1315	Chapter 2. A Description and Evaluation of Hydrologic
1316	and Climate Forecast and Data Products that Support
1317	Decision-Making for Water Resource Managers
1318	
1319	Convening Lead Author: Nathan Mantua, Climate Impacts Group, Univ. of Washington
1320	
1321	Lead Authors: Michael D. Dettinger, U.S. Geological Survey, Scripps Institution of
1322	Oceanography; Thomas C. Pagano, National Water and Climate Center, NRCS/USDA;
1323	Andrew W. Wood, 3Tier Group / Dept. of Civil and Environmental Engineering, Univ. of
1324	Washington; Kelly Redmond, Western Regional Climate Center, Desert Research
1325	Institute
1326	
1327	Contributing Author: Pedro Restrepo, NOAA
1328	
1329	
1330	
1331	
1332	
1333	
1334	
1335	
1336	

1337	KEY FINDINGS			
1338	There are a wide variety of climate and hydrologic data and forecast products currently			
1339	available for use by decision-makers in the water resources sector. However, the use of			
1340	official seasonal to interannual (SI) climate and hydrologic forecasts generated by federal			
1341	agencies remains limited in the water resources sector. Forecast skill, while recognized as			
1342	just one of the barriers to the use of SI climate forecast information, remains a primary			
1343	concern among forecast producers and users. Simply put, there is no incentive to use SI			
1344	climate forecasts when they are believed to provide little additional skill to existing			
1345	hydrologic and water resource forecast approaches. Not surprisingly, there is much			
1346	interest in improving the skill of hydrologic and water resources forecasts. Such			
1347	improvements can be realized by pursuing several research pathways, including:			
1348	• Improved monitoring and assimilation of real-time hydrologic observations in			
1349	land surface hydrologic models that leads to improved estimates for initial			
1350	hydrologic states in forecast models;			
1351	• Increased accuracy in SI climate forecasts; and,			
1352	• Improved bias corrections in existing forecast.			
1353				
1354	Another aspect of forecasts that serves to limit their use and utility is the challenge in			
1355	interpreting forecast information. For example, from a forecast producer's perspective			
1356	confidence levels are explicitly and quantitatively conveyed by the range of possibilities			
1357	described in probabilistic forecasts. From a forecast user's perspective, probabilistic			
1358	forecasts are not always well understood or correctly interpreted. Although structured			
1359	user testing is known to be an effective product development tool, it is rarely done.			

Do Not Cite or Quote

Page 60 of 426

1360	Evaluation should be an integral part of improving forecasting efforts, but that evaluation
1361	should be extended to factors that encompass use and utility of forecast information for
1362	stakeholders. In particular, very little research is done on effective seasonal forecast
1363	communication. Instead, users are commonly engaged only near the end of the product
1364	development process.
1365	
1366	Other barriers to the use of SI climate forecasts in water resources management have
1367	been identified and those that relate to institutional issues and aspects of current forecast
1368	products are discussed in chapters 3 and 4 of this report.
1369	
1370	Pathways for expanding the use and improving the utility of data and forecast products to
1371	support decision-making in the water resources sector are currently being pursued at a
1372	variety of spatial and jurisdictional scales in the United States. These efforts include:
1373	• An increased focus on developing forecast evaluation tools that provide users
1374	with opportunities to better understand forecast products in terms of their
1375	expected skill and applicability;
1376	• Additional efforts to explicitly and quantitatively link SI climate forecast
1377	information with SI hydrologic and water supply forecasting efforts;
1378	• An increased focus on developing new internet-based tools for accessing and
1379	customizing data and forecast products to support hydrologic forecasting and
1380	water resources decision-making; and,
1381	• Further improvements in the skill of hydrologic and water supply forecasts.
1382	

1383	Many of these pathways are currently being pursued by the federal agencies charged with
1384	producing the official climate and hydrologic forecast and data products for the United
1385	States, but there is substantial room for increasing these activities.
1386	
1387	An additional important finding is that recent improvements in the use and utility of data
1388	and forecast products related to water resources decision-making have come with an
1389	increased emphasis on these issues in research funding agencies through programs like
1390	GEWEX, NOAA's RISA, SARP, TRACS and CPPA programs. Sustaining and
1391	accelerating future improvements in the use and utility of official data and forecast
1392	products in the water resources sector rests in part on sustaining and expanding federal
1393	support for programs focused on improving the skill in forecasts, increasing the access to
1394	data and forecast products, and fostering sustained interactions between forecast
1395	producers and consumers.
1396	
1397	2.1 INTRODUCTION
1398	In the past, water resource managers relied heavily on observed hydrologic conditions
1399	such as snowpack and soil moisture to make seasonal to interannual (SI) water supply
1400	forecasts to support management decisions. Within the last decade, researchers have
1401	begun to link SI climate forecasts with hydrologic models (e.g., Kim et al., 2000,

1402 Kyriakidis et al., 2001) or statistical distributions of hydrologic parameters (e.g.,

1403 Dettinger et al., 1999, Sankarasubramanian and Lall 2003) to improve hydrologic and

1404 water resources forecasts. Efforts to incorporate SI climate forecasts into water resources

1405 forecasts have been prompted in part by our growing understanding of the effects of

1406	global-scale climate phenomena, like El Niño Southern Oscillation (ENSO), on U.S.
1407	climate, and the expectation that SI forecasts of hydrologically-significant climate
1408	variables like precipitation and temperature provide a basis for predictability that is not
1409	currently being exploited. To the extent that climate variables like temperature and
1410	precipitation can be forecasted seasons in advance, hydrologic and water-supply forecasts
1411	can also be made skillfully well before the end, or even beginning, of the water year 1.
1412	
1413	This chapter focuses on a description and evaluation of hydrologic and climate forecast
1414	and data products that support decision-making for water resource managers. Because the
1415	focus of this CCSP product is on using SI forecasts and data for decision-support in the
1416	water resources sector, we frame this chapter around key forecast and data products that
1417	contribute towards improved hydrologic and water supply forecasts. As a result, this
1418	product does not contain a comprehensive review and assessment of the entire national SI
1419	climate and hydrologic forecasting effort. In addition, the reader should note that, even
1420	today, hydrologic and water supply forecasting efforts in many places are still not
1421	inherently linked with the SI climate forecasting enterprise.
1422	
1423	Surveys identify a variety of barriers to the use of climate forecasts (Pulwarty and
1424	Redmond, 1997; Callahan et al., 1999;. Hartmann et al., 2002), but insufficient accuracy
1425	is always mentioned as a barrier. It is also well established that an accurate forecast is, in
1426	and of itself, not sufficient to make it useful or usable for decision-making in
1427	management applications (see Table 2.1). Chapters 3 and 4 provide extensive reviews,

¹ The *water year*, or hydrologic year, is October 1st through September 30th. This reflects the natural cycle in many hydrologic parameters such as the seasonal cycle of evaporative demand, and of the snow accumulation, melt, and runoff periods in many parts of the US.

1428	case studies, and analyses that provide insights into pathways for lowering or overcoming
1429	barriers to the use of SI climate forecasts in water resources decision-making.
1430	
1431	It is almost impossible to discuss the perceived value of forecasts without also discussing
1432	issues related to forecast skill. Many different criteria have been used to evaluate forecast
1433	skill (see Wilks, 1995 for a comprehensive review). Some measures focus on aspects of
1434	deterministic skill (e.g., correlations between predicted and observed seasonally averaged
1435	precipitation anomalies), while many others are based on categorical forecasts (e.g.,
1436	Heidke skill scores for categorical forecasts of "wet," "dry," or "normal" conditions). The
1437	most important measures of skill vary with different perspectives. For example,
1438	Hartmann et al., (2002) argue that forecast performance criteria based on "hitting" or
1439	"missing" associated observations offer users conceptually easy entry into discussions of
1440	forecast quality. In contrast, some research scientists and water supply forecasters may be
1441	more interested in correlations between the ensemble average of predictions and observed
1442	measures of water supply like seasonal runoff volume.
1443	
1444	Forecast skill remains a primary concern among many forecast producers and users. Skill
1445	in hydrologic forecast systems derives from various sources, including the quality of the

simulation models used in forecasting, the ability to estimate the initial hydrologic state

1447 of the system, and the ability to skillfully predict the statistics of future weather over the

- 1448 course of the forecast period. Despite the significant resources expended to improve SI
- 1449 climate forecasts over the past 15 years, few water resource related agencies have been

Do Not Cite or Quote

1450 making quantitative use of climate forecast information in their water supply forecasting

1451 efforts (Pulwarty and Redmond 1997; Callahan et al., 1999).

1452

1453

1454Table 2.1 Barriers to the use of climate forecasts and information for resource managers in the1455Columbia River Basin

1456 (Reproduced from Pulwarty and Redmond, 1997).

- a. Forecasts not "accurate" enough.
- b. Fluctuation of successive forecasts ("waffling").
- c. The nature of what a forecast is, and what is being forecast (*e.g.*, types of El Niño and La Niña impacts, non-ENSO events, what are "normal" conditions?).

d. Nonweather/climate factors are deemed to be more important (*e.g.*, uncertainty in other arenas, such as freshwater and ocean ecology [for salmon productivity]).

e. Low importance is given to climate forecast information because its role is unclear or impacts are not perceived as important enough to commit resources.

f. Other constraints deny a flexible response to the information (*e.g.*, meeting flood control or Endangered Species Act requirements).

g. Procedures for acquiring knowledge and making and implementing decisions, which incorporate climate information, have not been clearly defined.

h. Events forecast may be too far in the future for a discrete action to be engaged.

i. Availability and use of locally specific information may be more relevant to a particular decision.

- j. "Value" may not have been demonstrated by a credible reliable organization or competitor.
- k. Desired information not provided (e.g., number of warm days, regional detail).
- 1. There may be competing forecasts or other conflicting information.

m. Lack of "tracking" information; does the forecast appear to be verifying?

n. History of previous forecasts not available. Validation statistics of previous forecasts not available.

1457

- 1458 In Section 2.2 of this chapter, we review hydrologic data and forecasts products. Section
- 1459 2.3 provides a parallel discussion of the climate data and forecast products that support
- 1460 hydrologic and water supply forecasting efforts in the United States. In Section 2.4, we
- 1461 provide a more detailed discussion of pathways for improving the skill and utility in
- 1462 hydrologic and climate forecasts and data products.

- 1464 Section 2.5 contains a brief review of operational considerations and efforts to improve
- 1465 the utility of forecast and data products through efforts to improve the forecast evaluation
- 1466 and development process. These efforts include cases in which forecast providers and

- 1467 users have been engaged in sustained interactions to improve the use and utility of
- 1468 forecast and data products, and have led to many improvements and innovations in the
- 1469 data and forecast products generated by national centers. In recent years, a small number
- 1470 of water resource agencies have also developed end-to-end forecasting systems that
- 1471 utilize climate forecasts to directly inform hydrologic and water resources forecasts.
- 1472

1473 **BOX 2.1: Agency Support** 1474

Federal support for research supporting improved hydrologic forecasts and applications through the use of
climate forecasts and data has received increasing emphasis since the mid-1990s. The World Climate
Research Program's Global Energy and Water Cycle Experiment (GEWEX) was among the first attempts
to integrate hydrology/land surface and atmosphere models in the context of trying to improve hydrologic
and climate predictability.

1481There have been two motivations behind this research: understanding scientific issues of land surface1482interactions with the climate system, and the development or enhancement of forecast applications, *e.g.*, for1483water, energy and hazard management. Early on, these efforts were dominated by the atmospheric (and1484related geophysical) sciences.

- 1486 In the past, only two U.S. programs have been very relevant to hydrologic prediction: the NOAA Climate 1487 Prediction Program for the Americas (CPPA) and NOAA predecessors GEWEX Continental-scale 1488 International Project (GCIP) and GEWEX Americas Prediction Project (GAPP) and the NASA Terrestrial 1489 Hydrology Program. The hydrologic prediction and water management focus of NOAA and NASA has 1490 slowly expanded over time. Presently, the NOAA Climate Dynamics and Experimental Prediction (CDEP), 1491 Transition of Research Applications to Climate Services (TRACS) and Sectoral Applications Research 1492 Program (SARP) programs, and the Water Management program within NASA, have put a strong 1493 emphasis on the development of both techniques and community linkages for migrating scientific advances 1494 in climate and hydrologic prediction into applications by agencies and end use sectors. The longer-standing 1495 NOAA Regional Integrated Sciences and Assessments (RISA) program has also contributed to improved 1496 use and understanding of climate data and forecast products in water resources forecasting and decision-1497 making. Likewise, the recently initiated postdoctoral fellowship program under the Predictability, 1498 Predictions, and Applications Interface (PPAI) panel of U.S. CLIVAR aims to grow the pool of scientists 1499 qualified to transfer advances in climate science and climate prediction into climate-related decision 1500 frameworks and decision tools.
- 1500

1502 Still, these programs are not well funded in comparison to current federally funded science-focused
1503 initiatives, and are only just beginning to make inroads into the vast arena of effectively increasing the use
1504 and utility of climate and hydrologic data and forecast products.

- 1506 end BOX 2.1
- 1507

1508 2.2 HYDROLOGIC AND WATER RESOURCES: MONITORING AND

1509 **PREDICTION**

Figure 2.1 The correspondence of climate and hydrologic forecast lead time to user sectors in which
 forecast benefits are realized (from HRL-NWS). The focus of this product is on climate and hydrologic
 forecasts with lead times greater than 2 weeks and up to approximately one year.

1526 **2.2.1 Prediction Approaches**

1521

Do Not Cite or Quote

- 1527 The primary climate and hydrologic prediction approaches used by operational and
- 1528 research centers fall into four categories: statistical, dynamical, statistical-dynamical
- 1529 hybrid, and consensus. The first three approaches are objective in the sense that the inputs
- 1530 and methods are formalized, outputs are not modified on an ad hoc basis, and the
- 1531 resulting forecasts are potentially reproducible by an independent forecaster using the
- 1532 same inputs and methods. The fourth major category of approach, which might also be
- 1533 termed blended knowledge, requires subjective weighting of results from the other
- 1534 approaches. These types of approaches are discussed in Box 2.2.
- 1535

1536 BOX 2.2: Forecast Approaches 1537

1538 Dynamical: Computer models designed to represent the physical features of the oceans, atmosphere and 1539 land surface, at least to the extent possible given computational constraints, form the basis for dynamical 1540 predictions. These models have at their core a set of physical relationships describing the interactions of the 1541 Earth's energy and moisture states. Inputs to the models include estimates of the current moisture and 1542 energy conditions needed to initialize the state variables of the model (such as the moisture content of an 1543 atmospheric or soil layer), and of any physical characteristics (called parameters -- one example is the 1544 elevation of the land surface) that must be known to implement the relationships in the model's physical 1545 core. In theory, the main advantage of dynamical models is that influence of any one model variable on 1546 another is guided by the laws of nature as we understand them. As a result, the model will correctly 1547 simulate the behavior of the earth system even under conditions that may not have occurred in the period 1548 during which the model is verified, calibrated and validated. The primary disadvantages of dynamical 1549 models, however, are that their high computational and data input demands require them to approximate 1550 characteristics of the Earth system in ways that may compromise their realism and therefore performance. 1551 For example, the finest computational grid resolution that can be practically achieved in most atmospheric 1552 models (on the order of 100~200 km per cell) is still too coarse to support a realistic representation of 1553 orographic effects on surface temperature and precipitation. Dynamical hydrologic models can be 1554 implemented at much finer resolutions (down to 10 meters per cell, for catchment-scale models) because 1555 they are typically applied to much smaller geographic domains than are atmospheric models. While there 1556 are many aspects that distinguish one model from another, only a subset of those (listed in Table 1.1) is 1557 appreciated by the forecast user, as opposed to the climate modeler, and is relevant in describing the 1558 dynamical forecast products.

1559

1560 Statistical: Statistical forecast models use mathematical models to relate observations of an earth system 1561 variable that is to be predicted to observations of one or more other variables (and/or of the same variable at 1562 a prior time) that serve as predictors. The variables may describe conditions at a point location (*e.g.*, flow 1563 along one reach of a river) or over a large domain, such as sea surface temperatures along the equator. The 1564 mathematical models are commonly linear relationships between the predictors and the predictand, but also 1565 may be formulated as more complex non-linear systems.

1566

Statistical models are often preferred for their computational ease relative to dynamical models. In many
 cases, statistical models can give equal or better performance to dynamical models due in part to the
 inability of dynamical models to represent fully the physics of the system (often as a result of scale or data

limitations), and in part to the dependence of predictability in many systems on predominantly linear
dynamics (Penland and Magorian, 1993; van den Dool, 2007). The oft-cited shortcomings of statistical
models, on the other hand, include their lack of representation of physical causes and effects, which in
theory compromise their ability to respond to unprecedented events in a fashion that is consistent with the
physical constraints of the system. In addition, statistical models may require a longer observational record
for "training" than dynamical models, which are helped by their physical structure.

1577 Objective hybrids: Statistical and dynamical tools can be combined using objective approaches. A primary
1578 example is a weighted merging of the tools' separate predictions into a single prediction (termed an
1579 objective consolidation; van den Dool, 2007). A second example is a tool that has dynamical and statistical
1580 subcomponents, such as a climate prediction model that links a dynamical ocean submodel to a statistical
1581 atmospheric model. A distinguishing feature of these hybrid approaches is that an objective method exists
1582 for linking the statistical and dynamical schemes so as to produce a set of outputs that are regarded as
1583 "optimal" relative to the prediction goals. This objectivity is not preserved in the next consensus approach.

