Geographers, 93(1), 30–41.
5614	Lyon, B., N. Christie-Blick, and Y. Gluzberg, 2005: Water shortages, development, and
5615	drought in Rockland County, New York. Journal of the American Water
5616	Resources Association, 41 , 1457-1469.
5617	Mantua, N.J., S. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, 1997: Bulletin of the
5618	American Meteorological Society, 78 , 1069–1079.
5619	Mantua, N.J., 2004: Methods for detecting regime shifts in large marine ecosystems: a
5620	review with approaches applied to North Pacific data. Progress in Oceanography,
5621	60(2-4) , 165-82.
5622	May, P.J., R.J. Burby, N.J. Ericksen, J.W. Handmer, J.E. Dixon, S. Michael, and S.D.
5623	Ingle. 1996: Environmental Management and Governance: Intergovernmental
5624	Approaches to Hazards and Sustainability. New York: Routledge.
5625	McCabe, G.J., M.A. Palecki, and J.L. Betancourt, 2004: Pacific and Atlantic Ocean
5626	Influences on Multidecadal Drought Frequency in the United States. Proceedings
5627	of the National Academy of Sciences, 101(12) , 4136-4141.
5628	McGinnis, M.V., 1995: On the Verge of Collapse: The Columbia River System, Wild
5629	Salmon, and the Northwest Power Planning Council. Natural Resources Journal,
5630	35 , 63-92.

5631	Meinke H., R. Nelson, R. Stone, R. Selvaraju, and W. Baethgen, 2006: Actionable
5632	climate knowledge: from analysis to synthesis. <i>Climate Research</i> , 33 , 101–110.
5633	Meko, D.M., C.W. Stockton, and W.R. Boggess, 1995: The tree-ring record of severe
5634	sustained drought. Water Resources Bulletin, 31(5), 789-801.
5635	Meko D.M., C.A. Woodhouse, C.H. Baisan, T. Knight, J.J. Lukas, M.K. Hughes, and
5636	M.W. Salzer, 2007: Medieval drought in the Upper Colorado River Basin.
5637	Geophysical Research Letters, 34 (10, L10705), 10.1029/2007GL029988.
5638	Merritt, R.H., 1979: Creativity, Conflict, and Controversy: A History of the St. Paul
5639	District, U.S. Army Corps of Engineers. Washington, D.C.: Government Printing
5640	Office.
5641	Miller, K., S.L. Rhodes, and L.J. MacDonnell, 1996: Global Change in Microcosm: The
5642	Case of U. S. Water Institutions. <i>Policy Sciences</i> , 29, 271-2.
5643	Miller, K., and D. Yates, 2005: Climate Change and Water Resources: A Primer for
5644	Municipal Water Providers. AWWA Research Foundation, Denver, CO and
5645	University Corporation for Atmospheric Research, Boulder, CO, 83 p.
5646	Milly, P.C.D., K.A. Dunne, and A.V. Vecchia, 2005: Global Pattern of Trends in
5647	Streamflow and Water Availability in a Changing Climate, Nature 438,
5648	November, 347-350.
5649	Moody, J.A., and D.A. Martin, 2001: Post-fire, rainfall intensity-peak discharge relations
5650	for three mountainous watersheds in the western USA. Hydrological Processes,
5651	15(15), 2981-2993
5652	Morehouse, B.J., R.H. Carter, and P. Tschakert, 2002: Sensitivity of Urban Water
5653	Resources in Phoenix, Tucson, and Sierra Vista, Arizona, to Severe Drought.
5654	<i>Climate Research</i> , 21 , 283–297.
5655	Morehouse, B. (ed.), 2000: The Implications of La Niña and El Niño for Fire
5656	Management. Proceedings of workshop held February 23-24, 2000, Tucson,

