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There are a wide variety of climate and hydrologic data and forecast products currently 

available for use by decision-makers in the water resources sector. However, the use of 

official seasonal to interannual (SI) climate and hydrologic forecasts generated by federal 

agencies remains limited in the water resources sector. Forecast skill, while recognized as 

just one of the barriers to the use of SI climate forecast information, remains a primary 

concern among forecast producers and users. Simply put, there is no incentive to use SI 

climate forecasts when they are believed to provide little additional skill to existing 

hydrologic and water resource forecast approaches. Not surprisingly, there is much 

interest in improving the skill of hydrologic and water resources forecasts. Such 

improvements can be realized by pursuing several research pathways, including: 

• Improved monitoring and assimilation of real-time hydrologic observations in 

land surface hydrologic models that leads to improved estimates for initial 

hydrologic states in forecast models;  

• Increased accuracy in SI climate forecasts; and, 

• Improved bias corrections in existing forecast. 

 

Another aspect of forecasts that serves to limit their use and utility is the challenge in 

interpreting forecast information. For example, from a forecast producer’s perspective 

confidence levels are explicitly and quantitatively conveyed by the range of possibilities 

described in probabilistic forecasts. From a forecast user’s perspective, probabilistic 

forecasts are not always well understood or correctly interpreted. Although structured 

user testing is known to be an effective product development tool, it is rarely done. 
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Evaluation should be an integral part of improving forecasting efforts, but that evaluation 

should be extended to factors that encompass use and utility of forecast information for 

stakeholders. In particular, very little research is done on effective seasonal forecast 

communication. Instead, users are commonly engaged only near the end of the product 

development process.  

 

Other barriers to the use of SI climate forecasts in water resources management have 

been identified and those that relate to institutional issues and aspects of current forecast 

products are discussed in chapters 3 and 4 of this report.  

 

Pathways for expanding the use and improving the utility of data and forecast products to 

support decision-making in the water resources sector are currently being pursued at a 

variety of spatial and jurisdictional scales in the United States. These efforts include: 

• An increased focus on developing forecast evaluation tools that provide users 

with opportunities to better understand forecast products in terms of their 

expected skill and applicability; 

• Additional efforts to explicitly and quantitatively link SI climate forecast 

information with SI hydrologic and water supply forecasting efforts; 

• An increased focus on developing new internet-based tools for accessing and 

customizing data and forecast products to support hydrologic forecasting and 

water resources decision-making; and, 

• Further improvements in the skill of hydrologic and water supply forecasts.  
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Many of these pathways are currently being pursued by the federal agencies charged with 

producing the official climate and hydrologic forecast and data products for the United 

States, but there is substantial room for increasing these activities.  

 

An additional important finding is that recent improvements in the use and utility of data 

and forecast products related to water resources decision-making have come with an 

increased emphasis on these issues in research funding agencies through programs like 

GEWEX, NOAA’s RISA, SARP, TRACS and CPPA programs. Sustaining and 

accelerating future improvements in the use and utility of official data and forecast 

products in the water resources sector rests in part on sustaining and expanding federal 

support for programs focused on improving the skill in forecasts, increasing the access to 

data and forecast products, and fostering sustained interactions between forecast 

producers and consumers.  

 

2.1 INTRODUCTION 

In the past, water resource managers relied heavily on observed hydrologic conditions 

such as snowpack and soil moisture to make seasonal to interannual  (SI) water supply 

forecasts to support management decisions. Within the last decade, researchers have 

begun to link SI climate forecasts with hydrologic models (e.g., Kim et al., 2000, 

Kyriakidis et al., 2001) or statistical distributions of hydrologic parameters (e.g., 

Dettinger et al., 1999, Sankarasubramanian and Lall 2003) to improve hydrologic and 

water resources forecasts. Efforts to incorporate SI climate forecasts into water resources 

forecasts have been prompted in part by our growing understanding of the effects of 
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global-scale climate phenomena, like El Niño Southern Oscillation (ENSO), on U.S. 

climate, and the expectation that SI forecasts of hydrologically-significant climate 

variables like precipitation and temperature provide a basis for predictability that is not 

currently being exploited. To the extent that climate variables like temperature and 

precipitation can be forecasted seasons in advance, hydrologic and water-supply forecasts 

can also be made skillfully well before the end, or even beginning, of the water year
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1. 

 

This chapter focuses on a description and evaluation of hydrologic and climate forecast 

and data products that support decision-making for water resource managers. Because the 

focus of this CCSP product is on using SI forecasts and data for decision-support in the 

water resources sector, we frame this chapter around key forecast and data products that 

contribute towards improved hydrologic and water supply forecasts. As a result, this 

product does not contain a comprehensive review and assessment of the entire national SI 

climate and hydrologic forecasting effort. In addition, the reader should note that, even 

today, hydrologic and water supply forecasting efforts in many places are still not 

inherently linked with the SI climate forecasting enterprise.  

 

Surveys identify a variety of barriers to the use of climate forecasts (Pulwarty and 

Redmond, 1997; Callahan et al., 1999;. Hartmann et al.,2002), but insufficient accuracy 

is always mentioned as a barrier. It is also well established that an accurate forecast is, in 

and of itself, not sufficient to make it useful or usable for decision-making in 

management applications (see Table 2.1). Chapters 3 and 4 provide extensive reviews, 

 
1 The water year, or hydrologic year, is October 1st through September 30th. This reflects the natural cycle 
in many hydrologic parameters such as the seasonal cycle of evaporative demand, and of the snow 
accumulation, melt, and runoff periods in many parts of the US. 
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case studies, and analyses that provide insights into pathways for lowering or overcoming 

barriers to the use of SI climate forecasts in water resources decision-making.  

 

It is almost impossible to discuss the perceived value of forecasts without also discussing 

issues related to forecast skill. Many different criteria have been used to evaluate forecast 

skill (see Wilks, 1995 for a comprehensive review). Some measures focus on aspects of 

deterministic skill (e.g., correlations between predicted and observed seasonally averaged 

precipitation anomalies), while many others are based on categorical forecasts (e.g., 

Heidke skill scores for categorical forecasts of “wet,” “dry,” or “normal” conditions). The 

most important measures of skill vary with different perspectives. For example, 

Hartmann et al., (2002) argue that forecast performance criteria based on “hitting” or 

“missing” associated observations offer users conceptually easy entry into discussions of 

forecast quality. In contrast, some research scientists and water supply forecasters may be 

more interested in correlations between the ensemble average of predictions and observed 

measures of water supply like seasonal runoff volume. 

 

Forecast skill remains a primary concern among many forecast producers and users. Skill 

in hydrologic forecast systems derives from various sources, including the quality of the 

simulation models used in forecasting, the ability to estimate the initial hydrologic state 

of the system, and the ability to skillfully predict the statistics of future weather over the 

course of the forecast period. Despite the significant resources expended to improve SI 

climate forecasts over the past 15 years, few water resource related agencies have been 
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making quantitative use of climate forecast information in their water supply forecasting 

efforts (Pulwarty and Redmond 1997; Callahan et al., 1999). 

 

 

Table 2.1 Barriers to the use of climate forecasts and information for resource managers in the 
Columbia River Basin  
(Reproduced from Pulwarty and Redmond, 1997). 
a. Forecasts not “accurate” enough. 
b. Fluctuation of successive forecasts (“waffling”). 
c. The nature of what a forecast is, and what is being forecast (e.g., types of El Niño and La Niña impacts, 
non-ENSO events, what are “normal” conditions?). 
d. Nonweather/climate factors are deemed to be more important (e.g., uncertainty in other arenas, such as 
freshwater and ocean ecology [for salmon productivity]). 
e. Low importance is given to climate forecast information because its role is unclear or impacts are not 
perceived as important enough to commit resources. 
f. Other constraints deny a flexible response to the information (e.g., meeting flood control or Endangered 
Species Act requirements). 
g. Procedures for acquiring knowledge and making and implementing decisions, which incorporate climate 
information, have not been clearly defined. 
h. Events forecast may be too far in the future for a discrete action to be engaged. 
i. Availability and use of locally specific information may be more relevant to a particular decision. 
j. “Value” may not have been demonstrated by a credible reliable organization or competitor. 
k. Desired information not provided (e.g., number of warm days, regional detail). 
l. There may be competing forecasts or other conflicting information. 
m. Lack of “tracking” information; does the forecast appear to be verifying? 
n. History of previous forecasts not available. Validation statistics of previous forecasts not available. 
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In Section 2.2 of this chapter, we review hydrologic data and forecasts products. Section 

2.3 provides a parallel discussion of the climate data and forecast products that support 

hydrologic and water supply forecasting efforts in the United States.  In Section 2.4, we 

provide a more detailed discussion of pathways for improving the skill and utility in 

hydrologic and climate forecasts and data products.  

 

Section 2.5 contains a brief review of operational considerations and efforts to improve 

the utility of forecast and data products through efforts to improve the forecast evaluation 

and development process. These efforts include cases in which forecast providers and 
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users have been engaged in sustained interactions to improve the use and utility of 

forecast and data products, and have led to many improvements and innovations in the 

data and forecast products generated by national centers. In recent years, a small number 

of water resource agencies have also developed end-to-end forecasting systems that 

utilize climate forecasts to directly inform hydrologic and water resources forecasts.  

 

BOX 2.1: Agency Support 
 
Federal support for research supporting improved hydrologic forecasts and applications through the use of 
climate forecasts and data has received increasing emphasis since the mid-1990s. The World Climate 
Research Program’s Global Energy and Water Cycle Experiment (GEWEX) was among the first attempts 
to integrate hydrology/land surface and atmosphere models in the context of trying to improve hydrologic 
and climate predictability.  
 
There have been two motivations behind this research:  understanding scientific issues of land surface 
interactions with the climate system, and the development or enhancement of forecast applications, e.g., for 
water, energy and hazard management. Early on, these efforts were dominated by the atmospheric (and 
related geophysical) sciences.  
 
In the past, only two U.S. programs have been very relevant to hydrologic prediction:  the NOAA Climate 
Prediction Program for the Americas (CPPA) and NOAA predecessors GEWEX Continental-scale 
International Project (GCIP) and GEWEX Americas Prediction Project (GAPP) and the NASA Terrestrial 
Hydrology Program. The hydrologic prediction and water management focus of NOAA and NASA has 
slowly expanded over time. Presently, the NOAA Climate Dynamics and Experimental Prediction (CDEP), 
Transition of Research Applications to Climate Services (TRACS) and Sectoral Applications Research 
Program (SARP) programs, and the Water Management program within NASA, have put a strong 
emphasis on the development of both techniques and community linkages for migrating scientific advances 
in climate and hydrologic prediction into applications by agencies and end use sectors. The longer-standing 
NOAA Regional Integrated Sciences and Assessments (RISA) program has also contributed to improved 
use and understanding of climate data and forecast products in water resources forecasting and decision-
making. Likewise, the recently initiated postdoctoral fellowship program under the Predictability, 
Predictions, and Applications Interface (PPAI) panel of U.S. CLIVAR aims to grow the pool of scientists 
qualified to transfer advances in climate science and climate prediction into climate-related decision 
frameworks and decision tools.  
 
Still, these programs are not well funded in comparison to current federally funded science-focused 
initiatives, and are only just beginning to make inroads into the vast arena of effectively increasing the use 
and utility of climate and hydrologic data and forecast products. 
 
end BOX 2.1 
 

2.2 HYDROLOGIC AND WATER RESOURCES: MONITORING AND 

PREDICTION 
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The uses of hydrologic monitoring and prediction products, and specifically those that are 

relevant for water, hazard and energy management vary depending on the forecast lead 

time (Figure 2.1). The shortest climate and hydrologic lead time forecasts, from minutes 

to hours, are applied to such uses as warnings for floods and extreme weather, wind 

power scheduling, aviation, recreation, and wild fire response management. In contrast, at 

lead times of years to decades predictions are used for strategic planning purposes rather 

than operational management of resources. At SI lead times, climate and hydrologic 

forecast applications span a wide range that includes the management of water, fisheries, 

hydropower and agricultural production, navigation and recreation. Table 2.1 lists aspects 

of forecast products at these time scales that are relevant to decision-makers.  
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Figure 2.1  The correspondence of climate and hydrologic forecast lead time to user sectors in which 
forecast benefits are realized (from HRL-NWS). The focus of this product is on climate and hydrologic 
forecasts with lead times greater than 2 weeks and up to approximately one year. 
 

2.2.1 Prediction Approaches 
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The primary climate and hydrologic prediction approaches used by operational and 

research centers fall into four categories: statistical, dynamical, statistical-dynamical 

hybrid, and consensus. The first three approaches are objective in the sense that the inputs 

and methods are formalized, outputs are not modified on an ad hoc basis, and the 

resulting forecasts are potentially reproducible by an independent forecaster using the 

same inputs and methods. The fourth major category of approach, which might also be 

termed blended knowledge, requires subjective weighting of results from the other 

approaches. These types of approaches are discussed in Box 2.2. 

