TABLES FOR PUBLIC REVIEW

PREFACE

Preface Table 1. *Note:* Abbreviated terms --- Subscript 'S', refers to the <u>S</u>urface. Subscripts '2' and '4' refer to MSU data from channels 2 and 4. Subscript '2LT' refers to a modification of channel 2 data to focus more directly on the <u>L</u>ower <u>T</u>roposphere and reduce the influence of stratospheric temperatures on channel 2 data. Subscripts '850–300' and '100–50' are specific atmospheric layers sampled by radiosondes. Subscript '*_G' refers to a combination of channel 2 and channel 4 data derived by Fu and co-workers, applicable to global averages, and '*_T' refers to applicable tropical averages. For the model-observation comparisons, the observation-based definitions as listed in the Table were employed.

.

Terms for Layers of the Atmosphere Used in this Report

Common Term	Abbrev. Term for the temperature of that layer	Main region of Influence	Approximate altitude. (For satellite products: altitude range of bulk (90%) of layer measured.)	Lower and upper pressure level boundaries
Surface	T _S	<u>Air</u> : Just above surface <u>Water</u> : Shallow depth	Surface Air: Land: $1.5 - 2.0 \text{ m}$ above surface; Ocean: ship deck-height $(5 - 25 \text{ m})$ above surface. Surface Water: $1 - 10 \text{ m}$ depth in ocean (SSTs)	Surface (or ~1000 hPa at sea level)
Lower Troposphere	T _{2LT}	Low to Mid- Troposphere	Surface – 8 km	Surface to 350 hPa
Troposphere (radiosonde)	T ₍₈₅₀₋₃₀₀₎	Troposphere	1.5 – 9 km	850 – 300 hPa
Troposphere (satellite)	T* _G	Troposphere	Surface – 13 km	Surface – 150 hPa
Tropical Troposphere (satellite)	T* _T	Troposphere (tropics only)	Surface – 16 km	Surface – 100 hPa

Mid	T ₂	Mid and upper	Surface – 18 km	Surface – 75
Troposphere		Troposphere		hPa
to Lower		to Low		
Stratosphere		Stratosphere ¹		
Lower	T_4	Low	14 – 29 km	150 – 15 hPa
Stratosphere		Stratosphere		
(satellite)				
Lower	T ₍₁₀₀₋₅₀₎	Low	17 – 21 km	100 – 50 hPa
Stratosphere		Stratosphere		
(radiosonde)				

16

17

EXECUTIVE SUMMARY

Executive Summary Table 1: Summary of the most important global-scale climate forcing factors and their likely individual effects on global, annual-mean temperatures; based on Figure 1.3 (which gives temperature information) and Table 1.1 (which gives information on radiative forcing) in Chapter 1, and literature cited in Chapter 1. The stated effects are those that would be expected if the change specified in column 1 were to occur. The top two rows are the primary natural forcing factors, while the other rows summarize the main human-induced forcing factors.

23 The relative importance of these different factors varies spatially and over time.

75	
$\Delta \mathcal{I}$	

Forcing Factor	Surface	Low to Mid	Stratosphere
		Troposphere	
Increased solar output	Warming	Warming	Warming
Volcanic eruptions	Cooling	Cooling	Short-term
			warming
Increased concentrations	Warming	Warming	Cooling
of well-mixed	-		
greenhouse gases (CO ₂ ,			
CH ₄ , N ₂ O, halocarbons)			
Increased tropospheric	Warming	Warming	Slight cooling
ozone (O ₃)			
Decreased stratospheric	Negligible except	Slight cooling	Cooling
ozone	at high latitudes		
Increased loading of	Cooling	Cooling	Negligible
sulfate (SO ₄) aerosol –			
sum of direct plus			
indirect effects			

Increased loading of	Regional cooling	Warming	Uncertain
carbonaceous aerosol	 possible global- 		
(black carbon (BC) and	mean cooling		
organic matter (OM)) -			
sum of direct plus			
indirect effects			
Land use and land cover	Regional cooling	Uncertain	Negligible
changes	or warming –		
	probably slight		
	global-mean		
	cooling		

27

28

CHAPTER 1

Chapter 1 Table 1.1. Agents potentially causing an external radiative forcing of climate change in the 20th Century 29 30

(based on Ramaswamy et al., 2001). See notes below for explanations.

Forcing	Nat.	Solar	Longwave	Surface	Tropos.	Stratos.	Geog.	Level of
agent	(N)	pert.	pert.	rad.	rad.	rad.	dis.	confidence
	or			effect	effect	effect	(global	
	Anth.						G or	
	(A)						localized,	
							L)	
Well-	А	(small)	Y	Y	Y	Y	G	High
mixed								
gases								
Trop.	А	Y	Y	Y	Y	(small)	L	Medium
ozone								
Strat.	А	Y	Y	(small)	Y	Y	L	Medium
ozone								
Sulfate	А	Y	-	Y	(small)	-	L	Low
aero.								
(direct)								
Black	А	Y	(small)	Y	Y	-	L	Very low
carbon								
aero.								
(direct)								
Organic	Α	Y	-	Y	(small)	-	L	Very low
carbon								
aero.								

