1	
2	
3	
4	
5	Chapter 6
6	
7	
8	
9	What measures can be taken to improve the understanding of observed changes?
10	
11	
12	
15 14	
14	Convening Lead Author
16	Chris Folland
17	
18	Lead Authors:
19	David Parker, Richard Reynolds, Steve Sherwood, and Peter Thorne
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
25	
33 26	
30 27	
3/ 20	
38	
39	
40	
41	
42	
43	

47 Background

48

49 There remain differences between independently estimated temperature trends for the surface, 50 troposphere and lower stratosphere, and differences between the observed changes and model 51 simulations, that are, as yet, not fully understood, although recent progress is reported in 52 previous chapters. This Chapter makes recommendations that address these specific problems 53 rather than more general climate research aims, building on the discussions, key findings, and 54 recommendations of the previous chapters. Because the previous chapters fully discuss the 55 many issues, we only provide a summary here. Furthermore, we only list key references to 56 the peer reviewed literature. To ensure traceability and to enable easy cross-referencing we 57 refer to the chapters by e.g., (C5) for Chapter 5. We do not specifically refer to sub-sections 58 of chapters.

59

60 Much previous work has been done to address, or plan to address, most of the problems 61 discussed in this Report. Rather than invent brand new proposals and recommendations, we 62 have tried to expand and build upon existing ideas emphasizing those we believe to be of 63 highest utility. Key documents in this regard are: the Global Climate Observing System 64 (GCOS) Implementation Plan for the Global Observing System (GCOS, 2004), the wider 65 Global Earth System of Systems (GEOSS) 10 year Implementation Plan Reference 66 Document (GEO, 2005) which explicitly includes the GCOS Implementation Plan as its 67 climate component; and the over-arching Climate Change Science Program plan (CCSP, 68 2004).

The remainder of this Chapter is split into six sections. Each section discusses requirements under a particular theme, aiming to encapsulate the key findings and recommendations of the earlier chapters and culminating in one main recommendation in each of Sections 1 to 5 and two recommendations in Section 6. Sections 1 to 5 focus on key actions that should be carried out in the near future, making use of existing historical data and current climate models. Section 6 discusses future climate monitoring in relation to the vertical profile of temperature trends in the atmosphere.

- 77
- 78

1. Constraining observational uncertainty

79

80 An important advance since recent in-depth reviews of the subject of this Report (NRC, 81 2000a, IPCC, 2001) has been a better appreciation of the uncertainties in our estimates of 82 recent temperature changes, particularly above the surface (C2, C3, C4). Many observations 83 that are used in climate studies are taken primarily for the purposes of operational weather 84 forecasting (C2). Not surprisingly, there have been numerous changes in instrumentation, 85 observing practices, and the processing of data over time. While these changes have 86 undoubtedly led to improved forecasts of weather, they add significant complexity to 87 attempts to reconstruct past climate trends, (C2, C4). The main problem is that such an 88 evolution tends to introduce artificial (non-climatic) changes into the data (C2).

89

Above the Earth's surface, the spread in independently-derived estimates of climate change,
representing what is referred to in this report as "construction" uncertainty (C2, C4,
Appendix) (Thorne et al., 2005), is of similar magnitude to the expected climate signal itself

⁶⁹

93 (C3, C4, C5). Changes in observing practices have been particularly pervasive aloft, where 94 the technical challenges in maintaining robust, consistent measurements of climate variables 95 are considerably greater than at the surface (C2, C4, C5). This does not imply that there are 96 no problems in estimating temperature trends at the surface. Such problems include 97 remaining uncertainties in corrections that must be made to sea surface temperatures (SSTs) 98 in recent decades (C2, C4), and uncertainties in accounting for changes in micro-climate 99 exposure for some individual land stations (C2, C4) or simply allowing for genuinely bad 100 stations (Davey and Pielke, 2005). Differences between surface data sets purporting to 101 measure the same variable become larger as the spatial resolution being considered decreases. 102 This implies that many problems tend to have random effects on climate analyses at the large 103 spatial scales, that are the focus of this Report, but can be systematic at much smaller scales 104 (C2, C3, C4).

