659 Chapter 1. The Changing Context

- 660
- 661 **Convening Lead Author:** Helen Ingram, Univ. of Arizona
- 662
- 663 Lead Authors: David Feldman, Univ. of California, Irvine; Nathan Mantua, Climate
- 664 Impacts Group, Univ. of Washington; Katharine L. Jacobs, Arizona Water Institute;

665 Denise Fort, Univ. of New Mexico

666

- 667 Contributing Author: Nancy Beller-Simms, NOAA
- 668
- 669 Edited by: Anne M. Waple, STG Inc.
- 670

671 **1.1 INTRODUCTION**

- 672 Increasingly frequent headlines such as "UN Calls Water Top Priority" (The Washington
- 673 Post, January 25, 2008), "Drought-Stricken South Facing Tough Choices (The New York
- 674 Times, Oct 15, 2007), "The Future is Drying Up" (The New York Times, October 21,
- 675 2007), coupled with the realities of less available water, have helped to alert decision
- 676 makers, from U.S. governors and mayors to individual farmers, that climate information
- 677 is crucial in future planning. The past quarter-century has also seen significant advances
- 678 in the ability to monitor and predict important aspects of seasonal to interannual
- 679 variations in climate, especially those associated with variations of the El Niño Southern
- 680 Oscillation (ENSO) cycle. Predictions of climate variability on seasonal to interannual
- time scales are now routine and operational, and consideration of these forecasts in

682	making decisions has become more commonplace. Some water resources decision
683	makers have already begun to use seasonal, interseasonal, and even longer-time scale -
684	climate forecasts and observational data in assessing future options, while others are just
685	beginning to realize the potential of these resources. This report is meant to show how
686	climate and hydrologic forecast and observational data are being used, or neglected, by
687	water resources decision makers and suggests future pathways for increased use.
688	
689	The Climate Change Science Program (CCSP) included a chapter in their 2003 Strategic
690	Plan that described the critical role of decision support in climate science; it was included
691	because previous assessment analyses and case studies had highlighted the importance of
692	assuring that climate information and data would be used by decision makers and not be
693	produced in a vacuum. Since that time, there has been an increase in interest and research
694	in decision support science including for organizations using seasonal to interannual
695	forecasts and observational data in future planning. Five years since the release of the
696	Strategic Plan, one of the main purposes of CCSP continues to be to "provide information
697	for decision-making through the development of decision-support resources ¹ ." (2008 Our
698	Changing Planet) As a result, CCSP has charged this author group to produce a Synthesis
699	and Assessment report that directly addresses decision support experiments and
700	evaluations in the water resources sector.
701	

The authors of this product have concentrated their efforts on discussing seasonal to

703 interannual forecasts and data products, though in some cases, longer-range forecasts are

¹ According to this same document, "Decision-support resources, systems, and activities are climate-related products or processes that directly inform or advise stakeholders to help them make decisions."

discussed because they have simply become a part of the decision making process and
separating them would cloud the examples given. We have provided a range of domestic
case study examples, referred to as "experiments and/or evaluations", but have provided
some international examples, where appropriate.

708

709 1.2 INCREASING STRESS AND COMPLEXITY IN WATER RESOURCES

710 Under conditions of global warming and with an ever-accelerating demand for abundant
711 water supplies, the management of water may become increasingly politically charged

throughout the world in the coming century. Emerging challenges in water quantity,

713 quality, pricing, and seasonal climate fluctuations may all increase as the demand

714 continues to rise. Though it may well be the case that the total volume of water on the

715 planet is sufficient for societies' needs, the largest portion of this water is geographically

remote, misallocated, wasted, or degraded by pollution (Whiteley et al., 2008). At the

same time, there are shifts in the use to which it is put, the value given by society to

natural systems, and the changing laws that govern management of the resource.

719 Accordingly, the impact of climate on water resource management and the needs of

people has far-reaching implications for everyone from the farmer who may need to

change the timing of crop planting/harvesting or the crop type itself to citizens that may

have to move because their potable water supply has disappeared.

723

In the U.S., water resource decisions are made at multiple levels of government and

increasingly by the private sector. There is no national water policy, but rather a

726 patchwork of policies, amended by degree over decades. "Water" is

Do Not Cite or Quote

727	controlled/guided/governed by a gamut of Federal agencies overseeing various aspects
728	from quality (U.S. Environmental Protection Agency [EPA]) to quantity (U.S. Geological
729	Survey [USGS], Bureau of Land Management [BLM]). This is complicated by state,
730	regional, and jurisdictional boundaries and responsibilities. Defining a "decision maker"
731	is equally difficult given the complexity of water's use and the types of information that
732	can be used to make decisions. Our challenge in writing this report is to reflect the
733	diverse models under which water is managed and the diverse character of decisions that
734	comprise water management. To illustrate: the term "water management" encompasses
735	decisions by a municipal water entity about when to impose outdoor water restrictions;
736	decisions by a federal agency about how to operate a storage facility; decisions by the
737	Congress about funding of recovery efforts for an endangered species; and decisions by a
738	state government about water purchases necessary to ensure compact compliance.
739	
740	These types of decisions may be based on multiple factors, such as cost, climate (past
741	trends and future forecasts), community preferences, political advantage, strategic
742	concerns for future water decisions, etc. Further, water reflects many different values
743	including economic, security, opportunity, environmental quality, lifestyle, and a sense of
744	place (Blatter and Ingram, 2005). Information about climate variability can be expected
745	to affect some of these decisions and moderate some of these values; for others it may be
746	of remote interest or viewed as entirely irrelevant.
747	

The rapidly-closing gap between usable supplies and rising demand is being narrowed bya myriad of factors, some of the most important include:

Do Not Cite or Quote

750	• Demand for water is increasing with population growth in terms of potable
751	drinking water, agricultural/food requirements, energy needs, etc.
752	• Recreational and environmental interests in rivers have received greater
753	representation in the political processes, with attendant success in protecting
754	stream waters.
755	• Groundwater development enabled the expansion of western agriculture and is the
756	basis for the development of several urban regions. As groundwater reserves are
757	mined, pressure increases on other water sources.
758	• Water quality is a problem that persists, despite decades of regulations and
759	planning.
760	
761	Most well-documented of these pressures is population growth, which is occurring in the
762	U.S. as a whole, and especially in the sunbelt states where water resources are also
763	among the scarcest. Because water sources were developed and rights created in much
764	earlier time periods, new uses must search for additional supplies. Las Vegas, Nevada is a
765	case study of the measures required to provide water in the desert, but Phoenix,
766	Albuquerque, Denver, Los Angeles and a host of other western cities provide comparable
767	examples. In the Southeastern United States, rapid growth of cities, such as Atlanta,
768	combined with growing environmental concerns that require water to sustain habitat, and
769	poor management, have all lead to serious shortages.