 

BOX 2.2:  Forecast Approaches 
 
Dynamical: Computer models designed to represent the physical features of the oceans, atmosphere and 
land surface, at least to the extent possible given computational constraints, form the basis for dynamical 
predictions. These models have at their core a set of physical relationships describing the interactions of the 
Earth’s energy and moisture states. Inputs to the models include estimates of the current moisture and 
energy conditions needed to initialize the state variables of the model (such as the moisture content of an 
atmospheric or soil layer), and of any physical characteristics (called parameters -- one example is the 
elevation of the land surface) that must be known to implement the relationships in the model’s physical 
core. In theory, the main advantage of dynamical models is that influence of any one model variable on 
another is guided by the laws of nature as we understand them. As a result, the model will correctly 
simulate the behavior of the earth system even under conditions that may not have occurred in the period 
during which the model is verified, calibrated and validated. The primary disadvantages of dynamical 
models, however, are that their high computational and data input demands require them to approximate 
characteristics of the Earth system in ways that may compromise their realism and therefore performance. 
For example, the finest computational grid resolution that can be practically achieved in most atmospheric 
models (on the order of 100~200 km per cell) is still too coarse to support a realistic representation of 
orographic effects on surface temperature and precipitation. Dynamical hydrologic models can be 
implemented at much finer resolutions (down to 10 meters per cell, for catchment-scale models) because 
they are typically applied to much smaller geographic domains than are atmospheric models. While there 
are many aspects that distinguish one model from another, only a subset of those (listed in Table 1.1) is 
appreciated by the forecast user, as opposed to the climate modeler, and is relevant in describing the 
dynamical forecast products. 
 
Statistical: Statistical forecast models use mathematical models to relate observations of an earth system 
variable that is to be predicted to observations of one or more other variables (and/or of the same variable at 
a prior time) that serve as predictors. The variables may describe conditions at a point location (e.g., flow 
along one reach of a river) or over a large domain, such as sea surface temperatures along the equator. The 
mathematical models are commonly linear relationships between the predictors and the predictand, but also 
may be formulated as more complex non-linear systems. 
 
Statistical models are often preferred for their computational ease relative to dynamical models. In many 
cases, statistical models can give equal or better performance to dynamical models due in part to the 
inability of dynamical models to represent fully the physics of the system (often as a result of scale or data 
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limitations), and in part to the dependence of predictability in many systems on predominantly linear 
dynamics (Penland and Magorian, 1993; van den Dool, 2007). The oft-cited shortcomings of statistical 
models, on the other hand, include their lack of representation of physical causes and effects, which in 
theory compromise their ability to respond to unprecedented events in a fashion that is consistent with the 
physical constraints of the system. In addition, statistical models may require a longer observational record 
for “training” than dynamical models, which are helped by their physical structure.  
 
Objective hybrids: Statistical and dynamical tools can be combined using objective approaches. A primary 
example is a weighted merging of the tools’ separate predictions into a single prediction (termed an 
objective consolidation; van den Dool, 2007). A  second example is a tool that has dynamical and statistical 
subcomponents, such as a climate prediction model that links a dynamical ocean submodel to a statistical 
atmospheric model. A distinguishing feature of these hybrid approaches is that an objective method exists 
for linking the statistical and dynamical schemes so as to produce a set of outputs that are regarded as 
“optimal” relative to the prediction goals. This objectivity is not preserved in the next consensus approach.  
 
 Blended Knowledge or Subjective consensus: Some forecast centers release operational predictions, in 
which expert judgment is subjectively applied to modify or combine outputs from prediction approaches of 
one or more of the first three types, thereby correcting for perceived errors in the objective approaches to 
form a prediction that has skill superior to what can be achieved by objective methods alone. The process 
by which the NOAA Climate Predication Center (CPC) and International Research Institue for Climate and 
Society (IRI) constructs their monthly and seasonal outlooks for example, includes subjective weighting of 
the guidance provided by different climate forecast tools. The weighting is often highly sensitive to recent 
evolution and current state of the tropical ENSO, but other factors like decadal trends in precipitation and 
surface temperature also have the potential to influence the final official climate forecasts. 
  
end BOX 2.2 
 

Table 2.1  Aspects of forecast products that are relevant to users 
Forecast Product Aspect Description / Examples 
Forecast product variables Precipitation, temperature, humidity, windspeed, atmospheric 

pressure 
Forecast product spatial resolution Grid cell longitude by latitude, climate division 
Domain Watershed, river basin, regional, national, global 
Product time step (temporal resolution) Hourly, sub-daily, daily, monthly, seasonal 
Range of product lead times 1 to 15 days, 1 to 13 months 
Frequency of forecast product update every 12 hours, every month 
Lag of forecast product update The length of time from the forecast initialization time before 

forecast products are available: e.g., 2 hours for a medium range 
forecast, one day for a monthly to seasonal forecast 

Existence of historical climatology Many users require a historical climatology showing forecast 
model performance to use in bias-correction, downscaling, 
and/or verification. 

Deterministic or probabilistic Deterministic forecasts have a single prediction for each future 
lead time. Probabilistic forecasts frame predicted values within a 
range of uncertainty, and consist either of an ensemble of 
forecast sequences spanning all lead times, or of a distinct 
forecast distribution for each future lead time. 

Availability of skill / accuracy information Published or otherwise available information about the 
performance of forecasts is not always available, particularly for 
forecasts that are steadily evolving. In principle, the spread of 
probabilistic forecasts contains such information about the 
median of the forecast; but the skill characteristics pertaining to 
the spread of the forecast are not usually available.  
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Other aspects of dynamical prediction schemes related to model physical and 

computational structure are important in distinguishing one model or model version from 

another. These aspects are primary indicators of the sophistication of an evolving model, 

relative to other models, but are not of much interest to the forecast user community. 

Examples include the degree of coupling of model components, model vertical 

resolution, cloud microphysics package, nature of data assimilation approaches, and of 

the data assimilated, and the ensemble generation scheme, among many other forecast 

system features. 

 

2.2.2 Forecast Producers and Products 

Hydrologic forecasts are produced by many federal, regional, state, and local agencies, as 

well as by private sector companies such as utilities. In contrast to climate forecasts, 

hydrologic forecast products more directly target end use sectors -- e.g., water, energy, 

natural resource or hazard management -- and are often region-specific. Prediction 

methods and forecast products vary from region to region and are governed by many 

factors, but depend in no small measure on the hydro-climatology, institutional traditions 

and sectoral concerns in each region. A representative sampling of typical forecast 

producers and products is given in Appendix A.1. Forecasting activities at the federal, 

state, regional, and local scales are discussed in the following subsections.  

 

2.2.2.1 Federal 

The primary federal streamflow forecasting agencies at SI lead times are the NOAA 

National Weather Service (NWS) and the U.S. Department of Agriculture,(USDA)  
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National Resource Conservation Service (NRCS) National Water and Climate Center 

(NWCC). The NWCC’s four forecasters produce statistical forecasts of summer runoff 

volume in the western U.S. using multiple linear regression to estimate future streamflow 

from current observed snow water equivalent, accumulated water year precipitation, 

streamflow, and in some locations, using ENSO indicators such as the Niño3.4 index 

(Garen, 1992; Ref:  Pagano and Garen, 2005). Snowmelt runoff is critical for a wide 

variety of uses (water supply, irrigation, navigation, recreation, hydropower, 

environmental flows) in the relatively dry summer season. The regression approach has 

been central in the NRCS since the mid-1930s, before which similar snow-survey based 

forecasting was conducted by a number of smaller groups. Forecasts are available to 

users both in the form of tabular summaries (Figure 2.2) that convey both the central 

tendency of the forecasts and estimates of uncertainty, and maps showing the median 

forecast anomaly for each river basin area for which the forecasts are operational (Figure 

2.3). Until 2006, the NWCC’s forecasts were released once a month, near the first of the 

month, for summer flow periods such as April through July or April through September. 

In 2006, the NWCC began to develop automated daily updates to these forecasts, and the 

daily product is likely to become more prevalent as development and testing matures. The 

NWCC also has begun to explore the use of physically-based hydrologic models as a 

basis for forecasting, but this effort has barely begun.  

 

NWCC water supply forecasts are coordinated subjectively with a parallel set of forecasts 

produced by the western U.S. NWS River Forecast Centers (RFCs), and with forecasts 

from Environment Canada’s BC Hydro. The NRCS-NWS joint, official forecasts are of 
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the subjective consensus type described earlier, meaning that the final forecast products 

are subjective combinations of information from different sources, in this case objective 

statistical tools (i.e., regression-models informed by observed snow water equivalent, 

accumulated water year precipitation, and streamflow) and model based forecast results 

from the RFCs.  
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Figure 2.2  Example of NRCS tabular summer runoff (streamflow) volume forecast summary, showing 
median (“most probable”) forecasts and probabilistic confidence intervals, as well as climatological flow 
averages. Flow units are thousand-acre-feet (KAF), a runoff volume for the forecast period. This table was 
downloaded from http://www.wcc.nrcs.usda.gov/wsf/wsf.html. 
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The NWS surface water supply forecast program began in the 1940s in the Colorado 

Basin. It has since expanded to include seasonal forecasts (of volume runoff during the 

spring—summer snow melt period) for most of the snowmelt dominated basins important 

to water management in the western United States. These forecasts rely on two primary 

tools:  Statistical Water Supply (SWS), based on multiple-linear regression, and 

Ensemble Streamflow Prediction (ESP), a technique based on hydrologic modeling 

(Schaake, 1978; Day, 1985). Results from both approaches are augmented by forecaster 

experience and the coordination process with other forecasting entities. In contrast to the 

western RFCs, RFCs in the eastern U.S. are more centrally concerned with short to 

medium-range flood risk and drought-related water availability out to about a three 

month lead time. At some eastern RFC websites, the seasonal forecast is linked only to 

the CPC Drought Outlook rather than an RFC-generated product (Box 2.3). 
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Figure 2.3  Example of NRCS spatial summer runoff (April-September streamflow) volume forecast 
summary, showing median runoff forecasts as an anomaly (percent of average). 
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The streamflow prediction services of the RFCs have a national presence, and as such are 

able to leverage a number of common technological elements, including models, 

databases and software for handling meteorological and hydrological data, and for 

making, assessing and disseminating forecasts; i.e., website structure. Nonetheless, the 

RFCs themselves are regional entities with regional concerns.  

 

The NWS’s ESP approach warrants further discussion. In the mid 1970s, the NWS 

developed the hydrologic modeling, forecasting and analysis system – NWS River 

Forecast System (NWSRFS) – the core of which is the Sacramento soil moisture 

accounting scheme coupled to the Snow-17 temperature index snow model, for ESP-

based prediction (Anderson, 1972, 1973; Burnash et al., 1973). The ESP approach uses a 

deterministic simulation of the hydrologic state during a model spin-up (initialization) 

period leading up to the forecast start date to estimate current hydrologic conditions, and 

then uses an ensemble of historical meteorological sequences as model inputs (e.g., 

temperature and precipitation) to simulate hydrology in the future (or forecast) period. 

Until several years ago, the RFC dissemination of ESP-based forecasts for streamflows at 

SI lead times was rare, and the statistical forecasts were the accepted standard. Now, as 

part of the NWS Advanced Hydrologic Prediction Service (AHPS) initiative, ESP 

forecasts are being aggressively implemented for basins across the United States (Figure 

2.4) at lead times from short to SI (McEnery et al., 2005). 
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Figure 2.4  Areas covered by the NWS Advanced Hydrologic Prediction Service (AHPS) initiative 
(McEnery et al., 2005). 
 

At the seasonal lead times, several western RFCs use graphical forecast products for the 

summer period streamflow forecasts that convey the probabilistic uncertainty of the 

forecasts. A unified web based suite of applications that became operational in 2008 

provides forecast users with a number of avenues for exploring the RFC water supply 

forecasts. For example, Figure 2.5 shows (in clockwise order from top left) (a) a western 

U.S. depiction of the median water supply outlook for the RFC forecast basins, (b) a 

progression of forecasts (median and bounds) during the water year together with flow 

normals and observed flows; (c) monthly forecast distributions, with the option to display 

individual forecast ensemble members (i.e., single past years) and also select ENSO-

based categorical forecasts (ESP subsets); and (d) various skill measures, such as mean 

absolute error, for the forecasts based on hindcast performance. Access to raw ensemble 

member data is also provided from the same website.  

 

Do Not Cite or Quote Page 76 of 426 Public Review Draft 
 



CCSP 5.3  March 7, 2008 
 

 

 

 

 

 

 

 1712 

1713 
1714 
1715 
1716 

1717 

1718 

1719 

1720 

1721 

1722 

Figure 2.5  A graphical forecast product from the NWS River Forecast Centers, showing a forecast of 
summer (April—July) period streamflow on the Colorado River, Colorado-Arizona. These figures were 
obtained from http://www.nwrfc.noaa.gov/westernwater. 
 

The provision of a service which assists hydrologic forecast users in either customizing a 

selection of ESP traces to reflect, perhaps, the users interest in past years that they 

perceive as analogues to the current year, or the current ENSO state, is a notable advance 

from the use of “climatological” ESP (i.e., using all traces from a historical period) in the 

prior ESP-related seasonal forecast products. Some western RFCs have also 

experimented with using the CPC seasonal climate outlooks as a basis for adjusting the 
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precipitation and temperature forcings used in climatological ESP, but found that the 

CPC outlook anomalies were generally too small to produce a distinct forecast from the 

climatological ESP (Hartmann et al., 2002). In some RFCs, NWS statistical water supply 

forecasts have also provided perspective (albeit more limited) on the effect of future 

climate assumptions on future runoff by including results from projecting 50, 75, 100, 

125 and 150 percent of normal precipitation in the remaining water year. At times, the 

official NWS statistical forecasts have adopted such assumptions, e.g., that the first 

month following the forecast date would contain other than 100% of expected 

precipitation – based on forecaster judgment and consideration of a range of factors, 

including ENSO state and CPC climate predictions.  