105

The climate system has evolved in a unique way, and, by definition the best analysis is that which most closely approaches this actual evolution. However, because we do not know the evolution of the climate system exactly, we have generally had to treat apparently well constructed but divergent data sets, of atmospheric temperature changes in particular, as equally valid (C3, C4, C5). Clearly, this approach is untenable in the longer-term. Thus, it is imperative that we reduce the uncertainty in our knowledge of how the three-dimensional structure of atmospheric temperature has evolved (C4).

114	To ascertain unambiguously the causes of differences in datasets generally requires extensive
115	metadata ¹ for each data set (C4; NRC, 2000b). Appropriate metadata, whether obtained from
116	the peer-reviewed literature or from data made available on-line, should include, for data on
117	all relevant spatial and temporal scales:
118	• Documentation of the raw data and the data sources used in the data set construction
119	to enable quantification of the extent to which the raw data overlap with other similar
120	datasets;
121	• Details of instrumentation used, the observing practices and environments and their
122	changes over time to help assessments of, or corrections for, the changing accuracy of
123	the data;
124	• Supporting information such as any adjustments made to the data and the numbers
125	and locations of the data through time;
126	• An audit trail of decisions about the adjustments made, including supporting evidence
127	that identifies non-climatic influences on the data and justifies any consequent
128	adjustments to the data that have been made; and
129	• Uncertainty estimates and their derivation.
130	This information should be made openly available to the research community.
131	
132	There is evidence, discussed in earlier chapters, for a number of unresolved issues in existing
133	data sets that should be addressed:
134	• Systematic, historically-varying biases in day-time relative to night-time radiosonde
135	temperature data are important, particularly in the tropics (C4). These are likely to

¹ Metadata are literally "data about data" and are typically records of instrumentation used, observing practices, the environmental context of observations, and data-processing procedures.

136		have been poorly accounted for by present approaches to quality controlling such data
137		(Sherwood et al., 2005) and may seriously affect trends.
138	•	Radiosonde stratospheric records are strongly suspected of retaining a spurious long-
139		term cooling bias, especially in the tropics (C4).
140	•	Diurnal adjustment techniques for satellite temperature data are uncertain (C2, C4).
141		This effect is particularly important for the 2LT retrieval (C4). Further efforts are
142		required to refine our quantification of the diurnal cycle, perhaps through use of
143		reanalyses, in-situ observations, or measurements from non-sun-synchronous orbiters
144		(C4).
145	•	Different methods of making inter-satellite bias adjustments, particularly for satellites
146		with short periods of overlap, can lead to large discrepancies in trends (C4) (see also
147		Section 6).
148	•	Variable biases in modern SST data remain that have not been adequately addressed
149		(C4). Some historical metadata are now available for the first time, but are yet to be
150		fully exploited (Rayner et al., 2005). Better metadata, better use of existing metadata,
151		and use of recently bias-adjusted day-time marine air temperature data are needed to
152		assess remaining artifacts (C4).
153	•	Land stations may have had undocumented changes in the local environment that
154		could lead to their records being unrepresentative of regional- or larger-scale changes
155		(C2, C4).
156		
157	In add	lition to making data sets and associated metadata openly available and addressing the
158	issues	discussed above, it would be useful to develop a set of guidelines that can be used to

159	help assess the quality of data sets (C4). It is important that numerous tests be applied to
160	reduce ambiguity. There are three types of check that may be used:
161	
162	1. Internal consistency checks
163	For example, we expect only relatively small real changes in the diurnal cycle of
164	temperature above the atmospheric boundary layer (C1) (Sherwood et al., 2005), so
165	an apparently homogenized data set that shows large changes in the diurnal cycle in
166	these regions should be closely scrutinized.
167	2. Inter-dataset comparisons
168	For example, comparisons are needed between radiosonde and MSU temperature
169	measures representing the same regions (Christy and Norris, 2004).
170	3. Consistency with changes in other climate variables and parameters
171	This is a potentially powerful but much under-utilized approach and is discussed
172	further in Section 3.
173	
174	
175	RECOMMENDATION In order to encourage further independent scrutiny, data sets and
176	their full metadata (i.e., information about instrumentation used, observing practices, the
177	environmental context of observations, and data-processing procedures) should be made
178	openly available. Comprehensive analyses should be carried out to ascertain the causes of
179	remaining differences between data sets and to refine uncertainty estimates.
180	
181	2. Making better use of existing observational data
182	