771	Recreational and environmental interests also have a direct stake in how waters are
772	managed. For example, fishing and boating have increased with importance as the
773	economic basis of our economy has changed.
774	
775	Groundwater mining is a wild card in national water policy. Water resource allocation is
776	generally a matter of state, not federal control, and each state has different policies with
777	respect to groundwater. Some have no regulation; others permit mining (also referred to
778	as groundwater overdrafting). Because groundwater is not visible, it was less likely to be
779	regulated than surface water use. The effects of groundwater mining become evident
780	when regions must search for alternative sources of water.
781	
782	These increasing demands for water are not likely to be met with the development of
783	major additional sources of water supply, although some additional storage likely will be
784	developed. The nation engaged in an extended period of construction (cite USGS on
785	dams and reservoirs) in which most of the appropriate sites for construction were utilized.
786	Further, as rivers are fully appropriated, or over appropriated, there is no longer "surplus"
787	water available for development. Environmental and recreational issues are implicated in
788	further development of rivers, making these alternatives more susceptible to challenge.
789	
790	In response to these challenges, jurisdictions are developing alternatives such as water
791	reuse utilizing groundwater storage and recovery, which avoids reservoir siting issues;
792	conservation and improved efficiency, which has contributed to steady declines in per
793	capita consumption; desalinization of water, and conjunctive management of ground and

Do Not Cite or Quote

Page 34 of 426

794	surface water. Pipelines, which have been used for decades, are suggested as the solution
795	to one region's water shortages, only to be met by resistance from the area of origin.
796	

797 The most appealing water management solutions, then, are the most modest. Water 798 conservation, which may rely on incentives or regulation, often is the least expensive way 799 of meeting demand. Water pricing has been heralded by generations of economists as the 800 means of ensuring that water choices are wisely made. Transfers of water from one use to 801 another, commonly from agricultural to urban uses in the western U.S., are becoming 802 more common as a means of adjusting to changing economic realities. However, these 803 modest solutions that have lead to more efficient water allocation have also reduced 804 flexibility to adapt to climate variation and change.

805

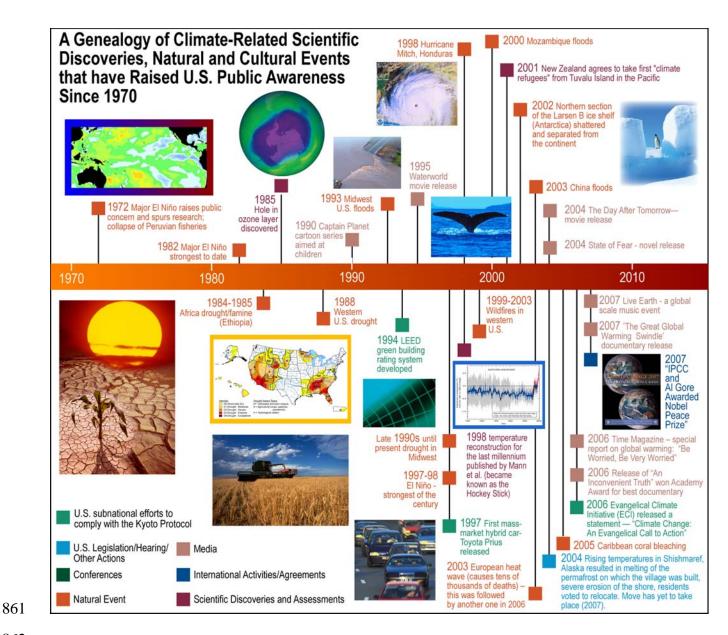
806 The mosaic of water use may be viewed through another lens, which is the relative 807 flexibility of each demand. Municipal and industrial demands can be moderated through 808 conservation or temporary restrictions on use, but these demands are relatively fixed. In 809 contrast, agricultural uses, which still comprise the largest users by volume, can be 810 restricted in times of drought. The increasing connection between water and energy may 811 limit this flexibility. For example, greater reliance on biofuels both increase competition 812 for scarce water supplies and divert irrigated agriculture from the production of food to 813 the production of oilseeds such as soybeans, corn, rapeseed, sunflower seed, and 814 sugarcane among other crops. While parts of China and India have already breached the 815 limit of sustainable water use, without the added strain of trying to grow significant 816 quantities of biofuels, to a lesser but still serious extent, the reliance upon growing corn

Do Not Cite or Quote

Page 35 of 426

817	for ethanol has changed the pattern of agricultural water use also in the U.S (Whiteley et
818	al., 2008).
819	
820	Rationalization of U.S. policies concerning water has been a goal for many decades.
821	Emergent issues of increased climate variability and change may be the agents of
822	transformation for U.S. water policies as many regions of the country are forced to
823	examine the long term sustainability of water related management decisions.
824	
825	1.2.1 The Evolving Context: The Importance of Issue Frames
826	In order to fully understand the context in which a decision is made, those in the decision
827	support sciences often look at the "issue frame" or the factors influencing the decision
828	makers including the general frame of mind of society at the time. A common
829	denominator for conceptualizing a frame is the notion that a problem can be understood
830	or conceptualized in different ways (Dewulf et al., 2005). For the purpose of this report,
831	an issue frame can be considered a tool that allows us to understand the importance of a
832	problem (Weick, 1995). Thus, salience is important part of framing. It is fair to categorize
833	most water resources decisions in previous decades as low salience issues, the kind that
834	do not attract much public notice. This low visibility is associated with the widespread
835	perception that the adequate delivery of acceptable water is within the realm of experts
836	and that an adequate understanding and contribution to decisions takes time,
837	commitment, and knowledge that few possess or seek to acquire as water appears to be
838	plentiful and is available when needed. It is understood that considerable variations in
839	water supply and quality can occur, but it is accepted that the water resources

Do Not Cite or Quote


Page 36 of 426

840 establishment knows how to handle variation.

