1 2 3 4	
5 6 7	Chapter 2
8 9 10 11 12 13 14 15 16	What kinds of atmospheric temperature variations can the current observing systems detect and what are their strengths and limitations, both spatially and temporally?
17 18	Convening Lead Author: John Christy
19	Lead Authors: Dian Seidel, Steve Sherwood
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Contributing Authors: Adrian Simmons, Ming Cai, Eugenia Kalnay, Chris Folland, Carl Mears, Peter Thorne, John Lanzante

Findings and Recommendations

The observing systems available for this report are able to detect small surface and upper air
temperature variations from year to year, for example, those caused by El Niño or volcanic
eruptions.

46

The data from these systems also have the potential to provide accurate trends in climate over
the last few decades (and over the last century for surface observations), once the raw data are
successfully adjusted for changes over time in observing systems, practices, and micro-climate
exposure to produce usable climate records. Measurements from all systems require such
adjustments and this report relies on adjusted datasets.

52

Adjustments to the land surface temperature record have been sufficiently successful that
trends are reasonably similar on large (e.g., continental) scales, despite the fact that spatial
sampling is uneven and some errors undoubtedly remain. This conclusion holds to a lesser extent
for the ocean surface record, which suffers from more serious sampling problems and changes in
observing practice.

58

Adjustments for changing instrumentation are most challenging for upper-air datasets. While
these show promise for trend analysis, it is likely that current upper-air climate records give
reliable indications of directions of change (e.g. warming of troposphere, cooling of stratosphere)
but some questions remain regarding the precision of the measurements.

63

• Upper-air datasets have been subjected to less scrutiny than surface datasets.

64	• Adjustments are complicated, sometimes as large as the trend itself, involve expert
65	judgments, and cannot be stringently evaluated because of lack of traceable standards.
66	• Unlike surface trends, reported upper-air trends vary considerably between research
67	teams beginning with the same raw data owing to their different decisions on how to
68	remove non-climatic factors.
69	• The diurnal cycle, which must be factored into some adjustments for satellite data, is
70	well observed only by surface observing systems.
71	• No available observing system has reference stations or multi-sensor instrumentation
72	that would provide stable calibration over time.
73	• Most observing systems have not retained complete metadata describing changes in
74	observing practices which could be used to identify and characterize non-climatic
75	influences.
76	
77	• Relevant satellite datasets measure broad vertical layers and cannot reveal the detailed vertical
78	structure of temperature changes, nor can they completely isolate the troposphere from the
79	stratosphere. However, retrieval techniques can be used both to approximately isolate these
80	layers and to check for vertical consistency of trend patterns. Consistency between satellite and
81	radiosonde data can be tested by proportionately averaging radiosonde profiles.
82	• Reanalyses and other multi-system products have the potential for addressing issues of
83	surface and atmospheric temperature trends by making better use of available information and
84	allowing analysis of a more comprehensive, internally consistent, and spatially and temporally

85	complete set of climate variables. At present, however, they contain biases, especially in the
86	stratosphere, that affect trends and that cannot be readily removed because of the complexity of
87	the data products.
88	
89	• There are as yet under-exploited data archives with potential to contribute to our
90	understanding of past changes, and new observing systems that may improve estimates of future
91	changes if designed for long-term measurement stability and operated for sufficient periods.
92	
93	
94	Recommendation: Current and future observing systems should adhere to the principles for
95	climate observations adopted internationally under the Framework Convention on Climate
96	Change and documented in "NRC 2000b" and the "Strategic Plan for the U.S. Climate Change
97	Science Program (2003)" to significantly mitigate the limitations listed above.
98	
99	Recommendation: The ability to fully and accurately observe the diurnal cycle should be an
100	important consideration in the design and implementation of new observing systems.
101	
102	Recommendation: When undertaking efforts to retrieve data it is important to also to collect
103	detailed metadata which could be used to reduce ambiguity in the timing, sign and magnitude of
104	non-climatic influences in the data.
105	

106	Recommendation: New climate-quality reanalysis efforts should be strongly encouraged and
107	specifically designed to minimize small, time-dependent biases arising from imperfections in
108	both data and forecast models.
109	
110	Recommendation: Some largely overlooked satellite datasets should be reexamined to try to
111	extend, fortify or corroborate existing microwave-based temperature records for climate
112	research, e.g. microwave data from NEMS (1972) and SCAMS (1975), infrared from the HIRS
113	suite and radio occultation from GPS.
114	
115	
116	
117	1. MAIN OBSERVING SYSTEMS AND SYNTHESIS DATA PRODUCTS
118	
119	Temperature is measured in three main ways; (1) in situ, where the sensor is immersed in the
120	substance of interest; (2) by radiative emission, where a remote sensor detects the intensity or
121	brightness of the radiation emanating from the substance; and (3) radiative transmission, where
122	radiation is modified as it passes through the substance in a manner determined by the
123	substance's temperature. All observations contain some level of random measurement error,
124	which is reduced by averaging; bias, which is not reduced by averaging; and sampling errors (see
125	Appendix).

127 a) Surface and near-surface air temperatures

Over land, "near-surface" air temperatures are those commonly measured about 1.5 to 2.0 meters above the ground level at official weather stations, at sites run for a variety of scientific purposes, and by volunteer (cooperative) observers (e.g., Jones and Moberg, 2003). These stations often experience relocations, changes in instrumentation and/or exposure and changing observing practices all of which can introduce biases into their long-term records. These changes are often undocumented.

134

"Near-surface" air temperatures over the ocean ("Marine Air Temperatures" or MATs) are measured by ships and buoys at various heights from 2 to more than 25m, with poorer coverage than over land (e.g., Rayner et al., 2003). To avoid the contamination of daytime solar heating of the ships' surfaces that may affect the MAT, it is generally preferred to limit these to night MAT (NMAT) readings only. Observations of the water temperature near the ocean surface or "Sea Surface Temperatures" (SSTs) are widely used and are closely tied to MATs; ships and buoys measure SSTs within a few meters below the surface.

142

Incomplete geographic sampling, changing measurement methods, and land-use changes all
introduce errors into surface temperature compilations. The spatial coverage, indicated in Figure
2.1, is far from uniform over either land or ocean areas. The southern oceans, polar regions and
interiors of Brazil and Africa are not well sampled by in-situ networks. However, creating
global surface temperature analyses involves not only merging land and ocean data but also

148 considering how best to represent areas where there are few or no observations. The most 149 conservative approach is to use only those grid boxes with data, thus avoiding any error 150 associated with interpolation. Unfortunately, the areas without data are not evenly or randomly 151 distributed around the world, leading to considerable uncertainties in the analysis, though it is 152 possible to make an estimate of these uncertainties. Using the conservative approach, the tropical 153 land surface areas would be under-represented, as would the southern ocean. Therefore, 154 techniques have been developed to interpolate data to some extent into surrounding data-void 155 regions. A single group may produce several different such datasets for different purposes. The 156 choice may depend on whether the interest is a particular local region, the entire globe, or use of 157 the dataset with climate models (Chapter 5). Estimates of global and hemispheric scale averages 158 of near-surface temperatures generally begin around 1860 over both land and ocean.

Global Temperature Observations

- 160 Figure 2.1 Top: Location of radiosonde stations used in the HadAT upper air dataset with those also in the LKS as
- crosses. Bottom: Distribution of land stations (green) and SST observations (blue) reporting temperatures used in the
- 161 162 163 surface temperature datasets over the period 1979-2004. Darker colors represent locations for which data were
- reported with greater frequency.
- 164 See chapter 3 for definitions of datasets.
- 165
- 166 Datasets of near-surface land and ocean temperatures have traditionally been derived from *in-situ*

167 thermometers. With the advent of satellites, some datasets now combine both in-situ and 168 remotely sensed data (Reynolds et al., 2002; Smith and Reynolds, 2005), or use exclusively 169 remotely sensed data (Kilpatrick et al., 2001) to produce more geographically complete 170 distributions of surface temperature. Because the satellite sensors measure infrared or microwave 171 emission from the earth's surface (a "skin" typically tens of microns thick that may have a 172 temperature different from either the air above or material at greater depths), calculations are 173 required to convert the skin temperature into the more traditional near-surface air or SST 174 observation (in this context SSTs are called "bulk sea surface temperatures", Chelton, 2005.) 175 Typically, in-situ observations are taken as "truth" and satellite estimates (which may be affected 176 by water vapor, clouds, volcanic aerosols, etc.) are adjusted to agree with them (Reynolds, 1993.) 177 With continued research, datasets with surface temperatures over land, ice, and ocean from 178 infrared and microwave sensors should provide expanded coverage of surface temperature 179 variations (e.g., Aires et al., 2004).