1585 Blended Knowledge or Subjective consensus: Some forecast centers release operational predictions, in 1586 which expert judgment is subjectively applied to modify or combine outputs from prediction approaches of 1587 one or more of the first three types, thereby correcting for perceived errors in the objective approaches to 1588 form a prediction that has skill superior to what can be achieved by objective methods alone. The process 1589 by which the NOAA Climate Predication Center (CPC) and International Research Institue for Climate and 1590 Society (IRI) constructs their monthly and seasonal outlooks for example, includes subjective weighting of 1591 the guidance provided by different climate forecast tools. The weighting is often highly sensitive to recent 1592 evolution and current state of the tropical ENSO, but other factors like decadal trends in precipitation and 1593 surface temperature also have the potential to influence the final official climate forecasts. 1594

1595 end BOX 2.2

1596

Forecast Product Aspect	Description / Examples
Forecast product variables	Precipitation, temperature, humidity, windspeed, atmospheric
	pressure
Forecast product spatial resolution	Grid cell longitude by latitude, climate division
Domain	Watershed, river basin, regional, national, global
Product time step (temporal resolution)	Hourly, sub-daily, daily, monthly, seasonal
Range of product lead times	1 to 15 days, 1 to 13 months
Frequency of forecast product update	every 12 hours, every month
Lag of forecast product update	The length of time from the forecast initialization time before
	forecast products are available: <i>e.g.</i> , 2 hours for a medium range
	forecast, one day for a monthly to seasonal forecast
Existence of historical climatology	Many users require a historical climatology showing forecast
	model performance to use in bias-correction, downscaling,
	and/or verification.
Deterministic or probabilistic	Deterministic forecasts have a single prediction for each future
	lead time. Probabilistic forecasts frame predicted values within a
	range of uncertainty, and consist either of an ensemble of
	forecast sequences spanning all lead times, or of a distinct
	forecast distribution for each future lead time.
Availability of skill / accuracy information	Published or otherwise available information about the
	performance of forecasts is not always available, particularly for
	forecasts that are steadily evolving. In principle, the spread of
	probabilistic forecasts contains such information about the
	median of the forecast; but the skill characteristics pertaining to
	the spread of the forecast are not usually available.

Table 2.1 Aspects of forecast products that are relevant to users

1599 Other aspects of dynamical prediction schemes related to model physical and 1600 computational structure are important in distinguishing one model or model version from 1601 another. These aspects are primary indicators of the sophistication of an evolving model, 1602 relative to other models, but are not of much interest to the forecast user community. 1603 Examples include the degree of coupling of model components, model vertical 1604 resolution, cloud microphysics package, nature of data assimilation approaches, and of 1605 the data assimilated, and the ensemble generation scheme, among many other forecast 1606 system features. 1607

1608 2.2.2 Forecast Producers and Products

1609 Hydrologic forecasts are produced by many federal, regional, state, and local agencies, as

1610 well as by private sector companies such as utilities. In contrast to climate forecasts,

1611 hydrologic forecast products more directly target end use sectors -- *e.g.*, water, energy,

1612 natural resource or hazard management -- and are often region-specific. Prediction

1613 methods and forecast products vary from region to region and are governed by many

1614 factors, but depend in no small measure on the hydro-climatology, institutional traditions

1615 and sectoral concerns in each region. A representative sampling of typical forecast

1616 producers and products is given in Appendix A.1. Forecasting activities at the federal,

1617 state, regional, and local scales are discussed in the following subsections.

1618

1619 **2.2.2.1 Federal**

1620 The primary federal streamflow forecasting agencies at SI lead times are the NOAA

1621 National Weather Service (NWS) and the U.S. Department of Agriculture,(USDA)

Page 70 of 426

1622	National Resource Conservation Service (NRCS) National Water and Climate Center
1623	(NWCC). The NWCC's four forecasters produce statistical forecasts of summer runoff
1624	volume in the western U.S. using multiple linear regression to estimate future streamflow
1625	from current observed snow water equivalent, accumulated water year precipitation,
1626	streamflow, and in some locations, using ENSO indicators such as the Niño3.4 index
1627	(Garen, 1992; Ref: Pagano and Garen, 2005). Snowmelt runoff is critical for a wide
1628	variety of uses (water supply, irrigation, navigation, recreation, hydropower,
1629	environmental flows) in the relatively dry summer season. The regression approach has
1630	been central in the NRCS since the mid-1930s, before which similar snow-survey based
1631	forecasting was conducted by a number of smaller groups. Forecasts are available to
1632	users both in the form of tabular summaries (Figure 2.2) that convey both the central
1633	tendency of the forecasts and estimates of uncertainty, and maps showing the median
1634	forecast anomaly for each river basin area for which the forecasts are operational (Figure
1635	2.3). Until 2006, the NWCC's forecasts were released once a month, near the first of the
1636	month, for summer flow periods such as April through July or April through September.
1637	In 2006, the NWCC began to develop automated daily updates to these forecasts, and the
1638	daily product is likely to become more prevalent as development and testing matures. The
1639	NWCC also has begun to explore the use of physically-based hydrologic models as a
1640	basis for forecasting, but this effort has barely begun.
1641	
1642	NWCC water supply forecasts are coordinated subjectively with a parallel set of forecasts

1643 produced by the western U.S. NWS River Forecast Centers (RFCs), and with forecasts

1644 from Environment Canada's BC Hydro. The NRCS-NWS joint, official forecasts are of

Do Not Cite or Quote

Page 71 of 426

1645 the subjective consensus type described earlier, meaning that the final forecast products

are subjective combinations of information from different sources, in this case objective

1647 statistical tools (*i.e.*, regression-models informed by observed snow water equivalent,

accumulated water year precipitation, and streamflow) and model based forecast results

1649 from the RFCs.

1650

		F	orecasts T	his Ye	ar	30 Yea
	Forecast	Most	Probable	Reaso Max	nable Min	Averag Runof
stream and station	Period	kaf	%avg	%avg	%avg	ka
Alaska						
Gulkana River						
Sourdough, AK Kenai River	Apr-Jul	410	86	118	62	47
Cooper Landing, AK Ship Creek	Apr-Jul	965	104	122	88	92
Anchorage, AK Little Susitna River	Apr-Jul	45	78	102	57	9
Palmer, AK Talkeetna River	Apr-Jul	66	77	100	58	:
Talkeetna, AK Kuskokwim River	Apr-Jul	1370	84	99	69	163
Crooked Creek, AK Yukon River	Apr-Jun	9540	91	119	62	1050
Eagle, AK	Apr-Jul	38300	112	131	94	3420
Stevens Village, AK Salcha River	Apr-Jul	52800	110	123	96	482
Salchaket, AK Tanana River	Apr-Jul	500	80	115	53	62
Fairbanks, AK	Apr-Jul	6900	97	112	84	710
Nenana, AK Chena River	Apr-Jul	8290	92	107	77	900
Two Rivers, AK Little Chena River	Apr-Jul	240	89	130	58	2
Fairbanks, AK Gold Creek	Apr-Jul	66	85	118	58	
Juneau, AK Saskatchewan River Basin	Apr-Jul	44	133	161	109	3
St. Mary River						
Babb ⁿ r, MT	Apr-Sep	400	89	103	74	4 !

1651

Figure 2.2 Example of NRCS tabular summer runoff (streamflow) volume forecast summary, showing
 median ("most probable") forecasts and probabilistic confidence intervals, as well as climatological flow

averages. Flow units are thousand-acre-feet (KAF), a runoff volume for the forecast period. This table was
 downloaded from http://www.wcc.nrcs.usda.gov/wsf/wsf.html.

1657	The NWS surface water supply forecast program began in the 1940s in the Colorado
1658	Basin. It has since expanded to include seasonal forecasts (of volume runoff during the
1659	spring-summer snow melt period) for most of the snowmelt dominated basins important
1660	to water management in the western United States. These forecasts rely on two primary
1661	tools: Statistical Water Supply (SWS), based on multiple-linear regression, and
1662	Ensemble Streamflow Prediction (ESP), a technique based on hydrologic modeling
1663	(Schaake, 1978; Day, 1985). Results from both approaches are augmented by forecaster
1664	experience and the coordination process with other forecasting entities. In contrast to the
1665	western RFCs, RFCs in the eastern U.S. are more centrally concerned with short to
1666	medium-range flood risk and drought-related water availability out to about a three
1667	month lead time. At some eastern RFC websites, the seasonal forecast is linked only to
1668	the CPC Drought Outlook rather than an RFC-generated product (Box 2.3).
1660	

Figure 2.3 Example of NRCS spatial summer runoff (April-September streamflow) volume forecast
 summary, showing median runoff forecasts as an anomaly (percent of average).

1674	The streamflow prediction services of the RFCs have a national presence, and as such are
1675	able to leverage a number of common technological elements, including models,
1676	databases and software for handling meteorological and hydrological data, and for
1677	making, assessing and disseminating forecasts; <i>i.e.</i> , website structure. Nonetheless, the
1678	RFCs themselves are regional entities with regional concerns.
1679	
1680	The NWS's ESP approach warrants further discussion. In the mid 1970s, the NWS
1681	developed the hydrologic modeling, forecasting and analysis system – NWS River
1682	Forecast System (NWSRFS) – the core of which is the Sacramento soil moisture
1683	accounting scheme coupled to the Snow-17 temperature index snow model, for ESP-
1684	based prediction (Anderson, 1972, 1973; Burnash et al., 1973). The ESP approach uses a
1685	deterministic simulation of the hydrologic state during a model spin-up (initialization)
1686	period leading up to the forecast start date to estimate current hydrologic conditions, and
1687	then uses an ensemble of historical meteorological sequences as model inputs (e.g.,
1688	temperature and precipitation) to simulate hydrology in the future (or forecast) period.
1689	Until several years ago, the RFC dissemination of ESP-based forecasts for streamflows at
1690	SI lead times was rare, and the statistical forecasts were the accepted standard. Now, as
1691	part of the NWS Advanced Hydrologic Prediction Service (AHPS) initiative, ESP
1692	forecasts are being aggressively implemented for basins across the United States (Figure
1693	2.4) at lead times from short to SI (McEnery et al., 2005).
1694	

1696 Figure 2.4 Areas covered by the NWS Advanced Hydrologic Prediction Service (AHPS) initiative
(McEnery *et al.*, 2005).

1699 At the seasonal lead times, several western RFCs use graphical forecast products for the 1700 summer period streamflow forecasts that convey the probabilistic uncertainty of the 1701 forecasts. A unified web based suite of applications that became operational in 2008 1702 provides forecast users with a number of avenues for exploring the RFC water supply 1703 forecasts. For example, Figure 2.5 shows (in clockwise order from top left) (a) a western 1704 U.S. depiction of the median water supply outlook for the RFC forecast basins, (b) a 1705 progression of forecasts (median and bounds) during the water year together with flow 1706 normals and observed flows; (c) monthly forecast distributions, with the option to display 1707 individual forecast ensemble members (i.e., single past years) and also select ENSO-1708 based categorical forecasts (ESP subsets); and (d) various skill measures, such as mean 1709 absolute error, for the forecasts based on hindcast performance. Access to raw ensemble 1710 member data is also provided from the same website. 1711

Do Not Cite or Quote

Figure 2.5 A graphical forecast product from the NWS River Forecast Centers, showing a forecast of
 summer (April—July) period streamflow on the Colorado River, Colorado-Arizona. These figures were
 obtained from http://www.nwrfc.noaa.gov/westernwater.

1716

1717 The provision of a service which assists hydrologic forecast users in either customizing a

- selection of ESP traces to reflect, perhaps, the users interest in past years that they
- 1719 perceive as analogues to the current year, or the current ENSO state, is a notable advance
- 1720 from the use of "climatological" ESP (*i.e.*, using all traces from a historical period) in the
- 1721 prior ESP-related seasonal forecast products. Some western RFCs have also
- 1722 experimented with using the CPC seasonal climate outlooks as a basis for adjusting the

1723	precipitation and temperature forcings used in climatological ESP, but found that the
1724	CPC outlook anomalies were generally too small to produce a distinct forecast from the
1725	climatological ESP (Hartmann et al., 2002). In some RFCs, NWS statistical water supply
1726	forecasts have also provided perspective (albeit more limited) on the effect of future
1727	climate assumptions on future runoff by including results from projecting 50, 75, 100,
1728	125 and 150 percent of normal precipitation in the remaining water year. At times, the
1729	official NWS statistical forecasts have adopted such assumptions, e.g., that the first
1730	month following the forecast date would contain other than 100% of expected
1731	precipitation – based on forecaster judgment and consideration of a range of factors,
1732	including ENSO state and CPC climate predictions.
1733	
1734	Figure 2.6 shows the performance of summer streamflow volume forecasts from both the
1735	NWS and NRCS over a recent 10-year period; this example is also part of the suite of
1736	forecast products that the western RFC designed to improve the communication of
1737	forecast performance and provide verification information. Despite recent literature
1738	(Welles et al, 2007) that has underscored a general scarcity of such information from
1739	hydrologic forecast providers, the NWS has recently codified verification approaches and
1740	developed verification tools, and is in the process of disbursing them throughout the RFC
1741	organization (NWS, 2005, "River Forecast Verification Plan"). The existence in digitized
1742	form of the retrospective archive of seasonal forecasts is critical for the verification of
1743	forecast skill. The 10-year record shown in Figure 2.6, which is longer than the record
1744	available (internally or to the public) for many public agency forecast variables, is of
1745	inadequate length for some types of statistical assessment, but is an undeniable advance

Do Not Cite or Quote

Page 78 of 426

- 1746 in forecast communication relative to the services that were available previously. Future
- 1747 development priorities include a climate change scenario application, which would
- 1748 leverage climate change scenarios from IPCC or similar to produce inputs for future
- 1749 water supply planning exercises. In addition, forecast calibration procedures (e.g., Seo et
- 1750 *al.*, 2006; Wood and Schaake, 2008) are being developed for the ensemble forecasts to
- 1751 remove forecast biases. The current NOAA/NWS web service Internet web address is:
- 1752 (http://www.nwrfc.noaa.gov/westernwater)

Figure 2.6 Comparing ESP and statistical forecasts from the NRCS and NWS for a recent 10-year period.
 The forecasts are for summer (April—July) period streamflow on the Gunnison River, Colorado.

A contrast to these probabilistic forecasts is the deterministic 5-week forecast of lake

- 1759 elevation in Lake Lanier, GA, produced by the U.S. Army Corps of Engineers (USACE)
- 1760 based on probabilistic inflow forecasts from the NWS southeastern RFC. Given that the
- 1761 lake is a managed system and the forecast has a subseasonal lead time, the single-valued
- 1762 outlook may be justified by the planned management strategy. In such a case, the lake
- 1763 level is a constraint that requires transferring uncertainty in lake inflows to a different
- 1764 variable in the reservoir system, such as lake outflow. Alternatively, the deterministic

- 1765 depiction may result from an effort to simplify probabilistic information in the
- 1766 communication of the lake outlook to the public.

Figure 2.7 A deterministic 5-week forecast of reservoir levels in Lake Lanier, Georgia, produced by
USACE. http://water.sam.usace.army.mil/lanfc.htm.

1771 2.2.2.2 State and Regional

1767

1772 Regionally-focused agencies such as the U.S. Bureau of Reclamation (USBR), the

1773 Bonneville Power Administration (BPA), the Tennessee Valley Authority (TVA), and the

- 1774 Great Lakes Environmental Research Laboratory (GLERL) also produce forecasts
- 1775 targeting specific sectors within their priority areas. Figure 2.7 shows an example of an SI
- 1776 lead forecast of lake levels produced by GLERL. GLERL was among the first major
- 1777 public agency to incorporate climate forecast information into operational forecasts
- 1778 hydrologic and water management variables. Forecasters use coarse-scale climate
- 1779 forecast information to adjust climatological probability distribution functions (PDFs) of
- 1780 precipitation and temperature that are the basis for generating synthetic ensemble inputs

Do Not Cite or Quote

1781	to hydrologic and water management models, the outputs of which include lake level as
1782	shown in the figure. In this case, the climate forecast information is from the CPC
1783	seasonal outlooks (method described in Croley, 1996).
1784	
1785	The Bonneville Power Administration, which helps manage and market power from the
1786	Columbia River reservoir system, is both a consumer and producer of hydrologic forecast
1787	products. The BPA generates their own ENSO-state conditioned ESP forecasts of
1788	reservoir system inflows as input to management decisions, a practice supported by
1789	research into the benefits of ENSO information for water management (Hamlet and
1790	Lettenmaier, 1999).
1791	
1792	A number of state agencies responsible for releasing hydrologic and water resources
1793	forecasts also make use of climate forecasts in the process of producing their own
1794	hydrologic forecasts. The South Florida Water Management District (SFWMD) predicts
1795	lake (e.g., Okeechobee) and canal stages, and makes drought assessments, using a
1796	decision tree in which the CPC seasonal outlooks play a role. SFWMD follows GLERL's
1797	lead in using the Croley (1996) method for translating the CPC seasonal outlooks to
1798	variables of interest for their system.

Lake Superior Mean Lake Level (meters, IGLD85)

1805 2.2.2.3 Local

1801

At an even smaller scale, some local agencies and private utilities may also produce forecasts or at least derive applications-targeted forecasts from the more general climate or hydrology forecasts generated at larger agencies or centers. Seattle Public Utilities (SPU; see CASE STUDY IN Chapter 4) for example, operates a number of reservoirs for use primarily in municipal water supply. SPU makes SI reservoir inflow forecasts using statistical methods based on observed conditions in their watersheds (*i.e.*, snow and accumulated precipitation), and on the current ENSO state, in addition to consulting the

Do Not Cite or Quote

Page 82 of 426

 ¹⁸⁰² Figure 2.7 Probabilistic forecasts of future lake levels disseminated by GLERL (from: http://www.glerl.noaa.gov/wr/ahps/curfcst/).
 1804

1813	NWRFC volume runoff forecasts. The SPU forecasts are made and used internally rather
1814	than disseminated to the public.

1816 **2.2.2.4 Research**

1817 Re	esearch	institutions	such as	s unive	rsities	also	produce	hydro	logic	forecasts	of	a m	ore
---------	---------	--------------	---------	---------	---------	------	---------	-------	-------	-----------	----	-----	-----

1818 experimental nature. A prime example is the Integrated Forecast and Reservoir

1819 Management (INFORM) project housed at the Hydrologic Research Center (HRC),

1820 which produces not only streamflow forecasts in the state of California, but also reservoir

1821 system forecasts; this project is discussed at greater length in Chapter 4 (Georgakakos *et*

1822 *al.*, 2005). At the University of Washington and Princeton University, approximately five

1823 years ago, researchers launched an effort to produce operational hydrologic and

1824 streamflow predictions using distributed land surface models that were developed by an

1825 interagency effort called the Land Data Assimilation System (LDAS) project (Mitchell et

1826 *al.*, 2004; Wood and Lettenmaier, 2006); Figure 2.8 shows an example that is based on

1827 the use of CPC climate outlooks. In addition to generating SI streamflow forecasts in the

1828 western and eastern United States, the project also generates forecasts for land surface

1829 variables such as runoff, soil moisture, and snow water equivalent. These forecasts, like

1830 the NWS ESP predictions, are also physically-based, dynamical and objective. The effort

1831 is supported primarily by NOAA, and like the INFORM project collaborates with public

1832 forecast agencies in developing research-level prediction products. The federal funding is

1833 provided with the intent of migrating operational forecasting advances that arise in the

1834 course of these efforts into the public agencies, a topic discussed briefly in Section 2.1.