 

Figure 2.6 shows the performance of summer streamflow volume forecasts from both the 

NWS and NRCS over a recent 10-year period; this example is also part of the suite of 

forecast products that the western RFC designed to improve the communication of 

forecast performance and provide verification information. Despite recent literature 

(Welles et al, 2007) that has underscored a general scarcity of such information from 

hydrologic forecast providers, the NWS has recently codified verification approaches and 

developed verification tools, and is in the process of disbursing them throughout the RFC 

organization (NWS, 2005, “River Forecast Verification Plan”). The existence in digitized 

form of the retrospective archive of seasonal forecasts is critical for the verification of 

forecast skill. The 10-year record shown in Figure 2.6, which is longer than the record 

available (internally or to the public) for many public agency forecast variables, is of 

inadequate length for some types of statistical assessment, but is an undeniable advance 
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in forecast communication relative to the services that were available previously. Future 

development priorities include a climate change scenario application, which would 

leverage climate change scenarios from IPCC or similar to produce inputs for future 

water supply planning exercises. In addition, forecast calibration procedures (e.g., Seo et 

al., 2006; Wood and Schaake, 2008) are being developed for the ensemble forecasts to 

remove forecast biases. The current NOAA/NWS web service Internet web address is: 

(http://www.nwrfc.noaa.gov/westernwater) 

 

 1754 

1755 
1756 
1757 

1758 

1759 

1760 

1761 

1762 

1763 

1764 

Figure 2.6  Comparing ESP and statistical forecasts from the NRCS and NWS for a recent 10-year period. 
The forecasts are for summer (April—July) period streamflow on the Gunnison River, Colorado.  
 

A contrast to these probabilistic forecasts is the deterministic 5-week forecast of lake 

elevation in Lake Lanier, GA, produced by the U.S. Army Corps of Engineers (USACE) 

based on probabilistic inflow forecasts from the NWS southeastern RFC. Given that the 

lake is a managed system and the forecast has a subseasonal lead time, the single-valued 

outlook may be justified by the planned management strategy. In such a case, the lake 

level is a constraint that requires transferring uncertainty in lake inflows to a different 

variable in the reservoir system, such as lake outflow. Alternatively, the deterministic 
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depiction may result from an effort to simplify probabilistic information in the 

communication of the lake outlook to the public. 

 1767 

1768 
1769 
1770 

1771 

1772 

1773 

1774 

1775 

1776 

1777 

1778 

1779 

1780 

Figure 2.7  A deterministic 5-week forecast of reservoir levels in Lake Lanier, Georgia, produced by 
USACE. http://water.sam.usace.army.mil/lanfc.htm. 
 

2.2.2.2 State and Regional 

Regionally-focused agencies such as the U.S. Bureau of Reclamation (USBR), the 

Bonneville Power Administration (BPA), the Tennessee Valley Authority (TVA), and the 

Great Lakes Environmental Research Laboratory (GLERL) also produce forecasts 

targeting specific sectors within their priority areas. Figure 2.7 shows an example of an SI 

lead forecast of lake levels produced by GLERL. GLERL was among the first major 

public agency to incorporate climate forecast information into operational forecasts 

hydrologic and water management variables. Forecasters use coarse-scale climate 

forecast information to adjust climatological probability distribution functions (PDFs) of 

precipitation and temperature that are the basis for generating synthetic ensemble inputs 
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to hydrologic and water management models, the outputs of which include lake level as 

shown in the figure. In this case, the climate forecast information is from the CPC 

seasonal outlooks (method described in Croley, 1996).  

 

The Bonneville Power Administration, which helps manage and market power from the 

Columbia River reservoir system, is both a consumer and producer of hydrologic forecast 

products. The BPA generates their own ENSO-state conditioned ESP forecasts of 

reservoir system inflows as input to management decisions, a practice supported by 

research into the benefits of ENSO information for water management (Hamlet and 

Lettenmaier, 1999). 

 

A number of state agencies responsible for releasing hydrologic and water resources 

forecasts also make use of climate forecasts in the process of producing their own 

hydrologic forecasts. The South Florida Water Management District (SFWMD) predicts 

lake (e.g., Okeechobee) and canal stages, and makes drought assessments, using a 

decision tree in which the CPC seasonal outlooks play a role. SFWMD follows GLERL’s 

lead in using the Croley (1996) method for translating the CPC seasonal outlooks to 

variables of interest for their system. 
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Figure 2.7   Probabilistic forecasts of future lake levels disseminated by GLERL (from: 
http://www.glerl.noaa.gov/wr/ahps/curfcst/).  
 

2.2.2.3 Local 

At an even smaller scale, some local agencies and private utilities may also produce 

forecasts or at least derive applications-targeted forecasts from the more general climate 

or hydrology forecasts generated at larger agencies or centers. Seattle Public Utilities 

(SPU; see CASE STUDY IN Chapter 4) for example, operates a number of reservoirs for 

use primarily in municipal water supply. SPU makes SI reservoir inflow forecasts using 

statistical methods based on observed conditions in their watersheds (i.e., snow and 

accumulated precipitation), and on the current ENSO state, in addition to consulting the 
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NWRFC volume runoff forecasts. The SPU forecasts are made and used internally rather 

than disseminated to the public. 

 

2.2.2.4  Research 

Research institutions such as universities also produce hydrologic forecasts of a more 

experimental nature. A prime example is the Integrated Forecast and Reservoir 

Management (INFORM) project housed at the Hydrologic Research Center (HRC), 

which produces not only streamflow forecasts in the state of California, but also reservoir 

system forecasts; this project is discussed at greater length in Chapter 4 (Georgakakos et 

al., 2005). At the University of Washington and Princeton University, approximately five 

years ago, researchers launched an effort to produce  operational hydrologic and 

streamflow predictions using distributed land surface models that were developed by an 

interagency effort called the Land Data Assimilation System (LDAS) project (Mitchell et 

al., 2004; Wood and Lettenmaier, 2006); Figure 2.8 shows an example that is based on 

the use of CPC climate outlooks. In addition to generating SI streamflow forecasts in the 

western and eastern United States, the project also generates forecasts for land surface 

variables such as runoff, soil moisture, and snow water equivalent. These forecasts, like 

the NWS ESP predictions, are also physically-based, dynamical and objective. The effort 

is supported primarily by NOAA, and like the INFORM project collaborates with public 

forecast agencies in developing research-level prediction products. The federal funding is 

provided with the intent of migrating operational forecasting advances that arise in the 

course of these efforts into the public agencies, a topic discussed briefly in Section 2.1. 
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Figure 2.8  Ensemble median forecasts of monthly runoff from an experimental hydrologic model based on 
CPC climate outlooks. The hydrologic prediction project has run operationally since 2004 at the University 
of Washington, and has a partner effort at Princeton University. Other variables, not shown, include soil 
moisture, snow water equivalent and streamflow. This map was obtained from 
http://cses.washington.edu/cig/fpt/waterfc/weststreamflowfc.shtml. 
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This section focuses on the skill of hydrologic forecasts; section 2.5 includes a discussion 

of forecast utility. Forecasts are statements about events expected to occur at specific 

times and places in the future. They can be either deterministic, single-valued predictions 

about specific outcomes, or probabilistic descriptions of likely outcomes that typically 

take the form of ensembles, distributions, or weighted scenarios.  

 

The hydrologic and water resources forecasts made for water resources management 

reflect three components of predictability:  the seasonality of the hydrologic cycle, 

predictability associated with large-scale climate teleconnections, and persistence of 

anomalies in hydrologic initial conditions. Evapotranspiration, runoff (e.g., Pagano et al., 

2004) and ground-water recharge (e.g., Earman et al., 2006) all depend on soil moisture 

and (where relevant) snowpack conditions one or two seasons prior to the forecast 

windows, so that these moisture conditions, directly or indirectly, are key predictors to 

many hydrologic forecasts with lead times up to six months. Although hydrologic initial 

conditions impart only a few months of predictability to hydrologic systems, during their 

peak months of predictability, the skill that they contribute is often paramount. This is 

particularly true in the western U.S., where much of the year’s precipitation falls during 

the cool season, as snow, and then accumulates in relatively easily observed form, as 

snowpack, until it predictably melts and runs off in the warm-season months later. 

Information about large-scale climatic influences, like the current and projected state of 

ENSO, are valued because some of the predictability that they confer on water resources 

has influence even before snow begins to accumulate or soil-recharging fall storms 
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arrive. ENSO, in particular, is strongly synchronized with the annual cycle, so that, in 

many instances, the first signs of an impending warm (El Niño) or cold (La Niña) ENSO 

event may be discerned toward the end of the summer before the fluctuation reaches its 

maturity and peak of influence on the U.S. climate, in winter. This advanced warning for 

important aspects of water year climate allows forecasters, in some locations, to 

incorporate the expected ENSO influences into hydrologic forecasts before or near the 

beginning of the water year (e.g., Hamlet and Lettenmaier, 1999).  

 

These large-scale climatic influences, however, rarely provide the high level of skill that 

can commonly be derived later in the water year from estimates of land surface moisture 

state, i.e., from precipitation accumulated during the water year, snow water equivalent or 

soil moisture, as estimated indirectly from streamflow. Finally, the unpredictable, random 

component of variability remains to limit the skill of all real-world forecasts. The 

unpredictable component reflects a mix of uncertainties and errors in the observations 

used to initialize forecast models, and errors in the models, and the chaotic complexities 

in forecast model dynamics and in the real world.  

 

Many studies have shown that the single greatest source of forecast error is unknown 

precipitation after the forecast issue date. Schaake and Peck (1985) estimate that for the 

1947-1984 forecasts for inflow to Lake Powell, almost 80% of the January 1st forecast 

error is due to unknown future precipitation; by April 1st, Schaake and Peck find that 

future precipitation still accounts for 50% of the forecast error. Forecasts can perform 

poorly specifically in years with extreme spring precipitation (e.g., 1983 above), or 
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generally, they can do poorly if spring precipitation is normally a significant component 

of the annual cycle. For example, in California, the bulk of the moisture falls from 

January-March and rarely does it rain in spring, meaning that April 1 forecasts of spring-

summer streamflow are generally very accurate. In comparison (see Figure 2.9), in 

eastern Wyoming and the front range of Colorado, April-through-June is the wettest time 

of year and by April 1 the forecaster can only guess at future precipitation events because 

of an inability to skillfully forecast springtime precipitation in this region one season in 

advance. 
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Figure 2.9  Mean percentages of annual precipitation that fall from April through June, 1971-2000 (based 
on 4-km PRISM climatologies). This figure was obtained from http://www.prism.oregonstate.edu/. 
 

Pagano et al. (2004) discovered that the second greatest factor influencing skill is how 

much influence snowmelt has on the hydrology of the basin and how warm it is during 
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the winter. For example, in basins high in the mountains of Colorado, the temperature 

remains below freezing for most of the winter. Streamflow is generally low through April 

until temperatures rise and the snow starts to melt. The stream then receives a major pulse 

of snowmelt over the course of several weeks. Spring precipitation may supplement the 

streamflow, but any snow that falls in January is likely to remain in the basin until April 

when the forecast target season starts. In comparison, in western Oregon, warm rain-

producing storms can be interspersed with snow-producing winter storms. Most of the 

runoff occurs during the winter and it is possible for a large snowpack in February to be 

wasted away by March rains. For the forecaster, attempting to predict April-to-July 

streamflow is difficult to anticipate, particularly the quantity of water is going to “escape” 

before the target season begins. 

 

Some element of forecast accuracy depends on the variability of the river itself. It would 

be easy to incur a 100% forecast error on, for example, the San Francisco River in 

Arizona, whose observations vary between 17% of average to over 750% of average. It 

would be much more difficult to do so on a river such as the Stehekin River in 

Washington, where the streamflow ranges only between 60% and 150% of average. A 

user may be interested in this aspect of accuracy (e.g., percent of normal error), but most 

forecasters use skill scores (e.g., correlation) that would normalize for this effect and 

make the results from these two basins more comparable. As noted by Hartmann et al. 

(2002), consumers of forecast information may be more interested in measures of 

forecast skill other than correlations.  
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As previously indicated, hydrologic and streamflow forecasts that extend to a 9 -month 

lead time are made for western U.S. rivers, primarily during the winter and spring, 

whereas in other parts of the United States, where seasonality of precipitation is less 

pronounced, the forecasts either link to CPC drought products, are qualitative (the NWS 

Southeastern RFC, for instance, provides water supply related briefings from their 

website) or in other regards are less amenable to skill evaluation. For this reason, the 

following discussion of water supply forecast skill focused mostly on western U.S. 

streamflow forecasting, and in particular water supply (i.e., runoff volume) forecasts, for 

which most published material relating to SI forecasts exists. 