(direct)								
Biomass	А	Y	-	Y	Y	-	L	Very low
burning								
aero.								
(direct)								
Indirect	А	Y	Y	Y	Y	(small)	L	Very low
aerosol								
effect								
Land-	А	Y	(small)	Y	-	-	L	Very low
use								
Aircraft	А	(small)	(small)	(small)	(small)	-	L	Very low
contrails								
Sun	Ν	Y	-	Y	(small)	Y	G	@Very
								low
Volcanic	Ν	Y	Y	Y	(small)	Y	#	*
aero.								

34 <u>Notes</u>:

35 Natural (N) and Anthropogenic (A) sources of the forcing agents. Direct aerosol forcing is to be contrasted with the 36 indirect effects; the latter comprise the so-called first, second, and semi-direct effects. Y denotes a significant 37 component, "small" indicates considerably less important but not negligible, while no entry denotes a negligible 38 component. Forcings other than well-mixed gases and solar are spatially localized, with the degree of localization 39 having considerable variations amongst the different agents, depending on their respective source locations. In 40 addition, for short-lived species such as ozone and aerosols, the long-range meteorological transport plays an 41 important role in their global distributions. Level of confidence is a subjective measure of the certainty in the 42 quantitative estimate of the global-mean forcing.

43 **#** Typically, the forcing becomes near-global a few months after an intense tropical eruption.

44 ** In the case of volcanic aerosols, the level of confidence in the forcing from the most recent intense 45 eruption, that of Mt. Pinatubo in 1991, is reasonably good because of reliable observing systems in place; for 46 prior explosive eruptions, observations were absent or sparse which affects the reliability of the quantitative 47 estimates for the previous volcanic events.

48 @ Although solar irradiance variations before 1980 have a very low level of confidence, direct observations
 49 of the Sun's output from satellite platforms since 1980 are considered to be accurate (Lean et al., 2005). Thus,
 50 the forcing due to solar irradiance variations from 1980 to present are known to a much greater degree of

- 51 confidence than from pre-industrial to present time.
- 52
- 53
- 54
- 55
- 56

CHAPTER 2

57

58

59 Chapter 2, Table 2.1 Dataset types and readiness for high quality climate monitoring related to the vertical

60 temperature structure of the atmosphere. "Usage of Data" indicates the level of application of the dataset to the 61 vertical temperature issue. "Understanding" indicates the level of confidence (or readiness) in the dataset to provide

61 vertical temperature issue. "Understanding" indicates the level of confidence (or readiness) in the dataset to provide 62 accurate information on this issue.

DATA SET	Measured	Usage of	Understandin	Temporal	Geographic
OURCE	Variables	Data for	g	Sampling	Completeness
		Vertical			
		Temperature			
adiosondes	Upper Air			2x Day	
Balloons)	Temperature				
	Upper Air			2x Day	
	Humidity				
				2x Day	
	Upper Air Wind				
licrowave	Upper air			Р	
adiometers	Temperature				
pace-based					
	Sea Surface			Р	
	Temperature				
	Total Column			Р	
	Vapor (ocean)				
urface-based	Upper air			Hrly	
ounders and	Temperature				
rofilers					
ofrared	Upper Air			P , G	
adiometers Space-	Temperature				
ased				D G	
	Land Surface			P, G	
	1 emperature			D C	
	Sea Surface			P,G	
	Temperature			D C	
	Upper Air			P,G	-
Asible and Infuend	Humidity Dedictive Flores				
Isible and Infrared	Radiative Fluxes			r, G	
adiometers	Tomporature			anos: D	
rr 5 Salemies	I emperature			<u>quasi-r</u> Unlu	
and	Lanu Surrace			nriy	
/allu	An Temperature			Hrly	
	Air Humidity			1111y	
Iicrowave adiometers pace-based urface-based punders and rofilers nfrared adiometers Space-ased //isible and Infrared adiometers PS Satellites urface Stations and	Upper Air Humidity Upper Air Wind Upper air Temperature Sea Surface Temperature Total Column Vapor (ocean) Upper air Temperature Upper Air Temperature Land Surface Temperature Sea Surface Temperature Upper Air Humidity Radiative Fluxes Temperature Land Surface Air Temperature Land Surface			2x Day2x DayPPPHrlyP, GP, GP, GP, GHrlyHrly	

Surface Instruments	Sea Surface				Syn	
Ocean	Temperature					
	Marine Air				Syn	
	Temperature					
Reanalyses	All				Syn	

64 : Adequate for long-term global climate variations

- 65 E: Improvements or continued research needed for long-term global climate variations
- 66 Problems exist or a lack of analysis to date inhibit long-term global climate variation
- 67 studies
- 68 P: Polar orbiter, twice per day per orbiter per ground location
- 69 G: Geostationary, many observations per day per ground location
- 70 2x Day: Twice daily at site
- 71 Hrly: Up to several times per day, many report hourly
- 72 Syn: Synoptic or generally up to 8 times per day. (Buoys continuous
- 73 --
- 74 Chapter 2, Table 2.2. Time scales and sources of global temperature variations.
- 75