Do Not Cite or Quote

Runoff (RO) Forecasts (April 1, 2007)

Figure 2.8 Ensemble median forecasts of monthly runoff from an experimental hydrologic model based on
CPC climate outlooks. The hydrologic prediction project has run operationally since 2004 at the University
of Washington, and has a partner effort at Princeton University. Other variables, not shown, include soil
moisture, snow water equivalent and streamflow. This map was obtained from
http://cses.washington.edu/cig/fpt/waterfc/weststreamflowfc.shtml.

	1842	2.2.3 Skill in \$	SI Hydrologic and	Water Resource F	orecasts
--	------	-------------------	-------------------	------------------	----------

This section focuses on the skill of hydrologic forecasts; section 2.5 includes a discussion of forecast utility. Forecasts are statements about events expected to occur at specific times and places in the future. They can be either deterministic, single-valued predictions about specific outcomes, or probabilistic descriptions of likely outcomes that typically take the form of ensembles, distributions, or weighted scenarios.

1848

1849 The hydrologic and water resources forecasts made for water resources management 1850 reflect three components of predictability: the seasonality of the hydrologic cycle, 1851 predictability associated with large-scale climate teleconnections, and persistence of 1852 anomalies in hydrologic initial conditions. Evapotranspiration, runoff (e.g., Pagano et al., 1853 2004) and ground-water recharge (e.g., Earman et al., 2006) all depend on soil moisture 1854 and (where relevant) snowpack conditions one or two seasons prior to the forecast 1855 windows, so that these moisture conditions, directly or indirectly, are key predictors to 1856 many hydrologic forecasts with lead times up to six months. Although hydrologic initial 1857 conditions impart only a few months of predictability to hydrologic systems, during their 1858 peak months of predictability, the skill that they contribute is often paramount. This is 1859 particularly true in the western U.S., where much of the year's precipitation falls during 1860 the cool season, as snow, and then accumulates in relatively easily observed form, as 1861 snowpack, until it predictably melts and runs off in the warm-season months later. 1862 Information about large-scale climatic influences, like the current and projected state of 1863 ENSO, are valued because some of the predictability that they confer on water resources 1864 has influence even before snow begins to accumulate or soil-recharging fall storms

Do Not Cite or Quote

1865	arrive. ENSO, in particular, is strongly synchronized with the annual cycle, so that, in
1866	many instances, the first signs of an impending warm (El Niño) or cold (La Niña) ENSO
1867	event may be discerned toward the end of the summer before the fluctuation reaches its
1868	maturity and peak of influence on the U.S. climate, in winter. This advanced warning for
1869	important aspects of water year climate allows forecasters, in some locations, to
1870	incorporate the expected ENSO influences into hydrologic forecasts before or near the
1871	beginning of the water year (e.g., Hamlet and Lettenmaier, 1999).
1872	
1873	These large-scale climatic influences, however, rarely provide the high level of skill that
1874	can commonly be derived later in the water year from estimates of land surface moisture
1875	state, <i>i.e.</i> , from precipitation accumulated during the water year, snow water equivalent or
1876	soil moisture, as estimated indirectly from streamflow. Finally, the unpredictable, random
1877	component of variability remains to limit the skill of all real-world forecasts. The
1878	unpredictable component reflects a mix of uncertainties and errors in the observations
1879	used to initialize forecast models, and errors in the models, and the chaotic complexities
1880	in forecast model dynamics and in the real world.

Many studies have shown that the single greatest source of forecast error is unknown precipitation after the forecast issue date. Schaake and Peck (1985) estimate that for the 1947-1984 forecasts for inflow to Lake Powell, almost 80% of the January 1st forecast error is due to unknown future precipitation; by April 1st, Schaake and Peck find that future precipitation still accounts for 50% of the forecast error. Forecasts can perform poorly specifically in years with extreme spring precipitation (*e.g.*, 1983 above), or

Do Not Cite or Quote

Page 86 of 426

1888	generally, they can do poorly if spring precipitation is normally a significant component
1889	of the annual cycle. For example, in California, the bulk of the moisture falls from
1890	January-March and rarely does it rain in spring, meaning that April 1 forecasts of spring-
1891	summer streamflow are generally very accurate. In comparison (see Figure 2.9), in
1892	eastern Wyoming and the front range of Colorado, April-through-June is the wettest time
1893	of year and by April 1 the forecaster can only guess at future precipitation events because
1894	of an inability to skillfully forecast springtime precipitation in this region one season in
1895	advance.

MEAN April-June FRACTION OF ANNUAL PRECIPITATION

1896

1897 Figure 2.9 Mean percentages of annual precipitation that fall from April through June, 1971-2000 (based 1898 on 4-km PRISM climatologies). This figure was obtained from http://www.prism.oregonstate.edu/. 1899

1900 Pagano et al. (2004) discovered that the second greatest factor influencing skill is how

much influence snowmelt has on the hydrology of the basin and how warm it is during 1901

1902 the winter. For example, in basins high in the mountains of Colorado, the temperature 1903 remains below freezing for most of the winter. Streamflow is generally low through April 1904 until temperatures rise and the snow starts to melt. The stream then receives a major pulse 1905 of snowmelt over the course of several weeks. Spring precipitation may supplement the 1906 streamflow, but any snow that falls in January is likely to remain in the basin until April 1907 when the forecast target season starts. In comparison, in western Oregon, warm rain-1908 producing storms can be interspersed with snow-producing winter storms. Most of the 1909 runoff occurs during the winter and it is possible for a large snowpack in February to be 1910 wasted away by March rains. For the forecaster, attempting to predict April-to-July 1911 streamflow is difficult to anticipate, particularly the quantity of water is going to "escape" 1912 before the target season begins. 1913 1914 Some element of forecast accuracy depends on the variability of the river itself. It would 1915 be easy to incur a 100% forecast error on, for example, the San Francisco River in 1916 Arizona, whose observations vary between 17% of average to over 750% of average. It 1917 would be much more difficult to do so on a river such as the Stehekin River in 1918 Washington, where the streamflow ranges only between 60% and 150% of average. A 1919 user may be interested in this aspect of accuracy (e.g., percent of normal error), but most 1920 forecasters use skill scores (e.g., correlation) that would normalize for this effect and 1921 make the results from these two basins more comparable. As noted by Hartmann et al. 1922 (2002), consumers of forecast information may be more interested in measures of 1923 forecast skill other than correlations.

1924

Do Not Cite or Quote

Page 88 of 426

1925	2.2.3.1 Skill of current seasonal hydrologic and water-supply forecasts
1926	As previously indicated, hydrologic and streamflow forecasts that extend to a 9 -month
1927	lead time are made for western U.S. rivers, primarily during the winter and spring,
1928	whereas in other parts of the United States, where seasonality of precipitation is less
1929	pronounced, the forecasts either link to CPC drought products, are qualitative (the NWS
1930	Southeastern RFC, for instance, provides water supply related briefings from their
1931	website) or in other regards are less amenable to skill evaluation. For this reason, the
1932	following discussion of water supply forecast skill focused mostly on western U.S.
1933	streamflow forecasting, and in particular water supply (i.e., runoff volume) forecasts, for
1934	which most published material relating to SI forecasts exists.
1935	
1936	In the western U.S., the skill of operational forecasts generally improves progressively
1937	during the winter and spring months leading up to the period being forecasted, as
1938	increasing information about the year's land surface water budget are observable (<i>i.e.</i> ,
1939	reflected in snowpack, soil moisture, streamflow and the like). An example of the long-
1940	term average seasonal evolution of NWCC operational forecast skill at a particular stream
1941	gage is shown in Figure 2.10. The flow rates that are judged to have a 50% chance of not
1942	being exceeded (<i>i.e.</i> , the 50th percentile or median) are shown by the blue curve for the
1943	early part of 2007. The red curve shows that early in the water year, the April-July
1944	forecast has little skill, measured by the regression coefficient of determination (r2 or
1945	correlation squared), with only about 10% of historical variance captured by the forecast
1946	equations. By about April 1, the forecast equations predict about 45% of the historical
1947	variance, and at the end of the season, the variance explained is about 80%. This measure

Do Not Cite or Quote

Page 89 of 426

- 1948 of skill does not reach 100% because the observations available for use as predictors do
- 1949 not fully explain the observed hydrologic variation.
- 1950

Figure 2.10 Recent operational NWCC forecasts of April-July 2007 streamflow volume in Birch Creek at
 Swift Dam near Valier, showing daily median-forecast values of percentages of long-term average
 streamflow total for summer 2007 (blue) and the long-term estimates of correlation-based forecast skill
 corresponding to each day of the year. (Figure obtained from the National Water and Climate Center
 (NWCC) -- http://www.wcc.nrcs.usda.gov/).

1958	Comparisons of "hindcasts"-seasonal flow estimates generated by applying the
1959	operational forecast equations to a few decades (lengths of records differ from site to site)
1960	of historical input variables at each location with observed flows provide estimates of the
1961	expected skill of current operational forecasts. The actual skill of the forecast equations
1962	that are operationally used at as many as 226 western stream gages are illustrated in
1963	Figure 2.11, in which skill is measured by correlation of hindcast median with observed
1964	values.
1965	

1966	The symbols in the various panels of Figure 2.11 become larger and bluer in hue as the
1967	hindcast dates approach the start of the April-July seasons being forecasted. They begin
1968	with largely unskillful beginnings each year in the January 1 forecast; by April 1 the
1969	forecasts are highly skillful by the correlation measures (predicting as much as 80% of
1970	the year-to-year fluctuations) for most of the California, Nevada, and Idaho rivers and

1971 many stations in Utah and Colorado.

HISTORICAL CORRELATION SKILLS FOR APRIL-JULY FLOW VOLUMES

Figure 2.11 Skills of forecast equations used operationally by NRCS, California Department of Water
 Resources, and Los Angeles Department of Water and Power, for predicting April-July water supplies
 (streamflow volumes) on selected western rivers, as measured by correlations between observed and
 hindcasted flow totals over each station's period of forecast records. Figure provided by Tom Pagano,
 USDA NRCS.

1978

1979 The general increases in skill and thus in numbers of stations with high (correlation) skill

scores as the April 1 start of the forecast period approaches is shown in Figure 2.12.

1982

Figure 2.12 Percentages of stations with various correlation skill scores in the various panels (forecast dates) of Figure 2.11.

- 1986 A question not addressed in this report relates to the probabilistic skill of the forecasts.
- 1987 That is, how reliable are the confidence limits around the median forecasts that are
- 1988 provided by the published forecast quantiles (10th and 90th percentiles, for example). In
- 1989 a reliable forecast, the frequencies with which the observations fall between various sets
- 1990 of confidence bounds matches the probability interval set by those bounds. That is, 80%
- 1991 of the time, the observed values fall between the 10th and 90th percentiles of the forecast.
- 1992 Among the few analyses that have been published focusing on the probabilistic
- 1993 performance of U.S. operational streamflow forecasts, Franz et al. (2003) evaluated
- 1994 Colorado River basin ESP forecasts using a number of probabilistic measures and found
- 1995 reliability deficiencies for many of the streamflow locations considered.
- 1996

1997	2.2.3.2 The implications of decadal variability and long term change in climate for
1998	seasonal hydrologic prediction skill
1999	In the earlier discussion of sources of water-supply forecast skill, we highlighted the
2000	amounts and sources of skill provided by snow, soil moisture, antecedent runoff
2001	influences. IPCC projections of global and regional warming, with its expected strong
2002	effects on western U.S. snowpacks (Stewart et al., 2004; Barnett et al., 2008) raises the
2003	concern that prediction methods such as regression that depend on a consistent
2004	relationship between these predictors and future runoff may not perform as expected if
2005	the current climate system is being altered in ways that then alters these hydro-climatic
2006	relationships. Decadal climate variability, particularly in precipitation (e.g., Mantua et al.,
2007	1997; McCabe and Dettinger, 1999), may also represent a challenge to such methods,
2008	although some researchers suggest that knowledge of decadal variability can be
2009	beneficial for streamflow forecasting (e.g., Hamlet and Lettenmaier, 1999). One view
2010	voiced in the literature (e.g., Wood and Lettenmaier, 2006) is that hydrologic model-
2011	based forecasting may be more robust to the effects of climate change and variability due
2012	to the physical constraints of the land surface models, but this thesis has not been
2013	comprehensively explored.
2014	

2015 The maps shown in Figure 2.13 are based on hydrologic simulations of a physically-

2016 based hydrologic model, the Variable Infiltration Capacity (VIC) model (Liang *et al.*,

2017 1994), in which historical temperatures are uniformly increased by +2°C. These figures

show that the losses of snowpack and the tendencies for more precipitation to fall as rain

2019 rather than snow in a warmer world reduce overall forecast skill, shrinking the areas
2020	where snowpack contributes strong predictability and also making antecedent runoff a
2021	less reliable predictor. Thus many areas where warm-season runoff volumes are
2022	accurately predicted historically are likely to lose some forecast skill along with their
2023	snowpacks. Overall, the average skill declines by about 2% (out of a historical average of
2024	35%) for the January-March volumes and by about 4% out of a historical average of 53%
2025	for April-July. More importantly, though, are the declines in skill at grid cells where
2026	historical skills are greatest, nearly halving the occurrence of high-end (>0.8) January-to-
2027	March skills and reducing high-end April-to-July skills by about 15% (Figure 2.14).
2028	

CHANGES IN CONTRIBUTIONS OF FORECAST SKILL FOR SEASONAL RUNOFF IN RESPONSE TO +2°C WARMING

2030 Figure 2.13 Potential contributions of antecedent snowpack conditions, runoff, and Niño 3.4 sea-surface 2031 temperatures to seasonal forecast skills in hydrologic simulations under historical, 1950-99, meteorological 2032 conditions (left panels) and under those same conditions but with a $+2^{\circ}$ C uniform warming imposed. 2033 (Dettinger, 2007)

- 2034
- 2035

Figure 2.14 Distributions of overall fractions of variance predicted, in Fig. 2.13, of January-March
 (curves) and April-July (histograms) runoff volumes under historical (black) and +2°C warmer conditions.
 (Dettinger, 2007)

2041 This enhanced loss among the most skillful grid cells reflects the strong reliance of those 2042 grid cells on historical snowpacks for the greater part of their skill, snowpacks which 2043 decline under the imposed +2°C warmer conditions. Overall, skills associated with 2044 antecedent runoff are more strongly reduced for the April-to-July runoff volumes, with 2045 reductions from an average contribution of 24% of variance predicted (by antecedent 2046 runoff) historically to 21% under the +2°C warm conditions; for the January-to-March 2047 volumes, skill contributed by antecedent runoff only declines from 18.6% to 18.2% under 2048 the imposed warmer conditions. The relative declines in the contributions from snowpack 2049 and antecedent runoff make antecedent runoff (or, more directly, soil moisture, for which 2050 antecedent runoff is serving as a proxy here) a more important predictor to monitor in the 2051 future.

2053	It is worth noting that the changes in skill contributions illustrated in Figure 2.13 are best-
2054	case scenarios. The skills shown are skills that would be provided by a complete
2055	recalibration of forecast equations to the new (imposed) warmer conditions, based on 50
2056	years of runoff history. In reality, the runoff and forecast conditions are projected to
2057	gradually and continually trend towards increasingly warm conditions, and fitting new,
2058	appropriate forecast equations (and models) will always be limited by having only a brief
2059	reservoir of experience with each new degree of warming. Consequently, we must expect
2060	that regression-based forecast equations will tend to be increasingly and perennially out
2061	of date in a world with strong warming trends. This problem with the statistics of forecast
2062	skill in a changing world suggests development and deployment of more physically
2063	based, less statistically based forecast models should be a priority in the foreseeable
2064	future.
2065	

2066 2.2.3.3 Skill of climate forecast-driven hydrologic forecasts

2067 The extent to which the ability to forecast United States precipitation and temperature

2068 seasons in advance can be translated into long-lead hydrologic forecasting has been

2069 evaluated by Wood *et al.* (2005). That evaluation compared hydrologic variables in the

2070 major river basins of the western conterminous U.S. as simulated by the VIC hydrologic

2071 model (Liang et al., 1994), forced by two different sources of temperature and

2072 precipitation data: (1) observed historical meteorology (1979-1999); and (2) by hindcast

2073 climate-model-derived 6-month-lead climate forecasts.

2075	The Wood et al. (2005) assessment quantified and reinforced an important aspect of the
2076	hydrologic forecasting community's intuition about the current levels of hydrologic
2077	forecast skill using long-lead climate forecasts generated from various sources. The
2078	analysis first underscored the conclusions that, depending on the season, knowledge of
2079	initial hydrologic conditions conveys substantial forecast skill. A second finding was that
2080	the additional skill available from incorporating current (at the time) long-lead climate
2081	model forecasts into hydrologic prediction is limited when all years are considered, but
2082	can improve streamflow forecasts relative to climatological ESP forecasts in extreme
2083	ENSO years. If performance in all years is considered, the skill of current climate
2084	forecasts (particularly, of precipitation) is inadequate to provide readily extracted
2085	hydrologic-forecast skill at monthly to seasonal lead times. This result is consistent with
2086	findings for North American climate predictability (Saha et al., 2006). During El Niño
2087	years, however, the climate forecasts have high enough skill for temperatures, and mixed
2088	skill for precipitation, so that hydrologic forecasts for some seasons and some basins
2089	(especially California, the Pacific Northwest and the Great Basin) provide measurable
2090	improvements over the ESP alternative.