 

In the western U.S., the skill of operational forecasts generally improves progressively 

during the winter and spring months leading up to the period being forecasted, as 

increasing information about the year’s land surface water budget are observable (i.e., 

reflected in snowpack, soil moisture, streamflow and the like). An example of the long-

term average seasonal evolution of NWCC operational forecast skill at a particular stream 

gage is shown in Figure 2.10. The flow rates that are judged to have a 50% chance of not 

being exceeded (i.e., the 50th percentile or median) are shown by the blue curve for the 

early part of 2007. The red curve shows that early in the water year, the April-July 

forecast has little skill, measured by the regression coefficient of determination (r2 or 

correlation squared), with only about 10% of historical variance captured by the forecast 

equations. By about April 1, the forecast equations predict about 45% of the historical 

variance, and at the end of the season, the variance explained is about 80%. This measure 
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of skill does not reach 100% because the observations available for use as predictors do 

not fully explain the observed hydrologic variation. 
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Figure 2.10  Recent operational NWCC forecasts of April-July 2007 streamflow volume in Birch Creek at 
Swift Dam near Valier, showing daily median-forecast values of percentages of long-term average 
streamflow total for summer 2007 (blue) and the long-term estimates of correlation-based forecast skill 
corresponding to each day of the year. (Figure obtained from the National Water and Climate Center 
(NWCC) -- http://www.wcc.nrcs.usda.gov/). 
 

Comparisons of “hindcasts”—seasonal flow estimates generated by applying the 

operational forecast equations to a few decades (lengths of records differ from site to site) 

of historical input variables at each location with observed flows provide estimates of the 

expected skill of current operational forecasts. The actual skill of the forecast equations 

that are operationally used at as many as 226 western stream gages are illustrated in 

Figure 2.11, in which skill is measured by correlation of hindcast median with observed 

values. 
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The symbols in the various panels of Figure 2.11 become larger and bluer in hue as the 

hindcast dates approach the start of the April-July seasons being forecasted. They begin 

with largely unskillful beginnings each year in the January 1 forecast; by April 1 the 

forecasts are highly skillful by the correlation measures (predicting as much as 80% of 

the year-to-year fluctuations) for most of the California, Nevada, and Idaho rivers and 

many stations in Utah and Colorado.  
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Figure 2.11  Skills of forecast equations used operationally by NRCS, California Department of Water 
Resources, and Los Angeles Department of Water and Power, for predicting April-July water supplies 
(streamflow volumes) on selected western rivers, as measured by correlations between observed and 
hindcasted flow totals over each station’s period of forecast records. Figure provided by Tom Pagano, 
USDA NRCS.  
   

The general increases in skill and thus in numbers of stations with high (correlation) skill 

scores as the April 1 start of the forecast period approaches is shown in Figure 2.12. 
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Figure 2.12  Percentages of stations with various correlation skill scores in the various panels (forecast 
dates) of Figure 2.11. 
 

A question not addressed in this report relates to the probabilistic skill of the forecasts. 

That is, how reliable are the confidence limits around the median forecasts that are 

provided by the published forecast quantiles (10th and 90th percentiles, for example). In 

a reliable forecast, the frequencies with which the observations fall between various sets 

of confidence bounds matches the probability interval set by those bounds. That is, 80% 

of the time, the observed values fall between the 10th and 90th percentiles of the forecast. 

Among the few analyses that have been published focusing on the probabilistic 

performance of U.S. operational streamflow forecasts, Franz et al. (2003) evaluated 

Colorado River basin ESP forecasts using a number of probabilistic measures and found 

reliability deficiencies for many of the streamflow locations considered.  
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In the earlier discussion of sources of water-supply forecast skill, we highlighted the 

amounts and sources of skill provided by snow, soil moisture, antecedent runoff 

influences. IPCC projections of global and regional warming, with its expected strong 

effects on western U.S. snowpacks (Stewart et al., 2004; Barnett et al., 2008) raises the 

concern that prediction methods such as regression that depend on a consistent 

relationship between these predictors and future runoff may not perform as expected if 

the current climate system is being altered in ways that then alters these hydro-climatic 

relationships. Decadal climate variability, particularly in precipitation (e.g., Mantua et al., 

1997; McCabe and Dettinger, 1999), may also represent a challenge to such methods, 

although some researchers suggest that knowledge of decadal variability can be 

beneficial for streamflow forecasting (e.g., Hamlet and Lettenmaier, 1999). One view 

voiced in the literature (e.g., Wood and Lettenmaier, 2006) is that hydrologic model-

based forecasting may be more robust to the effects of climate change and variability due 

to the physical constraints of the land surface models, but this thesis has not been 

comprehensively explored.  

  

The maps shown in Figure 2.13 are based on hydrologic simulations of a physically-

based hydrologic model, the Variable Infiltration Capacity (VIC) model (Liang et al., 

1994), in which historical temperatures are uniformly increased by +2ºC. These figures 

show that the losses of snowpack and the tendencies for more precipitation to fall as rain 

rather than snow in a warmer world reduce overall forecast skill, shrinking the areas 
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where snowpack contributes strong predictability and also making antecedent runoff a 

less reliable predictor. Thus many areas where warm-season runoff volumes are 

accurately predicted historically are likely to lose some forecast skill along with their 

snowpacks. Overall, the average skill declines by about 2% (out of a historical average of 

35%) for the January-March volumes and by about 4% out of a historical average of 53% 

for April-July. More importantly, though, are the declines in skill at grid cells where 

historical skills are greatest, nearly halving the occurrence of high-end (>0.8) January-to-

March skills and reducing high-end April-to-July skills by about 15% (Figure 2.14).  
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Figure 2.13  Potential contributions of antecedent snowpack conditions, runoff, and Niño 3.4 sea-surface 
temperatures to seasonal forecast skills in hydrologic simulations under historical, 1950-99, meteorological 
conditions (left panels) and under those same conditions but with a +2ºC uniform warming imposed. 
(Dettinger, 2007) 
 

 

Do Not Cite or Quote Page 96 of 426 Public Review Draft 
 



CCSP 5.3  March 7, 2008 
 

 2036 

2037 
2038 
2039 
2040 

2041 

2042 

2043 

2044 

2045 

2046 

2047 

2048 

2049 

2050 

2051 

2052 

Figure 2.14  Distributions of overall fractions of variance predicted, in Fig. 2.13, of January-March 
(curves) and April-July (histograms) runoff volumes under historical (black) and +2°C warmer conditions. 
(Dettinger, 2007) 
 

This enhanced loss among the most skillful grid cells reflects the strong reliance of those 

grid cells on historical snowpacks for the greater part of their skill, snowpacks which 

decline under the imposed +2ºC warmer conditions. Overall, skills associated with 

antecedent runoff are more strongly reduced for the April-to-July runoff volumes, with 

reductions from an average contribution of 24% of variance predicted (by antecedent 

runoff) historically to 21% under the +2ºC warm conditions; for the January-to-March 

volumes, skill contributed by antecedent runoff only declines from 18.6% to 18.2% under 

the imposed warmer conditions. The relative declines in the contributions from snowpack 

and antecedent runoff make antecedent runoff (or, more directly, soil moisture, for which 

antecedent runoff is serving as a proxy here) a more important predictor to monitor in the 

future. 
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It is worth noting that the changes in skill contributions illustrated in Figure 2.13 are best-

case scenarios. The skills shown are skills that would be provided by a complete 

recalibration of forecast equations to the new (imposed) warmer conditions, based on 50 

years of runoff history. In reality, the runoff and forecast conditions are projected to 

gradually and continually trend towards increasingly warm conditions, and fitting new, 

appropriate forecast equations (and models) will always be limited by having only a brief 

reservoir of experience with each new degree of warming. Consequently, we must expect 

that regression-based forecast equations will tend to be increasingly and perennially out 

of date in a world with strong warming trends. This problem with the statistics of forecast 

skill in a changing world suggests development and deployment of more physically 

based, less statistically based forecast models should be a priority in the foreseeable 

future. 

 

2.2.3.3 Skill of climate forecast-driven hydrologic forecasts  

The extent to which the ability to forecast United States precipitation and temperature 

seasons in advance can be translated into long-lead hydrologic forecasting has been 

evaluated by Wood et al. (2005). That evaluation compared hydrologic variables in the 

major river basins of the western conterminous U.S. as simulated by the VIC hydrologic 

model (Liang et al., 1994), forced by two different sources of temperature and 

precipitation data: (1) observed historical meteorology (1979-1999); and (2) by hindcast 

climate-model-derived 6-month-lead climate forecasts.  
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The Wood et al. (2005) assessment quantified and reinforced an important aspect of the 

hydrologic forecasting community’s intuition about the current levels of hydrologic 

forecast skill using long-lead climate forecasts generated from various sources. The 

analysis first underscored the conclusions that, depending on the season, knowledge of 

initial hydrologic conditions conveys substantial forecast skill. A second finding was that 

the additional skill available from incorporating current (at the time) long-lead climate 

model forecasts into hydrologic prediction is limited when all years are considered, but 

can improve streamflow forecasts relative to climatological ESP forecasts in extreme 

ENSO years. If performance in all years is considered, the skill of current climate 

forecasts (particularly, of precipitation) is inadequate to provide readily extracted 

hydrologic-forecast skill at monthly to seasonal lead times. This result is consistent with 

findings for North American climate predictability (Saha et al., 2006). During El Niño 

years, however, the climate forecasts have high enough skill for temperatures, and mixed 

skill for precipitation, so that hydrologic forecasts for some seasons and some basins 

(especially California, the Pacific Northwest and the Great Basin) provide measurable 

improvements over the ESP alternative.  

2075 

2076 

2077 

2078 

2079 

2080 

2081 

2082 

2083 

2084 

2085 

2086 

2087 

2088 

2089 

2090 

2091 

2092 

2093 

2094 

2095 

2096 

 

The authors of that assessment concluded “climate model forecasts presently suffer from 

a general lack of skill, [but] there may be locations, times of year and conditions (e.g., 

during El Niño or La Niña) for which they improve hydrologic forecasts relative to ESP” 

(Wood et al., 2005). However, their conclusion was that improvements to hydrologic 

forecasts based on other forms of climate forecasts, e.g., statistical or hybrid methods that 
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are not completely reliant on a single climate model may prove more useful in the near 

term, presumably until pure climate-model forecasts have improved considerably. 

 

2.3 CLIMATE DATA AND FORECAST PRODUCTS 

2.3.1 A Sampling of SI Climate Forecast Products of Interest to Water Resource 

Managers 

At SI lead times, a wide array of dynamical prediction products exists. A representative 

sample of SI climate forecast products is listed in Appendix A.1. The current dynamical 

prediction scheme used by NCEP, for example, is a system of models comprising 

individual models of the oceans, global atmosphere and continental land surfaces. These 

models were developed and originally run for operational forecast purposes in an 

uncoupled, sequential mode, an example of which is the so-called “Tier 2” framework in 

which the ocean model runs first, producing ocean surface boundary conditions that are 

prescribed as inputs for subsequent atmospheric model runs. Since 2004, a “Tier 1” 

scheme was introduced in which the models, together called the Coupled Forecast 

System (CFS; Saha et al., 2006), were fully coupled to allow dynamic exchanges of 

moisture and energy across the interfaces of the model components. 

 

At NCEP, the dynamical tool, CFS, is complemented by a number of statistical forecast 

tools, three of which, Screening Multiple Linear Regression (SMLR). Optimal Climate 

Normals (OCN), and Canonical Correlation Analysis (CCA), are merged with the CFS to 

form an objective consolidation forecast product (Figure 2.15). While the consolidated 

forecast exceeds the skill of the individual tools, the official seasonal forecast from CPC 
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involves a subjective merging of it with forecast and nowcast information sources from a 

number of different sources, all accessible to the public at CPC’s monthly briefing. The 

briefing materials comprise 40 different inputs regarding the past, present and expected 

future state of the land, oceans and atmosphere from sources both internal and external to 

CPC, that are posted online at: 

(http://www.cpc.ncep.noaa.gov/products/predictions/90day/tools/briefing/). 
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Figure 2.15  CPC objective consolidation forecast for precipitation and temperature for the three month 
period Aug-Sep-Oct 2007, made June 2007 (lead 2 months). Figure obtained from 
http://www.cpc.ncep.noaa.gov. 
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The resulting official forecast briefing has CPC’s primary presentation of climate forecast 

information each month. Forecast products are accessible directly from CPC’s root level 

home page in the form of maps of the probability anomalies for precipitation and 

temperature in three categories, or “terciles”, representing below-normal, normal and 

above-normal values; a two-category scheme (above and below normal) is also available. 

This framework is used for the longer lead outlooks (Figure 2.16). The seasonal forecasts 

are also available in the form of maps of climate anomalies in degrees Celsius for 

temperature and inches for precipitation (Figure 2.17). The forecasts are released 

monthly, have a time-step of three months, and have a spatial unit of the climate division 

(Figure 2.18). For users desiring more information about the probabilistic forecast than is 

given in the map products, a probability of exceedence (POE) plot, with associated 

parametric information, is also available for each climate division (Figure 2.19). The 

POE plot shows the shift of the forecast probability distribution from the climatological 

distribution for each lead-time of the forecast. 
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Figure 2.15  NCEP CPC seasonal outlook for precipitation also shown as a tercile probability map. Figure 
obtained from 
http://www.cpc.ncep.noaa.gov/products/predictions/multi_season/13_seasonal_outlooks/color/page2.gif. 
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Figure 2.16  The NCEP CPC seasonal outlook for precipitation from Figure 2.18, but shown as an anomaly 
in inches of total precipitation for the 3-month target period. Figure obtained from 
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_index.php?lead=3&var=p 
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Figure 2.17  The CPC climate division spatial unit on which the official seasonal forecasts are based. 
Figure obtained from 
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_index.php?lead=3&var=p. 
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Figure 2.18  The NCEP CPC seasonal outlook for precipitation from Figure 2.17 but shown as an anomaly 
in inches of total precipitation for the 3-month target period. 
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_graph_index.php?lead=3&climdiv=75
&var=p. 
 