Variation	Description	Dominant	Approx.		Effect on Trend
	I. I.	Period	Magnitude	Detectibility	Estimates
Diurnal ¹	Warmer days than	Daily (outside	Highly	Well detected in	Satellite data
	nights, due to	of polar	variable.	surface data.	require
	earth's rotation on	regions)	Surface skin T	Poorly detected	adjustment of
	its axis affecting		changes up to	globally in the	drift in the local
	solar heating.		35K.	troposphere and	equatorial
			Boundary	stratosphere due	crossing time of
			layer changes	to infrequent	spacecraft orbits.
			<10K.	sampling (once	Inadequate
			Free	or twice daily)	quantification of
			tropospheric	and potential	the true diurnal
			changes <1K.	influence of	cycle hinders this
			Stratospheric	measurement	adjustment.
			changes $\sim 0.1-1$	errors with their	Different diurnal
			К.	own diurnal	adjustments by
				signal. A few	different groups
				ground-based	may partly
				systems detect	account for
				signal well.	differences in
~ . ?					trend estimates.
Synoptic ²	Temperature	1-4 days	Up to ~ 15 K or	Well detected by	Not significant,
	changes		more at middle	observing	but contributes to

Variation	Description	Dominant	Approx.		Effect on Trend
		Period	Magnitude	Detectibility	Estimates
	associated with weather events, such as wave and frontal passages, due to internal atmospheric dynamics.		latitudes, ~3K in Tropics.	systems designed to observe meteorological variability.	noise in climate data records.
Intraseasonal ³	Most notably, an eastward-and vertically- propagating pattern of disturbed weather in the tropical Indo-Pacific ocean region, of unknown cause. Also, atmospheric "blocking" and wet/dry land surface can cause intra-seasonal variations at mid- latitudes.	40-60 days (Tropics), < 180 days (mid- latitudes)	1-2 K at surface, less aloft (tropics), larger in mid- latitudes.	Temperature signals moderately well detected, with tropical atmosphere limited by sparse radiosonde network and IR- based surface temperature limited by cloud. Reanalysis data are useful.	Not significant due to short duration, but may be important if character of the oscillation changes over time.
Annual ⁴	Warmer summers than winters, and shift in position of major precipitation zones, due to tilt of the earth's axis of rotation affecting solar heating.	Yearly	~2-30 K; greater over land than sea, greater at high than low latitudes, greater near the surface and tropopause than at other heights.	Well observed.	Trends are often computed from "anomaly" data, after the mean annual cycle has been subtracted. Changes in the nature of the annual cycle could affect annual-average trends.
Quasi- Biennial Oscillation (QBO) ⁵	Nearly periodic wind and temperature changes in the equatorial stratosphere, due to internal	Every 23-28 months (average of 27 months because occasionally periods of up	Up to 10 K locally, ~0.5 K averaged over the tropical stratosphere.	Fairlywellobservedbyequatorialradiosondestationsandsatellites.	Like ENSO, can influence trends in short data records, but it is relatively easy to remove this signal.

Variation	Description	Dominant Period	Approx. Magnitude	Detectibility	Effect on Trend Estimates
	atmospheric	to 36 months			
	dynamics.	occur.)			
Interannual ⁶	Multiannual variability due to interaction of the atmosphere with dynamic ocean and possibly land surfaces; most notably, ENSO. Can also be caused by volcanic eruptions.	ENSO events occur every 3- 7 years and last 6-18 months; major volcanic eruptions, irregular but approximately every 5-20 years with effects lasting ~ 2 years.	Up to 3K in equatorial Pacific (ENSO), smaller elsewhere. Volcanic warming of stratosphere can exceed 5K in tropics cooling of surface <2K.	Fairly well observed, although the vertical structure of ENSO is not as well documented, due to sparseness of the tropical radiosonde network.	ENSO affects surface global mean temperatures by ±0.4K, and more in the tropical troposphere. Large ENSO events near the start or end of a data record can strongly affect computed trends, as was the case for the 1997-98 event. Changes in ENSO frequency or strength affect (and may be coupled with) long-term trends.
Decadal to interdecadal oscillations and shifts ^{.7}	Like interannual, but longer time scales. Prominent example is the PDO/ Interdecadal Pacific Oscillation. Despite long time scale, changes can occur as abrupt shifts, for example, a warming shift around 1976. Others include regional changes in the North Atlantic, Pacific- North American,	Poorly known; 50- year PDO cycle suggested by 20 th -century observations; others a decade or two; solar 11- year cycle detectable also.	Not well studied. The 1976-77 shift associated with a sharp warming of at least 0.2K globally, though difficult to distinguish from anthropogenic warming. 11- year cycle leads to stratospheric temperature changes of ~2K, and	Relatively large regional changes are well observed, but global expression is subject to data consistency issues over time and possible real changes.	Can account for a significant fraction of linear trends calculated over periods of a few decades or less regionally. Such trends may differ significantly from one such period to the next.