180

181 Sampling errors in ship and buoy SST data typically contribute more to large-scale averages than 182 random measurement errors as shown in Smith and Reynolds (2004), especially as the 183 temperature record extends backward in time. Biases depend on observing method. Most ship 184 observations since the 1950s were made from insulated buckets, hull contact sensors, and engine 185 intake temperatures at depths of one to several meters. Historic correction of ship data prior to 186 1942 is discussed in (Folland and Parker, 1995) and bias and random errors from ships are 187 summarized by (Kent and Taylor, 2004) and (Kent and Challenor, 2004). They report that engine 188 intake temperatures are typically biased 0.1-0.2°C warmer than insulated buckets. This is

189 primarily due to engine room heating of the water temperatures although there is also 190 evaporative cooling of the water in the insulated buckets. Hull contact sensors are the most 191 accurate though much less common. The bias correction of the ship SST data (Kent and Kaplan, 192 2004) requires information on the type of measurement (e.g. insulated bucket, etc.) which 193 becomes more difficult to determine prior to 1990s due to incomplete documentation. Kent and 194 Kaplan (2005) also found that insulated bucket temperatures may be to cold by 0.12 to 0.16°C. 195 When the bucket bias is used, engine intake temperatures in the mid-to-late 1970s and the 1980s 196 were found to be smaller than that suggested by previous studies, ranging from 0.09 to 0.18°C. In 197 addition, their study indicates that engine intake SSTs may have a cold bias of -0.13°C in the 198 early 1990s. The reliability of these biases are subject to revision due to small sample sizes that 199 sample sizes for these comparisons tend to be small with large random errors. Buoy observations 200 became more plentiful following the start of the Tropical Ocean Global Atmosphere (TOGA) 201 Program (McPhaden, 1995) in 1985. These observations are typically made by an immersed 202 temperature sensor or a hull contact sensor, and are more accurate because they do not have the 203 bias errors of ship injection or insulated bucket temperatures.

204

The global surface air temperature data sets used in this report are to a large extent based on data readily exchanged internationally, e.g., through CLIMAT reports and the WMO publication *Monthly Climatic Data for the World*. Commercial and other considerations prevent a fuller exchange, though the United States may be better represented than many other areas. In this report we present three global surface climate records, created from available data by NASA Goddard Institute for Space Studies (GISS), NOAA National Climatic Data Center

211 (NOAA/NCDC) and the cooperative project of the U.K. Hadley Centre and the Climate 212 Research Unit of the University of East Anglia (HadCRUT2v). These will be identified as T_{Sfc-G}, 213 T_{Sfc-N} and T_{Sfc-U} respectively. 214 215 b) Atmospheric "upper air" temperatures 216 1. Radiosondes 217 Radiosonde or balloon-based observations of atmospheric temperature are *in-situ* measurements 218 as the thermometer (often a thermistor or a capacitance-based sensor), suspended from a balloon, 219 is physically carried through the atmospheric column. Readings are radio-transmitted back to a 220 data recorder. Balloons are released once or twice a day (00 and/or 12 Coordinated Universal 221 Time or UTC) at about 1,000 stations around the globe, many of which began operations in the 222 late 1950s or 1960s. These sites are unevenly distributed, with only the extratropical northern 223 hemisphere land areas and the Western Pacific Ocean/Indonesia/Australia region being well-224 sampled in space and time. Useful temperature data can be collected from near the surface 225 through the lower and middle stratosphere (though not all balloons survive to these heights). 226 Radiosonde data in the first hundred meters or so above the surface are sometimes erroneous if 227 the sensors have not been allowed to reach equilibrium with the atmosphere before launch, and 228 may not be representative of regional conditions, due to microclimatic and terrain effects.

229

Although most radiosonde data are transmitted to meteorological centers around the world and
archived, in practice many soundings do not reach this system and are collected later. No
definitive archive of radiosonde data exists, but several archives in the U.S. and abroad contain

233 nearly complete collections, though several different schemes have been employed for quality 234 control. To monitor climate, it is desirable to have a long, continuous record of measurements 235 from many well-distributed fixed sites. There are about 700 radiosonde stations that have 236 operated in the same location for at least three decades; many of these are clustered in a few 237 areas, further reducing the effective coverage (Figure 2.1). Thus, a dilemma exists for estimating 238 long-term changes: whether to use a smaller number of stations having long segments of 239 continuous records, or a larger number of stations with shorter records that do not always overlap 240 well. Various analysis groups have approached this differently (see Chapters 3 and 4).

241

Typically, radiosonde-based datasets are developed for specific atmospheric pressure surfaces known as "mandatory reporting levels" (Figure 2.2). Such data at discrete vertical levels provide unique information for assessing changes in the structure of the atmosphere. Two such datasets are featured in this report, The Hadley Centre Atmospheric Temperatures from the U.K. (HadAT) and Radiosonde Atmospheric Temperatures Products for Assessing Climate (RATPAC) from NOAA. A product such as $T_{850-300}$, for example, will be identified as $T_{850-300-U}$ and $T_{850-300-N}$ for HadAT and RATPAC respectively.¹

¹ A third radiosonde dataset was generated by comparing radiosonde observations against the first-guess field of the ERA-40 simulation forecast model (Haimberger, 2004). Adjustments were applied when the relative difference between the radiosonde temperatures and the forecast temperatures changed by a significant amount. The data were not yet in final form for consideration in this report, although the tropospheric values appear to have general agreement with HadAT and RATPAC

Figure 2.2 Terminology and vertical profiles for the temperature products referred to in this report. Radiosondebased layer temperatures ($T_{850-300}$, T_{100-50}) are height-weighted averages of the temperature in those layers. Satellitebased temperatures (T_{2LT} , T_2 , and T_4) are mass-weighted averages with varying influence in the vertical as depicted by the curved profiles, i.e., the larger the value at a specific level, the more that level contributes to the overall satellite temperature average. The subscript simply indicates the layer where 90% of the information for the satellite average originates.

Notes: (1) because radiosondes measure the temperature at discrete (mandatory) levels, their information may be used to create a temperature value that mimics a satellite temperature (Text Box 2.1), (2) layer temperatures vary from equator to pole so the pressure and altitude relationship here is based on the atmospheric structure over the conterminous U.S., (3) about 10% (5%) of the value of T_{2LT} (T_2) is determined by the surface character and temperature, (4) T*_T and T*_G are simple retrievals, being linear combinations of 2 channels, T_2 and T_4 .

Throughout the radiosonde era there have been numerous changes in stations, types of instrumentation, and data processing methods that can create data discontinuities. Because radiosondes are expendable instruments, instruments are more easily changed than for the more permanent surface sites. The largest discontinuities appear to be related to solar heating of the temperature sensor and changes in design and/or data adjustments intended to deal with this problem. These discontinuities have greatest impact at stratospheric levels (the stratosphere's lower boundary is ~16 km in the tropics, dropping to < 10 km in the high latitudes, Figure 2.2),

270 where direct sunlight can cause radiosonde-measured temperatures to rise several C above 271 ambient temperatures. For example, when Australia and U.S. stations changed instrumentation to 272 Vaisala RS-80, processed stratospheric temperatures shifted downward by 1 to 3°C (Parker et al., 273 1997, Christy et al., 2003). Many other sources of system-dependent bias exist (which often 274 affect the day and night releases differently), including icing of the sensors in regions of super-275 cooled water, software errors in some radiosonde systems, poor calibration formulae, and 276 operator errors. Documentation of these many changes is limited, especially in the earlier 277 decades.

- 278
- 279

2. Passive Satellite Instrumentation

280 Unlike radiosondes, passive satellite observations of microwave and infrared brightness 281 temperatures sample thick atmospheric layers (and may include surface emissions), depicted as 282 weighting functions in Figure 2.2. These measurements may be thought of as bulk atmospheric 283 temperatures, as a single value describes the entire layer. Although this bulk measurement is less 284 informative than the detailed information from a radiosonde, horizontal coverage is far superior, 285 and consistency can be checked by comparing the appropriate vertical average from a radiosonde 286 station against nearby satellite observations (see Box 2.2). Furthermore, because there are far 287 fewer instrument systems than in radiosonde datasets, it is potentially easier to isolate and adjust 288 problems in the data.

289

The space and time sampling of the satellites varies according to the orbit of the spacecraft,though the longer satellite datasets are based on polar orbiters. These spacecraft circle the globe

292 from pole to pole while maintaining a nominally constant orientation relative to the sun (sun-293 synchronous). In this configuration, the spacecraft completes about 14 roughly north-south orbits 294 per day as the earth spins eastward beneath it, crosses the equator at a constant local time, and 295 provides essentially global coverage. Microwave measurements utilized in this report begin in 296 late 1978 with the TIROS-N spacecraft using a 4-channel radiometer (Microwave Sounding Unit 297 or "MSU") which was upgraded in 1998 to a 16-channel system (advanced MSU or "AMSU") 298 with better calibration, more stable station-keeping (i.e., the timing and positioning of the 299 satellite in its orbit - see discussion of "Diurnal Sampling" below), and higher spatial and 300 temporal sampling resolution.

301

Laboratory estimates of precision (random error) for a single MSU measurement are 0.25 °C. Thus with 30,000 observations per day, this error is inconsequential for global averages. Of far more importance are the time varying biases which arise once the spacecraft is in orbit; diurnal drifting, orbital decay, intersatellite biases and calibration changes due to heating of the instrument in space (see section 3 below.)

307

308 While bulk-layer measurements offer the robustness of a large-volume sample, variations within 309 the observed layer are masked. This is especially true for the layer centered on the mid-310 troposphere (T_2) for which the temperatures of both lower stratospheric and tropospheric levels, 311 which generally show opposite variations, are merged (Figure 2.2). Three MSU/AMSU-based 312 climate records are presented in this report, prepared by Remote Sensing Systems (RSS) of Santa 313 Rosa, California, The University of Alabama in Huntsville (UAH), and The University of

- Maryland (UMd). Subscripts identify the team, for example, T₂ will be listed as T_{2-R}, T_{2-A} and
 T_{2-M} for RSS, UAH and UMd respectively.
- 316

Some polar orbiters also carry the Stratospheric Sounding Unit (SSU), an infrared sensor for monitoring deep layer temperatures above about 15 km. SSU data have been important in documenting temperature variations at higher elevations than observed by MSU instruments on the same spacecraft (Ramaswamy et al., 2001). Generally, the issues that complicate the creation of long-term MSU time series also affect the SSU, with the added difficulty that infrared channels are more sensitive to variations in atmospheric composition (e.g., volcanic aerosols, water vapor, etc.).