Page 248 of 426

5657	Arizona. Climate Assessment for the Southwest, Institute for the Study of Planet
5658	Earth, The University of Arizona, Tucson, AZ.
5659	< <u>http://www.ispe.arizona.edu/climas/conferences/fire2000/fireproc.pdf</u> >
5660	Mumme, S.P., 1995: The New Regime for Managing U.SMexican Water Resources.
5661	Environmental Management, 19(6) , 827-835.
5662	Mumme, S.P., 2003: Strengthening Binational Drought Management. Utton Center
5663	Report: University of New Mexico School of Law, 2(1), Winter: 3-7.
5664	
5665	Murdoch, P.S., J.S. Baron, and T.L. Miller, 2000: Potential effects of climate change on
5666	surface-water quality in North America. Journal of the American Water
5667	Resources Association, 36(2): 347-336.
5668	Naim, M., 2003: The Five Wars of Globalization, Foreign Policy (January-February):
5669	29-37.
5670	Nelson, R. R. and S.G. Winter 1960: Weather Information and Economic Decisions, RM-
5671	2670-NASA, RAND Corporation, Santa Monica.
5672	NRC (National Research Council), 2008: Research and Networks for Decision Support
5673	in the NOAA Sectoral Applications Research Program Panel on Design Issues for
5674	the NOAA Sector Applications Research Program, Helen M. Ingram and Paul C.
5675	Stern, Editors, National Research Council
5676	< <u>http://www.nap.edu/catalog/12015.html</u> >
5677	NRC (National Research Council), 2007: Colorado River Basin Water Management:
5678	Evaluating and Adjusting to Hydroclimatic Variability. Committee on the
5679	Scientific Bases of Colorado River Basin Water Management. Washington, D.C.,
5680	The National Academies Press, 222 p
5681	NRC (National Research Council), 2006: Toward a New Advanced Hydrologic
5682	Prediction Service (AHPS) Committee to Assess the National Weather Service

Page 249 of 426

5683	Advanced Hydrologic Prediction Service Initiative. Washington, DC: National
5684	Research Council ISBN: 0-309-65847-0.
5685	< <u>http://www.nap.edu/catalog/11598.html</u> >
5686	NRC (National Research Council) 2005: Decision Making for the Environment: Social
5687	and Bahavioral Science Passarch Prioritias Carry D. Brawer and Baul C. Stern
5699	Editors, Donal on Social and Pahavioral Science Descerab Priorities for
5000	Eattors, Faller on Social and Benavioral Science Research Filorities for
5689	Environmental Decision Making, Committee on the Human Dimensions of
5690	Global Change. Washington, DC.
5691	NRC (National Research Council), 1996: Understanding Risk: Informing decisions in a
5692	Democratic Society. P.C. stern and H.V. Fineberg, editors. Committee on Risk
5693	characterization, Commission on Behavioral and Social Sciences and Education.
5694	Washington, D.C.: National Academy Press.
5695	NRC (National Research Council) 1989: Improving Risk Communication Committee
5606	on Pisk Percention and Communication. Commission on Pahavioral and Social
5090	Sciences and Education and Commission on Disease Mathematics and
5697	Sciences and Education and Commission on Physical Sciences, Mathematics, and
5698	Resources. Washington, D.C.: National Academy Press.
5699	Neary, Daniel G.; K.C. Ryan, L.F. DeBano, eds., 2005: Wildland fire in ecosystems:
5700	effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden,
5701	UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
5702	Station. 250 p.
5703	NMDTF (New Mexico Drought Task Force), 2006: New Mexico Drought Plan: Update
5704	December 2006. Albuquerque: New Mexico Office of the State Engineer, 37 p.
5705	< <u>http://www.nmdrought.state.nm.us/droughtplans.html</u> >
5706	NOAA Office of Hydrology, 1998: Service Assessment and Hydraulic Analysis of the
5707	Red River of the North 1997 Floods: Actions Taken Following the Red River of
5708	the North Flood of 1997. 45 pages.
5709	< <u>http://www.nws.noaa.gov/oh/Dis_Svy/RedR_Apr97/</u> >