841

842	A series of events and disclosures of scientific findings have profoundly changed the
843	framing of water issues and the interaction between such framing and climate variability
844	and change. As illustrated in Figure 1.1, natural disasters, including Hurricane Katrina
845	and recent sustained droughts in diverse sections of the United States, have disturbed the
846	public perception of well-being. Such events raise awareness of the vulnerability of
847	society to flood, drought, and degradation of water quality. Such extreme events come in
848	addition to mounting evidence in professional journals and the popular press that water
849	quantity and quality, fundamental components of ecological sustainability in many
850	geographical areas, are threatened. The February 2007 Intergovernmental Panel on
851	Climate Change, Working Group 1, report reinforced the high probability of significant
852	future climate change and more extreme climate variation affecting many sectors,
853	including water resources. The report received high press coverage and generated
854	increased concern among the public and policy makers. Instead of being low visibility
855	issue, the issue frame for water resources has become that of attention-grabbing risk and
856	uncertainty about such matters as rising sea levels, altered water storage in snow packs,
857	and less favorable habitats for endangered fish species sensitive to warmer water
858	temperatures. Thus, global warming has been an emerging issue-frame for water
859	resources management.
960	

- 863 **Figure 1.1** Timeline from 1970 to present of key natural and cultural events contributing to a widespread
- 864 change in context for increasing awareness of climate issues

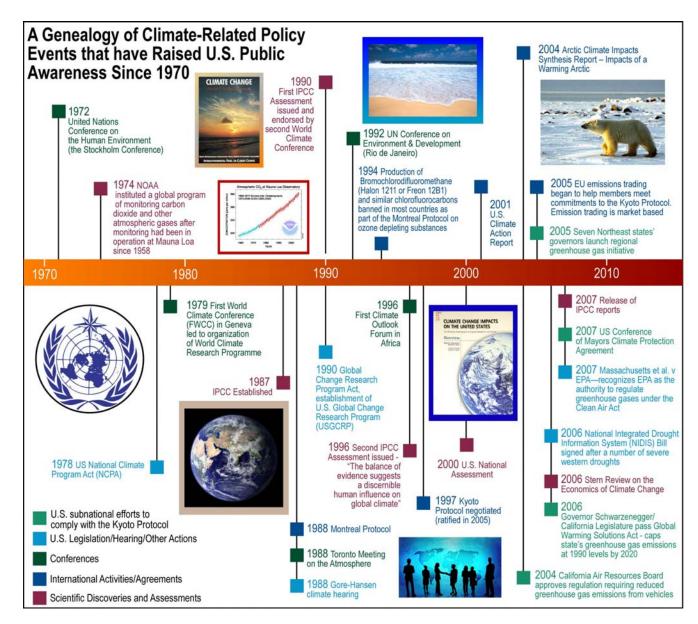


Figure 1.2 Timeline from 1970 to present of key policy events contributing to a widespread change in context for increasing awareness of climate issues
 869

- 870 Along with higher visibility of water and climate issues has come greater political and
- public involvement. At the same time, with an increase in discovery and awareness of
- 872 climate impacts there has been a deluge of new reports and passage of climate-related
- agreements and legislation. See Figure 1.2. As is the case with most high salience issues,
- politicians must compete with one another for status as policy leaders facilitating

875	governmental and private actions to reduce societal vulnerability to climate related
876	variability, although water has up until now taken a back seat to energy in terms of
877	salience. Higher visibility of climate and water variability has put pressure on water
878	managers to behave proactively to respond to expected negative effects of climate
879	variability and change (Hartmann, et al., 2002; Carbone and Dow, 2005). Specifically, in
880	the case of water managers in the U.S., perception of risk has been found as a critical
881	variable for the adoption of innovative management in the sector (O'Connor et al., 2005).
882	
883	Frames encompass expectations about what can happen and what should be done if
884	certain predictions do occur (Minsky, 1980). The emergent issue frame water resource
885	management is that new knowledge (about climate change and variability) is being
886	created that warrants management changes. Information and knowledge about climate
887	variability experienced over the recent historical past is no longer as valuable as once it
888	was, and new knowledge must be sought and put to use (Milly et al., 2008).
889	Organizational and individuals face a context today where perceived failure to respond to
890	climate variation and change is more risky than maintaining the status quo.
891	
892	1.2.2 Climate Forecasting Innovations and Opportunities in Water Resources
893	Only in the last decade or so have climate scientists achieved the important innovation of
894	being able to predict aspects of future climate variations one to a few seasons in advance
895	with better skill than can be achieved by simply using historical averages for those
896	seasons. This is a scientific advance fundamentally new in human history (NRC SARP