In addition to NCEP, a few other centers, (e.g., the International Research Institute for 

Climate and Society (IRI)) produce similar consensus forecasts and use a similar map-

based, tercile-focused framework for exhibiting their results. A larger number of centers 

run dynamical forecast tools, and the NOAA Climate Diagnostics Center, which 

produces monthly climate outlooks internally using statistical tools, also provides 

summaries of climate forecasts from a number of major sources, both in terms of 

probabilities or anomalies, for selected surface and atmospheric variables. The 
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Experimental Climate Prediction Center (ECPC) at Scripps Institute provides monthly 

and seasonal time step forecasts of both climate and land surface variables at a national 

and global scale, from dynamical models. Using these model outputs, ECPC also 

generates forecasts for derived variables that target wildfire management – e.g., soil 

moisture, the Fireweather Index (See Chapter 4 for a more detailed description of Water 

Resource Issues in Fire-Prone U.S. Forests  and the use of this index) . The CPC has 

similar efforts in the form of the Hazards Assessment, a short to medium range map 

summary of hazards related to extreme weather (such as flooding and wildfires), and the 

CPC Drought Outlook (Box 2.3), a subjective consensus product focusing on the 

evolution of large-scale droughts, that is released once a month, conveying expectations 

for a 3-month outlook period.  

 

The foregoing is a brief survey of climate forecast products from major centers in the 

United States, and as such is far from a comprehensive presentation of the available 

sources. It does, however, provide examples from which the following observations about 

the general nature of climate prediction in the U.S. may be drawn. First, that operational 

SI climate forecasting is conducted at a relatively small number of federally-funded 

centers, and forecast products are national to global in scale. These products tend to have 

a coarse resolution in space and time, and are typically for basic earth system variables 

(e.g., temperature, precipitation, atmospheric and surface pressure) that are of general 

interest to many sectors. Forecasts are nearly always probabilistic, and the major products 

attempt to convey the inherent uncertainty via maps or data detailing forecast 
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probabilities, although deterministic reductions (such as forecast variable anomalies) are 

also available. 

 

2.3.2 Sources of Climate-Forecast Skill 

Much as with hydrologic forecasts, the skill of forecasts of climate variables (notably, 

temperature and precipitation) varies from region to region, varies with forecast season 

and lead time, is limited by the chaotic and uncertain character of the climate system, and 

derives from a variety of sources. While initial conditions are an important source for 

skill in SI hydrologic forecasts, the initial conditions of an atmospheric forecast are 

effectively forgotten after about 8-10 days and have no influence on SI climate forecast 

skill (Molteni et al., 1996). SI forecasts are actually forecasts of those variations of the 

climate system that reflect predictable changes in boundary conditions, like sea-surface 

temperatures (SSTs), or in external ‘forcings’, disturbances in the radiative energy budget 

of the Earth’s climate system. At time scales of decades to centuries, potential skill rests 

in predictions for slowly varying components of the climate system like the atmospheric 

concentrations of CO2 that influence the greenhouse effect, or slowly evolving changes 

in ocean circulation that can alter SSTs and thereby change the boundary conditions for 

the atmosphere. Not all possible sources of SI climate-forecast skill have been identified 

or exploited, but contributors that have been proposed and pursued include a variety of 

large-scale air-sea connections (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; 

Mantua et al., 1997; Enfield et al., 2001; Hoerling and Kumar, 2003), snow and sea ice 

patterns (e.g., Cohen and Entekhabi, 1999; Clark and Serreze, 2000; Lo and Clark, 2002; 
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In operational practice, however, most of the forecast skill provided by current forecast 

systems (especially, including climate models) derives from our ability to predict the 

evolution of ENSO events on time scales of 6 to 12 months, coupled with the 

“teleconnections” from the events in the tropical Pacific to many areas of the globe. 

Barnston et al. (1994), in their explanation of the advent of the first operational long-lead 

forecasts from the NOAA Climate Prediction Center, stated that “while some 

extratropical processes probably develop independently of the Tropics…, much of the 

skill of the forecasts for the extratropics comes from anomalies of ENSO-related tropical 

sea-surface temperatures.” Except for the changes associated with diurnal cycles, 

seasonal cycles, and possibly the (30-60 day) Madden-Julian Oscillation of the tropical 

ocean-atmosphere system, “ENSO is the most predictable climate fluctuation on the 

planet” (McPhaden et al., 2006). Diurnal cycles and seasonal cycles are predictable on 

time scales of hours-to-days and months-to-years, respectively, whereas ENSO mostly 

provides predictability on SI time scales (e.g., Figure 2.19b, from a potential 

predictability study by Collins 2002). Notice, in Figure 2.19a, that temperatures over the 

tropical oceans and lands, and extratropical oceans are much more correlated from season 

to season than are conditions on the extratropical continents. To the extent that they can 

anticipate the slow evolution of the tropical oceans, indicated by these correlations, SCFs 

in the extratropics that harken to the tropical oceans are provided a basis for prediction 

skill; to the extent that the multiseasonal long-term potential predictability of the ENSO 
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episodes (Figure 2.19b) can be drawn upon in certain regions at certain times of year, the 

relatively meager predictabilities of North American temperatures and precipitation can 

be extended.  
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Figure 2.19  (a) Map of correlations between surface-air temperatures in each season and the following 
season in 600 years of historical climate simulation by the HadCM3 model (Collins 2002); (b) Potential 
predictability of a common ENSO index (Niño3 SST, the average of SSTs between 150ºW and 90W, 5ºS 
and 5ºN), average temperatures over the United States and Canada, and average precipitation over the 
United States and Canada, with skill measured by anomaly correlations and plotted against the forecast lead 
times; results extracted from Collins (2002), who estimated these skills from the reproducibility among 
multiple simulations of 30yrs of climate by the HadCM3 coupled ocean-atmosphere model. Correlations 
below about 0.3 are not statistically significant at 95% level. 
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The scattered times between ENSO events drastically limits skillful prediction of events 

until, at least, the first faltering steps towards the initiation of an ENSO event have been 

observed. ENSO events, however, are frequently (but not always) phase-locked 

(synchronized) with aspects of the seasonal cycle (Neelin et al., 2000), so that (a) 

forecasters know when to look most diligently for those “first faltering steps” and (b) the 

first signs of the initiation of an event are often witnessed 6-9 months prior to ENSO’s 

largest expressions in the tropics and Northern Hemisphere (e.g., Penland and 

Sardeshmukh, 1995). Thus ENSO influences, however irregular and unpredictable they 

are on multiyear time scales, regularly provide the basis for SI climate forecasts over 

North America. ENSO events generally begin their evolution sometime in late (northern) 

spring or early summer, growing and maturing until they most often reach full strength 

(measured by either their SST expressions in the tropical Pacific or by their influences on 

the Northern Hemisphere) by about December – March (e.g., Chen and van den Dool 

1997). An ENSO event’s evolution in the tropical ocean and atmosphere during the 

interim period is reproducible enough that relatively simple climate indices that track 

ENSO-related SST and atmospheric pressure patterns in the tropical Pacific provide 

predictability for North American precipitation patterns as much as two seasons in 

advance. Late summer values of the Southern Oscillation Index (SOI), for instance, are 

significantly correlated with a north-south see-saw pattern of wintertime precipitation 

variability in western North America (Redmond and Koch 1991).  

 

2.4 IMPROVING WATER RESOURCES FORECAST SKILL AND PRODUCTS 
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Although forecast skill is only one measure of the value that forecasts provide to water 

resources managers and the public, it is an important measure and current forecasts are 

generally understood to fall short of the maximum possible skill on SI time scales (e.g., 

http://www.clivar.org/organization/wgsip/spw/spw_position.php). Schaake et al. (2007) 

describe the SI hydrologic prediction process for model-based prediction in terms of 

several components: (i) development, calibration and/or downscaling of SI climate 

forecasts; (ii) estimation of hydrologic initial conditions, with or without data 

assimilation; (iii) SI hydrologic forecasting models and methods; and (iv) calibration of 

the resulting forecasts. Notable opportunities for forecast skill improvement in each area 

are discussed here. 

 

2.4.1 Improving SI Climate Forecast Use for Hydrologic Prediction 

SI climate forecast skill is a function of the skill of climate system models, the efficacy of 

model combination strategies if multiple models are used, the accuracy of climate system 

conditions from which the forecasts are initiated, and the performance of post processing 

approaches applied to correct systematic errors in numerical model outputs. 

Improvements are sought in all of these areas. 

 

2.4.1.1 Climate forecast use 

Many researchers have found that SI climate forecasts must be downscaled, 

disaggregated and statistically calibrated to be suitable as inputs for applied purposes 

(e.g., hydrologic prediction, as in Wood et al., 2002). Downscaling is the process of 

bridging the spatial scale gap between the climate forecast resolution and the 
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application’s climate input resolution, if they are not the same. If the climate forecasts are 

from climate models, for instance, they are likely to be at a grid resolution of several 100 

km, whereas the application may require climate information at a point (e.g., station 

location). Disaggregation is similar to downscaling, but in the temporal dimension – e.g., 

seasonal climate forecasts may need to be translated into daily or subdaily temperature 

and precipitation inputs for a given application (as described in Kumar, 2008). Forecast 

calibration is a process by which the statistical properties (such as bias and spread errors) 

of a probabilistic forecast are corrected to match their observed error statistics (e.g., 

Atger, 2003; Hamill et al., 2006). These procedures may be distinct from each other, or 

they may be inherent parts of a single approach (such as the analogue techniques of 

Hamill et al., 2006). These steps do not necessarily improve the signal to noise ratio of 

the climate forecast, but done properly, they do correct bias and reliability problems that 

would otherwise render impossible their use in applications. For shorter lead predictions, 

corrections to forecast outputs have long been made based on (past) model output 

statistics (MOS; Glahn and Lowry, 1972). MOS are sets of statistical relations (e.g., 

multiple linear regression (MLR)) that effectively convert numerical model outputs into 

unbiased, best climate predictions for selected areas or stations, where “best” relates to 

past performance of the model in reproducing observations. MOS corrections are widely 

used in weather prediction (Dallavalle and Glahn 2005). Corrections may be as simple as 

removal of mean biases indicated by historical runs of the model, with the resulting 

forecasted anomalies superimposed on station climatology. More complex methods 

specifically address spatial patterns in climate forecasts based on specific inadequacies of 
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A primary limitation on calibrating SI forecasts is the relatively small numbers of 

retrospective forecasts available for identifying biases. Weather predictions are made 

every day and thus even a few years’ of forecasts provide a large number of examples 

from which to learn. SI forecasts, in contrast, are comparatively infrequent and even 

several decades’ worth may not provide an adequate resource with which to develop 

model-output corrections (Kumar, 2007). This limitation is exacerbated when the 

predictability and biases themselves vary between years and states of the global climate 

system. Thus there is a clear need to expand current “reforecast” practices for fixed SI 

climate models over long historical periods to provide both for quantification (and 

verification) of the evolution of SI climate forecast skills and for post-processing 

calibrations to those forecasts.  

 

2.4.1.2 Development of objective multi-model ensemble approaches 

The accuracy of SI climate forecasts has been shown to increase when forecasts from 

groups of models are combined into multi-model ensembles (e.g., Krishnamurti et al., 

2000; Palmer et al., 2004; Tippett et al., 2007). Multi-model forecast ensembles yield 

greater overall skill than do any of the individual forecasts included, in principle, as a 

result of cancellation of errors between ensemble members. Best results thus appear to 

accrue when the individual models are of similar skill and when they exhibit errors and 

biases that differ from model to model. In part, these requirements reflect the current 
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uncertainties about the best strategies for choosing among models for inclusion in the 

ensembles used and, especially for weighting and combining the model forecasts within 

the ensembles. Many methods have been proposed and implemented (e.g., Rajagopalan et 

al., 2002; Yun et al., 2005), but strategies for weighting and combining ensemble 

members are still an area of active research (e.g., Doblas-Reyes et al., 2005; Coelho et 

al., 2004). Multi-model ensemble forecast programs are underway in Europe 

(DEMETER, Palmer et al., 2004) and in Korea (APEC; e.g., Kang and Park, 2007). In 

the United States, IRI forms an experimental multi-model ensemble forecast, updating 

monthly, from seasonal forecast ensembles run separately at 7 centers, a 'simple multi-

model' approach that compares well with centrally organized efforts such as DEMETER 

(Doblas-Reyes et al, 2005). The NOAA Climate Test Bed Science Plan also envisions 

such a capability for NOAA (Higgins et al., 2006). 

 

2.4.1.3 Improving climate models, initial conditions, and attributions 

Improvements to climate models used in SI forecasting efforts should be a high priority. 