5710	Obeysekera, J., P. Trimble, C. Neidrauer, C. Pathak, J. VanArman, T. Strowd, and C.
5711	Hall, 2007: Appendix 2-2: Consideration of long-term climatic variability in
5712	regional modeling for SFWMD planning and operations. 2007 South Florida
5713	Environmental Report, Florida Department of Environmental Protection and
5714	South Florida Water Management District, 47 pp. Available online at
5715	< <u>http://www.sfwmd.gov/sfer/SFER_2007/Appendices/v1_app_2-2.pdf</u> >
5716	O'Connor, R. E., B. Yarnal, K. Dow, C. L. Jocoy, and G. J. Carbone, 2005: Feeling at-
5717	risk matters: Water managers and the decision to use forecasts. Risk Analysis, 25,
5718	1265-1275.
5719	O'Connor, R. E., B. Yarnal, R. Neff, R. Bord, N. Wiefek, C. Reenock, R. Shudak, C. L.
5720	Jocoy, P. Pascale, and C. G. Knight, 1999: Community water systems and climate
5721	variation and change: Current sensitivity and planning in Pennsylvania's
5722	Susquehanna River Basin. Journal of the American Water Resources Association,
5723	35, 1411-1419.
5724	Pagano, T., H. Hartmann, and S. Sorooshian, 2001: Using Climate Forecasts for Water
5725	Management: Arizona and the 1997-98 El Nino, Journal of the American Water
5726	Resources Association 37, No. 5, pp 1139-1153.
5727	Pagano, T. C., H. C. Hartmann, and S. Sorooshian, 2001: Using climate forecasts for
5728	water management: Arizona and the 1997-1998 El Niño. Journal of the American
5729	Water Resources Association 37(5): 1139-1153.
5730	Pagano, T., H. C. Hartmann, and S. Sorooshian, 2002: "Factors affecting seasonal
5731	forecast use in Arizona water Management: a case study of the 1997-98 El Niño."
5732	Climate Research 21: 259-269.
5733	Papadakis, Elim, 1996: Environmental Politics and Institutional Change. London:
5734	Cambridge University Press.
5735	Payne, J., J. Bettman, and E. Johnson, 1993: The Adaptive Decision Maker. New York:
5736	Cambridge.

5737	Pfaff. A., K. Broad and M. Glantz, 1999: Who Benefits from Climate Forecasts? Nature,
5738	397, pp 645-646.
5739	Pielke, Jr., R.A., 1999: Who Decides? Forecasts and Responsibilities in the 1997 Red
5740	River_Flood. American Behavioral Science Review 7, 2, 83-101.
5741	Polsky, C., R. Neff, and B. Yarnal 2007: Building comparable global change
5742	vulnerability assessments: The Vulnerability Scoping Diagram. Global
5743	Environmental Change 17, 3-4, 472-485.
5744	Pool, D. R., 2005: Variations in climate and ephemeral channel recharge in southeastern
5745	Arizona, United States. Water Resources Research 41(W11403).
5746	Power, Scott, Brian Sadler, and Neville Nicholls, 2005: The Influence of Climate
5747	Science on Water Management in Western Australia: Lesssons for Climate
5748	Scientists, Bulletin of the American Meteorological Society (June): 839-844.
5749	Pringle, Catherine M., 2000: Threats to U.S. Public Lands from Cumulative Hydrologic
5750	Alterations Outside of their Boundaries, Ecological Applications 10 (4) August:
5751	971-989.
5752	Proceedings: Western Governors Association, Western States Water Council, and
5753	California Department of Water Resources, 2007: May 2007 Climate Change
5754	Research Needs Workshop, September.
5755	Pulwarty, R. and T. Melis, 2001: Climate Extremes and Adaptive Management on the
5756	Colorado River: Lessons from the 1997-1998 ENSO event, Journal of
5757	Environmental Management 63, pp 307-324.
5758	Rango, A., 2006: Snow: The real water supply for the Rio Grande basin. New Mexico
5759	Journal of Science. 44:99-118.
5760	Ray, A.J., and R.S. Webb. 2000: Demand-side perspective on climate services for
5761	reservoir management. Proceedings of the Climate Diagnostics and Prediction
5762	Workshop, Palisades, NY, 23-27 October 2000. 219-222.