Variation	Description	Dominant	Approx.		Effect on Trend
		Period	Magnitude	Detectibility	Estimates
	Arctic, and the Antarctic oscillations. Some		interacts with the Quasi- Biennial		
	changes also caused by 11-year solar cycle.		Oscillation (QBO).		
Sub- centennial 60- 80 year fluctuation or "Atlantic Multidecadal Oscillation" ⁸	Fluctuates in instrumental and paleo data at least back to c.1600. Seems to particularly affect Atlantic sector. Possible interhemispheric component.	60-80 years	~ $\pm 0.5C$ in parts of the Atlantic. Apparently detectable in global mean ~ $\pm 0.1C$	Detectable globally above the noise, clear in North Atlantic SST.	Effects small globally, but probably detectable in last few decades. Readily detectable over this period in North Atlantic Ocean where it clearly affects surface temperature trends and probably climate
Centennial and longer variations ⁹	Warming during 20 th Century due to human influences, solar, and internal variability. Earlier changes included the "little ice age" and "medieval warm period."	None confirmed, though 1500 year Bond cycle possible.	20 th century warming of ~0.6K globally appears to be as large or larger than other changes during the late Holocene.	Surface warming during 20 th century fairly well observed; proxies covering earlier times indicated 20 th century warmer than the past 5 centuries	generally. Natural temperature variations occur on the longest time scales accessible in any instrumental record.

	CHAPTER 3
Chapter 3, Table 3.1: Temperature data	sets utilized in this report.
Our Name Name given by Producers Web Page	Producers
Surface –	
NOAA ER-GHCN-ICOADS	NOAA's National Climatic Data Center (NCDC)
http://www.ncdc.noaa.gov/oa/climate/m	ionitoring/gcag/gcag.html
GISS Land+Ocean Temperature	NASA's Goddard Institute for Space Studies (GISS)
http://www.giss.nasa.gov/data/update/gi	istemp/graphs/
HadCRUT2v HadCRUT2v Anglia and the H	Climatic Research Unit of the University of East Iadley Centre of the UK Met Office.
http://www.cru.uea.ac.uk/cru/data/temp	erature
Radiosonde –	
RATPAC RATPAC	NOAA's: Air Resources Laboratory (ARL), Geophysical Fluid Dynamics Laboratory (GFDL), and National Climatic Data Center
http://www.ncdc.noaa.gov/	(NCDC)
HadAT2 HadAT2 http://www.hadobs.org/	Hadley Centre, UK
Satellite –	
<i>Temperature of the Lower Troposphere</i> T _{2LT-A} TLT http://vortex.nsstc.uah.edu/data/msu/t2lt	e University of Alabama in Huntsville (UAH)
T _{2LT-R} TLT http://www.remss.com/msu/msu_data_c	Remote Sensing System, Inc. (RSS) lescription.html
Temperature of the Middle Tropospher	·e
T _{2-A} TMT http://vortex.nsstc.uah.edu/data/msu/t2	University of Alabama in Huntsville (UAH)

122										
123	T _{2-R} TMT	Remote Sensing System, Inc. (RSS)								
124	http://www.remss.com/msu/msu_data_description.html									
125										
126	T _{2-M} Channel 2	University of Maryland and NOAA/NESDIS								
127		(U.Md.)								
128										
129	Temperature of the Middle Tropospher	e minus Stratospheric Influences								
130	$T_{G}^{*}(global) = T_{(850-300)}$	University of Washington, Seattle (UW) and								
131	$T_{T}^{*}(tropics)$	NOAA's Air Resources Laboratory (ARL)								
132										
133	Temperature of the Lower Stratosphere									
134	T _{4-A} TLS	University of Alabama in Huntsville (UAH)								
135	http://vortex.nsstc.uah.edu/data/msu/t4									
136		Demote Constant Contant Inc. (DCC)								
13/	I _{4-R} ILS	Remote Sensing System, Inc. (RSS)								
138	nup://www.remss.com/msu/msu_data_d	escription.ntm								
139	Doopolysis									
140	Keanarysis –									
141	US NCEP50	National Center for Environmental Prediction								
143	NOAA and the N	Jational Center for Atmospheric								
144	Research									
145	http://wesley.ncep.noaa.gov/reanalysis.h	tml								
146										
147	European ERA40	European Center for Medium Range								
148	Forecasting	I .								
149	http://www.ecmwf.int/research/era									
150	•									

Г

Т

151 Chapter 3, Table 3.2 - Global temperature trends in °C per decade from 1958 through 2004 (except for European

152 which terminates September 2001) calculated for the surface or atmospheric layers by data source. The trend is 153 shown for each, with the approximate 95% confidence interval (2 sigma) below in parentheses. The levels/layers,

154 from left to right, go from the lowest to the highest in the atmosphere. Bold values are estimated to be statistically

155 significantly different from zero (at the 5% level). A Student's t-test, using the lag-1 autocorrelation to account for

156 the non-independence of residual values about the trend line, was used to assess significance (see Appendix for 157 discussion of confidence intervals and significance testing). Т -T

	Ts	T_{2LT}	T ₍₈₅₀₋₃₀₀₎	T* _G	T_2	T ₍₁₀₀₋₅₀₎	T_4
Surface:							
NOAA	0.11						
	(0.017)						
GISS	0.11						
	(0.021)						
HadCRUT2v	0.13						
	(0.021)						
Radiosonde:							
RATPAC	0.11	0.13	0.13	0.13	0.07	-0.41	-0.36
	(0.022)	(0.026)	(0.030)	(0.032)	(0.030)	(0.093)	(0.082)
HadAT2	0.12	0.16	0.14	0.15	0.08	-0.39	-0.38
	(0.026)	(0.036)	(0.039)	(0.041)	(0.040)	(0.084)	(0.083)
Reanalyses:							
US	0.12	0.15	0.17	0.17	0.13	-0.18	-0.18
	(0.030)	(0.046)	(0.052)	(0.057)	(0.064)	(0.232)	(0.223)
European	0.11	0.15	0.15	0.14	0.10	-0.21	-0.17
	(0.027)	(0.042)	(0.042)	(0.044)	(0.040)	(0.128)	(0.134)