1.1-temptrends@climatescience.gov

183 There is a considerable body of observational data that have either been under-utilized or not 184 used at all when constructing the data sets of historical temperature changes discussed in this 185 Report (C2, Table 2.1). Estimates of temperature changes can potentially be made from 186 several satellite instruments beside the (Advanced) Microwave Sounding Unit data 187 considered here (C2, C3). In particular, largely overlooked satellite datasets should be re-188 examined to try to extend, fortify or corroborate existing microwave-based temperature 189 records for climate research, e.g., microwave data from other instruments such as the Nimbus 190 5 (Nimbus E) Microwave Spectrometer (NEMS) (1972) and the Nimbus 6 Scanning 191 Microwave Spectrometer (SCAMS) (1975), infra-red data from the High Resolution Infrared 192 Radiation Sounder (HIRS) suite, and radio occultation data from Global Positioning System 193 (GPS) satellites (C2). Some of these instruments may allow us to extend the records back to 194 the early 1970s. Many unused radiosonde measurements of a relatively short length exist in 195 regions of relatively sparse coverage and, with some effort, could be advantageously used to 196 fill gaps. Many additional surface temperature data exist, mainly over land over the period 197 considered in this Report, but are either not digitized or not openly available. This latter 198 problem is particularly common in many tropical regions where much of the interest in this 199 Report resides. Given the needed level of international cooperation, we could significantly 200 improve our current estimates of tropical temperature changes over land and derive better 201 estimates of the changing temperature structure of the lower atmosphere (C2).

202

In addition to the recovery and use of such existing data, we need to improve the access to metadata for existing raw observations (C2). Additional information on when and how changes occurred in observing practices, the local environment, etc., is potentially available in national meteorological and hydrometeorological services. Such metadata would help

207	reduce current uncertainties in estimates of observed climate change. In the absence of
208	comprehensive metadata, investigators have to make decisions regarding the presence of
209	heterogeneities (non-climatic jumps or trends) using statistical methods alone. Statistical
210	methods of adjusting data for inhomogeneities have a very useful role, but are much more
211	valuable in the presence of good and frequent metadata that can be used to confirm the
212	presence, type, and timing of non-climatic influences. Metadata requirements will vary
213	according to observing system, but, if in doubt, all potentially important information should
214	be included. For example, surface temperature metadata may include:
215	• Current and historical photographs and site sketches to ascertain changes in micro-
216	climate exposure and their timing, collected during the routine site inspections made
217	by most meteorological services;
218	• The history of instrumentation changes;
219	• Changes in the way stations are maintained and in their immediate environment;
220	• Changes in observers; and
221	• Changes in observing and reporting practices.
222	For other instrument types, e.g., for humidity measurements, the detailed metadata
223	requirements will vary. A further discussion on the challenges of collecting climate data can
224	be found in Folland et al. (2000).
225	
226	RECOMMENDATION Efforts should be made to archive and make openly available
227	surface, balloon-based, and satellite data and metadata that have not previously been
228	exploited. Emphasis should be placed on the tropics and on recovery and inclusion of

- 229 satellite data before 1979 which may allow better characterization of the climate regime shift
- 230 *in the mid-1970's*

231	
232	
233	3. Multivariate analyses
234	
235	Temperature changes alone are a necessary, but insufficient, constraint on understanding the
236	evolution of the climate system. Even with a perfect knowledge of temperature changes,
237	knowledge about changes in the climate system would be incomplete. Consequently,
238	understanding temperature trends also requires knowledge about changes in other measures
239	of the climate system. For example, changes in atmospheric circulation and accompanying
240	dynamical effects, and also in latent heat transport, have significant implications for vertical
241	profiles of temperature trends (C1).
242	
243	Changes in variables other than temperature may be used to confirm the attribution of climate
244	change to given causes (C5) and to test the physical plausibility of reported temperature
245	changes (C3, C4). It is likely that to fully understand changes in atmospheric temperature, it
246	will be necessary to consider changes in at least some of the following physical parameters
247	and properties of the climate system beside its temperature:
248	• Water vapor content (C1, C5)
249	• Ocean heat content (C5)
250	• The height of the tropopause (C5)
251	• Wind fields
252	• Cloud cover and the characteristics of clouds
253	• Radiative fluxes
254	• Aerosols and trace gases

• Changes in glacial mass, sea ice volume, permafrost and snow cover (C5)

256

257 Our current ability to undertake such multivariate analyses of climate changes is constrained 258 by the relative paucity of accurate climate datasets for variables other than temperature. 259 Furthermore, since our analysis of temperature datasets has highlighted the importance of 260 construction uncertainty in determining trends (C2, C4, Appendix), it is very likely that 261 similar considerations will pertain to these other data types. It is therefore necessary to 262 construct further independent estimates of the changes in these variables even where datasets 263 already exist. Similar considerations to those discussed in Section 1 are also important for 264 these additional data.