324

325 Future observing systems using passive-satellite methods include those planned for the National 326 Polar-orbiting Operational Environmental Satellite System (NPOESS) series: the microwave 327 sensors Conical scanning Microwave Imager/Sounder (CMIS) (which will succeed the Special 328 Sensor Microwave/Imager [SSM/I]), Special Sensor Microwave Imager/Sounder (SSMI/S) and 329 Advanced Technology Microwave Sounder (ATMS) (which will succeed the AMSU), and the 330 infrared sensor Cross-track Infrared Sounder (CrIS) (following the High-resolution Infrared 331 Radiation Sounder [HIRS]). Each of these will follow measuring strategies that are both similar 332 (polar orbit) and dissimilar (e.g., CMIS's conical scanner vs. AMSU's cross-track scanner) but 333 add new spectral and more detailed resolution.

334

336 A relatively recent addition to temperature monitoring is the use of Global Positioning System 337 (GPS) radio signals, whose time of transmission through the atmosphere is altered by an amount 338 proportional to air density and thus temperature at levels where humidity can be ignored 339 (Kursinski et al., 1997). A key advantage of this technique for climate study is that it is self-340 calibrating. Current systems are accurate in the upper troposphere and lower to middle 341 stratosphere where moisture is insignificant, but at lower levels, humidity becomes a 342 confounding influence on density. Future versions of this system may overcome this limitation 343 by using shorter wavelengths to measure humidity and temperature independently. Because of 344 the relatively short GPS record and limited spatial coverage to date, its value for long-term 345 climate monitoring cannot yet be definitively demonstrated.

346

347 c) Operational <u>Reanalyses</u>

348 Operational reanalyses (hereafter simply "reanalyses") will be discussed here in chapter 2, but 349 their trends presented only sparingly in the following chapters because of evidence that they are 350 not always reliable, even during the recent period. All authors expressed concern regarding 351 reanalyses trends, a concern that ranged from unanimous agreement that stratospheric trends 352 were likely spurious to mixed levels of confidence regarding tropospheric trends (see chapter 3). 353 Surface temperature trends are a separate issue as reanalyses values are indirectly *estimated* 354 rather than *observed* (see below). However, reanalyses products hold significant potential for 355 addressing many aspects of climate variability and change.

356

357 Reanalyses are not separate observing systems, but are mathematically blended products based

358 upon as many observing systems as practical. Observations are assimilated into a global weather 359 forecasting model to produce analyses that are most consistent with both the available data 360 (given their imperfections) and the assimilation model. The model, which is constrained by 361 known but parameterized atmospheric physics, generates a result that could be more accurate and 362 physically self-consistent than can be obtained from any one observing system. Some data are 363 rejected or adjusted based on detected inconsistencies. Importantly, the operational procedure 364 optimizes only the accuracy of each near-instantaneous ("synoptic") analysis. Time-varying 365 biases of a few hundredths or tenths of a degree, which contribute little to short time scale 366 weather error, present a major problem for climate trends, and these are not minimized (e.g., 367 Sherwood, 2000). The two main reanalyses available at this time are the National Centers for 368 Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 369 reanalysis of data since 1948 (Kalnay et al., 1996) and the European Center for Medium-Range 370 Weather Forecasts Re-Analysis-40 (ECMWF ERA-40) beginning in 1957 (Simmons, 2004).

371

372 Because many observational systems are employed, a change in any one will affect the time 373 series of the final product. Reanalyses would be more accurate than lower-level data products for 374 climate variations only if the above shortcomings were outweighed by the benefits of using a 375 state-of-the-art model to treat unsampled variability. Factors that would make this scenario likely 376 include a relatively skillful forecast model and assimilation system, large sampling errors (which 377 are reduced by reanalysis), and small systematic discrepancies between different instruments. 378 However, current models tend to have significant intrinsic biases that can particularly affect 379 reanalyses when sampling is sparse.

381	Reanalysis problems that influence temperature trend calculations arise from changes over time
382	in (a) radiosonde and satellite data coverage, (b) radiosonde biases (or in the corrections applied
383	to compensate for these biases), (c) the effectiveness of the bias corrections applied to satellite
384	data and (d) the propagation of errors due to an imprecise formulation of physical processes in
385	the models. For example, since few data exist for the Southern Hemisphere before 1979,
386	temperatures were determined mainly by model forecasts; a cold model bias (in ERA-40, for
387	example) then produces a spurious warming trend when real data become available. Indirect
388	effects may also arise from changes in the biases of other fields, such as humidity and clouds,
389	which affect the model temperature (Andrae et al., 2004; Simmons et al., 2004.).
390	
391	Different reanalyses do not employ the same data. NCEP/NCAR does not include surface
392	temperature observations over land but the analysis still produces estimated near-surface
393	temperatures based on the other data (Kalnay and Cai, 2003). On the other hand, ERA-40 does
394	incorporate these but only indirectly through their modeled impacts on soil temperature and
395	surface humidity (Simmons et al., 2004). Thus, the 2-meter air temperatures of both reanalyses

may not track closely with surface observations over time (Kalnay and Cai, 2003). SSTs in bothreanalyses are simply those of the climate records used as input.

398

For upper air reanalyses temperatures, simultaneous assimilation of radiosonde and satellite data
is particularly challenging because the considerably different instrument characteristics and
products make it difficult to achieve the consistency possible in theory. Despite data adjustments,

402 artifacts still remain in both radiosonde and satellite analyses; these produce the largest 403 differences in the lower stratosphere in current reanalysis datasets (e.g., Pawson and Fiorino, 404 1999; Santer et al., 1999; Randel, 2004). Some of these differences can now be explained, so that 405 future reanalyses will very likely improve on those currently available. However any calculation 406 of deep-layer temperatures from reanalyses which require stratospheric information are 407 considered in this report to be suspect (see Figure 2.2, T_T, T₂, T₄, and T₁₀₀₋₅₀).

- 408
- d.) Simple retrieval techniques

410 A problem in interpreting MSU (i.e., broad-layer) temperature trends is that many channels 411 receive contributions from both the troposphere and stratosphere, yet temperatures tend to 412 change oppositely in these two layers with respect to both natural variability and predicted 413 climate change. In particular, MSU Channel 2 (T₂) receives 10-15% of its emissions from the 414 stratosphere (Spencer and Christy, 1992), which is a significant percentage because stratospheric 415 cooling in recent decades far exceeds tropospheric warming. It is impossible to eliminate all 416 physical stratospheric influences on MSU 2 by simply subtracting out MSU 4 (T₄) influences 417 because any linear combination of these two channels still retains stratospheric influence 418 (Spencer et al., 2005), which will lead to errors. However, it is possible to rely upon radiosonde-419 measured correlations between tropospheric and stratospheric temperature fluctuations in order 420 to find what linear combination of these two channels leads to a near-cancellation of these errors, 421 i.e., where *y* is determined by regression:

422 Tropospheric Retrieval = $(1+y) \cdot (T_2) - (y) \cdot (T_4)$. The challenge here is that the resulting 423 relationship depends on the training dataset (radiosondes) being globally or tropically

424	representative (i.e., the troposphere/stratosphere boundary varies spatially and thus the
425	relationship between T_2 and T_4 does as well) and free from significant biases.
426	
427	Fu et al. (2004) used a radiosonde dataset to estimate values for y (for the globe, tropical region,
428	and Northern and Southern Hemispheres) that most closely reproduced the monthly variability of
429	mean temperature from 850 to 300 hPa, spanning most of the troposphere. From physical
430	arguments, however, it is clear that the true physical contributions to the retrieval come from a
431	broader range of altitudes, which, in the tropics, approximately span the full troposphere (Fu and
432	Johanson, 2004; 2005). Although derived values of y are robust ($\pm 10\%$, Gillett et al., 2004,
433	Johanson and Fu, 2005), the veracity of the retrieval for climate change has been a subject of
434	debate (due to the accuracy and global representativeness issues mentioned above), and will be
435	further addressed in Chapter 4.

437 In the following chapters, two simple retrievals will be utilized in comparison studies with the 438 products of the observing systems. The tropospheric retrieval generated from global mean 439 values of T₂ and T₄, is identified as T_G^* where y = 0.143 (Johanson and Fu, 2005), and when 440 applied to tropical mean values is identified as T_T^* where y = 0.100 (Fu and Johanson, 2005).

441

442 A summary of the sources of biases and uncertainties for the datasets and other products 443 described above is given at the end of this chapter. There are several datasets yet to be generated 444 (or not yet at a stage sufficient for climate analysis) from other sources that have the potential to 445 address the issue of vertical temperature distribution. A generic listing of these datasets with a

characterization of their readiness is given in Table 2.1. 446

447

448

449

450 451 452 453 454 Table 2.1 Dataset types and readiness for high quality climate monitoring related to the vertical temperature structure of the atmosphere. "Usage of Data" indicates the level of application of the dataset to the vertical temperature issue. "Understanding" indicates the level of confidence (or readiness) in the dataset to provide accurate information on this issue.