2093 a general lack of skill, [but] there may be locations, times of year and conditions (*e.g.*,

2094 during El Niño or La Niña) for which they improve hydrologic forecasts relative to ESP"

- 2095 (Wood et al., 2005). However, their conclusion was that improvements to hydrologic
- 2096 forecasts based on other forms of climate forecasts, *e.g.*, statistical or hybrid methods that

Do Not Cite or Quote

2097	are not completely reliant on a single climate model may prove more useful in the near
2098	term, presumably until pure climate-model forecasts have improved considerably.
2099	
2100	2.3 CLIMATE DATA AND FORECAST PRODUCTS
2101	2.3.1 A Sampling of SI Climate Forecast Products of Interest to Water Resource
2102	Managers
2103	At SI lead times, a wide array of dynamical prediction products exists. A representative
2104	sample of SI climate forecast products is listed in Appendix A.1. The current dynamical
2105	prediction scheme used by NCEP, for example, is a system of models comprising
2106	individual models of the oceans, global atmosphere and continental land surfaces. These
2107	models were developed and originally run for operational forecast purposes in an
2108	uncoupled, sequential mode, an example of which is the so-called "Tier 2" framework in
2109	which the ocean model runs first, producing ocean surface boundary conditions that are
2110	prescribed as inputs for subsequent atmospheric model runs. Since 2004, a "Tier 1"
2111	scheme was introduced in which the models, together called the Coupled Forecast
2112	System (CFS; Saha et al., 2006), were fully coupled to allow dynamic exchanges of
2113	moisture and energy across the interfaces of the model components.
2114	
2115	At NCEP, the dynamical tool, CFS, is complemented by a number of statistical forecast
2116	tools, three of which, Screening Multiple Linear Regression (SMLR). Optimal Climate
2117	Normals (OCN), and Canonical Correlation Analysis (CCA), are merged with the CFS to
2118	form an objective consolidation forecast product (Figure 2.15). While the consolidated
2119	forecast exceeds the skill of the individual tools, the official seasonal forecast from CPC

Do Not Cite or Quote

Page 100 of 426

involves a subjective merging of it with forecast and nowcast information sources from a
number of different sources, all accessible to the public at CPC's monthly briefing. The
briefing materials comprise 40 different inputs regarding the past, present and expected
future state of the land, oceans and atmosphere from sources both internal and external to
CPC, that are posted online at:
(http://www.cpc.ncep.noaa.gov/products/predictions/90day/tools/briefing/).

Figure 2.15 CPC objective consolidation forecast for precipitation and temperature for the three month
 period Aug-Sep-Oct 2007, made June 2007 (lead 2 months). Figure obtained from

- 2129 http://www.cpc.ncep.noaa.gov.
- 2130

2131	The resulting official forecast briefing has CPC's primary presentation of climate forecast
2132	information each month. Forecast products are accessible directly from CPC's root level
2133	home page in the form of maps of the probability anomalies for precipitation and
2134	temperature in three categories, or "terciles", representing below-normal, normal and
2135	above-normal values; a two-category scheme (above and below normal) is also available.
2136	This framework is used for the longer lead outlooks (Figure 2.16). The seasonal forecasts
2137	are also available in the form of maps of climate anomalies in degrees Celsius for
2138	temperature and inches for precipitation (Figure 2.17). The forecasts are released
2139	monthly, have a time-step of three months, and have a spatial unit of the climate division
2140	(Figure 2.18). For users desiring more information about the probabilistic forecast than is
2141	given in the map products, a probability of exceedence (POE) plot, with associated
2142	parametric information, is also available for each climate division (Figure 2.19). The
2143	POE plot shows the shift of the forecast probability distribution from the climatological
2144	distribution for each lead-time of the forecast.
2145	

2147

- Figure 2.15 NCEP CPC seasonal outlook for precipitation also shown as a tercile probability map. Figure
 obtained from
- 2150 http://www.cpc.ncep.noaa.gov/products/predictions/multi_season/13_seasonal_outlooks/color/page2.gif.

Anomaly (Inches) of the Mid-value of the 3-Month Precipitation Outlook Distribution for ASO 2007 Dashed lines are the median 3-month precipitation (inches) based on observations from 1971-2000. Shaded areas indicate whether the anomaly of the mid-value is positive (green) or negative (brown) compared to the 1971-2000 average. Non-shaded regions indicate that the obsolute value of the anomaly of the mid-value is less than 0.1. For a given location, the mid-value of the outlook may be found by adding the anomaly value to the 1971-2000 average. There is an equal 50-50 chance that tactual conditions will be above or below the mid-value. Please note that this product is a limited representation of the official forecast, showing the anomaly of the mid-value, but not the width of the range of possibilities. For more comprehensive forecast information, please see our additional forecast products.

Figure 2.16 The NCEP CPC seasonal outlook for precipitation from Figure 2.18, but shown as an anomaly

- 2154 in inches of total precipitation for the 3-month target period. Figure obtained from
- $2155 \qquad http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_index.php?lead=3&var=particle.php?lead=3&var=particl$
- 2156
- 2157
- 2158

- Figure 2.17 The CPC climate division spatial unit on which the official seasonal forecasts are based.
- 2160Figure 2.17 The CPC2161Figure obtained from
- 2162 http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_index.php?lead=3&var=p.
- 2163

2164

Figure 2.18 The NCEP CPC seasonal outlook for precipitation from Figure 2.17 but shown as an anomaly
 in inches of total precipitation for the 3-month target period.
 http://www.cpc.ncep.noaa.gov/products/predictions/long range/poe graph index.php?lead=3&climdiv=75

2167 http://www.cpc.ncep.noaa.gov/products/predictions/long_range/poe_graph_index.php?lead=3&climdiv=/5 2168 &var=p.

- 2170 In addition to NCEP, a few other centers, (e.g., the International Research Institute for
- 2171 Climate and Society (IRI)) produce similar consensus forecasts and use a similar map-
- 2172 based, tercile-focused framework for exhibiting their results. A larger number of centers
- 2173 run dynamical forecast tools, and the NOAA Climate Diagnostics Center, which
- 2174 produces monthly climate outlooks internally using statistical tools, also provides
- summaries of climate forecasts from a number of major sources, both in terms of
- 2176 probabilities or anomalies, for selected surface and atmospheric variables. The

Page 106 of 426

²¹⁶⁹

2177	Experimental Climate Prediction Center (ECPC) at Scripps Institute provides monthly
2178	and seasonal time step forecasts of both climate and land surface variables at a national
2179	and global scale, from dynamical models. Using these model outputs, ECPC also
2180	generates forecasts for derived variables that target wildfire management $-e.g.$, soil
2181	moisture, the Fireweather Index (See Chapter 4 for a more detailed description of Water
2182	Resource Issues in Fire-Prone U.S. Forests and the use of this index) . The CPC has
2183	similar efforts in the form of the Hazards Assessment, a short to medium range map
2184	summary of hazards related to extreme weather (such as flooding and wildfires), and the
2185	CPC Drought Outlook (Box 2.3), a subjective consensus product focusing on the
2186	evolution of large-scale droughts, that is released once a month, conveying expectations
2187	for a 3-month outlook period.
2188	
2189	The foregoing is a brief survey of climate forecast products from major centers in the
2190	United States, and as such is far from a comprehensive presentation of the available
2191	sources. It does, however, provide examples from which the following observations about
2192	the general nature of climate prediction in the U.S. may be drawn. First, that operational
2193	SI climate forecasting is conducted at a relatively small number of federally-funded
2194	centers, and forecast products are national to global in scale. These products tend to have
2195	a coarse resolution in space and time, and are typically for basic earth system variables
2196	(e.g., temperature, precipitation, atmospheric and surface pressure) that are of general
2197	interest to many sectors. Forecasts are nearly always probabilistic, and the major products

2198 attempt to convey the inherent uncertainty via maps or data detailing forecast

Do Not Cite or Quote

2199 probabilities, although deterministic reductions (such as forecast variable anomalies) are2200 also available.

2201

2202 2.3.2 Sources of Climate-Forecast Skill

2203 Much as with hydrologic forecasts, the skill of forecasts of climate variables (notably, 2204 temperature and precipitation) varies from region to region, varies with forecast season 2205 and lead time, is limited by the chaotic and uncertain character of the climate system, and 2206 derives from a variety of sources. While initial conditions are an important source for 2207 skill in SI hydrologic forecasts, the initial conditions of an atmospheric forecast are 2208 effectively forgotten after about 8-10 days and have no influence on SI climate forecast 2209 skill (Molteni et al., 1996). SI forecasts are actually forecasts of those variations of the 2210 climate system that reflect predictable changes in boundary conditions, like sea-surface 2211 temperatures (SSTs), or in external 'forcings', disturbances in the radiative energy budget 2212 of the Earth's climate system. At time scales of decades to centuries, potential skill rests 2213 in predictions for slowly varying components of the climate system like the atmospheric 2214 concentrations of CO2 that influence the greenhouse effect, or slowly evolving changes 2215 in ocean circulation that can alter SSTs and thereby change the boundary conditions for 2216 the atmosphere. Not all possible sources of SI climate-forecast skill have been identified 2217 or exploited, but contributors that have been proposed and pursued include a variety of 2218 large-scale air-sea connections (e.g., Redmond and Koch, 1991; Cayan and Webb, 1992; 2219 Mantua et al., 1997; Enfield et al., 2001; Hoerling and Kumar, 2003), snow and sea ice 2220 patterns (e.g., Cohen and Entekhabi, 1999; Clark and Serreze, 2000; Lo and Clark, 2002;

Do Not Cite or Quote

2221	Liu et al., 2004), and soil moisture and vegetation regimes (e.g., Koster and Suarez, 1995,
2222	2000; Ni-Meister et al., 2005).
2223	
2224	In operational practice, however, most of the forecast skill provided by current forecast
2225	systems (especially, including climate models) derives from our ability to predict the
2226	evolution of ENSO events on time scales of 6 to 12 months, coupled with the
2227	"teleconnections" from the events in the tropical Pacific to many areas of the globe.
2228	Barnston et al. (1994), in their explanation of the advent of the first operational long-lead
2229	forecasts from the NOAA Climate Prediction Center, stated that "while some
2230	extratropical processes probably develop independently of the Tropics, much of the
2231	skill of the forecasts for the extratropics comes from anomalies of ENSO-related tropical
2232	sea-surface temperatures." Except for the changes associated with diurnal cycles,
2233	seasonal cycles, and possibly the (30-60 day) Madden-Julian Oscillation of the tropical
2234	ocean-atmosphere system, "ENSO is the most predictable climate fluctuation on the
2235	planet" (McPhaden et al., 2006). Diurnal cycles and seasonal cycles are predictable on
2236	time scales of hours-to-days and months-to-years, respectively, whereas ENSO mostly
2237	provides predictability on SI time scales (e.g., Figure 2.19b, from a potential
2238	predictability study by Collins 2002). Notice, in Figure 2.19a, that temperatures over the
2239	tropical oceans and lands, and extratropical oceans are much more correlated from season
2240	to season than are conditions on the extratropical continents. To the extent that they can
2241	anticipate the slow evolution of the tropical oceans, indicated by these correlations, SCFs
2242	in the extratropics that harken to the tropical oceans are provided a basis for prediction
2243	skill; to the extent that the multiseasonal long-term potential predictability of the ENSO

Do Not Cite or Quote

Page 109 of 426

- 2244 episodes (Figure 2.19b) can be drawn upon in certain regions at certain times of year, the
- 2245 relatively meager predictabilities of North American temperatures and precipitation can
- be extended.
- 2247

2248

2250 Figure 2.19 (a) Map of correlations between surface-air temperatures in each season and the following 2251 season in 600 years of historical climate simulation by the HadCM3 model (Collins 2002); (b) Potential 2252 predictability of a common ENSO index (Niño3 SST, the average of SSTs between 150°W and 90W, 5°S 2253 and 5°N), average temperatures over the United States and Canada, and average precipitation over the 2254 United States and Canada, with skill measured by anomaly correlations and plotted against the forecast lead 2255 times; results extracted from Collins (2002), who estimated these skills from the reproducibility among 2256 multiple simulations of 30yrs of climate by the HadCM3 coupled ocean-atmosphere model. Correlations 2257 below about 0.3 are not statistically significant at 95% level. 2258

2259	The scattered times between ENSO events drastically limits skillful prediction of events
2260	until, at least, the first faltering steps towards the initiation of an ENSO event have been
2261	observed. ENSO events, however, are frequently (but not always) phase-locked
2262	(synchronized) with aspects of the seasonal cycle (Neelin et al., 2000), so that (a)
2263	forecasters know when to look most diligently for those "first faltering steps" and (b) the
2264	first signs of the initiation of an event are often witnessed 6-9 months prior to ENSO's
2265	largest expressions in the tropics and Northern Hemisphere (e.g., Penland and
2266	Sardeshmukh, 1995). Thus ENSO influences, however irregular and unpredictable they
2267	are on multiyear time scales, regularly provide the basis for SI climate forecasts over
2268	North America. ENSO events generally begin their evolution sometime in late (northern)
2269	spring or early summer, growing and maturing until they most often reach full strength
2270	(measured by either their SST expressions in the tropical Pacific or by their influences on
2271	the Northern Hemisphere) by about December – March (e.g., Chen and van den Dool
2272	1997). An ENSO event's evolution in the tropical ocean and atmosphere during the
2273	interim period is reproducible enough that relatively simple climate indices that track
2274	ENSO-related SST and atmospheric pressure patterns in the tropical Pacific provide
2275	predictability for North American precipitation patterns as much as two seasons in
2276	advance. Late summer values of the Southern Oscillation Index (SOI), for instance, are
2277	significantly correlated with a north-south see-saw pattern of wintertime precipitation
2278	variability in western North America (Redmond and Koch 1991).
2279	

2280 2.4 IMPROVING WATER RESOURCES FORECAST SKILL AND PRODUCTS

Do Not Cite or Quote

2281	Although forecast skill is only one measure of the value that forecasts provide to water
2282	resources managers and the public, it is an important measure and current forecasts are
2283	generally understood to fall short of the maximum possible skill on SI time scales (e.g.,
2284	http://www.clivar.org/organization/wgsip/spw/spw_position.php). Schaake et al. (2007)
2285	describe the SI hydrologic prediction process for model-based prediction in terms of
2286	several components: (i) development, calibration and/or downscaling of SI climate
2287	forecasts; (ii) estimation of hydrologic initial conditions, with or without data
2288	assimilation; (iii) SI hydrologic forecasting models and methods; and (iv) calibration of
2289	the resulting forecasts. Notable opportunities for forecast skill improvement in each area
2290	are discussed here.
2291	
2292	2.4.1 Improving SI Climate Forecast Use for Hydrologic Prediction

- 2293 SI climate forecast skill is a function of the skill of climate system models, the efficacy of
- 2294 model combination strategies if multiple models are used, the accuracy of climate system
- conditions from which the forecasts are initiated, and the performance of post processing

approaches applied to correct systematic errors in numerical model outputs.

2297 Improvements are sought in all of these areas.

2298

2299 **2.4.1.1 Climate forecast use**

- 2300 Many researchers have found that SI climate forecasts must be downscaled,
- 2301 disaggregated and statistically calibrated to be suitable as inputs for applied purposes
- 2302 (*e.g.*, hydrologic prediction, as in Wood *et al.*, 2002). Downscaling is the process of
- 2303 bridging the spatial scale gap between the climate forecast resolution and the

2304	application's climate input resolution, if they are not the same. If the climate forecasts are
2305	from climate models, for instance, they are likely to be at a grid resolution of several 100
2306	km, whereas the application may require climate information at a point (e.g., station
2307	location). Disaggregation is similar to downscaling, but in the temporal dimension $-e.g.$,
2308	seasonal climate forecasts may need to be translated into daily or subdaily temperature
2309	and precipitation inputs for a given application (as described in Kumar, 2008). Forecast
2310	calibration is a process by which the statistical properties (such as bias and spread errors)
2311	of a probabilistic forecast are corrected to match their observed error statistics (e.g.,
2312	Atger, 2003; Hamill et al., 2006). These procedures may be distinct from each other, or
2313	they may be inherent parts of a single approach (such as the analogue techniques of
2314	Hamill et al., 2006). These steps do not necessarily improve the signal to noise ratio of
2315	the climate forecast, but done properly, they do correct bias and reliability problems that
2316	would otherwise render impossible their use in applications. For shorter lead predictions,
2317	corrections to forecast outputs have long been made based on (past) model output
2318	statistics (MOS; Glahn and Lowry, 1972). MOS are sets of statistical relations (e.g.,
2319	multiple linear regression (MLR)) that effectively convert numerical model outputs into
2320	unbiased, best climate predictions for selected areas or stations, where "best" relates to
2321	past performance of the model in reproducing observations. MOS corrections are widely
2322	used in weather prediction (Dallavalle and Glahn 2005). Corrections may be as simple as
2323	removal of mean biases indicated by historical runs of the model, with the resulting
2324	forecasted anomalies superimposed on station climatology. More complex methods
2325	specifically address spatial patterns in climate forecasts based on specific inadequacies of

2326	the models in reproducing key teleconnection patterns or topographic features (e.g.,
2327	Landman and Goddard 2002, Tippett et al., 2003).
2328	
2329	A primary limitation on calibrating SI forecasts is the relatively small numbers of
2330	retrospective forecasts available for identifying biases. Weather predictions are made
2331	every day and thus even a few years' of forecasts provide a large number of examples
2332	from which to learn. SI forecasts, in contrast, are comparatively infrequent and even
2333	several decades' worth may not provide an adequate resource with which to develop
2334	model-output corrections (Kumar, 2007). This limitation is exacerbated when the
2335	predictability and biases themselves vary between years and states of the global climate
2336	system. Thus there is a clear need to expand current "reforecast" practices for fixed SI
2337	climate models over long historical periods to provide both for quantification (and
2338	verification) of the evolution of SI climate forecast skills and for post-processing
2339	calibrations to those forecasts.
2340	
2341	2.4.1.2 Development of objective multi-model ensemble approaches
2342	The accuracy of SI climate forecasts has been shown to increase when forecasts from
2343	groups of models are combined into multi-model ensembles (e.g., Krishnamurti et al.,

2344 2000; Palmer et al., 2004; Tippett et al., 2007). Multi-model forecast ensembles yield

2345 greater overall skill than do any of the individual forecasts included, in principle, as a

result of cancellation of errors between ensemble members. Best results thus appear to

accrue when the individual models are of similar skill and when they exhibit errors and

biases that differ from model to model. In part, these requirements reflect the current

Do Not Cite or Quote

Page 114 of 426

2349	uncertainties about the best strategies for choosing among models for inclusion in the
2350	ensembles used and, especially for weighting and combining the model forecasts within
2351	the ensembles. Many methods have been proposed and implemented (e.g., Rajagopalan et
2352	al., 2002; Yun et al., 2005), but strategies for weighting and combining ensemble
2353	members are still an area of active research (e.g., Doblas-Reyes et al., 2005; Coelho et
2354	al., 2004). Multi-model ensemble forecast programs are underway in Europe
2355	(DEMETER, Palmer et al., 2004) and in Korea (APEC; e.g., Kang and Park, 2007). In
2356	the United States, IRI forms an experimental multi-model ensemble forecast, updating
2357	monthly, from seasonal forecast ensembles run separately at 7 centers, a 'simple multi-
2358	model' approach that compares well with centrally organized efforts such as DEMETER
2359	(Doblas-Reyes et al, 2005). The NOAA Climate Test Bed Science Plan also envisions
2360	such a capability for NOAA (Higgins et al., 2006).
2361	
2362	2.4.1.3 Improving climate models, initial conditions, and attributions
2363	Improvements to climate models used in SI forecasting efforts should be a high priority.
2364	Several groups of climate forecasters have identified the lack of key aspects of the
2365	climate system in current forecast models as important weaknesses, including
2366	underrepresented linkages between the stratosphere and troposphere (Baldwin and
2367	Dunkerton 1999), limited processes and initial conditions at land surfaces (Beljaars et al.,
2368	1996; Dirmeyer et al., 2006; Ferranti and Viterbo, 2006), and lack of key biogeochemical
2369	cycles like carbon dioxide.