265

RECOMMENDATION Efforts should be made to create climate quality² data sets for a range of variables other than temperature. These should subsequently be compared with each other and with temperature data to determine whether they are consistent with our physical understanding. It is important to create several independent estimates for each parameter in order to assess the magnitude of construction uncertainties.

271

- 272 4. Climate quality reanalyses
- 273

274 Reanalyses are derived from Numerical Weather Prediction (NWP) (forecast) models run 275 retrospectively with historical observations to produce physically consistent, fully global 276 fields with high temporal and spatial resolution. As in NWP, reanalyses employ all available 277 observations to produce their analysis and minimize the instantaneous differences between

² "Climate quality" refers to a record for which the best possible efforts have been made to identify and remove non-climatic effects that produce spurious changes over time.

278 the available observations and a background forecast field initiated a number of hours earlier. 279 Reanalyses also use the same NWP model throughout the reanalysis period. However, as for 280 observed climate datasets, pervasive changes in the raw observations lead to discontinuities 281 and spurious drifts (C2). Because such discontinuities and drifts have been identified in the 282 temperature fields of the current generation of reanalyses, these have been deemed 283 inappropriate for the purpose of long-term temperature trend characterisation by this Report's 284 authors (C2, C3). However, it is recognised that some progress has been made (e.g., 285 Simmons et al., 2004, C2). This does not preclude the usefulness of reanalyses for 286 characterizing seasonal to interannual timescale variability and processes, or trends in other, 287 related, variables such as tropopause height (C5). Indeed, they have proven to be a very 288 important tool for the climate research community.

289

290 A more homogeneous reanalysis that minimized time-dependent biases arising from changes 291 in the observational network would be of enormous benefit for multivariate analyses of 292 climate change (C2, C3). Advances in NWP systems, which will continue to happen 293 regardless of climate requirements, will inevitably lead to better future reanalyses of 294 interannual climate variability. Some advances, such as so-called 'feedback files'³ from the 295 data assimilation of reanalyses, could be uniquely helpful for climate reanalysis and should 296 be encouraged for this reason if no other. However, to determine trends accurately from 297 reanalyses will also require intensive efforts by the reanalysis community to understand 298 which observations are critical for trend characterization and to homogenize these data 299 insofar as possible to eliminate non-climatic changes before input to the reanalysis system. 300 This in turn requires observing system experiments (OSEs) where the impact on trends of

³ "Feedback files" are diagnostic summaries of adjustments applied to data during assimilation.

301	different observation types from land, radiosonde, and space-based observations are assessed.
302	A few examples (far from an exhaustive list) are:
303	• Run a short period (e.g., a year) of reanalysis with and without radiosonde
304	temperatures.
305	• Carry out experiments incorporating long radiosonde data records only, then repeat
306	with additional less certain but spatially more complete short radiosonde records.
307	• Successively include or remove specific satellite retrievals (e.g., MSU Channel 2).
308	• Carry out test reanalyses for one or more decades with different corrections to the
309	observed data for inhomogeneities within their construction uncertainty estimates.
310	
311	Progress would depend on reanalyses and data construction experts from all the key groups
312	working closely together.
313	
314	
315	RECOMMENDATION Consistent with Key Action 24 of GCOS $(2004)^4$ and a 10 Year
316	Climate Target of GEOSS (2005), efforts should be made to create several homogeneous
317	atmospheric reanalyses. Particular care needs to be taken to identify and homogenize critical
318	input climate data, and to more effectively manage large-scale changes in the global
319	observing system to avoid non-climatic influences. ⁵

321 5. Better understanding of uncertainties in model estimates

⁴ Parties are urged to give high priority to establishing a sustained capacity for global climate reanalysis, to develop improved methods for such reanalysis, and to ensure coordination and collaboration among Centers conducting reanalyses.