897 Report, 2007).

Do Not Cite or Quote

Page 40 of 426

BOX 1.1: Seasonal to Interannual Climate Forecasts

898

899

900

901 times ranging from nowcasts (e.g. severe weather warnings) out to a maximum of two weeks. The accuracy 902 of weather forecasts depends crucially on observations that can be used to accurately characterize the initial 903 state of the atmosphere. In contrast, seasonal to interannual *climate forecasts* seek to predict the statistics of 904 the atmosphere for a region over a specified window of time, typically from one month to a few seasons in 905 advance. 906 907 The accuracy of climate forecasts depend crucially on observations of the slowly varying boundary 908 conditions on the atmosphere, including upper ocean temperatures, snow cover, and soil moisture. Climate 909 forecasts can also address the expected probabilities for extreme events (floods, freezes, blizzards, 910 hurricanes, etc.), and for the expected range of climate variability. Much of the skill in seasonal to 911 interannual climate forecasts for the U.S. derives from an ability to monitor and accurately predict the 912 future evolution of ENSO, however the actual skill demonstrated is not yet high As a general principal, all 913 climate forecasts are probabilistic. They are probabilistic both in the future state of ENSO and in the 914 consequences of ENSO for remotely influenced regions like the US. For example, a typical ENSO-related 915 climate forecast for the Pacific Northwest region of the U.S. might be presented as follows: 916 917 Based on expectations for continued El Niño conditions in the tropical 918 Pacific, we expect increased likelihoods for above average winter and 919 spring temperatures with below average precipitation, with small but 920 non-zero odds for the opposite conditions (i.e., below average 921 likelihoods for below average winter and spring temperatures and 922 above average precipitation) in the Pacific Northwest (PNW). 923 924 At lead times of a few decades to centuries, *climate change scenarios* are based on scenarios for changes in 925 the emissions and concentrations of atmospheric greenhouse gases and aerosols that are important for the 926 Earth's energy budget. Climate change scenarios do not require real-time observations needed to accurately 927 initialize the atmosphere or slowly-evolving boundary conditions (upper ocean temperatures, snow cover, 928 etc.). 929 ****END BOX***** 930 931 It is important to emphasize that seasonal to interannual climate forecasting skill is still 932 quite limited, and varies considerably depending on lead time, geographic scale, target 933 region, time of year, status of the ENSO cycle, and many other issues that are the subject 934 of chapter 2. Even so, the potential usefulness of this new scientific capability is 935 enormous, particularly in the water resources sector, and this potential is being harvested 936 through a variety of experiments and evaluations, some of which appear in this product. 937 For instance, reservoir management changes in the Columbia River Basin in response to 938 seasonal to interannual climate forecast information have the potential to generate an 939 average of \$150 million per year more hydropower with little or no loss to other Page 41 of 426 Do Not Cite or Quote **Public Review Draft**

Weather forecasts seek to predict the exact state of the atmosphere for a specific time and place at lead-

- 940 management objectives (Hamlet et al., 2002). Table 1.1 illuminates the potential of SI
- 941 climate forecasts to affect a wide range of water related decisions, potentially providing
- 942 great economic, security, environmental quality, and other gains.
- 943
- 944 **Table 1.1** Examples of Water Resource Decisions Related to seasonal to interannual Climate Forecasts

Decision/topic	Agency/organization	Activities affected	Climate Forecast
	responsible		information relevance
Dam and reservoir management and reservoir allocation	 US Army Corps of Engineers US D.O.I., Bureau of Reclamation Tennessee Valley Authority FERC and its licensed projects Federal power marketing agencies State, local, regional water management entities and utilities, irrigation districts 	Distribution of inflows and outflows for: Agriculture public supply industry power flood control navigation instream flow maintenance protecting reserved waters for resources/ other needs	 Total reservoir inflow Long-range precipitation Long-range temperature Flow data Snow melt data Flood forecasts Shifts in "phase" in decadal cycles
Irrigation/water allocation for agriculture/aqua culture	 Federal, state and regional facility operators Irrigation districts Agricultural cooperatives Farmers 	How much water and when and where to allocate it.	 Long/short- range precipitation Long-range temperature
Ecosystem protection/ecosy stem services	 Federal and state resource agencies, <i>e.g.</i>, US D.O.I., Fish and Wildlife Service US D.O.A., Forest Service, US D.O.I., Park Service, US. D.O.I., BLM, US D.O.C., NMFS, <i>etc.</i> State, regional and watershed- based protected areas NGOs, <i>e.g.</i>, Nature Conservancy, Local and regional land trusts 	 Instream flow management Riverine/riparian management Wildlife management 	 Climate cycles Long-term climate predictions

Pubic water supply/wastewa ter management*	 Municipalities Special water districts Private water utilities Water supply/wastewater utilities/utility districts 	Needs for new reservoirs, dams, wastewater treatment facilities, pumping stations, groundwater management areas, distribution systems; Needs for long term water supply and demand management plans; Drought planning.	Changes in temperature/precipitation effect water demand; reduction in base-flows, increased demands, and greater evaporation rates (Gleick <i>et al.</i> , 2000; Clarkson and Smerdon, 1989). Predictive information at multiple scales and multiple time frames.
Coastal zones	 Regional Coastal zone management agencies Corps of Engineers NMFS, other federal agencies Local/regional flood control agencies Public supply utilities 	Impacts to tidal deltas, low lying coastal plans Changes to fish production/coastal food systems, salt water intrusion Erosion; deterioration of marshes Flood control, water supply and sewage treatment implications	Predicted sea level rise & land subsidence; fluctuation in surface water temperature; tropical storm predictions; change to precipitation patterns; wind & water; storm surges and flood flow circulation patterns (Davidson, 1997).
Navigation	 Harbor managers River system and reservoir managers, barge operators 	• River and harbor channel depth; flow	• Stream flow, seasonality, flooding potential
Power production	 Federal water and power agencies; FERC; private utilities with licensed hydropower projects; private utilities using power from generation facilities 	 Water for hydropower Water for steam generation in fossil fuel and nuclear plants Water for cooling 	 Temperature (and relationships to demand for power) Precipitation Stream flow and runoff
Flooding/floodp lain management	 Floodplain managers; flood zone agencies; insurance companies; risk managers, land use planners 	 Infrastructure needs planning Emergency management 	Short and long-term runoff predictions, esp. long term trends in intensity of precipitation, storm surges, <i>etc</i> .