Do Not Cite or Quote

Page 252 of 426

5763	Rayner, Steve, D. Lach, and H. Ingram, 2005: Weather Forecasts are for Wimps: Why
5764	Water Resource Managers do not Use Climate Forecasts, Climate Change 69:
5765	197-227.
5766	Redmond, Kelly T., 2003: Climate Variability in the West: Complex Spatial Structure
5767	Associated with Topography, and Observational Issues. In William M. Lewis, Jr.
5768	(ed.), Water and Climate in the Western United States. Boulder, CO: The
5769	University Press of Colorado.
5770	Restoring the Waters. 1997: Boulder, CO: Natural Resources Law Center, the University
5771	of Colorado School of Law, May.
5772	Rhodes, S.L., D. Ely, and J. A. Dracup, 1984: Climate and the Colorado River: the limits
5773	to management. Bulletin of the American Meteorological Society 65:682-691.
5774	Rosenberg, David M., P. McCully, and C. M. Pringle, 2000: Global-Scale
5775	Environmental Effects of Hydrological Alterations: Introduction, BioScience 50
5776	(9) September: 746-751.
5777	Roy, S.B., P.F. Ricci, K.V. Summers, C.F. Chung, and R.A. Goldstein, 2005: Evaluation
5778	of the Sustainability of Water Withdrawals in the United States, 1995-2025.
5779	Journal of the American Water Resources Association, 41(5):1091-1108.
5780	Rygel, L., D. O'Sullivan, and B. Yarnal, 2006: A method for constructing a social
5781	vulnerability index: An application to hurricane storm surges in a developed
5782	country. Mitigation and Adaptations Strategies for Global Change 11: 741-764.
5783	Sarewitz, Daniel and R. A. Pielke, Jr., 2007: The Neglected Heart of Science Policy:
5784	Reconciling Supply of and Demand for Science, Environmental Science and
5785	<i>Policy</i> 10: 5-16.
5786	Schneider, S. H. and J. Sarukhan, 2001: Overview of impacts, adaptation, and
5787	vulnerability to climate change. Intergovernmental Panel on Climate Change
5788	Working Group 2 Report: Climate Change 2001: Impacts, Adaptation and

5789	Vulnerability, J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken, and K.
5790	S. White, Eds., Cambridge University Press, 75-103.
5791	Schröter, D., C. Polsky, and A. G. Patt, 2005: Assessing vulnerabilities to the effects of
5792	global change: An eight step approach. Mitigation and Adaptation Strategies for
5793	<i>Global Change</i> . 10: 573-596.
5794	Shamir, Eylon, D. M. Meko, N. E. Graham, and K. P. Georgakakos, 2007: Hydrologic
5795	Model Framework for Water Resources Planning in the Santa Cruz River,
5796	Southern Arizona Journal of the American Water Resources Association 43 (5),
5797	1155–1170. doi:10.1111/j.1752-1688.2007.00095.x
5798	Sheppard, Paul R., A. C. Comrie, G. D. Packin, K. Angersbach and M. K. Hughes,
5799	2002: The Climate of the Southwest. Climate Research 21:219-238.
5800	Slovic, P., B. Fischhoff and S. Lichtenstein 1977: Behavioral decision theory. Annual
5801	Review of Psychology 28:1-39.
5802	Sonnett, J., B. J. Morehouse, T. Finger, G. Garfin, and N. Rattray, 2006: Drought and
5803	Declining Reservoirs: Comparing Media Discourse in Arizona and New Mexico,
5804	2002-2004. Environmental Change 16(1): 95-113.
5805	Sonnett, John, B. J. Morehouse, T. J. Finger, G. Garfin, and N. Rattray, 2006: Drought
5806	and Declining Reservoirs: Comparing Media Discourse in Arizona and New
5807	Mexico, 2002-2004, Global Environmental Change 16: 95-116.
5808	South Florida Water Management District, 1996: Climate Change and Variability:
5809	How Should The District Respond? South Florida Water Management District,
5810	West Palm Beach Florida, 27 pp.
5811	<http: clim1.pdf="" hsm="" org="" pld="" ptrimble="" pubs="" solar="" www.sfwmd.gov=""></http:>
5812	Steinemann, A. C. and L. F. N. Cavalcanti, 2006: Developing multiple indicators and
5813	triggers for drought plans. Journal of Water Resources Planning and
5814	Management 132(3): 164-174.