159 Chapter 3, Table 3.3 - Global temperature trends in °C per decade from 1979 through 2004 (except for European

160 which terminates September 2001) calculated for the surface or atmospheric layers by data source. The trend is

shown for each, with the approximate 95% confidence interval (2 sigma) below in parentheses. The levels/layers, from left to right, go from the lowest to the highest in the atmosphere. Bold values are estimated to be statistically

significantly different from zero (at the 5% level). A Student's t-test, using the lag-1 autocorrelation to account for

the non-independence of residual values about the trend line, was used to assess significance (see Appendix for discussion of confidence intervals and significance testing).

	Ts	T_{2LT}	T ₍₈₅₀₋₃₀₀₎	T* _G	T ₂	T ₍₁₀₀₋₅₀₎	T_4
Surface:							
NOAA	0.16						
	(0.035)						
GISS	0.16						
	(0.043)						
HadCRUT2v	0.17						
	(0.037)						
Radiosonde:							
RATPAC	0.17	0.13	0.10	0.11	0.02	-0.70	-0.65
	(0.050)	(0.057)	(0.065)	(0.075)	(0.071)	(0.240)	(0.213)
HadAT2	0.18	0.14	0.12	0.12	0.03	-0.63	-0.64
	(0.050)	(0.071)	(0.075)	(0.084)	(0.080)	(0.241)	(0.238)
Satellite:							
UAH		0.12		0.12	0.04		-0.45
		(0.082)		(0.089)	(0.078)		(0.421)
RSS		0.19		0.19	0.13		-0.33
		(0.081)		(0.089)	(0.077)		(0.382)
U.Md.					0.20		
					(0.066)		
Reanalyses:							
US	0.12	0.12	0.11	0.06	-0.04	-0.76	-0.74
	(0.074)	(0.100)	(0.101)	(0.106)	(0.101)	(0.450)	(0.441)
European	0.11	0.11	0.10	0.13	0.07	-0.31	-0.34
	(0.060)	(0.101)	(0.102)	(0.106)	(0.096)	(0.529)	(0.493)

166

167

169 Chapter 3, Table 3.4 – Tropical (20°N-20°S) temperature trends in °C per decade from 1979 through 2004 (except

170 for European which terminates September 2001) calculated for the surface or atmospheric layers by data source. The 171 trend is shown for each, with the approximate 95% confidence interval (2 sigma) below in parentheses. The

171 levels/layers, from left to right, go from the lowest to the highest in the atmosphere. Bold values are estimated to be

statistically significantly different from zero (at the 5% level). A Student's t-test, using the lag-1 autocorrelation to

175 statistically significantly different from zero (at the 5% level). A Student's t-test, using the lag-1 autocorrelation to 174 account for the non-independence of residual values about the trend line, was used to assess significance (see

175 Appendix for discussion of confidence intervals and significance testing).

	Ts	T_{2LT}	T ₍₈₅₀₋₃₀₀₎	T* _G	T ₂	T ₍₁₀₀₋₅₀₎	T_4
Surface:							
NOAA	0.13						
	(0.149)						
GISS	0.13						
	(0.152)						
HadCRUT2v	0.12						
	(0.172)						
Radiosonde:							
RATPAC	0.13	0.08	0.06	0.07	0.00	-0.75	-0.69
	(0.068)	(0.119)	(0.136)	(0.153)	(0.140)	(0.362)	(0.289)
HadAT2	0.15	0.05	0.03	0.02	-0.04	-0.66	-0.64
	(0.115)	(0.152)	(0.164)	(0.176)	(0.170)	(0.304)	(0.307)
Satellite:							
UAH		0.05		0.09	0.05		-0.37
		(0.176)		(0.191)	(0.167)		(0.281)
RSS		0.15		0.18	0.14		-0.29
		(0.192)		(0.196)	(0.175)		(0.303)
U.Md.					0.19		
					(0.159)		
Reanalyses:							
US	0.03	0.05	0.04	-0.03	-0.10	-0.89	-0.83
	(0.163)	(0.172)	(0.173)	(0.183)	(0.166)	(0.405)	(0.340)
European	0.03	0.00	-0.03	0.06	0.05	-0.03	-0.05
	(0.211)	(0.234)	(0.249)	(0.255)	(0.232)	(0.453)	(0.423)

176 Chapter 3, Table 3.5 – Temperature trends in °C per decade from the RATPAC and HadAT2 radiosonde datasets

177 corresponding to the plots in Figure 3.7 (see figure caption for further details). Global and tropical trends are given

178 for 1958 through 2004 and 1979 through 2004 (except for European which terminates September 2001). The 179 HadAT2 dataset does not have temperatures for some of the levels, hence the empty table cells. The trend is shown

179 HadA12 dataset does not have temperatures for some of the levels, hence the empty table cells. The trend is shown 180 for each vertical level (hPa), with the approximate 95% confidence interval (2 sigma) below in parentheses. Bold

values are estimated to be statistically significantly different from zero (at the 5% level). A Student's t-test, using the

182 lag-1 autocorrelation to account for the non-independence of residual values about the trend line, was used to assess

183 significance (see Appendix for discussion of confidence intervals and significance testing).