2371	Because climate prediction is, by most definitions, a problem determined by boundary
2372	condition rather than an initial condition, specification of atmospheric initial conditions is
2373	not the problem for SI forecasts that it is for weather forecasts. However, SI climate
2374	forecast skill for most regions comes from knowledge of current SSTs or predictions of
2375	future SSTs, especially those in the tropics (Shukla et al., 2000; Goddard and Dilley,
2376	2005; Rosati et al., 1997). Indeed, forecast skill over land (worldwide) increases directly
2377	with the strength of an ENSO event (Goddard and Dilley, 2005). Thus an important
2378	determinant of recent improvements in SI forecast skill has been the quality and
2379	placement of tropical ocean observations, like the TOGA/TAO network of buoys that
2380	monitors the conditions that lead up to and culminate in El Niño and La Niña events
2381	(Trenberth et al., 1998; McPhaden et al., 1998; Morss and Batitsti, 2004). More
2382	improvements in all of the world's oceans are expected from the broader Array for Real-
2383	time Geostrophic Oceanography (ARGO) upper-ocean monitoring arrays and Global
2384	Ocean Observing System (GOOS) programs (Nowlin et al., 2001). In many cases, and
2385	especially with the new widespread ARGO ocean observations, ocean-data assimilation
2386	has improved forecast skill (e.g., Zheng et al., 2006). Data assimilation into coupled
2387	ocean-atmosphere-land models is a difficult and unresolved problem that is an area of
2388	active research (e.g; Ploshay, 2002; Zheng et al., 2006). Land-surface and cryospheric
2389	conditions also can influence the seasonal scale dynamics that lend predictability to SI
2390	climate forecasting, but incorporation of these initial boundary conditions into SI climate
2391	forecasts is in an early stage of development (Koster and Suarez, 2001; Lu and Mitchell,
2392	2004; Mitchell et al., 2004). Both improved observations and improved avenues for

Do Not Cite or Quote

including these conditions into SI climate models, especially with coupled ocean-atmosphere-land models, are needed.

2395

2396	Finally, a long-standing but little explored approach to improving the value of SI climate
2397	forecasts is the attribution of the causes of climate variations. The rationale for an
2398	attribution effort is that forecasts have greater value if we know why the forecasted event
2399	happened, either before or after the event, and why a forecast succeeded or failed, after
2400	the event. The need to distinguish natural from human-caused trends, and trends from
2401	fluctuations, is likely to become more and more important as climate change progresses.
2402	SI forecasts are always likely to fail from time to time, or to realize less probable ranges
2403	of probabilistic forecasts; knowing that forecasters understand the failures (in hindsight)
2404	and have learned from them will help to build increasing confidence through time among
2405	users. Attempts to attribute causes to important climate events began as long ago as the
2406	requests from Congress to explain the 1930s Dust Bowl. Recently NOAA has initiated a
2407	Climate Attribution Service (http://www.cdc.noaa.gov/CSI/) that will combine historical
2408	records, climatic observations, and many climate model simulations to infer the principle
2409	causes of important climate events of the past and present. Forecasters can benefit from
2410	knowledge of causes and effects of specific climatic events as well as improved
2411	feedbacks as to what parts of their forecasts succeed or fail. Users will also benefit from
2412	knowing the reasons for prediction successes and failures.
2413	

- 2414 **2.4.2 Improving Initial Hydrologic Conditions for Hydrologic and Water Resource**
- 2415 Forecasts

2416	Operational hydrologic and water resource forecasts at SI time scales derive much of
2417	their skill from hydrologic initial conditions, with the particular sources of skill
2418	depending on seasons and locations. Thus better estimation of hydrologic initial
2419	conditions will in some seasons lead to improvements in SI hydrologic and consequently
2420	water resources forecast skill. The four main avenues for progress in this area are: (1)
2421	augmentation of climate and hydrologic observing networks; (2) improvements in
2422	hydrologic models (i.e., physics and resolution); (3) improvements in hydrologic model
2423	calibration approaches; and (4) data assimilation.
2424	
2425	2.4.2.1 Hydrologic observing networks
2426	As discussed previously (in section 2.2), hydrologic and hydroclimatic monitoring
2427	networks provide crucial inputs to hydrologic and water resource forecasting models at SI
2428	time scales. Continuous or regular measurements of streamflow, precipitation and snow
2429	water contents provide important indications of the amount of water that entered and left
2430	river basins prior to the forecasts and thus provide directly or indirectly the initial
2431	conditions for model forecasts.
2432	
2433	Observed snow water contents are particularly important sources of predictability in most
2434	of the western half of the United States, and have been measured regularly at networks of
2435	snow courses since the 1920s and continually at SNOTELs (automated and telemetered
2436	snow instrumentation sites) since the 1950s. Snow measurements can contribute as much

2437 as 3/4 of the skill achieved by warm-season water supply forecasts in the West. However,

2438 recent studies have shown that measurements made at most SNOTELs are not

Do Not Cite or Quote

Page 118 of 426

2439	representative of overall basin water budgets, so that their value is primarily as indexes of
2440	water availability rather than as true monitors of the overall water budgets (Molotch and
2441	Bales 2005). The discrepancy arises because most SNOTELs are located in clearings, on
2442	flat terrain, and at moderate altitudes, rather than (historically) sampling snow conditions
2443	throughout the complex terrains and micrometeorological conditions found in most river
2444	basins. The discrepancies limit some of the usefulness of SNOTEL measurements as the
2445	field of hydrologic forecasting moves more and more towards physically-based, rather
2446	than empirical-statistical models. To remedy this situation and to provide the sorts of
2447	more diverse and more widespread inputs required by most physically-based models,
2448	combinations of remotely sensed snow conditions (to provide complete areal coverage)
2449	and extensions of at least some SNOTELs to include more types of measurements and
2450	measurements at more nearby locations will likely be required (Bales et al., 2006).
2451	
2452	Ground-water level measurements are made at thousands of locations around the country,
2453	but only recently have they been made available for widespread use in near-real time
2454	(http://ogw01.er.usgs.gov/USGSGWNetworks.asp). Few operational surface-water
2455	resource forecasts have been designed to use ground-water measurements. Similarly
2456	climate-driven SI ground-water resource forecasts are rarely made, if at all. However,
2457	surface-water and groundwater are interlinked in nearly all cases and, in truth, constitute
2458	a single resource (Winter et al., 1998). Thus, with the growing availability of real-time

- 2459 groundwater data dissemination, opportunities for improving water resource forecasts by
- better integration and use of surface- and ground-water data resources may develop.

Do Not Cite or Quote

2461	Groundwater level networks already are contributing to drought monitors and response
2462	plans in many states.

2464	Similarly, long-term soil-moisture measurements have been relatively uncommon until
2465	recently. Soil moisture is an important control on the partitioning of water between
2466	evapotranspiration, groundwater recharge and runoff, and thus plays an important (but
2467	largely unaddressed) role in the quantities addressed by water resource forecasts. Soil
2468	moisture varies rapidly from place to place (Vinnikov et al., 1996; Western et al., 2004)
2469	so that networks that will provide representative measurements have always been
2470	difficult to design (Wilson et al., 2004). Nonetheless, the Illinois State Water Survey has
2471	monitored soil moisture at about 20 sites in Illinois for many years
2472	(http://www.sws.uiuc.edu/warm/soilmoist/ISWSSoilMoistureSummary.pdf), but for most
2473	of that time was alone in monitoring soil moisture at the state scale. As the technologies
2474	for monitoring soil moisture have become less troublesome, more reliable, and less
2475	expensive in recent years, more and more agencies are beginning to install soil-moisture
2476	monitoring stations (e.g., the NRCS is augmenting many of its SNOTELs with soil-
2477	moisture monitors and has established a national Soil Climate Analysis Network (SCAN;
2478	http://www.wcc.nrcs.usda.gov/scan/SCAN-brochure.pdf); Oklahoma's Mesonet
2479	micrometeorological network includes soil-moisture measurements at its sites; California
2480	is on the verge of implementing a state-scale network at both high and low altitudes).
2481	With the advent of regular remote sensing of soil-moisture conditions (Wagner et al.,
2482	2007), many of these in situ networks will be provided context so that their geographic
2483	representativeness can be assessed and calibrated (Famligietti et al., 1999). As with

Do Not Cite or Quote

Page 120 of 426

2484	ground water, soil moisture has not often been an input to water resource forecasts on the
2485	SI time scale, instead, if anything, being simulated rather than measured, where values
2486	were required. Increased monitoring of soil moisture, both remotely and in situ, will
2487	provide important checks on the models of soil-moisture reservoirs that underlie nearly
2488	all of our water resources and water resource forecasts, making hydrological model
2489	improvements possible.
2490	
2491	Augmentation of real-time stream gauging networks is also a priority, a subject discussed
2492	in SAP 4.3 (CCSP, 2008).
2493	
2494	2.4.2.2 Improvements in hydrologic modeling techniques
2495	Efforts to improve hydrologic simulation techniques have been pursued in many areas
2496	since the inception of hydrologic modeling in the 1960s and 1970s when the Stanford
2497	Watershed Model (Crawford and Linsley, 1966), the Sacramento Model (Burnash et al.,
2498	1973) and others were created. More recently, physically-based, distributed and semi-
2499	distributed hydrologic models have been developed, both at the watershed scale (e.g.,
2500	Wigmosta et al., 1994; Boyle et al., 2000) to account for terrain and climate
2501	inhomogeneity, and at the regional scale (Liang et al., 1994 among others). The latter
2502	category, macroscale models, were motivated in part by the need to improve land surface
2503	representation in climate system modeling approaches (Mitchell et al., 2004), but these
2504	models have also been found useful for hydrologic applications related to water
2505	management (e.g., Hamlet and Lettenmaier, 1999; Maurer and Lettenmaier, 2004; Wood
2506	and Lettenmaier, 2006). The NOAA North American Land Data Assimilation Project

Do Not Cite or Quote

Page 121 of 426

2507	(Mitchell et al., 2004 and NASA Land Information System (Kumar et al., 2006) projects
2508	are leading agency-sponsored research efforts that are focused on advancing the
2509	development and operational deployments of the regional, physically based models.
2510	These efforts include research to improve the estimation of observed parameters (e.g., use
2511	of satellite remote sensing for vegetation properties and distribution), the accuracy of
2512	meteorological forcings, model algorithms and computational approaches. Progress in
2513	these areas has the potential to improve the ability of hydrologic models to characterize
2514	land surface conditions for forecast initialization, and to translate future meteorology and
2515	climate into future hydrologic response.
2516	
2517	Aside from improving hydrologic models and inputs, strategies for hydrologic model
2518	implementation are also important. Model calibration $-i.e.$, the identification of optimal
2519	parameter sets for simulating particular types of hydrologic output (single or multiple) -
2520	has arguably been the most extensive area of research toward improving hydrologic
2521	modeling techniques (Wagener and Gupta, 2005 is but one article from a broad
2522	literature). This body of work has yielded advances in the understanding of the model
2523	calibration problem from both practical and theoretical perspectives. The work has been
2524	conducted using models at the watershed scale to a greater extent than the regional scale,
2525	and the potential for applying these techniques to the regional scale models not been
2526	much explored.
2527	
2528	Data assimilation is also an area of active research (e.g., Andreadis and Lettenmaier

2529 2006; Reichle et al., 2002; Vrugt et al., 2005; Seo et al., 2006). Data assimilation is a

Do Not Cite or Quote

Page 122 of 426

2530 process in which verifying observations of model state or output variables are used to 2531 adjust the model variables as the model is running, thereby correcting simulation errors 2532 on the fly. The primary types of observations that can be assimilated include snow water 2533 equivalent and snow covered area, land surface skin temperature, remotely sensed or *in* 2534 situ soil moisture, and streamflow. NWSRFS has the capability to do objective data 2535 assimilation; in practice NWS (and other agencies) perform a qualitative data 2536 assimilation, in which forecaster judgment is used to adjust model states and inputs to 2537 reproduce variables such as streamflow, snow line elevation and snow water equivalent 2538 prior to initializing an ensemble forecast.

2539

2540 2.4.3 Calibration of Hydrologic Model Forecasts

2541 Even the best real-world hydrologic models have biases and errors when applied to 2542 specific gages or locations. Statistical models often are tuned well enough so that their 2543 biases are relatively small, but physically-based models often exhibit significant biases. 2544 In either case, further improvements in forecast skill can be obtained, in principle, by 2545 post-processing model forecasts to remove or reduce any remaining systematic errors, as 2546 detected in the performance of the models in hindcasts. Very little research has been 2547 performed on the best methods for such post processing (Schaake *et al.*, 2007), which is 2548 closely related to the calibration corrections regularly made to weather forecasts. Seo et 2549 al. (2006), however, describe an effort being undertaken by the National Weather Service 2550 for short lead hydrologic forecasts, a practice that is more common than for longer lead 2551 hydrologic forecasts. Other examples include work by Hashino et al. (2007) and 2552 Krzysztofowicz (1999). At least one example of an application for SI hydrologic

Do Not Cite or Quote

Page 123 of 426

2553	forecasts is given in Wood & Schaake (2008); but as noted earlier, a major limitation for
2554	such approaches is the limited sample sizes available for developing statistical
2555	corrections.
2556	
2557	2.5 Improving Products: Forecast and related information Packaging and delivery
2558	The value of SI forecasts can depend on more than their forecast skill. The context that is
2559	provided for understanding or using forecasts can contribute as much or more to their
2560	value to forecast users. Several avenues for re-packaging and providing context for SI
2561	forecasts are discussed in the following paragraphs.
2562	
2563	Probabilistic hydrologic forecasts typically represent summaries of collections of
2564	forecasts, forecasts that differ from each other due to various representations of the
2565	uncertainties at the time of forecast or likely levels of climate variation after the forecast
2566	is made, or both (Schaake et al., 2007). For example, the "ensemble streamflow
2567	prediction" methodology begins its forecasts (generally) from a single best estimate of
2568	the initial conditions from which the forecasted quantity will evolve, driven by copies of
2569	the historical meteorological variations from each year in the past (Franz et al., 2003).
2570	This provides ensembles of as many forecasts as there are past years of appropriate
2571	meteorological records, with the ensemble scatter representing likely ranges of weather
2572	variations during the forecast season. Sometimes deterministic forecasts are extended to
2573	represent ranges of possibilities by directly adding various measures of past hydrologic or
2574	climatic variability. More modern probabilistic methods are based on multiple climate
2575	forecasts, multiple initial conditions or multiple parameterization (including multiple

Do Not Cite or Quote

Page 124 of 426

downscalings) (Clark *et al.*, 2004; Schaake *et al.*, 2007). However accomplished, having
made numerous forecasts that represent ranges of uncertainty or variability, the
probabilistic forecaster summarizes the results in terms of statistics of the forecast
ensemble and presents the probabilistic forecast in terms of selected statistics, like
probabilities of being more or less than normal.

2581

2582 In most applications, it is up to the forecast user to interpret these statistical descriptions 2583 in terms of their particular data needs, which frequently entails (1) application of various 2584 corrections to make them more representative of their local setting and (2), in some 2585 applications, essentially a deconvolution of the reported probabilities into plausible 2586 examples that might arise during the future described by those probabilities. Forecast 2587 users in some cases may be better served by provision of historical analogs that closely 2588 resemble the forecasted conditions, so that they can analyze their own histories of the 2589 results during the analogous (historical) weather conditions. Alternatively, some forecast 2590 users may find that elements from the original ensembles of forecasts would provide 2591 useful examples that could be analyzed or modeled in order to more clearly represent the 2592 probabilistic forecast in concrete terms. The original forecast ensemble members are the 2593 primary source of the probabilistic forecasts and can offer clear and definite examples of 2594 what the forecasted future COULD look like (but not specifically what it WILL look 2595 like). Thus, along with the finished forecasts—which should remain the primary forecast 2596 products, other representations of what the forecasts are and how they would appear in 2597 the real world could be a useful and more accessible complements for some users, and 2598 would be a desirable addition to the current array of forecast products.

Do Not Cite or Quote

Page 125 of 426

25	00
20	フフ

2600	Another approach to providing context (and, potentially, examples) for the SI water
2601	resource forecasts involves placing the SI forecasts in context of paleo-climate
2602	reconstructions. The 20th century has, by and large, been climatically benign in much of
2603	the nation, compared to previous centuries (Hughes and Brown, 1992; Cook et al., 1999).
2604	As a consequence, the true likelihood of various forecasted, naturally occurring climate
2605	and water resource anomalies may best be understood in the context of longer records,
2606	which paleoclimatic reconstructions can provide. At present, approaches to incorporating
2607	paleoclimatic information into responses to SI forecasts are uncommon and only
2608	beginning to develop, but eventually they may provide a clearer framework for
2609	understanding and perfecting probabilistic SI water resource forecasts. One approach that
2610	is being investigated is the statistical synthesis of examples (scenarios) that reflect both
2611	the long-term climate variability identified in paleorecords AND time-series-based
2612	deterministic long-lead forecasts (Kwon et al., 2007).
2613	
2614	2.5 THE EVOLUTION OF PROTOTYPES TO PRODUCTS AND THE ROLE OF
2615	EVALUATION IN PRODUCT DEVELOPMENT
2616	Studies of what makes forecasts useful have identified a number of common
2617	characteristics in the process by which forecasts are generated, developed, and taught to
2618	and disseminated among users (Cash and Buizer, 2005). These characteristics include:

- 2619 ensuring that the problems that forecasters address are themselves driven by forecast
- 2620 users; making certain that knowledge-to-action networks (the process of interaction
- 2621 between scientists and users which produces forecasts) are end-to-end inclusive;

Do Not Cite or Quote

Page 126 of 426

2622	employing "boundary organizations" (groups or other entities that bridge the
2623	communication void between experts and users) to perform translation and mediation
2624	functions between the producers and consumers of forecasts; fostering a social learning
2625	environment between producers and users (i.e., emphasizing adaptation); and providing
2626	stable funding and other support to keep networks of users and scientists working
2627	together.