5815	Stern, Paul C. and H. V. Fineberg, eds., 1996: Understanding Risk - Informing Decisions
5816	in a Democratic Society. Committee on Risk Characterization, Commission on
5817	Behavioral and Social Sciences and Education, National Research Council.
5818	Washington, D.C.: National Academy Press.
5819	Stewart, I. T. and D. R. Cayan, et al. , 2005: Changes toward Earlier Streamflow Timing
5820	across Western North America. Journal of Climate 18: 1136-55.
5821	Stoltman, Joseph P., J. Lidstone, and L. M. DeChano, 2004: Introduction, pp. 1-10, in J.
5822	P. Stoltman, J. Lidstone, and Lisa M. DeChano, (eds). International Perspectives
5823	on Natural Disasters: Occurrence, Mitigation, and Consequences. Dordrecht,
5824	Netherlands: Kluwer Academic Publishers.
5825	Stone, Deborah, 1997: Policy Paradox: The Art of Political Decision Making. New
5826	York: W.W. Norton.
5827	Subcommittee on Disaster Reduction, 2005: Grand Challenges for Disaster reduction,
5828	Natural Hazards Observer 30 (2) November; 1-3.
5829	Swetnam, T. W. and J. L. Betancourt, 1998: Mesoscale Disturbance and Ecological
5830	Response to Decadal Climatic Variability in the American Southwest. Journal of
5831	<i>Climate</i> 11: 3128-47.
5832	Taddei, R., 2005: Of clouds and streams, prophets and profits: the political semiotics of
5833	climate and water in the Brazilian Northeast. PhD dissertation, Teachers College,
5834	Columbia University, New York.
5835	Torgerson, Douglas, 2005: Obsolescent Leviathan: Problems of Order in Administrative
5836	Thought, pp 11-24, in R. Paehlke and D. Torgerson, editors. Managing
5837	Leviathan: Environmental Politics and the Administrative State, 2nd edition.
5838	Peterborough, Ontario: Broadview Press.
5839	Trush, B. and S. McBain, 2000: Alluvial River Ecosystem Attributes, Stream Notes.
5840	Fort Collins, CO: U.S. Forest Service, Stream Systems Technology Center.

5841	Tversky, A. and D. Kahneman, 1974: Judgment Under Uncertainty: Heuristics and
5842	Biases, <i>Science</i> 185: 1124-1131.
5843	Udall, B. and M. Hoerling, 2005: Seasonal Forecasting: Skill in the Intermountain West?
5844	In Colorado River Basin Climate: Paleo, Present, Future, pp. 30-35.
5845	< <u>http://wwa.colorado.edu/resources/colorado_river/</u> >
5846	USGS, 2004: Climatic Fluctuations, Drought, and Flow in the Colorado River Basin.
5847	USGS Fact Sheet 2004-3062 version 2, U.S. Geological Survey.
5848	U.S. Global Change Research Program, 2001: National Assessment Synthesis Team.
5849	Climate Change Impacts on the United States: The Potential Consequences of
5850	Climate Variability and Change. New York: Cambridge University Press.
5851	Wagner, E. T. 1995: Canada-United States Boundary Waters Management
5852	Arrangements, pp. 16-22. In Management of Water Resources in North America
5853	III – Anticipating the 21st Century, edited by Nathan Buras. Proceedings of the
5854	Engineering Foundation Conference. New York: American Society of Civil
5855	Engineers.
5856	Wallentine, C.B. and D. Matthews, 2003: Can climate predictions be of practical use in
5857	western water management? In William M. Lewis, Jr. (ed.), Water and Climate in
5858	the Western United States. Boulder, CO: The University Press of Colorado, pp.
5859	161-168.
5860 5861	Walters, C. J. 1986: Adaptive Management of Renewable Resources. New York, NY:
5862	Macmillan.
5863	
5864	Water in the West: Challenge for the Next Century, 1998: Report of the Western Water
5865	Policy Review Advisory Commission. Published by National Technical
5866	Information Service: Springfield, Virginia, June.