Level	1958-	2004	1958-	2004	1979-	2004	1979-	2004
(hPa)	RATPAC	HadAT2	RATPAC	HadAT2	RATPAC	HadAT2	RATPAC	HadAT2
	Global	Global	Tropical	Tropical	Global	Global	Tropical	Tropical
20	-0.41		-0.49		-0.91		-0.95	
	(0.078)		(0.143)		(0.141)		(0.319)	
30	-0.48	-0.57	-0.55	-0.59	-0.88	-0.96	-0.91	-0.90
	(0.091)	(0.100)	(0.179)	(0.204)	(0.234)	(0.249)	(0.522)	(0.586)
50	-0.53	-0.55	-0.63	-0.52	-0.89	-0.88	-1.01	-0.83
	(0.120)	(0.119)	(0.224)	(0.232)	(0.330)	(0.346)	(0.568)	(0.591)
70	-0.48		-0.58		-0.79		-0.89	
	(0.110)		(0.222)		(0.261)		(0.451)	
100	-0.23	-0.25	-0.18	-0.27	-0.43	-0.43	-0.36	-0.51
	(0.063)	(0.060)	(0.063)	(0.066)	(0.164)	(0.152)	(0.173)	(0.159)
150	-0.05	-0.04	0.05	-0.01	-0.19	-0.13	-0.10	-0.14
	(0.061)	(0.057)	(0.065)	(0.064)	(0159)	(0.140)	(0.185)	(0.158)
200	0.03	0.05	0.13	0.11	-0.08	-0.05	-0.01	-0.02
	(0.047)	(0.047)	(0.079)	(0.089)	(0.113)	(0.105)	(0.204)	(0.224)
250	0.11		0.15		0.08		0.09	
	(0.037)		(0.076)		(0.096)		(0.198)	
300	0.14	0.14	0.18	0.15	0.12	0.12	0.13	0.05
	(0.038)	(0.044)	(0.071)	(0.084)	(0.094)	(0.094)	(0.181)	(0.208)
400	0.15		0.15		0.13		0.11	
	(0.036)		(0.063)		(0.082)		(0.147)	
500	0.14	0.14	0.14	0.11	0.09	0.12	0.05	0.01
	(0.032)	(0.040)	(0.057)	(0.063)	(0.068)	(0.074)	(0.124)	(0.135)
700	0.13	0.15	0.13	0.11	0.09	0.12	0.05	0.02
	(0.026)	(0.035)	(0.054)	(0.064)	(0.053)	(0.066)	(0.123)	(0.129)
850	0.12	0.15	0.08	0.12	0.08	0.13	-0.01	0.06
	(0.022)	(0.029)	(0.032)	(0.051)	(0.047)	(0.060)	(0.058)	(0.105)
Surface	0.11	0.12	0.10	0.11	0.17	0.18	0.13	0.15
	(0.022)	(0.026)	(0.031)	(0.039)	(0.050)	(0.050)	(0.068)	(0.115)

184	
185	<u>CHAPTER 4</u>
186	<u>(no tables shown in Chapter 4)</u>
187	
188	<u>CHAPTER 5</u>
189	
190	Chapter 5 Table 5.1: Acronyms of climate models referenced in this Chapter. All 19 models 1884 performed
191 192 193	simulations of 20 ^{dd} century climate change ("20CEN") in support of the IPCC 1885 Fourth Assessment Report. The ensemble size "ES" is the number of independent 1886 realizations of the 20CEN experiment that were analyzed here.

	MODEL ACRONYM	COUNTRY	INSTITUTION	ES
1	CCCma- CGCM3.1(T47)	Canada	Canadian Centre for Climate Modelling and Analysis	1
2	CCSM3	United States	National Center for Atmospheric Research	5
3	CNRM-CM3	France	Météo-France/Centre National de Recherches Météorologiques	1
4	CSIRO-Mk3.0	Australia	CSIRO1 Marine and Atmospheric Research	1
5	ECHAM5/MPI-OM	Germany	Max-Planck Institute for Meteorology	3
6	FGOALS-g1.0	China	Institute for Atmospheric Physics	1
7	GFDL-CM2.0	United States	Geophysical Fluid Dynamics Laboratory	3
8	GFDL-CM2.1	United States	Geophysical Fluid Dynamics Laboratory	3
9	GISS-AOM	United States	Goddard Institute for Space Studies	2
10	GISS-EH	United States	Goddard Institute for Space Studies	5
11	GISS-ER	United States	Goddard Institute for Space Studies	5
12	INM-CM3.0	Russia	Institute for Numerical Mathematics	1
13	IPSL-CM4	France	Institute Pierre Simon Laplace	1
14	MIROC3.2(medres)	Japan	Center for Climate System Research / NIES ₂ / JAMSTEC ₃	3
15	MIROC3.2(hires)	Japan	Center for Climate System Research / NIES ₂ / JAMSTEC ₃	1
16	MRI-CGCM2.3.2	Japan	Meteorological Research Institute	5
17	PCM	United States	National Center for Atmospheric Research	4
18	UKMO-HadCM3	United Kingdom	Hadley Centre for Climate Prediction and Research	1
19	UKMO-HadGEM1	United Kingdom	Hadley Centre for Climate Prediction and Research	1

195 1 CSIRO is the Commonwealth Scientific and Industrial Research Organization. ²NIES is the

196 National Institute for Environmental Studies. 1889 ³JAMSTEC is the Frontier Research Center

197 for Global Change in Japan.