⁵ A focal point for planning of future U.S. reanalysis efforts is the CCSP Synthesis and Assessment Product 1.3: "Re-analyses of historical climate data for key atmospheric features. Implications for attribution of causes of observed change". Ongoing progress in the planning of future U. S. reanalysis efforts can be found at: http://www.joss.ucar.edu/joss_psg/meetings/climatesystem/

323	New state-of-the-art global climate models have simulated the influences of natural and
324	anthropogenic climate forcings on tropospheric and surface temperature. The simulations
325	generally cover the period since the late nineteenth century, but results are only reported over
326	the period of primary interest to this Report, 1979-1999 (the satellite era), in Chapter 5.
327	Taken together, these models, for the first time, consider most of the recognized first-order
328	climate forcings and feedbacks as identified in IPCC (2001), NRC (2003), and NRC (2005).
329	This is an important step forward (C5).
330	
331	However, most individual models considered in this Report still do not make use of all likely
332	important climatic forcings (C5, Table 5.2). In addition, many of the forcings are not yet well
333	quantified. Models that appear to include the same forcings often differ in both the way the
334	forcings are quantified and how these forcings are applied to the model. This makes it
335	difficult to separate intrinsic differences between models from the effects of different forcings
336	on predicted temperature trends. Thus, within the "ensemble of opportunity" considered in
337	this Report (C5), it is difficult to separate differences in:
338	• Model physics and resolution;
339	• The details of the way the forcings are applied in the experiments;
340	• The chosen history of the changes in the forcing.
341	
342	To better quantify the impacts of the various forcings on vertical temperature trends, a further
343	suite of experiments is needed along the following lines:
344	• Runs with one forcing applied in a single experiment with a given model; these are
345	already required in some detection and attribution studies (C5). They have been

347	important for the recently developed and spatially heterogeneous land use / land cover
348	change and black carbon aerosol forcings (C5).
349	• Apply the same forcing in exactly the same manner to a suite of models so that the
350	differences that result are due unambiguously to model differences (C5).
351	• Apply the full range of important forcings, with their uncertainties explicitly sampled
352	to a small subset of the most advanced models to gain an overall estimate of the
353	effects on temperature trends of the uncertainties in these forcings.
354	
355	It is recognized that there are many problems in achieving this, so a considerable effort will
356	be needed over a number of years. In addition, these model runs should be compared to the
357	full range of observational estimates to avoid ambiguity (C5). Finally, detection and
358	attribution studies should be undertaken using this new range of observations and model-
359	based estimates to reassess previous results; which have consistently identified a human-
360	induced influence (C5).
361	
362	
363	RECOMMENDATION Models that appear to include the same forcings often differ in both
364	the way the forcings are quantified and how these forcings are applied to the model. Hence,
365	efforts are required to more formally separate uncertainties arising from model structure
366	from the effects of forcing uncertainties. This requires running multiple models with
367	standardized forcings, and running the same models individually under a range of plausible
368	scenarios for each forcing."
369	

performed for a small number of models already. This approach is particularly

6. Future monitoring of climate

371

372 Much of this Report hitherto has concerned historical climate measurements. However, over 373 the coming decades new, mainly space-based, observations will yield very large increases in 374 the volume and types of data available. These will come from many different instruments 375 making measurements with greater accuracy and detail, especially in the vertical direction, 376 and with greater precision (C2, C3). In fact, new types of more accurate data such as 377 temperature and moisture profiles from GPS radio-occultation measurements are already 378 available, although, as yet, few efforts have been made to analyse them (C2, C3). Current and 379 planned multi-spectral infra-red satellite sounders such as the Atmospheric InfraRed Sounder 380 (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) have much finer 381 vertical resolution than earlier satellite sounders used in the Report. They have the potential 382 to resolve quite fine vertical and horizontal details of temperature and humidity through the 383 depth of much of the atmosphere. These higher spectral resolution data should also permit a 384 continuation of records equivalent to earlier coarser infrared satellite data (e.g., from the 385 HIRS satellite instruments). The new suite of satellite data will not only prove useful for 386 sensing changes aloft. For example, satellite data to remotely sense sea-surface temperatures 387 now include microwave products that can sense surface temperatures even in cloudy 388 conditions (C4). The Global Ocean Data Assimilation Experiment (GODAE) High-389 resolution Sea Surface Temperature (SST) Pilot Project (GHRSST- PP) has been established 390 to give international focus and coordination to the development of a new generation of global, 391 multi-sensor, high-resolution SST products (Donlon et al., 2005).