Besides the potential applications suggested in Table 1.1, there are other overarching
opportunities for use of seasonal to interannual climate and hydrologic forecasts recently
introduced to the water resources sector. Adaptive Management and Integrated Water
Resources Management are examples of reforms that are still in relative infancy (see
chapters 3 and 4) and could gain considerable traction through fostering continuous
feedback from forecasts to changes in practice and improved performance. Adaptive

Do Not Cite or Quote

Page 43 of 426

952	management embraces the need for continuous monitoring and feedback; information
953	provided by forecasts can prompt real time adaptations by public and private agencies
954	and water users. Integrated Water Resources Management is based around the concepts
955	of flexibility and adaptability, using measures that can be easily reversed or are robust to
956	changing circumstances (IPCC Report, 2007 3.6.5). Such potential flexibility and
957	adaptability extends not just to water agencies, but also to the citizenry generally.
958	Advances in climate forecast skill and their application provides an opportunity to convey
959	to the public, all of whom use water in one way or another, a deeper understanding than
960	currently exists about the relationship of climate variability to increased risk,
961	vulnerability, and uncertainty related to water that now tends to be perceived in static
962	terms. In addition, more finely tuning water management to real time climate prediction
963	allows for cutting down the lead time for response to climate variation.
964	

965 **1.2.3 Organizational Dynamics and Innovation**

966 The flow of information among agencies and actors in a complex organizational field like climate forecasting and water resources is not at all like water itself that is ruled by 967 968 gravity and flows downhill. Even as skill levels of climate and hydrologic forecasts have 969 improved, resistance to their use in water resources management both exists and persists 970 (O'Conner et al., 1999; Rayner et al., 2005; Yarnal et al., 2006). Such resistance to 971 innovation is to be expected according to organizational and management literature that 972 addresses the management of information across boundaries of various kinds that include 973 organizations, disciplines, fields, practices and the like (Carlisle, 2004; Feldman et al., 974 2006). The same specialization that makes organizations effective in delivery of

Do Not Cite or Quote

Page 44 of 426

975 organizational goals can make them resistant to innovation (Weber, 1947). Creating a 976 product or service requires differences in experience, terminologies, tools, and incentives 977 that are embedded in a specific organization. Because knowledge takes investment such 978 as time, resources, and opportunity costs, it constitutes a kind of "stake", and significant 979 costs are associated with giving it up and acquiring new knowledge (Carlisle, 2002). 980 Further, if the kind of knowledge that needs to be coordinated across boundaries may be 981 so different in kind that a bridge of a common language must be created that allows 982 translation to take place. Finally, the sort of demands made by sharing information across 983 boundaries may be so novel that a fundamental readjustment is needed that challenges the 984 organization to rethink what it knows and how. 985 986 Figure 1.3, adapted from Carlisle (2004) portrays the different level, challenge, or gap 987 that must be filled for sharing knowledge across boundaries, and helps convey the

988 challenge of innovation through information sharing across different organizations, levels

989 of government, and public and private actors. At the lowest level of the inverted triangle

990 information transfer is relatively simple such as exists between different climate

991 forecasters located in different organizations. Forecasters have common knowledge and

892 know each others' levels of expertise and respect it regardless of organizational ties.

993 Because a common lexicon exists, knowledge transfer is relatively simple. The usual

barriers to smooth information flow apply, including information overload, availability of

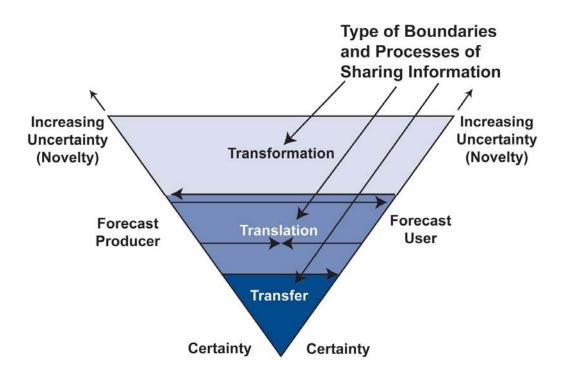
storage and retrieval technologies and other information processing challenges.

996 Unfortunately, agencies prefer their own terminology and trust information that comes

997 from inside the organization more than information from outside, the adoption of

Do Not Cite or Quote

Page 45 of 426


998	seasonal to interannual climate forecast information in the water resource sector hardly
999	ever fits this simple transfer profile.

1001	At the second or translation level of managing information, shared meanings or
1002	resolution of discrepancy of meaning are necessary. This level of information sharing
1003	probably typifies the relationships between climate forecasters and water resource
1004	forecasters who have long predicted water futures using data such as snowpack, soil
1005	moisture, basin and watershed models and the like. This involves a large expenditure of
1006	effort that has to be justified within the organization and may well encounter resistance
1007	unless offset by some considerable pay off. A common lexicon may need to be invented
1008	with common definitions. Effort must be expended to develop shared methodologies,
1009	create cross-organizational teams, engage in strategies such as collocation of offices, and
1010	employ individuals who can act as translators or brokers. Sometimes translation requires
1011	making tacit knowledge explicit, and translation becomes more difficult when
1012	information is related to practices that may be very different on either side of boundaries.
1013	This level of information sharing probably typifies the relationships between climate
1014	forecasters and water resource forecasters who have long predicted water futures using
1015	data such as snowpack, soil moisture, basin and watershed models and the like.
1016	
1017	The third or transformation level of managing information requires considerable change
1018	in the ways in which organizations presently process and use information, such as
1019	moving toward co-production of knowledge with outside organizations, interests and

1020 entities. These costs negatively impact the willingness of organizations to make such

1021	transformational changes and help to explain why organizations continue to follow "path
1022	dependent" or business-as-usual practices despite evidence that innovation would be
1023	beneficial. For instance, the very large challenges presented to climate forecasters to
1024	involve users in the production of climate products explains why they continue to follow
1025	what has been termed the "loading dock" model, or simply putting forecasts out with
1026	little notion of whether or not they will be picked up (Cash et al., 2006). Knowledge at
1027	this level is a transformed mixture of knowledge that is determined to still be of value and
1028	the knowledge that is of consequence given new insight on climate variability.
1029	
1030	Knowledge at this third level must be created collaboratively rather than delivered and
1031	must be salient, credible and legitimate to all engaged actors. Salience or decision
1032	relevance is changing, as the context for decisions is changing as discussed above.
1033	However, information is likely to be more salient if it comes from known and trusted
1034	sources (NRC, 1984, 1989, 2002; Sarp Report, 2006). Credibility is not just credibility of
1035	scientists, but also to users. Information is more credible if it recognizes and treats
1036	multiple perspectives. Legitimacy relates to even handedness and the absence of narrow
1037	organizational or political agendas (Cash et al., 2003; NRC SARP Report, 2006). Almost
1038	all of the important applications of seasonal to interannual climate forecasts involve
1039	information management at level three.
1040	
10.11	

- 1042
- 1043

Figure 1.3 Illustration of the processes of information sharing. At the tip of the triangle forecast producers and forecast users are sharing a common syntax and framework and therefore knowledge is simply transferred. As the products and uses become increasingly different and novel, a process of learning has to occur for information to be translated (middle of triangle). Finally, information will need to be transformed in order for knowledge to be accessible to very different parties. Adapted from Carlile, 2003.