DATA SET SOURCE	Measured Variables	Usage of Data for Vertical Temperatur e	Understandi ng	Temporal Sampling	Geographic Completenes s
Radiosondes	Upper Air			2x Day	
(Balloons)	Temperature				
	Upper Air Humidity			2x Day	
	Upper Air Wind			2x Day	
Microwave	Upper air			Р	
Radiometers	Temperature				
Space-based					
	Sea Surface			Р	
	Temperature				
	Total Column			Р	
	Vapor (ocean)				
Surface-based	Upper air			Hrly	
sounders and	Temperature				
profilers					
Infrared	Upper Air			P, G	
Radiometers Space- based	Temperature				
	Land Surface			P, G	
	Temperature				
	Sea Surface			P, G	
	Temperature				
	Upper Air			P, G	
	Humidity				
Visible and	Radiative			P, G	

Infrared	Fluxes						
Radiometers							
GPS Satellites	Temperature				quasi-P		
Surface Stations	Land Surface				Hrly		
Land	Air						
	Temperature						
	Land Surface				Hrly		
	Air Humidity						
Surface	Sea Surface				Syn		
Instruments Ocean	Temperature						
	Marine Air				Syn		
	Temperature						
Reanalyses	All				Syn		

457

458

459

: Adequate for long-term global climate variations

: Improvements or continued research needed for long-term global climate variations

Problems exist or a lack of analysis to date inhibit long-term global climate variation studies

460 P: Polar orbiter, twice per day per orbiter per ground location

461 G: Geostationary, many observations per day per ground location

462 2x Day: Twice daily at site

463 Hrly: Up to several times per day, many report hourly

464 Syn: Synoptic or generally up to 8 times per day. (Buoys continuous)

465

466 <u>2. ANALYSIS OF CLIMATE RECORDS</u>

467 Two factors can interfere with the accurate assessment of climate variations over multi-year 468 periods and relatively large regions. First, much larger variability (weather or "atmospheric 469 noise") on shorter time or smaller space scales can, if inadequately sampled by the observing 470 network, bias estimates of relatively small climate changes. For example, an extended heat wave 471 in an un-instrumented region accompanied by a compensating cold period in a well-instrumented 472 region may be interpreted as a "global" cold period when it was not. Such biases can result from 473 either spatial or temporal data gaps (Agudelo and Curry, 2004). Second, instrumental errors, 474 particularly biases that change over time, can create erroneous trends. The seriousness of each 475 problem depends not only on the data available but also on how they are analyzed. Finally, even 476 if global climate is known accurately at all times and places, there remains the issue of what 477 measures to use for quantifying climate change; different choices can sometimes create different 478 impressions, e.g., linear trends versus low frequency filtered analyses that retain some 479 information beyond a straight line.

480

481 Upper air layers experience relatively rapid horizontal smoothing of temperature variations, so 482 that on annual mean time scales, the atmosphere is characterized by large, coherent anomaly 483 features, especially in the east-west direction (Wallis, 1998, Thorne et al., 2005b). As a result, a 484 given precision for the global mean value over, say, a year, can be attained with fewer, if 485 properly spaced, upper air measurement locations than at the surface (Hurrell et al., 2000). Thus, 486 knowledge of global, long-term changes in upper-air temperature is limited mainly by 487 instrumental errors. However, for some regional changes (e.g., over sparsely observed ocean 488 areas) sampling problems may compete with or exceed instrumental ones.

489

490 a) Climate Records

491 Various groups have developed long time series of climate records, often referred to as Climate 492 Data Records (CDRs) (NRC, 2000b; 2000c; 2004) from the raw measurements generated by 493 each observing system. Essentially, climate records are time series that include estimates of error 494 characteristics so as to enable the study of climate variation and change on decadal and longer 495 time scales with a known precision.

497 Long-term temperature changes occur within the context of shorter-term variations, which are 498 listed in Table 2.2. These shorter changes include: periodic cycles such as day-night and seasonal 499 changes; fairly regular changes due to synoptic weather systems, the Quasi-Biennial Oscillation 500 (QBO), and the El Niño-Southern Oscillation (ENSO); and longer-term variations due to 501 volcanic eruptions or internal climate dynamics. These changes have different vertical 502 temperature signatures, and the magnitude of each signal may be different at the surface, in the 503 troposphere, and in the stratosphere. Details are given in Table 2.2. Some of these signals can 504 complicate the identification of temperature trends in climate records.

Table 2.2 Listing of atmospheric temperature variations by time scale and their properties. (Time scales and sources of global temperature variations)

Variation	Variation Description		Approx.	Detectibility	Effect on
	_	Period	Magnitude		Trend
					Estimates
Diurnal ¹	Warmer days	Daily (outside	Highly	Well detected	Satellite data
	than nights, due	of polar	variable.	in surface data.	require
	to earth's	regions)	Surface skin	Poorly	adjustment of
	rotation on its		T changes up	detected	drift in the
	axis affecting		to 35K.	globally in the	local
	solar heating.		Boundary	troposphere	equatorial
			layer changes	and	crossing time
			<10K.	stratosphere	of spacecraft
			Free	due to	orbits.
			tropospheric	infrequent	Inadequate
			changes <1K.	sampling (once	quantification
			Stratospheric	or twice daily)	of the true
			changes ~0.1-	and potential	diurnal cycle
			1 K.	influence of	hinders this
				measurement	adjustment.
				errors with	Different
				their own	diurnal
				diurnal signal.	adjustments
				A few ground-	by different
				based systems	groups may

Variation	Description	Dominant Period	Approx. Magnitude	Detectibility	Effect on Trend
		1 01100	Magintude		Estimates
				detect signal well.	partly account for differences in trend estimates.
Synoptic ²	Temperature changes associated with weather events, such as wave and frontal passages, due to internal atmospheric dynamics.	1-4 days	Up to ~15K or more at middle latitudes, ~3K in Tropics.	Well detected by observing systems designed to observe meteorological variability.	Not significant, but contributes to noise in climate data records.
Intraseasonal ³	Most notably, an eastward-and vertically- propagating pattern of disturbed weather in the tropical Indo- Pacific ocean region, of unknown cause. Also, atmospheric "blocking" and wet/dry land surface can cause intra- seasonal variations at mid-latitudes.	40-60 days (Tropics), < 180 days (mid- latitudes)	1-2 K at surface, less aloft (tropics), larger in mid- latitudes.	Temperature signals moderately well detected, with tropical atmosphere limited by sparse radiosonde network and IR-based surface temperature limited by cloud. Reanalysis data are useful.	Not significant due to short duration, but may be important if character of the oscillation changes over time.
Annual ⁴	Warmer	Yearly	~2-30 K;	Well observed.	Trends are
	summers than winters, and shift in position of major precipitation	-	greater over land than sea, greater at high than low latitudes,		often computed from "anomaly" data, after the

Variation	ation Description Dominant Appro Period Magn		Approx. Magnitude	Detectibility	Effect on Trend
					Estimates
	zones, due to tilt of the earth's axis of rotation affecting solar heating.		greater near the surface and tropopause than at other heights.		mean annual cycle has been subtracted. Changes in the nature of the annual cycle could affect annual- average trends.
Quasi- Biennial Oscillation (QBO) ⁵	Nearly periodic wind and temperature changes in the equatorial stratosphere, due to internal atmospheric dynamics.	Every 23-28 months (average of 27 months because occasionally periods of up to 36 months occur.)	Up to 10 K locally, ~0.5 K averaged over the tropical stratosphere.	Fairly well observed by equatorial radiosonde stations and satellites.	Like ENSO, can influence trends in short data records, but it is relatively easy to remove this signal.
Interannual ⁶	Multiannual variability due to interaction of the atmosphere with dynamic ocean and possibly land surfaces; most notably, ENSO. Can also be caused by volcanic eruptions.	ENSO events occur every 3- 7 years and last 6-18 months; major volcanic eruptions, irregular but approximately every 5-20 years with effects lasting ~ 2 years.	Up to 3K in equatorial Pacific (ENSO), smaller elsewhere. Volcanic warming of stratosphere can exceed 5K in tropics cooling of surface <2K.	Fairly well observed, although the vertical structure of ENSO is not as well documented, due to sparseness of the tropical radiosonde network.	ENSO affects surface global mean temperatures by ± 0.4 K, and more in the tropical troposphere. Large ENSO events near the start or end of a data record can strongly affect computed trends, as was the case for the 1997-98 event. Changes in ENSO

Variation	Description	Dominant	Approx.	Detectibility	Effect on
		Period	Magnitude		Trend
					Estimates
					strength affect
					(and may be
					coupled with)
					long-term
					trends.
Decadal to	Like interannual,	Poorly	Not well	Relatively	Can account
interdecadal	but longer time	known; 50-	studied. The	large regional	for a
oscillations	scales.	year PDO	1976-77 shift	changes are	significant
and shifts.7	Prominent	cycle	associated	well observed,	fraction of
	example is the	suggested by	with a sharp	but global	linear trends
	PDO/	20 ^m -century	warming of at	expression is	calculated
	Interdecadal	observations;	least 0.2K	subject to data	over periods
	Pacific	others a	globally,	consistency	of a few
	Oscillation.	decade or	though	issues over	decades or
	Despite long	two; solar 11-	difficult to	time and	less
	time scale,	year cycle	distinguish	possible real	regionally.
	changes can	detectable	ITOIII	changes.	Such trends
	occur as abrupt	aiso.	anunopogenic		inay united
	silitis, ioi		warning. 11-		from one such
	warming shift		leads to		nom one such
	around 1976		stratospheric		next
	Others include		temperature		next.
	regional changes		changes of		
	in the North		~2K, and		
	Atlantic, Pacific-		interacts with		
	North American,		the Quasi-		
	Arctic, and the		Biennial		
	Antarctic		Oscillation		
	oscillations.		(QBO).		
	Some changes				
	also caused by				
	11-year solar				
~ 1	cycle.	40.00	0	x	
Sub-	Fluctuates in	60-80 years	$\sim \pm 0.5$ C in	Detectable	Effects small
centennial	instrumental and		parts of the	globally above	globally, but
60-80 year	paleo data at		Atlantic.	the noise, clear	probably
fluctuation or	least back to		Apparently	in North	detectable in
Atlantic	c.1600. Seems to		detectable in	Atlantic SST.	last few