393	Many other agencies and bodies (e.g., NRC, 2000b; GCOS, 2004; GEOSS, 2005; CCSP,
394	2004) have already made recommendations for managing such new data developments.
395	These include such subjects as:
396	• Adherence to the GCOS Climate Monitoring Principles, needed to create and
397	maintain homogenous data sets of climate quality and for which there is a special set
398	for satellites (GCOS, 2004, Appendix 3)
399	• Continuation of records equivalent to current monitoring abilities: e.g., use new and
400	more detailed satellite data to create equivalent MSU measures of temperature to
401	allow the indefinite extension of the historical records used in this Report.
402	• Full implementation of national and international climate monitoring networks such
403	as the GCOS Upper-Air Network and the GCOS Surface Network.
404	• Overlap of measurement systems as they evolve in time.
405	
406	This last point is of primary importance. It was given prominence by NRC (2000b) and is
407	emphasized in the GCOS Climate Monitoring Principles and leads to the following
408	recommendation. If this recommendation had been followed in the past, one of the major
409	problems in producing a homogeneous record of MSU temperatures would have been largely

410

412 **RECOMMENDATION**: The GCOS Climate Monitoring principles should be fully adopted. 413 In particular when any type of instrument for measuring climate is changed or re-sited, the 414 period of overlap between the old and new instruments or configurations should be sufficient 415 to allow analysts to adjust for the change with small uncertainties that do not prejudice the 416 analysis of climate trends. The minimum period is a full annual cycle of the climate. Thus,

removed (C4):

417 replacement satellite launches should be planned to take place at least a year prior to the418 expected time of failure of a satellite.

- 419
- 420

421 Finally, we expand on a recommendation made in GCOS (2004) that is imperative for 422 successful future monitoring of temperatures at and above the Earth's surface. The main 423 lesson learned from this Report is that great difficulties in identifying and removing non-424 climatic influences from upper-air observations have led to a very large spread in trend 425 estimates (C2, C3, C4). These differences can lead to fundamentally different interpretations 426 both of the extent of any discrepancies in trends between the surface and the troposphere 427 (C3,C4); and of the skill of climate models (C5). The problem has arisen because there has 428 been no high quality reference or "ground truth" data, however restricted in scope, against 429 which routine observations can be compared to facilitate rigorous removal of non-climatic 430 influences.

431

432 Our key recommendation in this regard is a set of widely distributed (perhaps about 5% of the 433 operational radiosonde network) reference sites that will provide high quality data for 434 anchoring more globally-extensive monitoring efforts (satellites, reanalyses, etc.). At such 435 reference sites (which could coincide with selected GCOS Upper Air Network (GUAN), 436 GCOS Surface Network (GSN) or Global Atmospheric Watch (GAW) sites) there would be 437 full, high-quality measurements of atmospheric column properties, both physical and 438 chemical. This requires a large suite of instrumentation and redundancy in measurements⁶. 439 These globally distributed reference sites should incorporate upward looking instruments

⁶ Measurement of the same parameter by two or more independent instruments

440	(radar, lidar, GPS-related data, microwave sensors, wind profilers, etc.) along with high-
441	quality temperature, relative humidity and wind measurements on balloons regularly
442	penetrating well into the stratosphere ⁷ A key requirement is an end-to-end management
443	system including archiving of coincident observations made from over-flying satellites. The
444	data would be made openly available. The development of such a reference network is
445	recommended in outline by GCOS (2004). The ideas are currently being discussed in more
446	detail as part of an on-going process led by NOAA and WMO. Further details can be found at
447	http://www.oco.noaa.gov/workshop/.
448	
449	RECOMMENDATION Following Key Action 12 ⁸ of the GCOS Implementation Plan
450	(GCOS, 2004), develop and implement a subset of about 5% of the operational radiosonde
451	network as reference network sites for all kinds of climate data from the surface to the
452	stratosphere.
453 454 455	References
456 457 458	Christy, J.R., and W.B. Norris, 2004: What may we conclude about tropospheric temperature trends? <i>Geophysical Research Letters</i> , 31 , L06211
459 460 461 462	CCSP, 2004, Strategic Plan for the Climate Change Science Program Final Report, July 2003. Available from http://www.climatescience.gov/Library/stratplan2003/final/default.htm

- 463 Davey, C.A. and R.A. Pielke, 2005: Microclimatic exposures of surface-based weather
 464 stations. *Bulletin of the American Met. Society*, 86, 497-504.
 465
- 466 Donlon, C J., 2005: Proceedings of the sixth Global Ocean Data Assimilation Experiment
 467 (GODAE) High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP)
 468 Science Team Meeting, Met Office, Exeter, May 16-20th 2005, Available from the
 469 International GHRSST-PP Project Office, Hadley Centre, Exeter, UK, pp 212.