1050 **1.2.4 Decision Support, Knowledge Networks, Boundary Organizations, and**

- 1051 Boundary Objects
- 1052 A recent National Academy of Sciences Report (2006) observes that decision support is
- 1053 widely used but definitions vary. Following the lead of this report, decision support is
- 1054 defined here as creating conditions that foster the appropriate use of information. This
- 1055 definition presumes that the climate scientists who generate seasonal to interannual
- 1056 climate forecasts often do not know what information they could provide to water
- 1057 resources managers that the managers would find useful, and that water managers do not
- 1058 necessarily know how they could use seasonal to interannual climate forecasts and related

1059	information (NAS, 2006). The primary objective of decision support activities is to foster
1060	transformative information exchange that will both change the kind of information that is
1061	produced and the way it is used (NRC 1989, 1996, 1999, 2005, 2006).
1062	
1063	Decision support involves engaging effective two-way communication between the
1064	producers and users of climate information (Jacobs et al., 2005; 2006; Lemos and
1065	Morehouse, 2005; NRC, 1999, 2006) rather than just the development of tools and
1066	products that may also be useful though less fundamental. This conception of decision
1067	support brings into focus human relationships and networks in information utilization.
1068	The test of transformed information is that it is trusted and considered reliable, and is
1069	fostered by familiarity and repeated interaction between information collaborators and the
1070	working and reworking of relationships. A knowledge network is built through such
1071	human interactions across organizational boundaries and creating and conveying
1072	information that is end to end useful for all participants ranging from scientists to
1073	multiple decision makers.
1074	
1075	A variety of mechanisms can be employed to foster the creation of knowledge networks
1076	and the coproduction of knowledge that transcends that otherwise available. Among such
1077	mechanisms are boundary organizations that play an intermediary role between different
1078	organizations, specializations, disciplines, practices, and functions including science and
1079	policy (Cash, 2001; Clark et al., 2002; Guston, 2001) These organizations can play a
1080	variety of roles in decision support that include convening, collaboration, mediation and

1081 the production of boundary objects. A boundary object is a prototype, model or other

Do Not Cite or Quote

Page 49 of 426

1082	artifact upon which collaboration can occur across different kinds of boundaries during
1083	which such collaboration participants may come to appreciate the contribution of other
1084	kinds of knowledge, perspectives, expertise or practice and how it may augment, help or
1085	modify their own knowledge (Star, 1989). A fish ladder is a kind of boundary object since
1086	it is an add-on to a dam structure and must be part of structural design. At the same time
1087	it serves fish species and needs the insight of biologists for it to work.

1089 **1.3 OUTLINE OF THE REPORT AND WHERE PROSPECTUS QUESTIONS**

1090 ARE ADDRESSED

1091 This Chapter addresses what types of seasonal interannual forecasts related decisions are

1092 made in the water community and what role could such forecasts play. It describes the

1093 general contextual opportunities and limitations to innovations such as the use of seasonal

1094 to interannual forecast information would entail.

1095

1096 Chapter 2 answers the question: what are seasonal and interannual forecast products and

1097 how do they evolve from a scientific prototype to an operational product? It also

addresses the issue of skill and the impediments to progress in improving skill, and the

- steps that are taken to ensure that a product is needed and will be used in decision
- 1100 support. It describes the level of confidence about seasonal to interannual forecast

1101 products in the science and decision-making communities.

1102

1103 Chapter 3 focuses on the obstacles, impediments, and challenges in fostering close

1104 collaboration between scientists and decision makers in terms of theory and observation.

	Do Not Cite or Quote	Page 51 of 426	Public Review Draft
1128			
1127			
1126			
1125	summarizes the questions and when	re they are addresses in the report.	
1124	Science Program Office directed th	is group to answer within this pro	duct. Table 1.2
1123	The Prospectus for this study conta	ined a series of questions that the	Climate Change
1122			
1121	other sectors.		
1120	Finally, it addresses how the knowl	ledge gained in water resources m	ight be useful to
1119	It suggests the kinds of research and	d action needed to improve progre	ess in this area.
1118	Chapter 5 provides an overview of	this report, especially identifying	overarching themes.
1117			
1116	decision support tools can be impro	oved.	
1115	information available and the need	to employ logical inference. It als	o discusses how
1114	seasonal and interannual forecast in	nformation. It describes the limitat	tions on the kinds of
1113	Chapter 4 provides examples of a ra	ange of decision support experime	ents in the context of
1112			
1111	decision support could leverage sci		
1110	decision makers? It emphasizes the		
1109	managed? What are the challenges	• •	
1108	questions: How are hazards and risl	-	C
1107	resource decision makers use inform		
1106	information is explained by a theory		-
1105	The real world barriers encountered	d in translation of climate variation	n forecasting