Variation	Description	Dominant Period	Approx. Magnitude	Detectibility	Effect on Trend Estimates
Multidecadal Oscillation" ⁸	particularly affect Atlantic sector. Possible interhemispheric component.		global mean ~ ±0.1C		decades. Readily detectable over this period in North Atlantic Ocean where it clearly affects surface temperature trends and probably climate generally.
Centennial and longer variations ⁹	Warming during 20 th Century due to human influences, solar, and internal variability. Earlier changes included the "little ice age" and "medieval warm period."	None confirmed, though 1500 year Bond cycle possible.	20 th century warming of ~0.6K globally appears to be as large or larger than other changes during the late Holocene.	Surface warming during 20 th century fairly well observed; proxies covering earlier times indicated 20 th century warmer than the past 5 centuries	Natural temperature variations occur on the longest time scales accessible in any instrumental record.

509

519 520

510 511 512 513 514 515 516 517 518 ¹ Christy et al., 2003; Mears et al., 2003; Vinnikov and Grody. 2003; Dai and Trenberth, 2004; Jin, 2004; Seidel et al., 2005. ² Palmen and Newton, 1969

^{3} Duvel et al.,2004.

⁴ Wallace and Hobbs, 1977

⁵ Christy and Drouilhet, 1994; Randel et al., 1999; Baldwin et al., 2001

⁶ Parker and Brownscombe, 1983; Pan and Oort, 1983; Christy and McNider, 1994; Parker et al., 1996; Angell,

2000; Robock, 2000; Michaels and Knappenberger, 2000; Santer et al., 2001; Free and Angell, 2002a; Trenberth et 521 al., 2002; Seidel et al., 2004; Seidel and Lanzante, 2004

522 523 524 525 ⁷ Labitzke, K.,1987; Trenberth and Hurrell, 1994; Lean et al., 1995; Zhang et al., 1997; Thompson et al., 2000; Douglass and Clader, 2002; Seidel and Lanzante, 2004; Hurrell et al., 2003; Folland et al., 1999; Power et al., 1999; 526 Folland et al. 2002.

527 528 ⁸ Schlesinger and Ramankutty, 1994; Mann et al., 1998; Folland et al., 1999; Andronova and Schlesinger, 2000; 529 Goldenberg et al., 2001; Enfield et al., 2001

530 531 ⁹ Folland et al., 2001a.

532 Our survey of known atmospheric temperature variations, how well they are measured, and their 533 impact on trend estimates suggests that most observing systems are generally able to quantify 534 well the magnitudes of change associated with shorter time scales. For longer time scale changes, 535 where the magnitudes of change are smaller and the stability requirements more rigorous, the 536 observing systems face significant challenges (Seidel et al., 2004).

537

538 b) Measuring Temperature Change

539

540 Over the last three to five decades, global surface temperature records show increases of almost 541 two tenths of a °C per decade. Explaining atmospheric and surface trends therefore demands 542 relative accuracies of a few hundredths of a degree per decade in global time series of both 543 surface and upper-air observations. As this and subsequent chapters will show, the effects of 544 instrumental biases on the global time series are significantly larger than a few hundredths of a 545 degree for the upper-air data, though the global surface temperature compilations do appear to 546 reach this level of precision in recent decades (Folland et al., 2001b). These biases, especially 547 those of the upper air, must therefore be understood and quantified rather precisely (see section 3 548 below). For this fundamental reason, reliable assessment of lapse rate changes remains a 549 considerable challenge.

550

551 Natural modes of climate variability on regional scales are manifested in decadal fluctuations in 552 (a) the tropical Pacific, e.g., ENSO, and (b) the northern latitudes, e.g., the North Atlantic, 553 Pacific-North American and the Arctic atmospheric oscillations (Table 2.2). Even fluctuations on 554 longer time scales have been proposed, e.g., the Atlantic Multidecadal Oscillation/60-80 year 555 variation (Schlesinger and Ramankutty, 1994; Enfield et al., 2001). Each of these phenomena is 556 associated with regions of both warming and cooling. Distinguishing slow, human-induced 557 changes from such phenomena requires identifying the patterns and separating the influences of 558 such modes from the warming signal (e.g., as attempted by SST by Folland et al., 1999.) In 559 addition, these oscillations could themselves be influenced by human-induced atmospheric 560 changes (Hasselmann, 1999).

561

562 <u>3. LIMITATIONS</u>

563

A key question addressed in this report is whether climate records built by investigators using various components of the observing system can meet the needs for assessing climate variations and trends with the accuracy and representativeness which allows any human attribution to be reliably identified. Climate record builders have usually underestimated the overall uncertainty in their products by relying on traditional sources of uncertainty that can be quantified using standard statistical methods. For example, published linear trend values exist of the same temperature product from the same observing system whose error estimates do not overlap, indicating serious issues with error determination. Thus, in 2003, three realizations of T_2 (or MSU channel 2) 1979-2002 global trends were published as +0.03 ±0.05 +0.12 ±0.02, and +0.24 ±0.02 °C per decade (Christy et al., 2003; Mears et al., 2003; and Vinnikov and Grody, 2003, respectively.) Over 40% of the difference between the first two trends is due to the treatment of a single satellite in the 1984-1986 period, with a combination of lesser differences during later satellite periods. The third dataset has more complex differences, though it is being superseded by a version whose trend is now lower (Grody et al., 2004, Vinnikov et al. 2005).

578

579 This situation illustrates that it is very challenging to determine the true error characteristics of 580 datasets (see Chapter 4), although considerably less attention has been paid to this than to the 581 construction of the datasets themselves. In this report, we refer to systematic errors in the climate 582 data records as "construction errors." Such errors can be thought of as having two fundamentally 583 different sources, *structural* and *parametric* (see Box 2.1). The human decisions that underlie the 584 production of climate records may be thought of as forming a structure for separating real and 585 artificial behavior in the raw data. Assumptions made by the experts may not be correct, or 586 important factors may have been ignored; these possibilities lead to structural uncertainty 587 (Thorne et al., 2005a) in any trend or other metric obtained from a given the climate record. 588 Experts generally tend to underestimate structural uncertainty (Morgan, 1990). The T_2 example 589 above shows that this type of error can considerably exceed those recognized by the climate 590 record builders. Sorting out which decisions are better than others, given the fact many 591 individual decisions are interdependent and often untestable, is challenging.

593 Structural uncertainty is difficult to quantify because this requires considering alternatives to the 594 fundamental assumptions, rather than just to the specific sampling or bias pattern in the available 595 data (the main source of parametric uncertainty). For example, is an apparent diurnal variation 596 due to (a) real atmospheric temperature change, (b) diurnal solar heating of an instrument 597 component, (c) a combination of both, or (d) something else entirely? If the answer is not known 598 *a priori*, different working assumptions may lead to a different result when corrections are 599 determined and applied.

600

601 There may be several ways to identify structural errors. First, it is well known in statistics that 602 one should examine the variability that is left over when known effects are removed in a data 603 analysis, to see whether the residuals appear as small and "random" as implied by the 604 assumptions. Even when the residuals are examined, it is often difficult to identify the cause of 605 any non-randomness. Second, one can compare the results with external or independent data 606 (such as comparing SST and NMAT observations). However, one then encounters the problem 607 of assessing the accuracy of the independent data; because, in the case of global atmospheric 608 temperature data there are no absolute standards for any needed adjustment. Christy et al. (2000) 609 demonstrate the use of internal and external methods for evaluating the error of their upper air 610 time series. They assumed that where agreement of independent measurements exists, there is 611 likely to be increased confidence in the trends. Third, one can try to assess the construction 612 uncertainty by examining the spread of results obtained by multiple experts working 613 independently (e.g., the T₂ example, Thorne et al., 2005a). Unfortunately, though valuable, this 614 does not establish the uncertainties of individual efforts, nor is it necessarily an accurate measure

of overall uncertainty. If all investigators make common mistakes, the estimate of construction
uncertainty may be too optimistic; but if some investigators are unaware of scientifically sound
progress made by others, the estimate can be too pessimistic.

618

619 A general concern regarding all of the datasets used in this analysis - land air temperature, sea 620 surface temperature, radiosonde temperature, and satellite-derived temperature – is the level of 621 information describing the operational characteristics and evolution of the associated observing 622 system. As indicated above, the common factor that creates the biggest differences between 623 analyses of the same source data is the homogeneity adjustments made to account for biases in 624 the raw data. All homogeneity adjustments would improve with better metadata - that is, 625 information (data) about the data (see chapter 6). For satellite-derived temperature, additional 626 metadata such as more data points used in the pre-launch calibration would have been helpful to 627 know, especially if done for differing solar angles to represent the changes experienced on orbit. 628 For the in situ data sets, additional metadata of various sorts likely exist in one form or another 629 somewhere in the world and could be acquired or created. These include the type of instrument, 630 the observing environment, the observing practices and the exact dates for changes in any of the 631 above.