Several groups of climate forecasters have identified the lack of key aspects of the 

climate system in current forecast models as important weaknesses, including 

underrepresented linkages between the stratosphere and troposphere (Baldwin and 

Dunkerton 1999), limited processes and initial conditions at land surfaces (Beljaars et al., 

1996; Dirmeyer et al., 2006; Ferranti and Viterbo, 2006), and lack of key biogeochemical 

cycles like carbon dioxide. 

 

Do Not Cite or Quote Page 115 of 426 Public Review Draft 
 



CCSP 5.3  March 7, 2008 
 

2371 

2372 

2373 

2374 

2375 

2376 

2377 

2378 

2379 

2380 

2381 

2382 

2383 

2384 

2385 

2386 

2387 

2388 

2389 

2390 

2391 

2392 

Because climate prediction is, by most definitions, a problem determined by boundary 

condition rather than an initial condition, specification of atmospheric initial conditions is 

not the problem for SI forecasts that it is for weather forecasts. However, SI climate 

forecast skill for most regions comes from knowledge of current SSTs or predictions of 

future SSTs, especially those in the tropics (Shukla et al., 2000; Goddard and Dilley, 

2005; Rosati et al., 1997). Indeed, forecast skill over land (worldwide) increases directly 

with the strength of an ENSO event (Goddard and Dilley, 2005). Thus an important 

determinant of recent improvements in SI forecast skill has been the quality and 

placement of tropical ocean observations, like the TOGA/TAO network of buoys  that 

monitors the conditions that lead up to and culminate in El Niño and La Niña events 

(Trenberth et al., 1998; McPhaden et al., 1998; Morss and Batitsti, 2004). More 

improvements in all of the world’s oceans are expected from the broader Array for Real-

time Geostrophic Oceanography (ARGO) upper-ocean monitoring arrays and Global 

Ocean Observing System (GOOS) programs (Nowlin et al., 2001). In many cases, and 

especially with the new widespread ARGO ocean observations, ocean-data assimilation 

has improved forecast skill (e.g., Zheng et al., 2006). Data assimilation into coupled 

ocean-atmosphere-land models is a difficult and unresolved problem that is an area of 

active research (e.g; Ploshay, 2002; Zheng et al., 2006). Land-surface and cryospheric 

conditions also can influence the seasonal scale dynamics that lend predictability to SI 

climate forecasting, but incorporation of these initial boundary conditions into SI climate 

forecasts is in an early stage of development (Koster and Suarez, 2001; Lu and Mitchell, 

2004; Mitchell et al., 2004). Both improved observations and improved avenues for 
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including these conditions into SI climate models, especially with coupled ocean-

atmosphere-land models, are needed. 

 

Finally, a long-standing but little explored approach to improving the value of SI climate 

forecasts is the attribution of the causes of climate variations. The rationale for an 

attribution effort is that forecasts have greater value if we know why the forecasted event 

happened, either before or after the event, and why a forecast succeeded or failed, after 

the event. The need to distinguish natural from human-caused trends, and trends from 

fluctuations, is likely to become more and more important as climate change progresses. 

SI forecasts are always likely to fail from time to time, or to realize less probable ranges 

of probabilistic forecasts; knowing that forecasters understand the failures (in hindsight) 

and have learned from them will help to build increasing confidence through time among 

users. Attempts to attribute causes to important climate events began as long ago as the 

requests from Congress to explain the 1930s Dust Bowl. Recently NOAA has initiated a 

Climate Attribution Service (http://www.cdc.noaa.gov/CSI/) that will combine historical 

records, climatic observations, and many climate model simulations to infer the principle 

causes of important climate events of the past and present. Forecasters can benefit from 

knowledge of causes and effects of specific climatic events as well as improved 

feedbacks as to what parts of their forecasts succeed or fail. Users will also benefit from 

knowing the reasons for prediction successes and failures. 

 

2.4.2 Improving Initial Hydrologic Conditions for Hydrologic and Water Resource 

Forecasts 
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Operational hydrologic and water resource forecasts at SI time scales derive much of 

their skill from hydrologic initial conditions, with the particular sources of skill 

depending on seasons and locations. Thus better estimation of hydrologic initial 

conditions will in some seasons lead to improvements in SI hydrologic and consequently 

water resources forecast skill. The four main avenues for progress in this area are: (1) 

augmentation of climate and hydrologic observing networks; (2) improvements in 

hydrologic models (i.e., physics and resolution); (3) improvements in hydrologic model 

calibration approaches; and (4) data assimilation. 

 

2.4.2.1 Hydrologic observing networks 

As discussed previously (in section 2.2), hydrologic and hydroclimatic monitoring 

networks provide crucial inputs to hydrologic and water resource forecasting models at SI 

time scales. Continuous or regular measurements of streamflow, precipitation and snow 

water contents provide important indications of the amount of water that entered and left 

river basins prior to the forecasts and thus provide directly or indirectly the initial 

conditions for model forecasts.  

 

Observed snow water contents are particularly important sources of predictability in most 

of the western half of the United States, and have been measured regularly at networks of 

snow courses since the 1920s and continually at SNOTELs (automated and telemetered 

snow instrumentation sites) since the 1950s. Snow measurements can contribute as much 

as 3/4 of the skill achieved by warm-season water supply forecasts in the West. However, 

recent studies have shown that measurements made at most SNOTELs are not 
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representative of overall basin water budgets, so that their value is primarily as indexes of 

water availability rather than as true monitors of the overall water budgets (Molotch and 

Bales 2005). The discrepancy arises because most SNOTELs are located in clearings, on 

flat terrain, and at moderate altitudes, rather than (historically) sampling snow conditions 

throughout the complex terrains and micrometeorological conditions found in most river 

basins. The discrepancies limit some of the usefulness of SNOTEL measurements as the 

field of hydrologic forecasting moves more and more towards physically-based, rather 

than empirical-statistical models. To remedy this situation and to provide the sorts of 

more diverse and more widespread inputs required by most physically-based models, 

combinations of remotely sensed snow conditions (to provide complete areal coverage) 

and extensions of at least some SNOTELs to include more types of measurements and 

measurements at more nearby locations will likely be required (Bales et al., 2006).  

 

Ground-water level measurements are made at thousands of locations around the country, 

but only recently have they been made available for widespread use in near-real time 

(http://ogw01.er.usgs.gov/USGSGWNetworks.asp). Few operational surface-water 

resource forecasts have been designed to use ground-water measurements. Similarly 

climate-driven SI ground-water resource forecasts are rarely made, if at all. However, 

surface-water and groundwater are interlinked in nearly all cases and, in truth, constitute 

a single resource (Winter et al., 1998). Thus, with the growing availability of real-time 

groundwater data dissemination, opportunities for improving water resource forecasts by 

better integration and use of surface- and ground-water data resources may develop. 
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Groundwater level networks already are contributing to drought monitors and response 

plans in many states. 

 

Similarly, long-term soil-moisture measurements have been relatively uncommon until 

recently. Soil moisture is an important control on the partitioning of water between 

evapotranspiration, groundwater recharge and runoff, and thus plays an important (but 

largely unaddressed) role in the quantities addressed by water resource forecasts. Soil 

moisture varies rapidly from place to place (Vinnikov et al., 1996; Western et al., 2004) 

so that networks that will provide representative measurements have always been 

difficult to design (Wilson et al., 2004). Nonetheless, the Illinois State Water Survey has 

monitored soil moisture at about 20 sites in Illinois for many years 

(http://www.sws.uiuc.edu/warm/soilmoist/ISWSSoilMoistureSummary.pdf), but for most 

of that time was alone in monitoring soil moisture at the state scale. As the technologies 

for monitoring soil moisture have become less troublesome, more reliable, and less 

expensive in recent years, more and more agencies are beginning to install soil-moisture 

monitoring stations (e.g., the NRCS is augmenting many of its SNOTELs with soil-

moisture monitors and has established a national Soil Climate Analysis Network (SCAN; 

http://www.wcc.nrcs.usda.gov/scan/SCAN-brochure.pdf); Oklahoma’s Mesonet 

micrometeorological network includes soil-moisture measurements at its sites; California 

is on the verge of implementing a state-scale network at both high and low altitudes). 

With the advent of regular remote sensing of soil-moisture conditions (Wagner et al., 

2007), many of these in situ networks will be provided context so that their geographic 

representativeness can be assessed and calibrated (Famligietti et al., 1999). As with 

Do Not Cite or Quote Page 120 of 426 Public Review Draft 
 



CCSP 5.3  March 7, 2008 
 

2484 

2485 

2486 

2487 

2488 

2489 

2490 

2491 

2492 

2493 

2494 

2495 

2496 

2497 

2498 

2499 

2500 

2501 

2502 

2503 

2504 

2505 

2506 

ground water, soil moisture has not often been an input to water resource forecasts on the 

SI time scale, instead, if anything, being simulated rather than measured, where values 

were required. Increased monitoring of soil moisture, both remotely and in situ, will 

provide important checks on the models of soil-moisture reservoirs that underlie nearly 

all of our water resources and water resource forecasts, making hydrological model 

improvements possible.  

 

Augmentation of real-time stream gauging networks is also a priority, a subject discussed 

in SAP 4.3 (CCSP, 2008). 

 

2.4.2.2 Improvements in hydrologic modeling techniques 

Efforts to improve hydrologic simulation techniques have been pursued in many areas 

since the inception of hydrologic modeling in the 1960s and 1970s when the Stanford 

Watershed Model (Crawford and Linsley, 1966), the Sacramento Model (Burnash et al., 

1973) and others were created. More recently, physically-based, distributed and semi-

distributed hydrologic models have been developed, both at the watershed scale (e.g., 

Wigmosta et al., 1994; Boyle et al., 2000) to account for terrain and climate 

inhomogeneity, and at the regional scale (Liang et al., 1994 among others). The latter 

category, macroscale models, were motivated in part by the need to improve land surface 

representation in climate system modeling approaches (Mitchell et al., 2004), but these 

models have also been found useful for hydrologic applications related to water 

management (e.g., Hamlet and Lettenmaier, 1999; Maurer and Lettenmaier, 2004; Wood 

and Lettenmaier, 2006). The NOAA North American Land Data Assimilation Project 
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Aside from improving hydrologic models and inputs, strategies for hydrologic model 

implementation are also important. Model calibration – i.e., the identification of optimal 

parameter sets for simulating particular types of hydrologic output (single or multiple) – 

has arguably been the most extensive area of research toward improving hydrologic 

modeling techniques (Wagener and Gupta, 2005 is but one article from a broad 

literature). This body of work has yielded advances in the understanding of the model 

calibration problem from both practical and theoretical perspectives. The work has been 

conducted using models at the watershed scale to a greater extent than the regional scale, 

and the potential for applying these techniques to the regional scale models not been 

much explored.    

 

Data assimilation is also an area of active research (e.g., Andreadis and Lettenmaier 

2006; Reichle et al., 2002; Vrugt et al., 2005; Seo et al., 2006). Data assimilation is a 
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process in which verifying observations of model state or output variables are used to 

adjust the model variables as the model is running, thereby correcting simulation errors 

on the fly. The primary types of observations that can be assimilated include snow water 

equivalent and snow covered area, land surface skin temperature, remotely sensed or in 

situ soil moisture, and streamflow. NWSRFS has the capability to do objective data 

assimilation; in practice NWS (and other agencies) perform a qualitative data 

assimilation, in which forecaster judgment is used to adjust model states and inputs to 

reproduce variables such as streamflow, snow line elevation and snow water equivalent 

prior to initializing an ensemble forecast.  

 

2.4.3 Calibration of Hydrologic Model Forecasts 

Even the best real-world hydrologic models have biases and errors when applied to 

specific gages or locations. Statistical models often are tuned well enough so that their 

biases are relatively small, but physically-based models often exhibit significant biases. 

In either case, further improvements in forecast skill can be obtained, in principle, by 

post-processing model forecasts to remove or reduce any remaining systematic errors, as 

detected in the performance of the models in hindcasts. Very little research has been 

performed on the best methods for such post processing (Schaake et al., 2007), which is 

closely related to the calibration corrections regularly made to weather forecasts. Seo et 

al. (2006), however, describe an effort being undertaken by the National Weather Service 

for short lead hydrologic forecasts, a practice that is more common than for longer lead 

hydrologic forecasts. Other examples include work by Hashino et al. (2007) and 

Krzysztofowicz (1999). At least one example of an application for SI hydrologic 
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forecasts is given in Wood & Schaake (2008); but as noted earlier, a major limitation for 

such approaches is the limited sample sizes available for developing statistical 

corrections.  

 

2.5 Improving Products: Forecast and related information Packaging and delivery 

The value of SI forecasts can depend on more than their forecast skill. The context that is 

provided for understanding or using forecasts can contribute as much or more to their 

value to forecast users. Several avenues for re-packaging and providing context for SI 

forecasts are discussed in the following paragraphs. 

 

Probabilistic hydrologic forecasts typically represent summaries of collections of 

forecasts, forecasts that differ from each other due to various representations of the 

uncertainties at the time of forecast or likely levels of climate variation after the forecast 

is made, or both (Schaake et al., 2007). For example, the “ensemble streamflow 

prediction” methodology begins its forecasts (generally) from a single best estimate of 

the initial conditions from which the forecasted quantity will evolve, driven by copies of 

the historical meteorological variations from each year in the past (Franz et al., 2003). 