5867	Weingart, Peter, A. Engels and P. Pansegrau, 2000: Risks of communication: Discourses
5868	on climate change in science, politics, and the mass media, Public Understanding
5869	of Science 9: 261 < <u>http://pus.sagepub.com/cgi/content/abstract/9/3/261</u> >
5870	Weston, R. Timothy, 1999: Interstate Water Rights and River Basin Compacts in the
5871	East, unpublished manuscript, Harrisburg, PA: Kirkpatrick and Lockhart, LLP.
5872	Westphal, K.S., R. M. Vogel, P. Kirshen, and S. C. Chapra, 2003: Decision support
5873	system for adaptive water supply management. Journal of Water Resources
5874	Planning and Management, 129(3):165-177.
5875	Weston, R. Timothy, 1995: Delaware River Basin - Challenges and Successes in
5876	Interstate Water Management. Paper Presented at ASCE Water Resources
5877	Engineering Conference, San Antonio, Texas, August 17.
5878	Wilhite, D. A., 2004: Drought, pp. 147-162, in J. P. Stoltman, J. Lidstone, and Lisa M.
5879	DeChano, editors. International Perspectives on Natural Disasters: Occurrence,
5880	Mitigation, and Consequences. Dordrecht, Netherlands: Kluwer Academic
5881	Publishers.
5882	Wilhite, D.A., M.J. Hayes, C. Knutson, and K.H. Smith, 2000: Planning for Drought:
5883	Moving from Crisis to Risk Management. J. of Amer. Water Res. Assoc. 36:697-
5884	710.
5885	Woodhouse, C.A. and J.J. Lukas, 2006: Drought, Tree Rings, and Water Resource
5886	Management in Colorado. Canadian Water Resources Journal 31(4): 1-14.
5887	Woodhouse, C. A. and J. J. Lukas, 2006: Drought, tree rings, and water resource
5888	management. Canadian Water Resources Journal 31: 297-310.
5889	Woodhouse, C. A., S. T. Gray, et al. ,2006: Updated streamflow reconstructions for the
5890	Upper Colorado River Basin. Water Resources Research 42(W05415).
5891	Woodhouse, C. A. and J. J. Lukas, 2006: Drought, tree rings, and water resource
5892	management. Canadian Water Resources Journal 31: 297-310.

Do Not Cite or Quote

Page 257 of 426

5893	Yarnal, B., 2007: Vulnerability and all that jazz: Addressing vulnerability in New
5894	Orleans after Hurricane Katrina. Technology in Society, 29, 249-255.
5895	Yarnal, B., A. L. Heasley, R. E. O'Connor, K. Dow, and C. L. Jocoy, 2006: The potential
5896	use of climate forecasts by Community Water System managers. Land Use and
5897	<i>Water Resources Research 6: 3.1-3.8</i> , <http: <u="">www.luwrr.com></http:>
5898	Yarnal, B., R. E. O'Connor, K. Dow, G. J. Carbone, and C. L. Jocoy, 2005: Why don't
5899	Community Water System managers use weather and climate forecasts? Preprints
5900	of the 15th Conference on Applied Climatology, Savannah, GA, June 2005,
5901	American Meteorological Society, Boston, Session 7.1.
5902	Zarriello, P. J., and K. G. Ries, 2000: A Precipitation-Runoff Model for Analysis of the
5903	Effects of Water Withdrawals on Streamflow, Ipswich River Basin,
5904	Massachusetts, U.S. Geol. Survey. Water Resources. Invest. Rep., 00-4029, 99 pp.
5905	Zektser, S.; H.A. Loaiciga, and J.T. Wolf, 2005: Environmental Impacts of Groundwater
5906	Overdraft: Selected Case Studies in the Southwestern United States.
5907	Environmental Geology, 47(3), 396-404.
5908	
5909	
5910	
5911	
5912	
5913	
5914	
5915	
5916	
5917	