632

Below we identify various known issues that led to errors in the datasets examined in this report,
and which have generally been addressed by the various dataset builders. Note that reanalyses
inherit the errors of their constituent observing systems, though they have the advantage of
seeking a degree of consensus among the various observing systems through the constraint of

637 model physics. The complex reanalysis procedure transforms these errors of output data into638 errors of construction methodology that are hard to quantify.

- 639
- 640 Errors primarily affecting *in situ* observing systems.
- 641

Spatial and temporal sampling: The main source of this error is the poor sampling of oceanic
regions, particularly in the Southern Hemisphere, and some tropical and Southern
Hemisphere continental regions (see Text Box 2.1). Temporal variations in radiosonde
sampling can lead to biases, (e.g., switching from 00 to 12 UTC) but these are generally
documented and thus potentially treatable.

647 Local environmental changes: Land-use changes, new instrument exposures, etc., create new 648 localized meteorological conditions to which the sensor responds. These issues are most 649 important for land near-surface air temperatures but can also affect the lower elevation 650 radiosonde data. Some changes, e.g., irrigation, can act to increase nighttime minima 651 while decreasing daytime maxima, leaving an ambiguous signal for the daily mean 652 temperature. Such changes are sources of error only if the change in the immediate 653 surroundings of the station is unrepresentative of changes over a larger region.

654 Changes in methods of observation: A change in the way in which an instrument is used, as in
 655 calibrating a radiosonde before launch, i.e., whether it is compared against a typical
 656 outdoor sensor or against a traceable standard.

657 Changes in data processing algorithms: A change in the way raw data are converted to 658 atmospheric information can introduce similar problems. For radiosonde data, the raw

- observations are often not archived and so the effects of these changes are not easilyremoved.
- 661
- 662 Errors primarily affecting satellite systems
- 663

664Diurnal sampling: It is common for polar orbiters to drift slowly away from their "sun-665synchronous" initial equatorial crossing times (e.g., 1:30 p.m. to 5 p.m.), introducing666spurious trends related to the natural diurnal cycle of daily temperature. The later polar667orbiters (since 1998) have more stable station keeping. Diurnal drift adjustments for T_{2LT} 668and T_2 impact the trend by a few hundredths °C/decade. Changes in local observation669time also significantly afflict *in situ* temperature observations, with a lesser impact on the670global scale.

671 **Orbit decay**: Variations in solar activity cause expansion and contraction of the thin atmosphere 672 at the altitudes where satellites orbit, which create variable frictional drag on spacecraft. 673 This causes periods of altitude decay, changing the instrument's viewing geometry 674 relative to the earth and therefore the radiation emissions observed. This issue relates 675 most strongly to T_{2LT} , which uses data from multiple view angles, and is of order 0.1 676 °C/decade.

677 Calibration shifts/changes: For satellite instruments, the effects of launch conditions or
 678 changes in the within-orbit environment (e.g., varying solar shadowing effects on the
 679 spacecraft components as it drifts through the diurnal cycle) may require adjustments to
 680 the calibration equations. Adjustment magnitudes vary among the products analyzed in

681	this report but are on the order of 0.1 °C/decade for T_{2LT} and T_2 .
682	Surface emissivity effects: The intensity of surface emissions in observed satellite radiances
683	can vary over time due to changes in surface properties, e.g. wet vs. dry ground, rough vs.
684	calm seas, etc., and longer-term land cover changes, e.g., deforestation leading to higher
685	daytime skin temperatures and larger diurnal temperature cycles.
686	Atmospheric effects: Atmospheric composition can vary over time (e.g., aerosols), affecting
687	satellite radiances, especially the infrared.
688	
689	Errors affecting all observing systems
690	
691	Instrument Changes: Systematic variations of calibration between instruments will lead to
692	time-varying biases in absolute temperature. These involve (a) changes in instruments
693	and their related components (e.g., changes in housing can be a problem for in situ
694	surface temperatures), (b) changes in instrument design or data processing (e.g.,
695	radiosondes) and (c) copies of the same instrument that are intended to be identical but
696	are not (e.g., satellites).
697	
698	Errors or differences related to analysis or interpretation
699	
700	Construction Methodology: As indicated, this is often the source of the largest differences
701	among trends from datasets and is the least quantifiable. When constructing a
702	homogeneous, global climate record from an observing system, different investigators

703 often make a considerable range of assumptions as to how to treat unsampled or 704 undersampled variability and both random and systematic instrument errors. The trends 705 and their uncertainties that are subsequently estimated are sensitive to treatment 706 assumptions (Free et al., 2002b). For example, the trends of the latest versions of T_2 from 707 the three satellite analyses vary from +0.044 to +0.199 °C/decade (chapter 3), reflecting 708 the differences in the combination of individual adjustments determined and applied by 709 each team (structural uncertainty.) Similarly, the T₂ global trends of the radiosonde-710 based and reanalyses datasets range from -0.036 to +0.067 °C/decade indicating 711 noticeable differences in decisions and methodologies by which each was constructed. 712 Thus the goal of achieving a consensus with an error range of a few hundredths 713 °C/decade is not evidenced in these results.

Trend Methodology: Differences between analyses can arise from the methods used to determine trends. Trends shown in this report are calculated by least squares linear regression.

Representativeness: Any given measure reported by climate analysts could under- or overstate
underlying climatic behavior. This is not so much a source of error as a problem of
interpretation. This is often called statistical error. For example, a trend computed for
one time period (say, 1979-2004) is not necessarily representative of either longer or
earlier periods (e.g., 1958-1979), so caution is necessary in generalizing such a result. By
the same token, large variations during portions of the record might obscure a small but
important underlying trend. (See Appendix for Statistical Uncertainties.)

726 <u>4. IMPLICATIONS</u>

727 The observing systems deployed since the late 1950s, and the subsequent climate records derived 728 from their data, have the capability to provide information suitable for the detection of many 729 temperature variations in the climate system. These include temperature changes that occur with 730 regular frequency, e.g., daily and annual cycles of temperature, as well as non-periodic events 731 such as volcanic eruptions or serious heat and cold waves. The data from these systems also have 732 the potential to provide accurate trends in climate over the last few decades (and over the last 733 century for surface observations), once the raw data are successfully adjusted for changes over 734 time in observing systems, practices, and micro-climate exposure to produce usable climate 735 records. Measurements from all systems require such adjustments and this report relies on 736 adjusted datasets. The details of making such adjustments when building climate records from 737 the uncorrected observations are examined in the following chapters.

738

739 Text Box 2.1: Comparing Radiosonde and Satellite Temperatures

Attempts to compare temperatures from satellite and radiosonde measurements are hindered by a mismatch between the respective raw observations. While radiosondes measure temperatures at specific vertical levels, satellites measure radiances which can be interpreted as the temperature averaged over a deep layer. To simulate a satellite observation, the different levels of temperature in the radiosonde sounding are proportionally weighted to match the profiles shown in Figure 2.2. This can be done in one of two ways.

1. Employ a simple set of geographically and seasonally invariant coefficients or weights, called a static weighting function. These coefficients are multiplied by the corresponding set of temperatures at the radiosonde levels and the sum is the simulated satellite temperature. Over land, the surface contributes more to the layer-average than it does over the ocean, and this difference is taken into account by slightly different sets of coefficients applied to land vs. ocean calculations. This same method may be applied to the temperature level data of global reanalyses. We have applied the "static weighting function" approach in this report.

754

755 2. Take into account the variations in the air mass temperature, surface temperature and pressure, 756 and atmospheric moisture (Spencer et al., 1990). Here, the complete radiosonde temperature 757 and humidity profiles are ingested into a radiation model to generate the simulated satellite 758 temperature (e.g., Christy and Norris, 2004). This takes much more computing power to 759 calculate and requires humidity information, which for radiosondes is generally of poorer quality 760 than temperature information or is missing entirely. For climate applications, in which the time 761 series of large-scale anomalies is the essential information, the output from the two methods 762 differs only slightly.

763

There are practical difficulties in generating long time series of simulated satellite temperatures under either approach. To produce a completely homogeneous data record, the pressure levels used in the calculation must be consistent throughout time, i.e., always starting at the surface and reaching the same designated altitude. If, for example, soundings achieved higher elevations as time went on, there would likely be a spurious trend due to the effects of having measured observations during the latter period of record, while by necessity, relying on estimates for the missing values in the earlier period. We also note that HadAT utilizes 9 pressure levels for simulating satellite profiles while RATPAC use 15, so differences can arise from these differing inputs.

773

An additional complication is that many radiosonde datasets and reanalyses may provide data at mandatory levels beginning with 1000 and/or 850 hPa, i.e., with no identifiable surface. Thus, the location of the material surface, and its temperature, can only be estimated so that an additional source of error to the anomaly time series may occur. There are a number of other processing choices available when producing a time series of simulated satellite data for site-bysite comparisons between actual satellite data and radiosondes (or reanalyses) and these also have the potential to introduce non-negligible biases.