1129 Table 1.2 Questions To Be Addressed in Synthesis and Assessment Product 5.3

1130

Prospectus Question	Report Location where Question is Addressed
What seasonal to interannual (<i>e.g.</i> , probabilistic) forecast information do decision makers need to manage water resources?	2.1
What are the seasonal to interannual forecast/data products currently available and how does a product evolve from a scientific prototype to an operational product?	2.2
What is the level of confidence of the product within the science community and within the decision making community, who establishes these confidence levels and how are they determined?	2.2
How do forecasters convey information on climate variability and how is the relative skill and level of confidence of the results communicated to resource managers?	2.3
What is the role of probabilistic forecast information in the context of decision support in the water resources sector?	2.3
How is data quality controlled?	2.3
What steps are taken to ensure that this product is needed and will be used in decision support?	2.5
What types of decisions are made related to water resources?	3.2
What is the role that seasonal to interannual forecasts play and could play?	3.2
How does climate variability influence water resource management?	3.2
What are the obstacles and challenges decision makers face in translating climate forecasts and hydrology information into integrated resource management?	3.2
What are the barriers that exist in convincing decision makers to consider using risk-based hydrology information (including climate forecasts)?	3.2
What challenges do tool developers have in finding out the needs of decision makers?	3.3
How much involvement do practitioners have in product development?	4.1
What are the measurable indicators of progress in terms of access to information and its effective uses?	4.3
Identify critical components, mechanisms, and pathways that have led to successful utilization of climate information by water managers.	4.4
Discuss options for (a) improving the use of existing forecasts/data products and (b) identify other user needs and challenges in order to prioritize research for improving forecasts and products.	4.4 and 5
Discuss how these findings can be transferred to other sectors.	5

- 1133
- 1134

1135	CHAPTER 1 REFERENCES
1136	Blatter, J. and H. Ingram, 2001: Reflections on water: New approaches to transboundary
1137	conflicts and cooperation. MIT Press.
1138	
1139	Carbone, G. J. and K. Dow, 2005: Water resource management and drought forecasts in
1140	South Carolina. Journal American Water Resources Association 4: 44-155.
1141	
1142	Carlile, P.R., 2004: Transferring, Translating and Transforming: An Integrative
1143	Framework for Managing Knowledge Across Boundaries in Organizational
1144	Science 15, .5. 555-568.
1145	
1146	Cash, D.W., and J. Buizer. 2005: Knowledge-Action Systems for Seasonal to Inter-
1147	annual Climate Forecasting: Summary of a Workshop. Report to the Roundtable
1148	on Science and Technology for Sustainability. Washington, D.C.: National
1149	Research Council/National Academy of Sciences.
1150	
1151	Cash, D.W., W.C. Clark, F. Alcock, N.M. Dickson, N. Eckley, D. H. Guston, J. Jager,
1152	R.B.H. Mitchell 2003: Knowledge Systems for Sustainable Development.
1153	Proceedings of the National Academy of Science – Science and Technology for
1154	Sustainable Development 100: 8086-8091.
1155	
1156	Cash, D.W. 2001: In Order to Aid in Diffusing Useful and Practical Information:
1157	Agricultural Extension and Boundary Organizations. Science, Technology, &
1158	Human Values 26(4): 431-453.
1159	
1160	Climate Change Science Program, 2007: Effects of climate change on energy
1161	production and use in the United States. U.S. Department of Energy, Washington,
1162	DC. <http: energy_impacts="" sap_4.5="" sci="" team.shtml="" www.ornl.gov=""></http:>
1163	
1164	Climate Change Science Program, 2008: Our Changing Planet The U.S. Climate
1165	Change Science Program for Fiscal Year 2008. A Report by the Climate Change

Do Not Cite or Quote

1166	Science Program and The Subcommittee on Global Change Research, A
1167	Supplement to the President's Fiscal Year 2008 Budget.
1168	Dewulf, A., B. Gray, L. Putnam, N. Aarts, R. Lewicki, R. Bouwen, C. Van Woerkum
1169	2005: Disentangling approaches to framing: mapping the terrain. Proceedings of
1170	the 18th Annual Conference of the International Association for Conflict
1171	Management, June 12-June 15, 2005, Seville, Spain.
1172	
1173	Dow, K., R. E. O'Connor, B. Yarnal, G. J. Carbone, and C. L. Jocoy, 2007: Why Worry?
1174	Community Water System Managers' Perceptions of Climate Vulnerability.
1175	Global Environmental Change 17: 228-237.
1176	
1177	Feldman M. A. Khadamian, H. Ingram, A. Schneider, 2006: Ways of knowing and
1178	inclusive management practices. Public Administration Review. Supplement to
1179	Issue 66:6.
1180	
1181	Guston, D. H. 2001: "Boundary Organizations in Environmental Science and Policy:
1182	An Introduction. Science, Technology, and Human Values 26 (4) Special Issue:
1183	Boundary Organizations in Environmental Policy and Science, Autumn: 399-408.
1184	
1185	Hartmann, H. C., T. C. Pagano, S. Sorooshian, R. Bales 2002: Confidence Builders:
1186	Evaluating Seasonal Climate Forecasts from User Perspectives. Bulletin of the
1187	American Meteorological Society 683-698.
1188	
1189	IPCC 2007a. Climate Change 2007: The Physical Science Basis. Contribution of
1190	Working Group I to the Fourth Assessment Report of the Intergovernmental Panel
1191	on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,
1192	K.B. Averyt, M. Tignor, and H. L. Miller (eds.) Cambridge University Press,
1193	Cambridge, U.K., and New York, NY, U.S.A.
1194	
1195	IPCC 2007b. Climate Change 2007. Impacts, Adaptation, and Vulnerability. Working
1196	Group II Contribution to the Intergovernmental Panel on Climate Change Fourth