⁴⁷⁰

⁷ Recent inter-comparisons under the auspices of WMO suggest that new operational sondes are as accurate as proposed reference sondes (C4; Pathack et al., 2005), which may reduce costs.

⁸ Parties need to: ... establish a high-quality reference network of about 30 precision radiosonde stations and other collocated observations. ...

471	Folland, C.K., N. Rayner, P. Frich, T. Basnett, D. Parker & E.B. Horton, 2000: Uncertainties
472	in climate data sets - a challenge for WMO. WMO Bull., 49, 59-68.
473	
474	GCOS, 2004: Global Climate Observing System Implementation Plan for the Global
475	Observing System for Climate in support of the UNFCCC, GCOS-92/WMO TD
476	1219, WMO, Geneva, pp136, Available at
477	http://www.wmo.int/web/gcos/gcoshome.html. CD also available.
478	
479	GEO, 2005: Global Earth Observation System of Systems, GEOSS. 10-Year Implementation
480	Plan Reference Document. GEO1000R/ESA SP-1284. ESA Publications, Noordwijk,
481	Netherlands.209pp. CD available.
482	
483	IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to
484	the Third Assessment Report of the Intergovernmental Panel on Climate Change
485	[Houghton, J. T., Y. Ding, D.J. Griggs, M. Noguer, P. van der Linden, X. Dai, K.
486	Maskell, and C.I. Johnson (eds.)]. Cambridge University Press, 881pp.
487	
488	NRC, 2000a: Reconciling observations of Global Temperature Change. National Academy
489	Press, 85 pp.
490	
491	NRC, 2000b: Improving atmospheric temperature monitoring capabilities. A letter report to
492	NOAA from the Panel on Reconciling Temperature Observations.
493	
494	NRC, 2003: Understanding Climate Change Feedbacks. National Academy Press.
495	
496	NRC, 2005: National Research Council, 2005: Radiative forcing of climate change:
497	Expanding the concept and addressing uncertainties. National Academy Press.
498	
499	Pathack, B., J. Nash, R. Smout, and S. Kurnosenko, 2005: Preliminary Results of WMO
500	Intercomparison of high quality radiosonde systems, Mauritius, February 2005.
501	www.wmo.ch/web/www/IMOP/meetings/Upper-Air/ RSO-
502	ComparisonMauritius/3(16)_UK_Nash_Vacoas.pdf
503	
504	Rayner, N.A., P. Brohan, D.E. Parker, C K. Folland, J.J. Kennedy, M Vanicek, T Ansell, and
505	S.F.B. Tett, 2005: Improved analyses of changes and uncertainties in sea surface
506	temperature measured <i>in situ</i> since the mid-nineteenth century. Accepted by J.
507	Climate.
508	
509	Seidel, D.J, J.K. Angell, J. Christy, M. Free, S.A. Klein, J.R. Lanzante, C. Mears, D. Parker,
510	M. Schabel, R. Spencer, A. Sterin, P. Thorne, and F. Wentz, 2004: Uncertainty in
511	signals of large-scale climate variations in radiosonde and satellite upper-air
512	temperature datasets. J. Climate, 17, 2225-2240.
513	
514	Sherwood, S.C., J. Lanzante, and C. Meyer, 2005: Radiosonde daytime biases and late 20 th
515	century warming. Science, 309, 1556-1559.
516	
517	Simmons, A.J., P.D. Jones, V. da Costa Bechtold, A.C.M. Beljaars, P.W. Kållberg,

518	S. Saarinen, S.M. Uppala, P. Viterbo and N. Wedi, 2004: Comparison of trends and
519	low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air
520	temperature. J. Geophys. Res., 109, D24115, doi:10.1029/2004JD006306
521	
522	Thorne, P.W., D.E. Parker, J.R. Christy, and C.A. Mears, 2005: Causes of differences in
523	observed climate trends. Bull. Amer. Meteor. Soc., in press