781

782 Averaging of spatially incomplete radiosonde observations for comparison of global and tropical 783 anomalies also introduces some error (Agudelo and Curry, 2004). In this report we have first 784 zonally averaged the data, then generated satellite-equivalent measures from these data and 785 finally calculated global and tropical averages. The spatial coverage differs markedly between 786 the two radiosonde datasets. However, as anomalies are highly correlated in longitude the 787 relative poor longitudinal sampling density of RATPAC (and HadAT outside of the NH mid-788 latitudes) is not necessarily an impediment (Hurrell et al., 2000). Comparing global averages 789 estimated using only those zonally-averaged grids observed at RATPAC station sites by MSU 790 versus the globally complete fields from MSU, a sampling error of less than ± 0.05 °C/decade 791 was inferred for T_{2LT} . Satellite and reanalyses are essentially globally complete and thus do not 792 suffer from spatial subsampling.

801

808

- Agudelo, P.A. and J.A. Curry, 2004: Analysis of spatial distribution in tropospheric temperature
 trends. Geophys. Res. Lett., 31, L222207.
- Aires, F., C. Prigent, and W.B. Rossow, 2004: Temporal interpolation of global surface skin
 temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res.,
 109, doi:10.1029/2003JD003527.
- Andrae, U., N. Sokka and K. Onogi, 2004: The radiosonde temperature bias corrections used in
 ERA-40. ERA-40 Project Series #15. 37 pp. European Centre for Medium Range
 Weather Forecasts. Available at http://www.ecmwf.int/publications/
- Angell, J.K., 2000: Tropospheric temperature variations adjusted for El Niño, 1958-1998. J.
 Geophys. Res., 105, 11841-11849.
- Andronova, N.G. and M.E. Schlesinger, 2000: Causes of global temperature changes during the
 19th and 20th centuries. Geophys. Res. Lett., 27, 2137-2140.
- Baldwin, M.P., L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton,
 M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt,
 K. Sato, and M. Takahashi et al., 2001: The quasi-biennial oscillation. *Rev. Geophys.*, 39, 179-229.
- 817 Chelton, D.B., 2005: The impact of SST specification on ECMWF surface wind stress fields in
 818 the eastern tropical Pacific. J. Climate 18, 530-550.
 819
- 820 Christy, J.R., R.W. Spencer, and W.D. Braswell, 2000: MSU Tropospheric temperatures: Data
 821 set construction and radiosonde comparisons. J. Atmos. Oceanic Tech. 17,1153-1170.
 822
- 823 Christy, J.R., R.W. Spencer, W.B. Norris, W.D. Braswell and D.E. Parker, 2003: Error estimates
 824 of Version 5.0 of MSU/AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Tech.
 825 20, 613-629.
 826
- 827 Christy, J.R. and W.B. Norris, 2004: What may we conclude about tropospheric temperature
 828 trends? Geophys. Res. Lett. 31, L06211.
 829
- 830 Christy, J.R. and R. T. McNider, 1994 Satellite greenhouse signal. Nature, 367, 325. 831
- 832 Christy, J.R. and S.J. Drouilhet, 1994 Variability in daily, zonal mean lower-stratospheric
 833 temperatures. J. Climate, 7, 106-120.
 834

835 836 837	Dai, A., and K. E. Trenberth (2004), The diurnal cycle and its depiction in the Community Climate System model, <i>J. Climate</i> , <i>17</i> , 930-951.
838 839 840	Douglass, D.H. and B.D. Clader, 2002: Determination of the climate sensitivity of the earth to solar irradiance. Geophys. Res. Lett., 29, 331-334.
841 842 843 844	Duval, J.P., R. Roca and J. Vialard, 2004: Ocean mixed layer temperature variations induced by instraseasonal convective perturbations of the Indian Ocean. J. Atmos. Sci., 9, 1004-1023.
845 846 847 848	Enfield, D.B., Mestas-Nuñez, A.M. and P.J Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 2077-2080.
849 850 851 852	Folland, C. K. and D. E. Parker (1995). "Correction of instrumental biases in historical sea surface temperature data." Q. J. Roy. Meteor. Soc. 121: 319-367.
853 854 855 856 857	 Folland, C.K., Parker, D.E., Colman, A. and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Refereed book: Chapter 4, pp73-102 of <i>Beyond El Nino: Decadal and Interdecadal Climate Variability</i>. Ed: A. Navarra. Springer-Verlag, Berlin, pp 374.
858 859 860 861 862 863 864 865	 Folland, C.K., T.R. Karl, J.R. Christy, R.A. Clarke, G.V. Gruza, J. Jouzel, M.E. Mann, J. Oerlemans, M.J. Salinger and SW. Wang, 2001a: Observed climate variability and change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.
866 867 868 869	Folland, C.K., N.A. Rayner, S.J. Brown, T.M. Smith, S.S. P. Shen, D.E. Parker, I. Macadam, P.D. Jones, R.N. Jones, N. Nicholls and D.M.H. Sexton, 2001b: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett., 28, 2621-2624.
870 871 872 873	 Folland, C.K., J.A. Renwick, M.J. Salinger and A.B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. <i>Geophys. Res. Lett.</i>, 29 (13): 10.1029/2001GL014201. Pages 21-1 - 21-4.
874 875 876	Free, M., and J. K. Angell, 2002: Effect of volcanoes on the vertical temperature profile in radiosonde data. J. Geophys. Res., 10.1029/2001JD001128.
877	Free, M., I. Durre, E.Aguilar, D. Seidel, T.C. Peterson, R.E. Eskridge, J.K. Luers, D. Parker, M.

878 879 880 881	Gordon, J. Lanzante, S. Klein, J. Christy, S. Schroeder, B. Soden, and L.M. McMillin, 2002: CARDS Workshop on Adjusting Radiosonde Temperature Data for Climate Monitoring: Meeting Summary. <i>Bull. Amer. Meteor. Soc.</i> , 83, 891-899.
882 883	Fu, Q., C.M. Johanson, S.G. Warren, and D.J. Seidel, 2004: Contribution of Stratospheric Cooling to Satellite-Inferred Tropspheric Temperature Trends. Nature, 429, 55-58.
885 886 887	Fu, Q., and C.M. Johanson, 2005: Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophys. Res. Lett. (in press).
888 889	Gillett, N. P., B. D. Santer, A. J. Weaver, 2004, Stratospheric cooling and the troposphere, Nature, doi:10.1038.
890 891 892	Goldenberg, S.B, Landsea, C.W., Mestas Nunez, A.M. and W.M. Gray. The recent increase in Atlantic Hurricane activity: causes and implications. Science, 293, 474-479.
893 894 895 896 897	Grody, Norman C., K. Y. Vinnikov, M. D. Goldberg, J. T. Sullivan, and J. D. Tarpley, 2004. Calibration of multisatellite observations for climatic studies: Microwave Sounding Unit (MSU), J. Geophys. Res. – Atm., 109, D24104, doi:10.1029/2004JD005079, December 21, 2004.
899 899	Hasselmann, K., 1999: Linear and nonlinear signatures. Nature, 398, 755-756.
901 902 903 904 905	Haimberger, L., 2004: Homogenization of radiosonde temperature time series using ERA-40 analysis feedback information. ERA-40 Project Report Series No. 22. European Centre for Medium Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England. 67 pp.
905 906 907	Hurrell, J., S.J. Brown, K.E. Trenberth and J.R. Christy, 2000: Comparison of tropospheric temperature from radiosondes and satellites: 1979-1998. <i>Bull. Amer. Met. Soc.</i> , 81, 2165-2177.
909 910 911 912	Hurrell, J.W., Kushnir, Y., Ottersen, G. and M. Visbeck, Eds, 2003: The North Atlantic Oscillation: Climatic Significance and Environmental Impacts. American Geophysical Union, pp 279.
913 914 915	Jin, M. (2004), Analysis of land skin temperature using AVHRR observations, Bull. Amer. Meteorol. Soc., 85, 587–600, doi: 10.1175/BAMS-85-4-587.
916 917	Johanson, C.M. and Q. Fu, 2005: Robustness of Tropospheric Temperature Trends from MSU channels 2 and 4. J. Climate (submitted).
918 919 920	Jones, P.D., T.J. Osborn, K.R. Briffa, C.K. Folland, E.B. Horton, L.V. Alexander, D.E. Parker and N.A. Rayner, 2001: Adjusting for sampling density in grid box land and ocean

921	surface temperature time series. J. Geophys. Res., 106, 3371-3380.
923 924	Jones, P.D and Moberg, A. 2003. Hemispheric and large scale surface air temperature variations: an extensive revision and an update to 2001. J. Clim., 16, 206-223.
925 926 927 928	Kalney, E. and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer. Metero. Soc., 77, 437-471.
929 929 930 931	Kalnay, E. and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528-531.
932 933 934	Kent, E. C. and P. K. Taylor, 2004: Towards Estimating Climatic Trends in SST Data, Part 1: Methods of Measurement. Journal of Atmospheric and Oceanic Technology, submitted.
935 936 937	Kent, E. C. and P. G. Challenor, 2004: Towards Estimating Climatic Trends in SST Data, Part 2: Random Errors. Journal of Atmospheric and Oceanic Technology, submitted.
938 939 940	Kent, E. C. and A. Kaplan, 2004: Towards Estimating Climatic Trends in SST Data, Part 3: Systematic Biases. Journal of Atmospheric and Oceanic Technology, submitted.
941 942 943	Kilpatrick, K. A., G. P. Podesta, et al., 2001: Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database." J. Geophys. Res. 106 (C5): 9179-9198.
944 945 946 947	Kursinski E.r., G.A. Hajj, J.T. Schofiled, R.P. Linfield and K.R. Hardy, 1997: Observing the Earth's atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 102, 23429-23465.
940 949 950 951	Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14, 535-537.
952 953 954	Lean, J., J. Beer, and R. Bradley, 1995: Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett., 22, 3195-3198.
955 955 956	Mann, M.E., R.S. Bradley and M.K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779-787.
958 959 960	McPhaden, M. J., 1995: The Tropical Atmosphere Ocean array is completed. Bulletin of the American Meteorological Society. 76: 739-741.
960 961 962 963	Mears, C.A., M.C. Schabel, and F.J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 3650-3664.