198

199 -----

200 Chapter 5, Table 5.2: Forcings used in IPCC simulations of 20th century climate change. This Table was compiled

using information provided by the participating modeling centers (see http://www-

202 pcmdi.llnl.gov/ipcc/model.documentation). Eleven different forcings are listed: well mixed greenhouse gases (G),

tropospheric and stratospheric ozone (O), sulfate aerosol direct (SD) and indirect effects (SI), black carbon (BC) and organic carbon aerosols (OC), mineral dust (MD), sea salt (SS), land use/land cover (LU), solar irradiance (SO), and

204 organic carbon aerosols (OC), mineral dust (MD), sea salt (SS), land use/land cover (LU), solar irradiance (SO), and 205 volcanic aerosols (V). Shading denotes inclusion of a specific forcing. As used here, "inclusion" means specification

206 of a time-varying forcing, with changes on interannual and longer timescales. Forcings that were varied over the

207 seasonal cycle only are not shaded.

208

	MODEL	G	0	SD	SI	BC	OC	MD	SS	LU	SO	V
1	CCCma-CGCM3.1(T47)											
2	CCSM3											
3	CNRM-CM3											
4	CSIRO-Mk3.0											
5	ECHAM5/MPI-OM											
6	FGOALS-g1.0											
7	GFDL-CM2.0											
8	GFDL-CM2.1											
9	GISS-AOM											
10	GISS-EH											
11	GISS-ER											
12	INM-CM3.0											
13	IPSL-CM4											
14	MIROC3.2(medres)											
15	MIROC3.2(hires)											
16	MRI-CGCM2.3.2											
17	PCM											
18	UKMO-HadCM3											
19	UKMO-HadGEM1											

209

210

211

212

213

214

215

216

217 218

- 221 Chapter 5, Table 5.3: Forcings used in 20CEN experiments performed with the PCM, CCSM3.0, GFDL CM2.1, and
- GISS-EH models. Grey shading denotes 1901 a forcing that was included in the experimental design. Shading
- indicates a forcing that was not incorporated or that did not vary over the course of 1902 the experiment.

	PCM	CCSM3.0	GFDL CM2.1	GISS-EH
Well-mixed greenhouse gases	IPCC Third Assessment Report.	IPCC Third Assessment Report.	IPCC Third Assessment Report and World Meteorological Organization (2003).	CH ₄ , N ₂ O and CFC spatial distributions are fit to <i>Minschwaner et al.</i> (1998).
Sulfate aerosols (direct effects)	Spatial patterns of sulfur dioxide [SO ₂] emissions prescribed over seasonal cycle. Year-to-year changes scaled by estimates of historical changes in SO ₂ emissions.1	Sulfur cycle model using time and space-varying SO ₂ emissions (<i>Smith et al.</i> , 2001, 2005). ₂	Computed from an atmospheric chemistry transport model. ₃	Based on simulations of Koch et al. (1999) and Koch (2001).4
Sulfate aerosols (indirect effects)	Not included.	Not included.	Not included.	Parameterization of aerosol indirect effects on cloud albedo and cloud cover.4
Stratospheric ozone	Assumed to be constant up to 1970. After 1970 prescribed from a NOAA dataset.1	Assumed to be constant up to 1970. After 1970 prescribed from a NOAA dataset.2	Specified using data from <i>Randel and Wu</i> (1999).	Specified using data from <i>Randel and Wu</i> (1999).4
Tropospheric ozone	Computed from an atmospheric chemistry transport model. Held constant after 1990.1	Computed from an atmospheric chemistry transport model. Held constant after 1990.2	Computed from an atmospheric chemistry transport model.3	Computed from an atmospheric chemistry transport model (<i>Shindell et al.</i> , 2003).4
Black carbon aerosols	Not included.	Present-day estimate of distribution and amount of black carbon, scaled by population changes over 20th Century.2	Computed from an atmospheric chemistry transport model. ₃	Based on simulations of Koch et al. (1999) and Koch (2001).4
Organic aerosols	Not included.	Not included.	Computed from an atmospheric chemistry transport model.3	Based on simulations of Koch et al. (1999) and Koch (2001).4
Sea salt	Not included.	Distributions held fixed in 20th Century at year 2000 values.2	Distributions held fixed at 1990 values.	
Dust	Not included.	Distributions held fixed in 20th Century at year 2000 values.2	Distributions held fixed at 1990 values.	
Land use change	Distributions held fixed at present-day values.	Distributions held fixed at present-day values.	Hurtt et al. (2006) global land use reconstruction history. Includes effect on surface albedo, surface roughness, stomatal resistance, and effective water capacity.	Uses Ramankutty and Foley (1999) and Klein Goldewijk (2001) time-dependent datasets. Effects on albedo and evapotranspiration included, but no irrigation effects.4
Volcanic stratospheric aerosols	Ammann et al. (2003).	Ammann et al. (2003).	"Blend" between Sato et al. (1993) and Ramachandran et al. (2000).	Update of Sato et al. (1993).
Solar irradiance	Hoyt and Schatten (1993).	Lean et al. (1995).	Lean et al. (1995).	Uses solar spectral changes of Lean (2000).