1197	Assessment Report. Summary for Policymakers (Neil Adge, et. al.) Geneva,
1198	Switzerland: IPCC Secretariat, April.
1199	
1200	Jacobs, K.L., G.M. Garfin and M. Lenart 2005: More than Just Talk: Connecting
1201	Science and Decisionmaking, Environment, 47, 9, 6-22.
1202	
1203	Jacobs, K.L., and Holway, J.M., 2004: Managing for sustainability in an arid climate:
1204	lessons learned from 20 years of groundwater management in Arizona, USA.
1205	Hydrogeology Journal 12:52-65.
1206	
1207	Lemos M. C. 2003: A tale of two polices: climate forecasting and drought relief in Ceará,
1208	Brazil. Policy Sciences 36:101–123
1209	
1210	Lemos M. C., J. L. F. Oliveira 2004: Can water reform survive politics? Institutional
1211	change and river basin management in Ceará, Northeast Brazil. World
1212	Development 32(12): 2121 2137
1213	
1214	Lemos, M. C. and J. L. F. Oliveira. 2005. Water reform across the state/society divide:
1215	the case of Ceará, Brazil. International Journal of Water Resources Development,
1216	21, 1, 93-107.
1217	
1218	Lemos, M.C. and B. Morehouse 2005: The co-production of science and policy in
1219	integrated climate assessments. Global Environmental Change: Human and
1220	Policy Dimensions 15: 57-68
1221	
1222	Lemos M. C., D. Nelson, T Finan., R.Fox, D. Mayorga, I Mayorga 1999: The social
1223	and policy implications of seasonal forecasting: a case study of Ceará. Northeast
1224	Brazil. NOAA Final Report, Award no. NA76GPO385.
1225	

1226	Lemos M. C., T.Finan, R.Fox, D.Nelson, J. Tucker 2002: The use of seasonal climate
1227	forecasting in policymaking: lessons from Northeast Brazil. Climatic Change
1228	55:479–507
1229	Meinke H., Nelson R., Stone R., Selvaraju R., Baethgen W. (2006) Actionable climate
1230	knowledge: from analysis to synthesis. Climate Research 33:101–110.
1231	
1232	Milly, P.C.D., K.A. Dunne, A.V. Vecchia. 2005: Global Pattern of Trends in
1233	Streamflow and Water Availability in a Changing Climate. Nature 438: 347-350.
1234	
1235	Minsky, M. 1980: A Framework for Representing Knowledge in D. Metzig (Ed) Frame
1236	conceptions and Text Understandings (pp 96-119) Berlin: Walter de Gruter
1237	
1238	National Research Council 2008: Research and Networks for Decision Support in the
1239	NOAA Sectoral Applications Research Program Panel on Design Issues for the
1240	NOAA Sector Applications Research Program, Helen M. Ingram and Paul C.
1241	Stern, Editors, National Research Council
1242	<http: 12015.html="" catalog="" www.nap.edu=""></http:>
1243	
1244	National Research Council, 2007: Colorado River Basin Water Management:
1245	Evaluating and Adjusting to Hydroclimatic Variability. Committee on the
1246	Scientific Bases of Colorado River Basin Water Management. Washington, D.C.,
1247	The National Academies Press, 222 p
1248	
1249	National Research Council 2006: Toward a New Advanced Hydrologic Prediction
1250	Service (AHPS) Committee to Assess the National Weather Service Advanced
1251	Hydrologic Prediction Service Initiative. Washington, DC: National Research
1252	Council ISBN: 0-309-65847-0. <http: 11598.html="" catalog="" www.nap.edu=""></http:>
1253	
1254	National Research Council 2005: Decision Making for the Environment: Social and
1255	Behavioral Science Research Priorities. Garry D. Brewer and Paul C. Stern, (Eds),
1256	Panel on Social and Behavioral Science Research Priorities for Environmental

1257	Decision Making, Committee on the Human Dimensions of Global Change.
1258	Washington, DC.
1259	
1260	National Research Council 2004: Adaptive Management for Water Resources Project
1261	Planning. Panel on Adaptive Management for Resource Stewardship. Committee
1262	to Assess the U.S. Army Corps of Engineers Methods of Analysis and Peer
1263	Review for Water Resources Project Planning. Washington, DC.
1264	
1265	National Research Council 1999a: Making Climate Forecasts Matter. Panel on the
1266	Human Dimensions of Seasonal-to-Inter-annual Climate Variability. Committee
1267	on the Human Dimensions of Global Change. Washington, D.C.: National
1268	Academy Press.
1269	
1270	National Research Council, 1999b: Our Common Journey: A Transition Toward
1271	Sustainability. Washington, D.C.: National Academy Press.
1272	
1273	National Research Council 1996: Understanding Risk: Informing decisions in a
1274	Democratic Society. P.C. stern and H.V. Fineberg, editors. Committee on Risk
1275	characterization, Commission on Behavioral and Social Sciences and Education.
1276	Washington, D.C.: National Academy Press.
1277	
1278	National Research Council. 1989: Improving Risk Communication. Committee on
1279	Risk Perception and Communication. Commission on Behavioral and Social
1280	Sciences and Education and Commission on Physical Sciences, Mathematics, and
1281	Resources. Washington, D.C.: National Academy Press.
1282	
1283	O'Connor, R. E., B. Yarnal, K. Dow, C. L. Jocoy, and G. J. Carbone, 2005: Feeling at-
1284	risk matters: Water managers and the decision to use forecasts. Risk Analysis, 25,
1285	1265-1275.
1286	

1287	Rayner, S., D. Lach, H. Ingram 2005: Weather Forecasts are for Wimps: Why Water
1288	Resource Managers do not Use Climate Forecasts. Climate Change 69: 197-227.
1289	
1290	Weick, K 1995: Sense Making in Organizations Thousand Oaks: Sage
1291	
1292	Whiteley, J., H,M. Ingram, and R.Perry, 2008: Water, Place and Equity Cambridge,
1293	MIT Press
1294	
1295	Yarnal, B., A. L. Heasley, R. E. O'Connor, K. Dow, and C. L. Jocoy, 2006: The potential
1296	use of climate forecasts by Community Water System managers. Land Use and
1297	Water Resources Research 6: 3.1-3.8, <http: www.luwrr.com=""></http:>
1298	
1299	Yarnal, B., R. E. O'Connor, K. Dow, G. J. Carbone, and C. L. Jocoy, 2005: Why don't
1300	Community Water System managers use weather and climate forecasts? Preprints
1301	of the 15th Conference on Applied Climatology, Savannah, GA, June 2005,
1302	American Meteorological Society, Boston, Session 7.1.
1303	
1304	
1305	
1306	
1307	
1200	
1308	
1309	
1310	
1311	
1312	
1313	
1314	