This provides ensembles of as many forecasts as there are past years of appropriate 

meteorological records, with the ensemble scatter representing likely ranges of weather 

variations during the forecast season. Sometimes deterministic forecasts are extended to 

represent ranges of possibilities by directly adding various measures of past hydrologic or 

climatic variability. More modern probabilistic methods are based on multiple climate 

forecasts, multiple initial conditions or multiple parameterization (including multiple 
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In most applications, it is up to the forecast user to interpret these statistical descriptions 

in terms of their particular data needs, which frequently entails (1) application of various 

corrections to make them more representative of their local setting and (2), in some 

applications, essentially a deconvolution of the reported probabilities into plausible 

examples that might arise during the future described by those probabilities. Forecast 

users in some cases may be better served by provision of historical analogs that closely 

resemble the forecasted conditions, so that they can analyze their own histories of the 

results during the analogous (historical) weather conditions. Alternatively, some forecast 

users may find that elements from the original ensembles of forecasts would provide 

useful examples that could be analyzed or modeled in order to more clearly represent the 

probabilistic forecast in concrete terms. The original forecast ensemble members are the 

primary source of the probabilistic forecasts and can offer clear and definite examples of 

what the forecasted future COULD look like (but not specifically what it WILL look 

like). Thus, along with the finished forecasts—which should remain the primary forecast 

products, other representations of what the forecasts are and how they would appear in 

the real world could be a useful and more accessible complements for some users, and 

would be a desirable addition to the current array of forecast products. 
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Another approach to providing context (and, potentially, examples) for the SI water 

resource forecasts involves placing the SI forecasts in context of paleo-climate 

reconstructions. The 20th century has, by and large, been climatically benign in much of 

the nation, compared to previous centuries (Hughes and Brown, 1992; Cook et al., 1999). 

As a consequence, the true likelihood of various forecasted, naturally occurring climate 

and water resource anomalies may best be understood in the context of longer records, 

which paleoclimatic reconstructions can provide. At present, approaches to incorporating 

paleoclimatic information into responses to SI forecasts are uncommon and only 

beginning to develop, but eventually they may provide a clearer framework for 

understanding and perfecting probabilistic SI water resource forecasts. One approach that 

is being investigated is the statistical synthesis of examples (scenarios) that reflect both 

the long-term climate variability identified in paleorecords AND time-series-based 

deterministic long-lead forecasts (Kwon et al., 2007). 

 

2.5 THE EVOLUTION OF PROTOTYPES TO PRODUCTS AND THE ROLE OF 

EVALUATION IN PRODUCT DEVELOPMENT 

Studies of what makes forecasts useful have identified a number of common 

characteristics in the process by which forecasts are generated, developed, and taught to  

and disseminated among  users (Cash and Buizer, 2005). These characteristics include: 

ensuring that the problems that forecasters address are themselves driven by forecast 

users; making certain that knowledge-to-action networks (the process of interaction 

between scientists and users which produces forecasts) are end-to-end inclusive; 
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employing “boundary organizations” (groups or other entities that bridge the 

communication void between experts and users) to perform translation and mediation 

functions between the producers and consumers of forecasts; fostering a social learning 

environment between producers and users (i.e., emphasizing adaptation); and providing 

stable funding and other support to keep networks of users and scientists working 

together. 

 

This section begins by providing a review of recent processes used to take a prototype 

into an operational product, with specific examples from the NWS. The section then 

reviews a few examples of interactions between forecast producers and users that have 

lead to new forecast products, and concludes by describing a vision of how user-centric 

forecast evaluation could play a role in setting priorities for improving data and forecast 

products in the future.  

 

2.5.1 Transitioning Prototypes to Products 

During testimony for this report, heads of federal operational forecast groups all painted a 

relatively consistent picture of how most in-house innovations currently begin and 

evolve. Although formal and quantitative innovation planning methodologies exist (see 

Appendix A.3: TRANSITIONING NWS RESEARCH INTO OPERATIONS and How 

the Weather Service Prioritizes the Development of Improved Hydrologic Forecasts), for 

the most part, the operational practice is often relatively ad-hoc and unstructured except 

for the larger and longer-term projects. The Seasonal Drought Outlook is an example of a 
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product that was developed under a less formal process than that used by the NWS (Box 

2.3). 

 

BOX 2.3: The CPC Seasonal Drought Outlook 
 
The CPC Drought Outlook (DO) is a categorical prediction of drought evolution for the 3 months forward 
from the forecast date. The product, which is updated once per month, comprises a map that is 
accompanied by a text discussion of the rationale for the categories depicted on the map.  
 
The starting conditions for the DO are given by the current Drought Monitor (DM) (a United States map 
that is updated weekly showing the status of drought nationwide located: 
http://www.drought.unl.edu/DM/monitor.html), and the DO shows likely changes in and adjacent to the 
current DM drought areas. The DO is a subjective consensus forecast that is assembled each month by a 
single author (rotating between CPC and NDMC) with feedback from a panel of geographically distributed 
agency and academic experts. The basis for estimating future drought evolution includes a myriad of 
operational climate forecast products: from short and medium range weather forecasts to seasonal 
predictions from the CPC climate outlooks and the NCEP CFS outputs; consideration of climate tendencies 
for current ENSO state; regional hydroclimatology; and medium range to seasonal soil moisture and runoff 
forecasts from a variety of sources.  
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The DO thus makes use of the most advanced objective climate and hydrologic prediction products 
currently available, including not only operational, but experimental products, although the merging of the 
different inputs is based on expert judgment rather than an objective system. The DO is verified by 
comparing the DM drought assessments at the start and end of the DO forecast period; verification skill 
scores have been tracked for the last 7 years. The DO is the primary drought-related agency forecast 
produced in the United States, and is widely used by the drought management and response community 
from local to regional scales.  
 
The DO was developed in the context of new drought assessment partnerships between the CPC, USDA 
and the National Drought Mitigation Center following the passage of the National Drought Policy Act of 
1998. The DM had been released as an official product in August, 1999, with the expectation that a weekly 

or seasonal drought forecast capacity 
would be added in the future. A drought 
on the eastern seaboard in the fall of 
1999 required briefings for the press 
and the U.S. administration; inter
discussions between DM participants at 
the CPC led to the formation of the first 
version of the DO (maps and text) for 
these briefings. These were released 
informally to local, state and federal 
agency personnel throughout the winter 
of 1999-2000, and received positive 
feedback.  
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The CPC decided to make the products 
official, provided public statements and 
developed product specifications, and 
made the product operational in March 
2000. The initial development process 

was informal and lasted about six months. In November 2000, the first Drought Monitor Forum was held, 
at which producers and users (agency, state, private, academic) came together to evaluate the DM in its first 
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year and plan for its second, providing in addition a venue for discussion of the DO. This forum still meets 
bi-annually, focusing on both DM and DO-relevant issues. Developmental efforts for the DO are internal at 
CPC or within NCEP, and the primary avenues for feedback are the website and at presentations by DO 
authors at workshops and conferences. The DO authors also interact with research efforts funded by the 
NOAA Climate Program Office and other agency funding sources, and with NOAA research group efforts 
(such as at NCEP), as part of the ongoing development effort. (URL:  
http://www.cpc.noaa.gov/products/expert_assessment/drought_assessment.shtml) 
 
end BOX 2.3**************** 
 

Climate and water resource forecasters are often aware of small “fixes” or tweaks to 

forecasts that would make their jobs easier; these are often referred to as “forecasts of 

opportunity.” A forecaster may be aware of a new dataset or method or product that 

he/she believes could be useful. Based on past experience, production of the forecast may 

seem feasible and it could be potentially skillful. Especially in climate forecasting, where 

there is very high uncertainty in the forecasts themselves and there is marginal user 

adoption of existing products, the operational community often focuses more on potential 

forecast skill than likely current use. The belief is that if a product is skillful, a user base 

could be cultivated. If there is no skill, even if user demand exists, forecasting would be 

futile. 

 

Attractive projects may also develop when a new method comes into use by a colleague 

of the forecaster (someone from another agency, alumni, friend or prior collaborator on 

other projects). For example, Redmond and Koch (1991) published the first major study 

of the impacts of ENSO on western U.S. streamflow. At the time the study was being 

done, a NRCS operational forecaster was one of Koch’s graduate students. The student 

put Koch's research to operational practice at the NRCS after realizing that forecast skill 

could be improved. 
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Efficiency is also often the inspiration for an innovation. A forecaster may be looking for 

a way to streamline or otherwise automate an existing process. For example, users 

frequently call the forecaster with a particular question; if it is possible to automate the 

answering of that question with a new Internet-based product, the forecaster’s time may 

be freed up to work on other tasks. While most forecasters can readily list several 

bottlenecks in the production process, this knowledge often comes more from personal 

experience than any kind of structured system review. 

 

At this stage, many ideas exist for possible innovations, although only some small subset 

of them will be pursued. The winnowing process continues with the forecaster and/or 

peers evaluating the feasibility of the innovation: Is the method scientifically defensible? 

Are the data reliably available to support the product? Are the computers powerful 

enough to complete the process in a reasonable time? Can this be done with existing 

resources, would it free up more resources than it consumes, or is the added value worth 

the added operational expense? In other words, is the total value of the advance worth the 

effort? Is it achievable and compatible with legacy systems or better than the total worth 

of the technology, installed base and complementary products? 

 

If it is expected to be valuable, some additional questions may be raised by the forecaster 

or by management about the appropriateness of the solution. Would it conflict with or 

detract from another product, especially the official suite (i.e., destroy competency)? 

Would it violate an agency policy?  For example, a potential product may be technically 

feasible but not allowed to exist because the agency’s webpage does not permit 
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interactivity because of increasingly stringent congressionally-mandated cyber-security 

regulations. In this case, to the agency as a whole, the cost of reduced security is greater 

than the benefit of increased interactivity. It is important to note that if security and 

interactivity in general are not at odds, the issue may be that a particular form of 

interactivity is not compatible with the existing security architecture. If a different 

security architecture is adopted or a different form of interactivity used (e.g., written in a 

different computer language), then both may function together, assuming one has the 

flexibility and ability to change. 

 

Additionally, an agency policy issue can sometimes be of broader, multi-organizational 

scope and would require policy decisions to settle. For example, currently no agency 

produces water quality forecasts. Which agency should be responsible for this? The 

USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture 

forecasts? Should it be the first agency to develop the technical proficiency to make such 

forecasts? Or should it be established by a more deliberative process to prevent “mission 

creep”? Agencies are also concerned about whether innovations interfere with the 

services provided by the private sector. 

 

If appropriate, the forecaster may then move to implement the solution on a limited test 

basis, iteratively developing and adapting to any unforeseen challenges. After a 

successful functional prototype is developed, it is tested in-house using field personnel 

and/or an inner circle of sophisticated customers and gradually made more public as 

confidence in the product increases. In these early stages, many of the “kinks” of the 
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process are smoothed out, developing the product format and look and feel, adapting to 

initial feedback (e.g., “please make the map labels larger”) but for the most part the initial 

vision remains intact. 

 

There is no consistent formal procedure across agencies for certifying a new method or 

making a new product official. A product may be run and labeled “experimental” for 1-2 

years in an evaluation period. The objectives and duration of the evaluation period are 

sometimes not formalized and one must just assume that if a product has been running for 

an extended period of time with no obvious problems, then it succeeds and the 

experimental label removed. Creating documentation of the product and process is often 

part of the transition from experimental to official, either in the form of an internal 

technical memo, conference proceedings or peer-reviewed journal article, if appropriate. 

 

If the innovation involves using a tool or technique that supplements the standard suite of 

tools, some of the evaluation may involve running both tools in parallel and comparing 

their performance. Presumably ease of use and low demand on resources are criteria for 

success (although the task of running models in parallel can, by itself, be a heavy demand 

on resources). Sometimes an agency may temporarily stretch its resources to 

accommodate the product for the evaluation period and if additional resources are not 

acquired by the end of the evaluation (for one of a number of reasons, some of which 

may not be related to the product but rather due to variability in budgets), the product 

may be discontinued. 
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Sometimes skill is used to judge success, but this can be a very inefficient measure. This 

is because seasonal forecast skill varies greatly from year to year, primarily due to the 

variability of nature. Likewise, individual tools may perform better than other tools in 

some years but not others. In the 1-2 years of an evaluation period the new tool may be 

lucky (or unlucky) and artificially appear better (or worse) than the existing practice. 

 

If the agency recognizes that a tool has not had a fair evaluation, more emphasis is placed 

on “hindcasting,”, using the new tool to objectively and retrospectively generate realistic 

“forecasts” for the last 20-30 years and comparing the results to hindcasts of the existing 

system and/or official published forecasts. The comparison is much more realistic and 

effective, although hindcasting has its own challenges. It can be very operationally 

demanding to produce the actual forecasts each month (e.g., the agency may have to 

compete for the use of several hours of an extremely powerful computer to run a model), 

much less do the equivalent of 30 years worth at once. These hindcast datasets, however, 

have their own uses and have proven to be very valuable (e.g., Hamill et al., 2006 for 

medium range weather forecasting and Franz et al, 2003 for seasonal hydrologic 

forecasting). Often times, testbeds are better suited for operationally realistic hindcasting 

experiments (Box 2.4). 

 

BOX 2.4: What Role Can a “Testbed” Play in Innovation? 
 