This section begins by providing a review of recent processes used to take a prototype into an operational product, with specific examples from the NWS. The section then reviews a few examples of interactions between forecast producers and users that have lead to new forecast products, and concludes by describing a vision of how user-centric forecast evaluation could play a role in setting priorities for improving data and forecast products in the future.

2635

2636 2.5.1 Transitioning Prototypes to Products

2637 During testimony for this report, heads of federal operational forecast groups all painted a

2638 relatively consistent picture of how most in-house innovations currently begin and

2639 evolve. Although formal and quantitative innovation planning methodologies exist (see

2640 Appendix A.3: TRANSITIONING NWS RESEARCH INTO OPERATIONS and How

the Weather Service Prioritizes the Development of Improved Hydrologic Forecasts), for

the most part, the operational practice is often relatively ad-hoc and unstructured except

2643 for the larger and longer-term projects. The Seasonal Drought Outlook is an example of a

Do Not Cite or Quote

2644 product that was developed under a less formal process than that used by the NWS (Box

2645 2.3).

2646

2647 BOX 2.3: The CPC Seasonal Drought Outlook 2648

The CPC Drought Outlook (DO) is a categorical prediction of drought evolution for the 3 months forward
 from the forecast date. The product, which is updated once per month, comprises a map that is
 accompanied by a text discussion of the rationale for the categories depicted on the map.

The starting conditions for the DO are given by the current Drought Monitor (DM) (a United States map that is updated weekly showing the status of drought nationwide located:

2655 http://www.drought.unl.edu/DM/monitor.html), and the DO shows likely changes in and adjacent to the 2656 current DM drought areas. The DO is a subjective consensus forecast that is assembled each month by a 2657 single author (rotating between CPC and NDMC) with feedback from a panel of geographically distributed 2658 agency and academic experts. The basis for estimating future drought evolution includes a myriad of 2659 operational climate forecast products: from short and medium range weather forecasts to seasonal 2660 predictions from the CPC climate outlooks and the NCEP CFS outputs; consideration of climate tendencies 2661 for current ENSO state; regional hydroclimatology; and medium range to seasonal soil moisture and runoff 2662 forecasts from a variety of sources. 2663

The DO thus makes use of the most advanced objective climate and hydrologic prediction products currently available, including not only operational, but experimental products, although the merging of the different inputs is based on expert judgment rather than an objective system. The DO is verified by comparing the DM drought assessments at the start and end of the DO forecast period; verification skill scores have been tracked for the last 7 years. The DO is the primary drought-related agency forecast produced in the United States, and is widely used by the drought management and response community from local to regional scales.

2672The DO was developed in the context of new drought assessment partnerships between the CPC, USDA2673and the National Drought Mitigation Center following the passage of the National Drought Policy Act of26741998. The DM had been released as an official product in August, 1999, with the expectation that a weekly

or seasonal drought forecast capacity would be added in the future. A drought on the eastern seaboard in the fall of 1999 required briefings for the press and the U.S. administration; internal discussions between DM participants at the CPC led to the formation of the first version of the DO (maps and text) for these briefings. These were released informally to local, state and federal agency personnel throughout the winter of 1999-2000, and received positive feedback.

The CPC decided to make the products official, provided public statements and developed product specifications, and made the product operational in March 2000. The initial development process

was informal and lasted about six months. In November 2000, the first Drought Monitor Forum was held,
at which producers and users (agency, state, private, academic) came together to evaluate the DM in its first

year and plan for its second, providing in addition a venue for discussion of the DO. This forum still meets
bi-annually, focusing on both DM and DO-relevant issues. Developmental efforts for the DO are internal at
CPC or within NCEP, and the primary avenues for feedback are the website and at presentations by DO
authors at workshops and conferences. The DO authors also interact with research efforts funded by the
NOAA Climate Program Office and other agency funding sources, and with NOAA research group efforts
(such as at NCEP), as part of the ongoing development effort. (URL:
http://www.cpc.noaa.gov/products/expert_assessment/drought_assessment.shtml)
end BOX 2.3************

2706	Climate and water resource forecasters are often aware of small "fixes" or tweaks to
2707	forecasts that would make their jobs easier; these are often referred to as "forecasts of
2708	opportunity." A forecaster may be aware of a new dataset or method or product that
2709	he/she believes could be useful. Based on past experience, production of the forecast may
2710	seem feasible and it could be potentially skillful. Especially in climate forecasting, where
2711	there is very high uncertainty in the forecasts themselves and there is marginal user
2712	adoption of existing products, the operational community often focuses more on potential
2713	forecast skill than likely current use. The belief is that if a product is skillful, a user base
2714	could be cultivated. If there is no skill, even if user demand exists, forecasting would be
2715	futile.
2716	

2717 Attractive projects may also develop when a new method comes into use by a colleague

2718 of the forecaster (someone from another agency, alumni, friend or prior collaborator on

2719 other projects). For example, Redmond and Koch (1991) published the first major study

2720 of the impacts of ENSO on western U.S. streamflow. At the time the study was being

done, a NRCS operational forecaster was one of Koch's graduate students. The student

2722 put Koch's research to operational practice at the NRCS after realizing that forecast skill

could be improved.

2724

Do Not Cite or Quote

2725	Efficiency is also often the inspiration for an innovation. A forecaster may be looking for
2726	a way to streamline or otherwise automate an existing process. For example, users
2727	frequently call the forecaster with a particular question; if it is possible to automate the
2728	answering of that question with a new Internet-based product, the forecaster's time may
2729	be freed up to work on other tasks. While most forecasters can readily list several
2730	bottlenecks in the production process, this knowledge often comes more from personal
2731	experience than any kind of structured system review.
2732	

2733 At this stage, many ideas exist for possible innovations, although only some small subset 2734 of them will be pursued. The winnowing process continues with the forecaster and/or 2735 peers evaluating the feasibility of the innovation: Is the method scientifically defensible? 2736 Are the data reliably available to support the product? Are the computers powerful 2737 enough to complete the process in a reasonable time? Can this be done with existing 2738 resources, would it free up more resources than it consumes, or is the added value worth 2739 the added operational expense? In other words, is the total value of the advance worth the 2740 effort? Is it achievable and compatible with legacy systems or better than the total worth 2741 of the technology, installed base and complementary products?

2742

If it is expected to be valuable, some additional questions may be raised by the forecaster
or by management about the appropriateness of the solution. Would it conflict with or
detract from another product, especially the official suite (*i.e.*, destroy competency)?
Would it violate an agency policy? For example, a potential product may be technically

feasible but not allowed to exist because the agency's webpage does not permit

Do Not Cite or Quote

Page 130 of 426
2748	interactivity because of increasingly stringent congressionally-mandated cyber-security
2749	regulations. In this case, to the agency as a whole, the cost of reduced security is greater
2750	than the benefit of increased interactivity. It is important to note that if security and
2751	interactivity in general are not at odds, the issue may be that a particular form of
2752	interactivity is not compatible with the existing security architecture. If a different
2753	security architecture is adopted or a different form of interactivity used (e.g., written in a
2754	different computer language), then both may function together, assuming one has the
2755	flexibility and ability to change.
2756	
2757	Additionally, an agency policy issue can sometimes be of broader, multi-organizational
2758	scope and would require policy decisions to settle. For example, currently no agency
2759	produces water quality forecasts. Which agency should be responsible for this? The
2760	USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture
2760 2761	USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture forecasts? Should it be the first agency to develop the technical proficiency to make such
2760 2761 2762	USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture forecasts? Should it be the first agency to develop the technical proficiency to make such forecasts? Or should it be established by a more deliberative process to prevent "mission
2760 2761 2762 2763	USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture forecasts? Should it be the first agency to develop the technical proficiency to make such forecasts? Or should it be established by a more deliberative process to prevent "mission creep"? Agencies are also concerned about whether innovations interfere with the
2760 2761 2762 2763 2764	USDA, Environmental Protection Agency, USGS or NWS? What of soil moisture forecasts? Should it be the first agency to develop the technical proficiency to make such forecasts? Or should it be established by a more deliberative process to prevent "mission creep"? Agencies are also concerned about whether innovations interfere with the services provided by the private sector.

2766 If appropriate, the forecaster may then move to implement the solution on a limited test 2767 basis, iteratively developing and adapting to any unforeseen challenges. After a 2768 successful functional prototype is developed, it is tested in-house using field personnel 2769 and/or an inner circle of sophisticated customers and gradually made more public as 2770 confidence in the product increases. In these early stages, many of the "kinks" of the

Do Not Cite or Quote

Page 131 of 426

2771	process are smoothed out, developing the product format and look and feel, adapting to
2772	initial feedback (e.g., "please make the map labels larger") but for the most part the initial
2773	vision remains intact.
2774	
2775	There is no consistent formal procedure across agencies for certifying a new method or
2776	making a new product official. A product may be run and labeled "experimental" for 1-2
2777	years in an evaluation period. The objectives and duration of the evaluation period are
2778	sometimes not formalized and one must just assume that if a product has been running for
2779	an extended period of time with no obvious problems, then it succeeds and the
2780	experimental label removed. Creating documentation of the product and process is often
2781	part of the transition from experimental to official, either in the form of an internal
2782	technical memo, conference proceedings or peer-reviewed journal article, if appropriate.
2783	
2784	If the innovation involves using a tool or technique that supplements the standard suite of
2785	tools, some of the evaluation may involve running both tools in parallel and comparing
2786	their performance. Presumably ease of use and low demand on resources are criteria for
2787	success (although the task of running models in parallel can, by itself, be a heavy demand
2788	on resources). Sometimes an agency may temporarily stretch its resources to
2789	accommodate the product for the evaluation period and if additional resources are not
2790	acquired by the end of the evaluation (for one of a number of reasons, some of which
2791	may not be related to the product but rather due to variability in budgets), the product
2792	may be discontinued.

2793

Do Not Cite or Quote

2794	Sometimes skill is used to judge success, but this can be a very inefficient measure. This
2795	is because seasonal forecast skill varies greatly from year to year, primarily due to the
2796	variability of nature. Likewise, individual tools may perform better than other tools in
2797	some years but not others. In the 1-2 years of an evaluation period the new tool may be
2798	lucky (or unlucky) and artificially appear better (or worse) than the existing practice.
2799	
2800	If the agency recognizes that a tool has not had a fair evaluation, more emphasis is placed
2801	on "hindcasting,", using the new tool to objectively and retrospectively generate realistic
2802	"forecasts" for the last 20-30 years and comparing the results to hindcasts of the existing
2803	system and/or official published forecasts. The comparison is much more realistic and
2804	effective, although hindcasting has its own challenges. It can be very operationally
2805	demanding to produce the actual forecasts each month (e.g., the agency may have to
2806	compete for the use of several hours of an extremely powerful computer to run a model),
2807	much less do the equivalent of 30 years worth at once. These hindcast datasets, however,
2808	have their own uses and have proven to be very valuable (e.g., Hamill et al., 2006 for
2809	medium range weather forecasting and Franz et al, 2003 for seasonal hydrologic
2810	forecasting). Often times, testbeds are better suited for operationally realistic hindcasting
2811	experiments (Box 2.4).

2813 BOX 2.4: What Role Can a "Testbed" Play in Innovation?

2814

For an innovation to be deemed valuable, it must be able to stand on its own and be better than the entire existing system, or marginally better than the existing technology if it is compatible with the rest of the framework of the existing system. If the innovation is not proven or believed likely to succeed, its adoption is less likely to be attempted. However, who conducts the experiments to measure this value? And who has the resources to ensure backwards-compatibility of the new tools in an old system?

2820

2821Later sections of this report will describe in more detail what is sometimes referred to as the "loading dock"2822model of forecast delivery (*i.e.*, the producer creates something, leaves it on the loading dock where the

user seeks it out, picks it up, drives off and uses it; if this process fails, the loading dock mostly comes to
serve as a metaphorical storage facility). This model lacks any direct communication between user and
producer and leaves out the necessary support structure to help users make the most of the product (Cash *et al.*, 2006). Similarly, testbeds are designed as an alternative to the "loading dock" model of transferring
research to operations.

2828

2829 Previously, a researcher may get a short-term grant to develop a methodology, and conduct an idealized, 2830 focused study of marginal operational realism. The results may be presented at research conferences or 2831 published in the scientific literature. While a researcher's career may have a unifying theme, for the most 2832 part, this specific project may be finished when publication is accomplished and the grant finishes. 2833 Meanwhile, the operational forecaster is expected to seek out the methodology and attempt to implement it, 2834 although often times the forecaster does not have the time, resources or expertise to use the results. Indeed, 2835 the forecaster may not be convinced of the incremental advantage of the technique over existing practices if 2836 it has not endured a realistic operational test and been compared to the results of the official system. 2837

2838 Testbeds are intermediate activities, a hybrid mix of research and operations, serving as a conduit between 2839 the operational, academic and research communities. A testbed activity may have its own resources to 2840 develop a realistic operational environment. However, the testbed would not have real-time operational 2841 responsibilities and instead, would be focused on introducing new ideas and data to the existing system and 2842 analyzing the results through experimentation and demonstration. The old and new system may be run in 2843 parallel and the differences quantified. The operational system may even be deconstructed to identify the 2844 greatest sources of error and use that as the motivation to drive new research to find solutions to operations-2845 relevant problems. The solutions are designed to be directly integrated into the mock-operational system 2846 and therefore should be much easier to directly transfer to actual production. 2847

NOAA has many testbeds currently in operation: Hydrometeorological (floods), Hazardous Weather
(thunderstorms and tornadoes), Aviation Weather (turbulence and icing for airplanes), Climate (ENSO,
seasonal precipitation and temperature) and Hurricanes. The Joint Center for Satellite Data Assimilation is
also designed to facilitate the operational use of new satellite data. A testbed for seasonal streamflow
forecasting does not exist. Generally, satisfaction with testbeds has been high, rewarding for operational
and research participants alike.

2854 2855

2856

2857 During the evaluation period, the agency may also attempt to increasingly

2858 "institutionalize" a process by identifying and fixing aspects of a product or process that

2859 do not conform to agency guidelines. For example, if a forecasting model is demonstrated

as promising but the operating system or the computer language it is written in does not

- 2861 match the language chosen by the agency, a team of contract programmers may rewrite
- the model and otherwise develop interfaces that make the product more user-friendly for
- 2863 operational work. A team of agency personnel may also be assembled to help transfer the
- 2864 research idea to full operations, from prototype to project. For large projects, many
- 2865 people may be involved, including external researchers from several other agencies.

2867	During this process of institutionalization, the original innovation may change in
2868	character. There may be uncertainty at the outset and the development team may
2869	consciously postpone certain decisions until more information is available. Similarly,
2870	certain aspects of the original design may not be feasible and an alternative solution must
2871	be found. Occasionally, poor communication between the inventor and the developers
2872	may cause the final product to be different than the original vision. Davidson et al. (2002)
2873	found success in developing a hydrologic database using structured, iterative
2874	development involving close communication between users and developers throughout
2875	the life of the project. This model is in direct contrast to that of the inventor generating a
2876	ponderous requirements document at the outset, which is then passed on to a separate
2877	team of developers who execute the plan in isolation until completion.
2070	

2878

2879 2.5.2 Evaluation of Forecast Utility

2880 As mentioned in Section 2.1, there are many ways to assess the usefulness of forecasts, 2881 one of which is forecast skill. While there are inherent limitations to skill (due to the 2882 chaotic nature of the atmosphere), existing operational systems also fall short of their 2883 potential maximum skill for a variety of reasons. Section 2.4 highlights ways to improve 2884 operational skill, such as by having better models of the natural system or denser and 2885 more detailed climate and hydrologic monitoring networks. Other factors, such as 2886 improved forecaster training or better visualization tools, also play a role. This section 2887 addresses the role of forecast evaluation in driving the technology development agenda. 2888

Do Not Cite or Quote

2889	Understanding the current skill of forecast products is a key component to ensuring the
2890	effectiveness of programs to improve the skill of these products. There are several
2891	motivations for verifying forecasts including administrative, scientific and economic
2892	(Brier and Allen, 1951). Evaluation of very recent forecasts can also play a role in
2893	helping operational forecasters make mid-course adjustments to different components of
2894	the forecast system before issuing an official product.

2896 Of particular interest to forecasting agencies is administrative evaluation because of its 2897 ability to describe the overall skill and efficiency of the forecast service in order to 2898 inform and guide decisions about resource allocation, research directions and 2899 implementation strategies (Welles 2005). For example, the development of numerical 2900 weather prediction (NWP) forecasting models is conducted by numerous, unaffiliated 2901 groups following different approaches, with the results compared through objective 2902 measures of performance. In other words, the forecasts are verified, and the research is 2903 driven, not by ad hoc opinions postulated by subject matter experts, but by the actual 2904 performance of the forecasts as determined with objective measures (Welles *et al.*, 2007). 2905 The most important sources of error are identified quantitatively and systematically and 2906 are paired with objective measures of the likely improvement resulting from an 2907 innovation in the system. 2908 2909 Recently the NWS adopted a broad national-scale administrative initiative of hydrologic

2910 forecast evaluation. This program defines a standard set of evaluation measures,

2911 establishes a formal framework for forecast archival and builds flexible tools for access

Do Not Cite or Quote

Page 136 of 426

2912	to results. It is designed to provide feedback to local forecasters and users on the
2913	performance of the regional results, but also to provide an end-to-end assessment of the
2914	elements of the entire system (HVSRT, 2006). Welles et al. add that these activities
2915	would be best served by cultivating a new discipline of "hydrologic forecast science" that
2916	engages the research community to focus on operational-forecast-specific issues.
2917	
2918	While administrative evaluation is an important tool for directing agency resources,
2919	ultimately innovation should be guided by the anticipated benefit to forecast users. Some
2920	hydrologists would prefer not to issue a forecast that they suspect the user could not use
2921	or would misinterpret (Pielke Jr, 1999). Additionally, these evaluations should be
2922	available and understandable to users. Uncertainty about the accuracy of forecasts
2923	precludes users from making more effective use of them (Hartmann et al., 2002). Users
2924	want to know how good the forecasts are so they know how much confidence to place in
2925	them. Agencies want to focus on the aspects of the forecast that are most important to
2926	users. Forecast evaluation should be more broadly defined than skill, it should also
2927	include measures of communication and understandability, relevance and so on. In
2928	determining these critical aspects, Agencies must make a determination of the key
2929	priorities to address given the number and varied interest of potential forecast users; the
2930	Agencies can not satisfy all users. The Advanced Hydrologic Prediction System (AHPS)
2931	of the NWS provides a nice case study of product development and refinement in
2932	response to user-driven feedback (Box 2.5).
2933	

2934BOX 2.5: The Advanced Hydrologic Prediction Service2935

Do Not Cite or Quote

2936 Short to medium range forecasts (those with lead times of hours to days) of floods are a critical component 2937 of NWS hydrological operations and these services generate nearly \$2 billion of benefits annually (NHWC, 2938 2002). In 1997 the NWS Office of Hydrologic Development began the Advanced Hydrologic Prediction 2939 Service (AHPS) program to advance technology for hydrologic products and forecasts. This 16-year multi-2940 million dollar program seeks to enhance the agency's ability to issue and deliver specific, timely, and 2941 accurate flood forecasts. One of its main foci is the delivery of probabilistic and visual information through 2942 an Internet based interface. One of its seven stated goals is also to "Expand outreach and engage partners 2943 and customers in all aspects of hydrologic product development." (NWS, 2004) 2944

2945 Starting in 2004, the National Research Council reviewed the AHPS program and also analyzed the extent 2946 that users were actually playing in the development of products and setting of the research agenda 2947 (National Research Council, 2006). The study found that AHPS had largely a top-down structure with 2948 technology being developed at a national center to be delivered to regional and local offices. Although 2949 there was a wide range of awareness, understanding and acceptance of AHPS products inside and outside 2950 the NWS, little to no research was being done in early 2004 on effective communication of information, 2951 and some of the needs of primary customers were not being addressed. From the time the NRC team 2952 carried out its interviews, the NWS started acting on the perceived deficiencies, so that, by the time the 2953 report was issued in late 2006, the NWS had already made some measurable progress. This progress 2954 included a rigorous survey process in the form of focus groups, but also a more engaged suite of outreach, 2955 training, and educational activities that have included presentations at the national floodplain and 2956 hydrologic manager's conferences, the development of closer partnerships with key users, committing 2957 personnel to education activities, conducting local training workshops, and awarding a research grant to 2958 social scientists to determine the most effective way to communicate probabilistic forecasts to emergency 2959 and floodplain managers.