964 965 966	Michaels, P.J., and P.C. Knappenberger, 2000: Natural signals in the MSU lower tropospheric temperature record. Geophys. Res. Lett. 27, 2905-2908.
967 968 969	Morgan, M. G., 1990: Uncertainty : a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, 332 pp.
970 971 972	NRC 2000a. <i>Reconciling Observations of Global Temperature Change</i> . National Academy Press, 85 pp.
973 974 975	NRC 2000b. Ensuring the Climate Record from the NPP and NPOESS Meteorological Satellites. National Academy Press. 51 pp.
976 977 978	NRC 2000c. Issues in the Integration of Research and Operational Satellite Systems for Climate Research II: Implementation. National Academy Press. 82 pp.
979 980 981	NRC 2004. <i>Climate Data Records from Environmental Satellites</i> . National Academy Press. 136 pp.
982 983 984	Palmen, E. and C. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Interpretation. Academic Press.
985 986 987 988	Pan, YH., and A.H. Oort, 1983: Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958-1973 period. Mon. Weath. Rev., 111, 1244-1258.
989 990	Parker, D.E. and Brownscombe, 1983: Nature, 301, 406-408.
991 992 993 994	Parker, D.E., M. Gordon, D.P.N. Cullum, D.M.H. Sexton, C.K. Folland and N. Rayner, 1997: A new global gridded radiosonde temperature data base and recent temperature trends. Geophys. Res. Lett., 24, 1499-1502.
995 996 997	Parker, D.E., H. Wilson, P.D. Jones, J.R. Christy and C.K. Folland, 1996: The impact of Mount Pinatubo on world-wide temperatures. Int. J. Climotol., 16, 487-497.
998 999 1000	Pawson, S. and M. Fiorino, A comparison of reanalyses in the tropical stratosphere. Part 3: Inclusion of the pre-satellite data era, Clim. Dyn., 1999, 15, 241-250.
1000 1001 1002 1003	Power, S., Casey, T., Folland, C.K., Colman, A and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. <i>Climate Dynamics</i> , 15 , 319-323.
1004 1005 1006	 Ramaswamy, V., ML. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Kekhut, Y. Koshelkov, K. Labitzke, JJ. R. Lin, A. O'Neill, J. Nash, W. Randel, R.Rood, K. Shine, M. Shiotani, and R. Swinbank, 2001: Stratospheric temperature trends: Observations and

1007	model simulations. Rev. Geophys., 39, 71-122.
1008 1009 1010	Randel, W.J., F. Wu, R. Swinbank, J. Nash, and A. O'Neill, 1999: Global QBO circulation derived from UKMO stratospheric analyses. <i>J. Atmos. Sci.</i> , 56 , 457-474.
1011 1012 1013	Rayner, N. A., D. E. Parker, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108(d14).
1014 1015 1016	Reynolds, R. W., 1993: Impact of Mt Pinatubo aerosols on satellite-derived sea surface temperatures. J. Climate, 6, 768-774.
1017 1018 1019	Reynolds, R.W., Rayner, N.A. Smith, T.H. Stokes, D.C. and Wang W., 2002: An improved in situ and satellite SST analysis for climate. J. Clim., 15, 1609-1625.
1020 1021 1022	Robock, Alan, 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191-219.
1023 1024 1025 1026	Santer. B.D., J.J. Hnilo, T.M.L. Wigley, J.S. Boyle, C. Doutriaux, M. Fiorino, D.E. Parker, and K.E. Taylor, 1999: Uncertainties in observationally based estimates of temperature change in the free atmosphere. J. Geophys. Res., 104, 6305-6333.
1027 1028 1029	Santer, B.D., T.M.L. Wigley, C. Doutriaux, J.S. Boyle and 6 others, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28033-28059.
1030 1031 1032	Schlesinger, M.E. and N. Ramankutty, An oscillation in the global climate system of period 65-70 years. Nature, 367, 723-726.
1033 1034 1035 1036 1037	Seidel, D.J., J.K. Angell, J.R. Christy, M. Free, S.A. Klein, J.R. Lanzante, C. Mears, D. Parker, M. Schabel, R. Spencer, A. Sterin, P. Thorne and F. Wentz, 2004: Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. J. Climate, 17, 2225-2240.
1039 1040	Seidel, D.J., M. Free, and J. Wang, The diurnal cycle of temperature in the free atmosphere estimated from radiosondes, J. Geophys. Res. (submitted).
1041 1042 1043 1044	Seidel, D.J., and. J.R. Lanzante, 2004: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes, J. Geophys. Res. 109, XXX- XXX, doi:10.1029/2003JD004414, in press.
1045 1046 1047	Sherwood, S. C., Climate signal mapping and an application to atmospheric tides, Geophys. Res. Lett., 2000, 27, 3525-3528.
1040	Simmons, A.J., Jones, P.D., da Costa Bechtold, V., Beljaars, A.C.M., Kållberg, P., Saarinen, S.,

1050 1051	Uppala, S.M., Viterbo, P. and N. Wedi, N. 2004: Comparison of trends and variability in CRU, ERA-40 and NCEP/NCAR analyses of monthly-mean surface air temperature.
1052	L Geophys. Res., 109, No D24 D24115 http://dx.doi.org/10.1029/2004JD005306
1053	December 21, 2004
1054	
1055	Simmons, A.J., 2004: Development of the ERA-40 Data Assimilation System. 20 pp. European
1056	Centre for Medium Range Weather Forecasts. Available at
1057	http://www.ecmwf.int/publications/
1058	
1059	Smith, T. M. and R. W. Reynolds, 2004: Improved Extended Reconstruction of SST (1854-
1060	1997). J.Climate, 17, 2466-2477.
1061	
1062	Smith, T. M. and R. W. Reynolds, 2005: A global merged land and sea surface temperature
1063	reconstruction based on historical observations (1880-1997). Journal of Climate,
1064	Submitted.
1065	
1066	Spencer, R. W., J. R. Christy and N. C. Grody, 1990: Global atmospheric temperature monitoring with
1067	satellite microwave measurements: Method and results 1979-1985. J. Climate, 3, 1111-1128.
1068	
1069	Spencer, R. W. and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint
1070	temperature anomalies, Part II: A tropospheric retrieval and trends during 1979-90. J. Climate,
1071	5 , 858-866.
1072	
1073	Spencer, R.W., J.R. Christy and W.D. Braswell, 2005: On the estimation of tropospheric
1074	temperature trends from MSU channels 2 and 4. J. Atmos. Oceanic Tech., submitted.
1075	
1076	Strategic Plan for the U.S. Climate Change Science Program, 2003: A Report by the Climate
1077	Change Science Program and the Subcommittee on Global Change Research.
1078	
1079	Thompson, D.W.J., J.M. Wallace and G.C. Hegerl, 2000: Annual modes in the extratropical
1080	circulation Part II: trends. J. Climate, 13, 1018-1036.
1081	
1082	Thorne, P.W., D.E. Parker, J.R. Christy and C.A. Mears, 2005: Causes of differences in observed
1083	climate trends. Bull. Amer. Meteor. Soc., in press.
1084	
1085	Thorne, P.W., D.E. Parker, S.F.B. Tett, P.D. Jones, M. McCarthy, H. Coleman, P. Brohan, and
1086	J.R. Knight, 2005: Revisiting radiosonde upper-air temperatures from 1958 to 2002. J.
1087	Geophys. Res., in press.
1088	
1089	Trenberth, K.E. and J.W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific.
1090	Clim. Dyn., 9, 303-319.
1091	
1092	Trenberth, K.E., Carron, J.M., Stepaniak, D.P. and S. Worley, 2002: Evolution of the El Nino-

1093 1094 1095	Southern Oscillation ad global atmospheric surface temperatures. J. Geophys. Res., 107, D8, 10.1029/2000JD000298.
1096 1097 1098	Wallace, J.M. and P.V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press, New York, NY, 467 pp.
1099 1100 1101	Wallis, T.W.R., 1998: A subset of core stations from the Comprehensive Aerological Reference Data Set (CARDS). J. Climate, 11, 272-282.
1102 1103 1104	Vinnikov, K.Y., and N.C. Grody, 2003. Global warming trend of mean tropospheric temperature observed by satellites, Science, 302, 269-272.
1105 1106 1107	Vinnikov, K.Y., N.C. Grody, A. Robock, R.J. Stouffer, P.D. Jones and M.D. Goldberg, 2005: Temperature trends at the surface and the troposphere. J. Geophys. Res. submitted.
1108 1109 1110	Zhang, Y., J.M. Wallace, and D.S. Battisti, 1997: ENSO-like interdecadal variability: 1900- 93 ,J. Climate, 10, 1004-1020.