224

¹See *Dai et al.* (2001) for further details.1904 ²See *Meehl et al.* (2005) for further details.1905

- 226 The chemistry transport model (MOZART; see *Horowitz et al.*, 2003; *Tie et al.*, 2005) was
- driven by meteorology from the Middle Atmosphere version of the1906 Community Climate
- 228 Model ("MACCM"; version 3). "1990" weather from MACCM3 was used for all years between
- 229 1860 and 2000.1907 See *Hansen et al.* (2005a) for further details.
- 230

231 Chapter 5, Table 5.4A: Summary statistics for global-mean temperature trends calculated from 49 1909 different

realizations of 20CEN experiments performed with 19 different coupled models. 1910 Results are for four different atmospheric layers (T4, T2, T*G, and T2LT), the surface (TS), 1911 and differences between the surface and the

atmospheric layers (T4, T2, T*G, and T2LT), the surface (TS), 1911 and differences between the surface and the troposphere (TS minus T*G and TS minus 1912 T2LT). All trends were calculated over the 252-month period from

January 1979 to 1913 December 1999 using global-mean monthly-mean anomaly data. Results are in 1914

²³⁵ standary 1777 to 1715 December 1777 using groun mean monthly mean anomaly data. Results are in 1714 ²³⁶ °C/decade. The values in the "Mean" column correspond to the locations of the red lines 1915 in the seven panels of

Figure 5.3A. For each layer, means, medians and standard 1916 deviations were calculated from a sample size of n =

238 19, *i.e.*, from ensemble means (if 1917 available) and individual realizations (if ensembles were not performed).

This avoids 1918 placing too much weight on results from a single model with a large number of 1919 realizations.

Maximum and minimum values were calculated from all available realizations 1920 (*i.e.*, from a sample size of $n = 40^{-100}$

24149). 1921

Layer	Mean	Median	Std. Dev. (1o)	Minimum	Maximum
T4	-0.252	-0.281	0.194	-0.695	0.079
T ₂	0.142	0.122	0.079	0.015	0.348
T*g	0.181	0.167	0.077	0.052	0.375
T2LT	0.198	0.186	0.070	0.058	0.394
Ts	0.164	0.156	0.062	0.052	0.333
Ts-T*g	-0.017	-0.017	0.046	-0.110	0.083
Ts – T2lt	-0.034	-0.031	0.030	-0.099	0.052

242

Chapter 5, Table 5.4B: As for Table 5.4A, but for tropical temperature trends (calculated from spatial 1923 averages over 20°N-20°S). 1924

Layer	Mean	Median	Std. Dev. (1o)	Minimum	Maximum
T4	-0.188	-0.189	0.152	-0.487	0.127
T2	0.199	0.188	0.098	-0.013	0.481
T*⊤	0.238	0.213	0.105	0.007	0.558
T2LT	0.215	0.194	0.092	0.006	0.509
Ts	0.155	0.144	0.067	-0.017	0.365
Ts−T*⊤	-0.083	-0.079	0.040	-0.194	0.017
Ts – T2LT	-0.060	-0.053	0.028	-0.145	0.005

CHAPTER 6

(no tables shown in Chapter 6)

245

- 247
- 248
- 249
- 250 251
- 252
- 253
- 254

APPENDIX: STATISTICAL ISSUES REGARDING TRENDS

Table 1: Summary of the most important global-scale climate forcing factors and their likely individual effects on global, annual-mean temperatures; based on Figure 1.3 (which gives temperature information) and Table 1.1 (which gives information on radiative forcing) in Chapter 1, and literature cited in Chapter 1. The stated effects are those that would be expected if the change specified in column 1 were to occur. The top two rows are the primary natural forcing factors, while the other rows summarize the main human-induced forcing factors. The relative importance of these different factors varies spatially and over time.

263

Forcing Factor	Surface	Low to Mid	Stratosphere	
		Troposphere		
Increased solar output	Warming	Warming	Warming	
Volcanic eruptions	Cooling	Cooling	Short-term warming	
Increased concentrations of	Warming	Warming	Cooling	
well-mixed greenhouse				
gases (CO_2 , CH_4 , N_2O ,				
halocarbons)				
Increased tropospheric	Warming	Warming	Slight cooling	
ozone (O ₃)				
Decreased stratospheric	Negligible except	Slight cooling	Cooling	
ozone	at high latitudes			
Increased loading of sulfate	Cooling	Cooling	Negligible	
(SO ₄) aerosol – sum of				
direct plus indirect effects				
Increased loading of	Regional cooling –	Warming	Uncertain	
carbonaceous aerosol	possible global-			
(black carbon (BC) and	mean cooling			
organic matter (OM)) –				
sum of direct plus indirect				
effects				
Land use and land cover	Regional cooling or	Uncertain	Negligible	
changes	warming –			
	probably slight			
	global-mean			
	cooling			