- 2960
- 2961 end BOX 2.5
- 2962

2963 There is another component to forecast skill beyond the assessment of how the forecast

2964 quantities are better (or worse) than a reference forecast. Thinking of forecast assessment

2965 more broadly, the forecasts should be evaluated for their 'skill' communicating their

- 2966 information content in ways that can be correctly interpreted both easily and reliably --
- 2967 *i.e.*, no matter what the quantity (*e.g.*, wet, dry, or neutral tercile) in the forecast is, the
- user can still correctly interpret it (Hartmann *et al.*, 2002).
- 2969
- 2970 Finally, it seems important to stress that agencies should provide for user-centric forecast
- assessment as part of the process for moving prototypes to official products. That would
- 2972 include access to user tools for assessing forecast skill (*i.e.*, the Forecast Evaluation Tool,
- 2973 which is linked to by the NWS Local 3-month Temperature Outlook (Box 2.6), and field
- 2974 testing of the communication effectiveness of the prototype products. Just as new types of

- 2975 forecasts should show (at least) no degradation in predictive skill, they should also show
- 2976 no degradation in their communication effectiveness.

2978 2979

78 BOX 2.6: NWS Local 3-Month Outlooks for Temperature and Precipitation

2980 In January 2007, the NWS made operational the first component of a new set of climate forecast products 2981 called Local 3-Month Outlooks (L3MO). Accessible from the NWS Weather Forecast Offices (WFO), 2982 River Forecast Centers (RFC) and other NWS offices, the Local 3-Month Temperature Outlook (L3MTO) 2983 is designed to clarify and downscale the national-scale CPC Climate Outlook temperature forecast product. 2984 The corresponding local product for precipitation is still in development as of the writing of this report. 2985 The local outlooks were motivated by ongoing NOAA NWS activities focusing on establishing a dialog 2986 with NWS climate product users (http://www.nws.noaa.gov/directives/),. In particular, a 2004 NWS 2987 climate product survey (conducted by Claes Fornell International for the NOAA Climate Services Division) 2988 found that a lack of climate product clarity lowered customer satisfaction with NWS CPC climate outlook 2989 products; and presentations and interactions at the annual Climate Prediction Application Science 2990 Workshop (CPASW) highlighted the need for localized CPC climate outlooks in numerous and diverse 2991 applications. 2992 In response to these user-identified issues, CSD collaborated with the NWS Western Region Headquarters, 2993 CPC and the National Climatic Data Center (NCDC) to develop localized outlook products. The 2994 collaboration between the four groups, which linked several line offices of NOAA (e.g., NCDC, NWS), 2995 took place in the context of an effort that began in 2003 to build a climate services infrastructure within 2996 NOAA. The organizations together embarked on a structured process that began with a prototype 2997 development stage, which included identifying resources, identifying and testing methodologies, and 2998 defining the product delivery method. To downscale the CPC climate outlooks (which are at the climate 2999 division scale) to local stations, the CSD and WR development team assessed and built on internal, prior 3000 experimentation at CPC that focused on a limited number of stations. To increase product clarity, the team 3001 added interpretation, background information, and a variety of forecast displays providing different levels 3002 of data density. A NWS products and services team made product mockups that were reviewed by all 102 3003 WFOs, CPC and CSD representatives and a small number of non-agency reviewers. After product 3004 adjustments based on the reviews, CSD moved toward an experimental production stage by obtaining union 3005 approval, providing NWS staff with training and guidelines, releasing a public statement about the product 3006 and writing product description documentation. Feedback was solicited via the experimental product 3007 website beginning in August 2006, and the products were again adjusted. Finally, the products were 3008 finalized, the product directive was drafted and the product moved to an operational stage with official 3009 release. User feedback continues via links on the official product website

3010 (http://www.weather.gov/climate/l3mto.php).

3011 3012 In general, the L3MO development process exhibited a number of strengths. Several avenues existed for 3013 user needs to reach developers, and user-specified needs determined the objectives of the product 3014 development effort. The development team spanning several parts of the agency then drew on internal 3015 expertise and resources to propose and to demonstrate tentative products responding to those needs. The 3016 first review stage of the process gave mostly internal (*i.e.*, agency) reviewers an early opportunity for 3017 feedback, but this was followed by an opportunity for a larger group of users in the experimental stage, 3018 leading to the final product. An avenue for continued review is built into the product dissemination 3019 approach. 3020

- 3022
- 3023

3024	CHAPTER 2 REFERENCES
3025	Anderson, E.A., 1972: "NWSRFS Forecast Procedures", NOAA Technical
3026	Memorandum, NWS HYDRO-14, Office of Hydrologic Development, Hydrology
3027	Laboratory, NWS/NOAA, Silver Spring, MD, 1972.
3028	Anderson, E.A., 1973: "National Weather Service River Forecast System-Snow
3029	Accumulation and Ablation Model", NOAA Technical Memorandum, NWS
3030	HYDRO-17, November, 1973.
3031	Andreadis, K.M., and D.P. Lettenmaier, 2006: Assimilating Remotely Sensed Snow
3032	Observations into a Macroscale Hydrology Model, Advances in Water Resources,
3033	29, 872-886 doi:10.1016/j.advwatres.2005.08.004.
3034	Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based
3035	probabilistic forecasts: Consequences or calibration. Mon. Wea. Rev., 131,
3036	15091523.
3037	Bales, R., N. Molotch, T. Painter, M. Dettinger, R. Rice, and J. Dozier, 2006: Mountain
3038	hydrology of the western US: Water Resources Research, 42, W08432,
3039	doi:10.1029/2005WR004387, 13 p.
3040	Barnett, T., D.W. Pierce, H. Hidalgo, C. Bonfils, B.D. Santer, T. Das, G. Bala, A.W.
3041	Wood, T. Nazawa, A. Mirin, D. Cayan, M. Dettinger, 2008: Human-induced
3042	changes in the hydrology of the western United States, Science Express Reports
3043	10.1126/science.1152538.
3044	Baldwin, M.P., and T.J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the
3045	stratosphere to the troposphere: J. Geophysical Research, 104, 30937-30946.
3046	Beljaars, A., P. Viterbo, M. J. Miller, and A. K. Betts 1996: The anomalous rainfall over
3047	the United States during July 1993: Sensitivity to land surface parameterization
3048	and soil moisture anomalies, Mon. Weather Rev., 124, 362-383

3049	Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. A. O'Lenic, H. Van den
3050	Dool, A. J. Wagner, and D. A. Unger. 1999: NCEP forecasts of the El Niño of
3051	1997-98 and its U.S. Impacts. Bulletin of the American Meteorological Society
3052	80:1829-1852.
3053	Boyle, D.P., H.V. Gupta, and S. Sorooshian, 2000: Toward improved calibration of
3054	hydrologic models: Combining the strengths of manual and automatic methods.
3055	Water Resources Research, 36, 3663–3674.Brier, G.W. and R.A. Allen, 1951:
3056	Verification of Weather Forecasts. Compendium of Meteorology, T.F. Malone,
3057	Ed., Amer. Meteor. Soc., 841-848.
3058	Brier, G. W., and R. A. Allen, 1951: Verification of weather forecasts. Compendium of
3059	Meteorology, T. Malone, Ed., Amer. Meteor. Soc., 841-848.
3060	Burnash, R.J.C., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow
3061	simulation system conceptual modeling for digital computers. Joint Federal-
3062	State River Forecast Center (Sacramento, California) and State of California
3063	Department of Water Resources.
3064	Callahan, B.M., E.L. Miles, and D.L. Fluharty, 1999: Policy implications of climate
3065	forecasts for water resources management in the Pacific Northwest. Policy
3066	Sciences 32:269-293.
3067	Cash, David W., and James Buizer, 2005: Knowledge-Action Systems for Seasonal to
3068	Inter-annual Climate Forecasting: Summary of a Workshop. Report to the
3069	Roundtable on Science and Technology for Sustainability. Washington, D.C.:
3070	National Research Council/National Academy of Sciences.
3071	Cash, D.W., J.D. Borck, and A.G. Pratt, 2006: Countering the loading-dock approach to
3072	linking science and decision making. Science, Technology and Human Values,
3073	31(4), 465-494.
3074	Cayan, D.R., and R.H. Webb, 1992: El Niño/Southern Oscillation and streamflow in the
3075	western United States, in Diaz, H.F., and Markgraf, V. (eds.), El Niño: Historical

3076	and Paleoclimatic Aspects of the Southern Oscillation: Cambridge University
3077	Press, 29-68.
3078	Chen, W.Y., and H.M. van den Dool, 1997: Atmospheric predictability of seasonal,
3079	annual, and decadal climate means and the role of the ENSO cycle—A model
3080	study: Journal of Climate, 10, 1236-1254.
3081	Clark, M.P., and M.C. Serreze, 2000: Effects of variations in East Asian snow cover on
3082	modulating atmospheric circulation over the North Pacific Ocean. Journal of
3083	<i>Climate</i> , 13, 3700-3710.
3084	Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake
3085	ShuffleA method for reconstructing space-time variability in forecasted
3086	precipitation and temperature fields: J. Hydromet., 5, 243-262.
3087	Climate Change Science Program 2008: The Effects of Climate change on Agriculture,
3088	Land Resources, Water Resources and Biodiversity, P. Backlund, A. Janetos and
3089	D. Schimel (eds) A report by the Climate Change Science Program, in press.
3090	Coelho, C.A.S., S. Pezzuli, M. Balmaseda, F.J. Doblas-Reyes, and D.B. Stephenson,
3091	2004: Forecast calibration and combination—A simple Bayesian approach for
3092	ENSO: J. Climate, 17, 1504-1516.
3093	Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern
3094	Hemisphere climate predictability: Geophysical Research Letters, 26, 345-348.
3095	Collins, M., 2002: Climate predictability on interannual to decadal time scales—The
3096	initial value problem: Climate Dynamics, 19, 671-692.
3097	Cook, E.R., D. Meko, D. Stahle, and M. Cleaveland, 1999: Drought reconstruction for
3098	the continental United States: J. Climate, 12, 1145-1162.
3099	Crawford, N.H., and R.K. Linsley, 1966: 'Digital Simulation in Hydrology: Stanford
3100	Watershed Model IV,' Technical Report 39, Dept. of Civil Engineering, Stanford
3101	University, California.

3102	Croley II, T.E., 1996: Using NOAA's New Climate Outlooks in Operational Hydrology,
3103	J. Hydrologic Engrg., Volume 1, Issue 3, pp. 93-102, doi:10.1061/(ASCE)1084-
3104	0699(1996)1:3(93).
3105	Dallavalle, J.P., and B. Glahn, 2005: Toward a gridded MOS system: American
3106	Meteorological Society 21st Conference on Weather Analysis and Forecasting,
3107	13B2-1 to 13B2-7.
3108	Davidson, P., R. Hedrich, T. Leavy, W. Sharp, and N. Wilson, 2002: Information
3109	systems development techniques and their application to the hydrologic database
3110	derivation application. In Proceedings of the Second Federal Interagency
3111	Hydrologic Modeling Conference, Las Vegas, Nevada, July 28-August 1,
3112	2002.Day, G. N., 1985. Extended streamflow forecasting using NWSRFS.
3113	Journal of Water Resources Planning and Management, 111(2), 157-170.
3114	Day, G.N., 1985: Extended Streamflow Forecasting using NWSRFS: American Society
3115	of Civil Engineering Journal of Water Resources Planning and Management,
3116	111, 152-170.
3117	Dettinger, M.D 2007: Sources of Seasonal-Runoff Forecast Skill in the Western U.S.
3118	American Geophysical Union Fall meeting, December 2007, San Francisco, CA
3119	Dettinger, M.D., D. R. Cayan, and K. T. Redmond, 1999: United States streamflow
3120	probabilities based on forecasted La Niña, winter-spring 2000: Experimental
3121	Long-Lead Forecast Bulletin, Center for Land-Ocean-Atmosphere Studies 8, 57-
3122	61.
3123	Dirmeyer, P.A., R.D. Koster, and Z. Guo, 2006: Do Global Models Properly Represent
3124	the Feedback between Land and Atmosphere?. Journal of Hydrometeorology
3125	7(6): 1177.
3126	Doblas-Reyes, F.J., R. Hagedorn and T.N. Palmer, 2005: The rationale behind the
3127	success of multi-model ensembles in seasonal forecasting. Part II: Calibration and
3128	combination. Tellus A, 57, 234-252.

3129	Earman, S., A. P. Campbell, F.M. Phillips, and B.D. Newman, 2006: Isotopic exchange
3130	between snow and atmospheric water vapor: estimation of the snowmelt
3131	component of greenwater recharge in the southwestern United States: Journal of
3132	Geopysical Research, 111 (D9), <u>http://dx.doi.org/10.1029/2005JD006470</u> .
3133	Enfield, D.B., A.M. Mestas-Nunez, and P.J. Trimble, 2001: The Atlantic multidecadal
3134	oscillation and its relation to rainfall and river flows in the continental US:
3135	Geophysical Research Letters, 28, 2077-2080.
3136	Famiglietti, J.S., J.A. Devereaux, C.A. Laymon, T. Tsegaye, P.R. Houser, T.J. Jackson,
3137	S.T. Graham, M. Rodell, P.J. van Oevelen, 1999: Ground-based investigation of
3138	soil moisture variability within remote sensing footprints during the southern
3139	great plains 1997 (SGP97) hydrology experiment: Water Resources Research, 35,
3140	1839-1851.
3141	Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil
3142	water initial conditions, J. Clim., 19, 3659–3680.
3143	Franz, K.J., H.C. Hartmann, S. Sorooshian, R. Bales, 2003: Verification of National
3144	Weather Service Ensemble Streamflow Predictions for Water Supply Forecasting
3145	in the Colorado River Basin. Journal of Hydrometeorology 4(6): 1105.
3146	Garen, D. C., 1992: Improved techniques in regression-based streamflow volume
3147	forecasting. ASCE J. Water Res. Planning and Mgmt. 118(6), 654-670.
3148	Georgakakos, K. P., N.E. Graham, T.M. Carpenter, A.P. Georgakakos, and H. Yao,
3149	2005: Integrating climate-hydrology forecasts and multi-objective reservoir
3150	management for Northern California. EOS, 86(12), 122-127.
3151	GAMDT (Global Atmospheric Model Development Team), 2004: The new GFDL
3152	global atmosphere and land model AM2-LM2: Evaluation with prescribed SST
3153	simulations. Journal of Climate, 17, 4641-4673.
3154	Glahn, H.R and D.A. Lowry. 1972: The Use of Model Output Statistics (MOS) in
3155	Objective Weather Forecasting. J. of App. Meteor., 11, 1203–1211, p. 38.

Do Not Cite or Quote

Page 144 of 426

3156	Goddard, L., and M. Dilley, 2005: El Nino-Catastrophe or opportunity: J. Climate, 18,
3157	651-665.
3158	Hamlet, A. F. and D. P. Lettenmaier. 1999. Columbia River streamflow forecasting
3159	based on ENSO and PDO climate signals. American Society of Civil Engineers
3160	Journal of Water Resources Planning and Management 125(6):333-341.
3161	Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset
3162	for improving weather predictions. Bulletin of the American Meteorological
3163	Society, 87, 33-46, doi: 10.1175/BAMS-87-1-33.
3164	Hartmann, H.C., T.C. Pagano, S. Sorooshian, and R. Bales, 2002: Confidence Builders:
3165	Evaluating Seasonal Climate Forecasts from User Perspectives. Bull. Amer.
3166	Meteor. Soc., 83, 683–698.
3167	Hashino, T., A., A. Bradley, and S. S. Schwartz, 2007: Evaluation of bias-correction
3168	methods for ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11,
3169	939–950.
3170	Higgins, W., H. Pan, M. Gelman, and M. Ji, 2006: NOAA Climate Test Bed (CTB) - Part
3171	I., Science plan and implementation strategy:
3172	http://www.cpc.ncep.noaa.gov/products/ctb/.
3173	Hoerling, M.P., and A. Kumar, 2003: A perfect ocean for drought: Science, 299, 691.
3174	Hughes, M.K. and P.M. Brown, 1992: Drought frequency in central California since 101
3175	BC recorded in giant sequoia tree rings: Climate Dynamics, 6, 161-197.
3176	HVSRT (Hydrologic Verification Ssytem Requirements Team), 2006: National Weather
3177	Service River Forecast Verification Plan. U.S. Dept. of Commerce, NOAA,
3178	NWS, Silver Spring MD. Available online at
3179	http://www.weather.gov/oh/rfcdev/docs/Final_Verification_Report.pdf.