For an innovation to be deemed valuable, it must be able to stand on its own and be better than the entire 
existing system, or marginally better than the existing technology if it is compatible with the rest of the 
framework of the existing system. If the innovation is not proven or believed likely to succeed, its adoption 
is less likely to be attempted. However, who conducts the experiments to measure this value? And who has 
the resources to ensure backwards-compatibility of the new tools in an old system? 
 
Later sections of this report will describe in more detail what is sometimes referred to as the “loading dock” 
model of forecast delivery (i.e., the producer creates something, leaves it on the loading dock where the 
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user seeks it out, picks it up, drives off and uses it; if this process fails, the loading dock mostly comes to 
serve as a metaphorical storage facility). This model lacks any direct communication between user and 
producer and leaves out the necessary support structure to help users make the most of the product (Cash et 
al.,, 2006). Similarly, testbeds are designed as an alternative to the “loading dock” model of transferring 
research to operations. 
 
Previously, a researcher may get a short-term grant to develop a methodology, and conduct an idealized, 
focused study of marginal operational realism. The results may be presented at research conferences or 
published in the scientific literature. While a researcher's career may have a unifying theme, for the most 
part, this specific project may be finished when publication is accomplished and the grant finishes. 
Meanwhile, the operational forecaster is expected to seek out the methodology and attempt to implement it, 
although often times the forecaster does not have the time, resources or expertise to use the results. Indeed, 
the forecaster may not be convinced of the incremental advantage of the technique over existing practices if 
it has not endured a realistic operational test and been compared to the results of the official system.  
 
Testbeds are intermediate activities, a hybrid mix of research and operations, serving as a conduit between 
the operational, academic and research communities. A testbed activity may have its own resources to 
develop a realistic operational environment. However, the testbed would not have real-time operational 
responsibilities and instead, would be focused on introducing new ideas and data to the existing system and 
analyzing the results through experimentation and demonstration. The old and new system may be run in 
parallel and the differences quantified. The operational system may even be deconstructed to identify the 
greatest sources of error and use that as the motivation to drive new research to find solutions to operations-
relevant problems. The solutions are designed to be directly integrated into the mock-operational system 
and therefore should be much easier to directly transfer to actual production. 
 
NOAA has many testbeds currently in operation: Hydrometeorological (floods), Hazardous Weather 
(thunderstorms and tornadoes), Aviation Weather (turbulence and icing for airplanes), Climate (ENSO, 
seasonal precipitation and temperature) and Hurricanes. The Joint Center for Satellite Data Assimilation is 
also designed to facilitate the operational use of new satellite data. A testbed for seasonal streamflow 
forecasting does not exist. Generally, satisfaction with testbeds has been high, rewarding for operational 
and research participants alike. 
 
end BOX 2.4 ******************* 
 

During the evaluation period, the agency may also attempt to increasingly 

“institutionalize” a process by identifying and fixing aspects of a product or process that 

do not conform to agency guidelines. For example, if a forecasting model is demonstrated 

as promising but the operating system or the computer language it is written in does not 

match the language chosen by the agency, a team of contract programmers may rewrite 

the model and otherwise develop interfaces that make the product more user-friendly for 

operational work. A team of agency personnel may also be assembled to help transfer the 

research idea to full operations, from prototype to project. For large projects, many 

people may be involved, including external researchers from several other agencies.  
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During this process of institutionalization, the original innovation may change in 

character. There may be uncertainty at the outset and the development team may 

consciously postpone certain decisions until more information is available. Similarly, 

certain aspects of the original design may not be feasible and an alternative solution must 

be found. Occasionally, poor communication between the inventor and the developers 

may cause the final product to be different than the original vision. Davidson et al. (2002) 

found success in developing a hydrologic database using structured, iterative 

development involving close communication between users and developers throughout 

the life of the project. This model is in direct contrast to that of the inventor generating a 

ponderous requirements document at the outset, which is then passed on to a separate 

team of developers who execute the plan in isolation until completion.  

 

2.5.2 Evaluation of Forecast Utility 

As mentioned in Section 2.1, there are many ways to assess the usefulness of forecasts, 

one of which is forecast skill. While there are inherent limitations to skill (due to the 

chaotic nature of the atmosphere), existing operational systems also fall short of their 

potential maximum skill for a variety of reasons. Section 2.4 highlights ways to improve 

operational skill, such as by having better models of the natural system or denser and 

more detailed climate and hydrologic monitoring networks. Other factors, such as 

improved forecaster training or better visualization tools, also play a role. This section 

addresses the role of forecast evaluation in driving the technology development agenda.  

 

Do Not Cite or Quote Page 135 of 426 Public Review Draft 
 



CCSP 5.3  March 7, 2008 
 

2889 

2890 

2891 

2892 

2893 

2894 

2895 

2896 

2897 

2898 

2899 

2900 

2901 

2902 

2903 

2904 

2905 

2906 

2907 

2908 

2909 

2910 

2911 

Understanding the current skill of forecast products is a key component to ensuring the 

effectiveness of programs to improve the skill of these products. There are several 

motivations for verifying forecasts including administrative, scientific and economic 

(Brier and Allen, 1951). Evaluation of very recent forecasts can also play a role in 

helping operational forecasters make mid-course adjustments to different components of 

the forecast system before issuing an official product.  

 

Of particular interest to forecasting agencies is administrative evaluation because of its 

ability to describe the overall skill and efficiency of the forecast service in order to 

inform and guide decisions about resource allocation, research directions and 

implementation strategies (Welles 2005). For example, the development of numerical 

weather prediction (NWP) forecasting models is conducted by numerous, unaffiliated 

groups following different approaches, with the results compared through objective 

measures of performance. In other words, the forecasts are verified, and the research is 

driven, not by ad hoc opinions postulated by subject matter experts, but by the actual 

performance of the forecasts as determined with objective measures (Welles et al., 2007). 

The most important sources of error are identified quantitatively and systematically and 

are paired with objective measures of the likely improvement resulting from an 

innovation in the system.  

 

Recently the NWS adopted a broad national-scale administrative initiative of hydrologic 

forecast evaluation. This program defines a standard set of evaluation measures, 

establishes a formal framework for forecast archival and builds flexible tools for access 
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to results. It is designed to provide feedback to local forecasters and users on the 

performance of the regional results, but also to provide an end-to-end assessment of the 

elements of the entire system (HVSRT, 2006). Welles et al. add that these activities 

would be best served by cultivating a new discipline of “hydrologic forecast science” that 

engages the research community to focus on operational-forecast-specific issues. 

 

While administrative evaluation is an important tool for directing agency resources, 

ultimately innovation should be guided by the anticipated benefit to forecast users. Some 

hydrologists would prefer not to issue a forecast that they suspect the user could not use 

or would misinterpret (Pielke Jr, 1999). Additionally, these evaluations should be 

available and understandable to users. Uncertainty about the accuracy of forecasts 

precludes users from making more effective use of them (Hartmann et al., 2002). Users 

want to know how good the forecasts are so they know how much confidence to place in 

them. Agencies want to focus on the aspects of the forecast that are most important to 

users. Forecast evaluation should be more broadly defined than skill, it should also 

include measures of communication and understandability, relevance and so on. In 

determining these critical aspects, Agencies must make a determination of the key 

priorities to address given the number and varied interest of potential forecast users; the 

Agencies can not satisfy all users. The Advanced Hydrologic Prediction System (AHPS) 

of the NWS provides a nice case study of product development and refinement in 

response to user-driven feedback (Box 2.5).  

 

BOX 2.5: The Advanced Hydrologic Prediction Service 
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Short to medium range forecasts (those with lead times of hours to days) of floods are a critical component 
of NWS hydrological operations and these services generate nearly $2 billion of benefits annually (NHWC, 
2002). In 1997 the NWS Office of Hydrologic Development began the Advanced Hydrologic Prediction 
Service (AHPS) program to advance technology for hydrologic products and forecasts. This 16-year multi-
million dollar program seeks to enhance the agency's ability to issue and deliver specific, timely, and 
accurate flood forecasts. One of its main foci is the delivery of probabilistic and visual information through 
an Internet based interface. One of its seven stated goals is also to "Expand outreach and engage partners 
and customers in all aspects of hydrologic product development." (NWS, 2004) 
 
Starting in 2004, the National Research Council reviewed the AHPS program and also analyzed the extent 
that users were actually playing in the development of products and setting of the research agenda 
(National Research Council, 2006). The study found that AHPS had largely a top-down structure with 
technology being developed at a national center to be delivered to regional and local offices. Although 
there was a wide range of awareness, understanding and acceptance of AHPS products inside and outside 
the NWS, little to no research was being done in early 2004 on effective communication of information, 
and some of the needs of primary customers were not being addressed. From the time the NRC team 
carried out its interviews, the NWS started acting on the perceived deficiencies, so that, by the time the 
report was issued in late 2006, the NWS had already made some measurable progress. This progress 
included a rigorous survey process in the form of focus groups, but also a more engaged suite of outreach, 
training, and educational activities that have included presentations at the national floodplain and 
hydrologic manager’s conferences, the development of closer partnerships with key users, committing 
personnel to education activities, conducting local training workshops, and awarding a research grant to 
social scientists to determine the most effective way to communicate probabilistic forecasts to emergency 
and floodplain managers. 
 
end BOX 2.5 
 

There is another component to forecast skill beyond the assessment of how the forecast 

quantities are better (or worse) than a reference forecast. Thinking of forecast assessment 

more broadly, the forecasts should be evaluated for their ‘skill’ communicating their 

information content in ways that can be correctly interpreted both easily and reliably -- 

i.e., no matter what the quantity (e.g., wet, dry, or neutral tercile) in the forecast is, the 

user can still correctly interpret it (Hartmann et al., 2002).  

 

Finally, it seems important to stress that agencies should provide for user-centric forecast 

assessment as part of the process for moving prototypes to official products. That would 

include access to user tools for assessing forecast skill (i.e., the Forecast Evaluation Tool, 

which is linked to by the NWS Local 3-month Temperature Outlook (Box 2.6), and field 

testing of the communication effectiveness of the prototype products. Just as new types of 
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forecasts should show (at least) no degradation in predictive skill, they should also show 

no degradation in their communication effectiveness. 

 

BOX 2.6:  NWS Local 3-Month Outlooks for Temperature and Precipitation 
 
In January 2007, the NWS made operational the first component of a new set of climate forecast products 
called Local 3-Month Outlooks (L3MO). Accessible from the NWS Weather Forecast Offices (WFO), 
River Forecast Centers (RFC) and other NWS offices, the Local 3-Month Temperature Outlook (L3MTO) 
is designed to clarify and downscale the national-scale CPC Climate Outlook temperature forecast product. 
The corresponding local product for precipitation is still in development as of the writing of this report.  
The local outlooks were motivated by ongoing NOAA NWS activities focusing on establishing a dialog 
with NWS climate product users (http://www.nws.noaa.gov/directives/),. In particular, a 2004 NWS 
climate product survey (conducted by Claes Fornell International for the NOAA Climate Services Division) 
found that a lack of climate product clarity lowered customer satisfaction with NWS CPC climate outlook 
products; and presentations and interactions at the annual Climate Prediction Application Science 
Workshop (CPASW) highlighted the need for localized CPC climate outlooks in numerous and diverse 
applications. 
In response to these user-identified issues, CSD collaborated with the NWS Western Region Headquarters, 
CPC and the National Climatic Data Center (NCDC) to develop localized outlook products. The 
collaboration between the four groups, which linked several line offices of NOAA (e.g., NCDC, NWS), 
took place in the context of an effort that began in 2003 to build a climate services infrastructure within 
NOAA. The organizations together embarked on a structured process that began with a prototype 
development stage, which included identifying resources, identifying and testing methodologies, and 
defining the product delivery method. To downscale the CPC climate outlooks (which are at the climate 
division scale) to local stations, the CSD and WR development team assessed and built on internal, prior 
experimentation at CPC that focused on a limited number of stations. To increase product clarity, the team 
added interpretation, background information, and a variety of forecast displays providing different levels 
of data density. A NWS products and services team made product mockups that were reviewed by all 102 
WFOs, CPC and CSD representatives and a small number of non-agency reviewers. After product 
adjustments based on the reviews, CSD moved toward an experimental production stage by obtaining union 
approval, providing NWS staff with training and guidelines, releasing a public statement about the product 
and writing product description documentation. Feedback was solicited via the experimental product 
website beginning in August 2006, and the products were again adjusted. Finally, the products were 
finalized, the product directive was drafted and the product moved to an operational stage with official 
release. User feedback continues via links on the official product website 
(http://www.weather.gov/climate/l3mto.php).  3010 

3011 
3012 
3013 
3014 
3015 
3016 
3017 
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3020 
3021 
3022 

3023 

 
In general, the L3MO development process exhibited a number of strengths. Several avenues existed for 
user needs to reach developers, and user-specified needs determined the objectives of the product 
development effort. The development team spanning several parts of the agency then drew on internal 
expertise and resources to propose and to demonstrate tentative products responding to those needs. The 
first review stage of the process gave mostly internal (i.e., agency) reviewers an early opportunity for 
feedback, but this was followed by an opportunity for a larger group of users in the experimental stage, 
leading to the final product. An avenue for continued review is built into the product dissemination 
approach. 
 
end BOX 2.6******************* 
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