3180	IPCC (Intergovernmental Panel on Climate Change), 2007: Climate change 2007, The
3181	physical science basis—Summary for Policymakers: IPCC Secretariat,
3182	http://www.ipcc.ch, 21 p.
3183	Kang, H., and C.K. Park, 2007: Error analysis of dynamical seasonal predictions of
3184	summer precipitation over the East Asian-western Pacific region: Geophysical
3185	Research Letters, 34, L13706, doi:10.1029/2007GL029392.
3186	Kim, J., N.L. Miller, J.D. Farrara, and S.Y. Hong, 2000: A seasonal precipitation and
3187	stream flow hindcast and prediction study in the western United States during the
3188	1997-98 winter season using a dynamic downscaling system: Journal of
3189	Hydrometeorology, 1, 311-329.
3190	Koster, R. D., and M.J. Suarez, 1995: Relative contributions of land and ocean
3191	processes to precipitation variability: J. Geophys. Res., 100, 13775-13790.
3192	Koster, R.D. and M.J. Suarez, 2001, Soil moisture memory in climate models, Journal of
3193	Hydrometeorology, 2, 558-570.
3194	Krishnamurti, T.N., C.M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C.E.
3195	Williford, S. Gadgil and S. Surendran, 2000: Multi-model superensemble
3196	forecasts for weather and seasonal climate. J. Climate, 13, 4196-4216.
3197	Krzysztofowicz, R., 1999: Bayesian theory of probabilistic forecasting via deterministic
3198	hydrologic model. Water Resour. Res., 35, 2739-2750.
3199	Kumar, S. V., C. D. Peters-Lidard, Y. Tian, P. R. Houser, J. Geiger, S. Olden, L. Lighty,
3200	J. L. Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E. F. Wood, and J.
3201	Sheffield, 2006: Land Information System - An Interoperable Framework for
3202	High Resolution Land Surface Modeling. Environmental Modelling & Software,
3203	Vol. 21, 1402-1415.
3204	Kumar, A., 2007: On the Interpretation and Utility of Skill Information for Seasonal
3205	Climate Predictions, NOTES AND CORRESPONDENCE, Mon. Weath. Rev.,
3206	Vol 135, p. 1974.

Do Not Cite or Quote

Page 146 of 426

3207	Kumar, A., 2008: On the Assessment of the Value of the Seasonal Forecast Information,
3208	Bull. Amer. Met. Soc. (almost submited).
3209	Kwon, HH., U. Lall, and A.F. Khalil, 2007: Stochastic simulation model for
3210	nonstationary time series using an autoregressive wavelet decomposition:
3211	Applications to rainfall and temperature. Water Resour. Res., 43, W05407, doi:
3212	10.1029/2006WR005258.
3213	Kyriakidis, P.C., N.L. Miller, and J. Kim, 2001: Uncertainty propagation of regional
3214	climate model precipitation forecasts to hydrologic impact assessment: Journal of
3215	Hydrometeorology, 2, 140-160.
3216	Landman, W.A. and L. Goddard, 2002: Statistical recalibration of GCM forecasts over
3217	Southern Africa using model output statistics: J. Climate, 15, 2038-2055.
3218	Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A Simple
3219	hydrologically Based Model of Land Surface Water and Energy Fluxes for
3220	GCMs, J. Geophys. Res., 99(D7), 14,415-14,428.
3221	Liu, J., X. Yuan, D.G. Martinson, and D. Rind, 2004: Re-evaluating Antarctic sea-ice
3222	variability and its teleconnections in a GISS global climate model with improved
3223	sea ice and ocean processes: International Journal of Climatology, 24, 841-852.
3224	Lo, F., and M.P. Clark, 2002: Relationships between spring snow mass and summer
3225	precipitation in the southwestern United States associated with the North
3226	American Monsoon System: Journal of Climate, 15, 1378-1385.
3227	Lu, C.H., and K. Mitchell, 2004: Impact of land-surface initial conditions spin-up on
3228	warm season predictability simulated by the NCEP GFS coupled with the NOAH
3229	LSM: American Meteorological Society 18th Conference on Hydrology, J3.3-1 to
3230	J3.3-5.
3231	Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis, 1997: A Pacific
3232	Interdecadal Climate Oscillation with Impacts on Salmon Production: Bull.,
3233	American Meteor. Soc. 78, 1069-1079.

Do Not Cite or Quote

3234	Maurer, E.P. and D.P. Lettenmaier, 2004: Potential effects of long-lead hydrologic
3235	predictability on Missouri River main-stem reservoirs, J. Climate 17(1) 174-186
3236	Schaake, J., K. Franz, A.Bradley and R. Buizza, 2006: The Hydrologic Enemble
3237	Prediction Experiment (HEPEX). Hydrology and Earth System Science, hessd-
3238	2006-0095.
3239	Maurer, E. P., D. P. Lettenmaier, and N. J. Mantua, 2004: Variability and potential
3240	sources of predictability of North American runoff, Water Resour. Res., 40,
3241	W09306, doi:10.1029/2003WR002789.
3242	McCabe, G.J., Jr., and M.D. Dettinger, 1999: Decadal variability in the relations between
3243	ENSO and precipitation in the western United States: International Journal of
3244	<i>Climatology</i> , 19, 1399-1410.
3245	McEnery, J., J. Ingram, Q. Duan, T. Adams, and L. Anderson, 2005: NOAA's Advanced
3246	Hydrologic Prediction Service: Building pathways for better science in water
3247	forecasting. Bulletin of the American Meteorological Society 86(3):375-385.
3248	McPhaden, M.J., A.J. Busalacchi, R. Cheney, J.R. Donguy, K.S. Gage, D. Halpern, M.
3249	Ji, P. Julian, G. Meyers, G.T. Mitchum, P.P. Niiler, J. Picaut, R.W. Reynolds, N.
3250	Smith, and K. Takeuchi, 1998: The Tropical Ocean-Global Atmosphere observing
3251	system—a decade of progress: J. Geophysical Research, 103, 14169-14240.
3252	McPhaden, M.J., S.E. Zebiak, and M.H. Glantz, 2006: ENSO as an integrating concept
3253	in earth science: Science, 314, 1740-1745.
3254	Mitchell, K. E., 2004: The multi-institution North American Land Data Assimilation
3255	System (NLDAS): Utilizing multiple GCIP products and partners in a continental
3256	distributed hydrological modeling system, J. Geophys. Res., 109, D07S90,
3257	doi:10.1029/2003JD003823.
3258	Molteni, F., R. Buizza, T.N. Palmer and T. Petroliagis, 1996: The ECMWF ensemble
3259	prediction system: methodology and validation. Q.J.R.Meteorol.Soc., 122, 73-
3260	119.

3261	Molotch, N. and R. Bales 2005:, Scaling snow observations from the point to the grid
3262	elementImplications for observation network design: WRR, 41, W11421,
3263	doi:10.1029/2005WR004229.
3264	Morss, R.E. and D.S. Battisti, 2004: Designing Efficient Observing Networks for ENSO
3265	Prediction. Journal of Climate 17(16): 3074. Neelin, J.D., Jin, F.E., and Syu,
3266	H.H., 2000, Variations in ENSO phase locking: Journal of Climate, 13, 2570-
3267	2590.
3268	National Research Council 2006: Toward a New Advanced Hydrologic Prediction
3269	Service (AHPS), Committee to Assess the National Weather Service Advanced
3270	Hydrologic Prediction Service Initiative. National Academies Press, Washington
3271	DC
3272	Neelin J., F. Jin, and H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13,
3273	2570–2590
3274	NHWC (National Hydrologic Warning Council), 2002: Use and benefits of the National
3275	Weather Service river and flood forecasts. EASPE, Inc. Available online at
3276	http://www.nws.noaa.gov/oh/ahps/AHPS%20Benefits.pdf.
3277	Ni-Meister, W., J. P. Walker, and P.R. Houser, 2005: Soil moisture initialization for
3278	climate prediction: Characterization of model and observation errors: J. Geophys.
3279	Res., 110, D13111, doi:10.1029/2004JD005745.
3280	Nowlin, W.D., M. Briscoe, N. Smith, M.J. McPhaden, D. Roemmich, P. Chapman, and
3281	J.F. Grassle, 2001: Evolution of a sustained ocean observing system: Bulletin of
3282	the American Meteorological Society, 82, 1369-1376.
3283	NWS (National Weather Service), 2005: River Forecast Verification Plan, Report of the
3284	Hydrologic Verification System Requirements Team at:
3285	http://www.weather.gov/oh/rfcdev/docs/Final_Verification_Report.pdf

3286	Pagano, T., D. Garen, and S. Sorooshian, 2004: Evaluation of official western US
3287	seasonal water supply outlooks, 1922-2002: Journal of Hydrometerology, 5, 896-
3288	909.
3289	Pagano, T. C. and D. C. Garen, 2005: Integration of climate information and forecasts
3290	into western US water supply forecasts. Climate Variations, Climate Change, and
3291	Water Resources Engineering, J.D. Garbrecht and T.C. Peichota, Eds., ASCE, 86-
3292	103.Penland, C., and Sardeshmukh, P.D., 1995, The optimal growth of tropical
3293	sea-surface temperature anomalies: Journal of Climate, 8, 1999-2024.
3294	Palmer, T.N., A. Alessandri, U. Anderson, P. Canteluabe, M. Davery, M. Deque, E.
3295	Diaz, F.J. Doblas-Reyes, H. Federson, R. Graham, S. Gualdi, J.F. Gueremy, R.
3296	Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V.
3297	Marletto, A.P. Morse, B. Orfila, P. Rogel, J.M. Terres, and M.C. Thomson, 2004:
3298	Development of a European Multi-Model Ensemble System for season to
3299	interannual prediction (DEMETER): Bulletin of the American Meteorological
3300	Society, 85, 853-872.
3301	Penland, C., and T. Magorian, 1993: Prediction of Niño 3 Sea-surface Temperature
3302	Anomalies using Linear Inverse Modeling, J. Climate, 6, 1067-1075.
3303	Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface
3304	temperature anomalies, J. Climate, 8, 1999-2024.
3305	Pielke, Jr., R.A. 1999: Who Decides? Forecasts and Responsibilities in the 1997 Red
3306	River Flood. American Behavioral Science Review 7, 2, 83-101.
3307	Ploshay, J.J. 2002: Large sensitivity to initial conditions in seasonal predictions with a
3308	coupled ocean-atmosphere general circulation model. Geophysical Research
3309	Letters 29(8): 1262.Rajagopalan, A.W., Lall, U., and Zebiak, S.E., 2002:
3310	Categorical climate forecasts through regularization and optimal combination of
3311	multiple GCM ensembles: Monthly Weather Review, 130, 1792-1811.

3312	Pulwarty , R.S., and K.T. Redmond, 1997. Climate and Salmon Restoration in the
2212	Columbia Diver Pasin: The Pole and Usebility of Seesonal Forecasts, Pull Amer
2213	Columbia River Basin. The Role and Osability of Seasonal Forecasts. Buil. Amer.
3314	Meteor. Soc., 78, 381–397.
3315	Rajagopalan, B., U. Lall and S. Zebiak, 2002: Optimal Categorical Climate Forecasts
3316	through Multiple GCM Ensemble Combination and Regularization, Monthly
3317	Weather Review, 130 , 1792-1811.
3318	Redmond, K.T., and R.W. Koch, 1991: Surface climate and streamflow variability in the
3319	western United States and their relationship to large-scale circulation indices:
3320	Water Resources Research, 27, 2381-2399.
3321	Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation
3322	with the ensemble Kalman filter. Mon. Wea. Rev., 130, 103114.
3323	Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on
3324	ENSO forecasting with a coupled model: <i>Monthly Weather Review</i> , 125, 754-772.
3325	Saha, S., S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. M. van den Dool, HL.
3326	Pan, S. Moorthi, D. Behringer, D. Stokes, M. Pena, S. Lord, G. White, W.
3327	Ebisuzaki, P. Peng and P. Xie, 2006: The NCEP Climate Forecast System.
3328	Journal of Climate, Vol. 19, No. 15, 3483-3517.
3329	Sankarasubramanian, A., and U. Lall, 2003: Flood quantiles in a changing climate:
3330	Seasonal forecasts and causal relations: Water Resources Research, 39,
3331	doi:10.1029/2002WR001593, 12 p.
3332	Schaake, J. C., 1978: "The National Weather Service extended streamflow prediction
3333	techniques: description and applications during 1977." 3rd annual climate
3334	diagnostics workshop, National Oceanic and Atmospheric Administration, Miami,
3335	Florida.
3336	Schaake, J.C., and E. L. Peck, 1985: Analysis of water supply forecast accuracy: Proc.
3337	Western Snow Conf., Boulder, CO, 44-53.

Page 151 of 426

3338	Schaake, J.C., T.M. Hamill, R. Buizza, and M. Clark, 2007: HEPEX—The Hydrological
3339	Ensemble Prediction Experiment: Bulletin of the American Meteorological
3340	Society, 88, 1541-1547.
3341	Seo, D.J., H. Herr, and J. Schaake, 2006: A statistical post-processor for accounting of
3342	hydrologic uncertainties in short-range ensemble streamflow prediction:
3343	Hydrologic and Earth System Science Discussions, 3, 1987-2035.
3344	Shukla, J., J. Anderson, D. Baumhefner, C. Brankovic, Y. Chang, E. Kalnay, L. Marx, T.
3345	Palmer, D. Paolino, J. Ploshay, S. Schubert, D. Straus, M. Suarez, and J. Tribbia,
3346	2000: Dynamical seasonal prediction: Bulletin American Meteorological Society,
3347	81, 2593-2606.
3348	Stewart, I., D.R. Cayan, and M.D. Dettinger, 2004: Changes in snowmelt runoff timing
3349	in western North America under a 'Business as Usual' climate change scenario:
3350	<i>Climatic Change</i> , 62, 217-232.
3351	Tippett, M.K., M. Barlow, and B. Lyon, 2003: Statistical correction of Central
3352	Southwest Asia winter precipiation simultations: International Journal of
3353	Climatology, 23, 1421-1433.
3354	Tippett, M.K., A. Barnston, and A. Robertson, 2007: Estimation of seasonal
3355	precipitaiton tercile-based categorical probabilities from ensembles: J. Climate,
3356	20, 2210-2228.
3357	Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N-C. Lau, and C. Ropelewski,
3358	1998: Progress during TOGA in understanding and modeling global
3359	teleconnections associated with tropical sea surface temperatures. J. Geophys.
3360	Res., 103 (special TOGA issue), 14291-14324.
3361	van den Dool, H., 2007: Empirical Methods in Short-Term Climate Prediction, Oxford
3362	University Press, Oxford, 215 p.

3363	Vinnikov, K.Y., A. Robock, N.A. Speranskaya, and C.A. Sclosser, 1996: Scales of
3364	temporal and spatial variability of midlatitude soil moisture: J. Geophysical
3365	Research, 101, 7163-7174.
3366	Vrugt, J.A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten, 2005:
3367	Improved treatment of uncertainty in hydrologic modeling: Combining the
3368	strengths of global optimization and data assimilation. Water Resour. Res., 41,
3369	W01017, doi:10.1029/2004WR003059.
3370	Wagener, T., and H. V. Gupta, 2005: Model identification for hydrological forecasting
3371	under uncertainty. Stochastic Environ. Res. Risk Assess., 19, 378-387.
3372	Wagner, W., G. Bloschl, P. Pampaloni, J.C. Calvet, B. Bizzarri, J.P. Wigneron, and Y.
3373	Kerr, 2007: Operational readiness of microwave soil moisture for hydrologic
3374	applications: Nordic Hydrology, 38, 1-20.
3375	Welles, E., 2005: Verification of River Stage Forecasts. Department of Hydrology and
3376	Water Resources, PhD. 157pp.
3377	Welles, E., S. Sorooshian, G. Carter, and B. Olsen, 2007: Hydrologic Verification: A Call
3378	for Action and Collaboration. Bulletin of the American Meteorological Society:
3379	88(4). 503-511.
3380	Western, A.W., S.L. Zhou, R.B. Grayson, T.A. McMahon, G. Bloschl, and D.J. Wilson,,
3381	2004: Spatial correlation of soil moisture in small catchments and its relationship
3382	to dominant spatial hydrological processes: Journal of Hydrology, 286, 113-134.
3383	Wigmosta, M.S., L. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-
3384	vegetation model for complex terrain, Wat. Resour. Res., 30, 1665-1679.
3385	Wilks, D., 1995: Statisical methods in the atmospheric sciences. Academic Press Inc., San
3386	Diego, CA. 467pp.

3387	Wilson, D., A. Western, and R. Grayson 2004: Identifying and quantifying sources of
3388	variability in temporal and spatial soil moisture observations Water Resour. Res.,
3389	40
3390	Winter, T., J. Harvey, O. Franke, and W. Alley, 1998: Ground water and Surface Water-
3391	- A single Resource: USGS Circular 1139, 79 p.
3392	Wood, A.W., E.P. Maurer, A. Kumar, and D.P. Lettenmaier, 2002: Long range
3393	experimental hydrologic forecasting for the eastern U.S. J. Geophys. Res., 107,
3394	4429, doi:10.1029/2001JD000659.
3395	Wood, A.W., A. Kumar, and D.P. Lettenmaier, 2005: A retrospective assessment of
3396	National Centers of Environmental Prediction climate model-based ensemble
3397	hydrologic forecasting in the western United States: J. Geophysical Research,
3398	110, D04105, doi:10.1029/2004JD004508.
3399	Wood, A.W. and D.P. Lettenmaier, 2006: A testbed for new seasonal hydrologic
3400	forecasting approaches in the western U.S., Bulletin of the American
3401	Meteorological Society, 87(12), 1699-1712, doi:10.1175/BAMS-87-12-1699.
3402	Wood, A.W. and J.C. Schaake, 2008: Correcting errors in streamflow forecast ensemble
3403	mean and spread, J. Hydrometeorology 9:1, 132-148.
3404	Yun, W.T., Stefanova, L., Mitra, A.K., Kumar, T.S.V.V., Dewar, W., Krishnamurti,
3405	T.N., 2005: A multi-model superensemble algorithm for seasonal climate
3406	prediction using DEMETER forecasts: Tellus A, 57, 280-289.
3407	Zheng F., Zhu J., Zhang R., and Zhou G., 2006: Improved ENSO forecasts by
3408	assimilating sea surface temperature observations into an intermediate coupled
3409	model. Advances in Atmospheric Sciences 23(4): 615.
3410	
3411	
3412	