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Abstract: 20 

 21 

The purpose of this Appendix is to explain the statistical terms and methods used in this Report. 22 

We begin by introducing a number of terms: mean, standard deviation, variance, linear trend, 23 

sample, population, signal, and noise. Examples are given of linear trends in surface, 24 

tropospheric, and stratospheric temperatures. The least squares method for calculating a best fit 25 

linear trend is described. The method for quantifying the statistical uncertainty in a linear trend is 26 

explained, introducing the concepts of standard error, confidence intervals, and significance 27 

testing. A method to account for the effects of temporal autocorrelation on confidence intervals 28 

and significance tests is described. The issue of comparing two data sets to decide whether 29 

differences in their trends could have occurred by chance is discussed. The analysis of trends in 30 

state-of-the-art climate model results is a special case because we frequently have an ensemble of 31 

simulations for a particular forcing case. The effect of ensemble averaging on confidence 32 

intervals is illustrated. Finally, the issue of practical versus statistical significance is discussed. In 33 

practice, it is important to consider construction uncertainties as well as statistical uncertainties. 34 

An example is given showing that these two sources of trend uncertainty can be of comparable 35 

magnitude.  36 

 37 
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(1) Why do we need statistics? 38 

 39 

Statistical methods are required to ensure that data are interpreted correctly and that apparent 40 

relationships are meaningful (or “significant”) and not simply chance occurrences. 41 

 42 

A “statistic” is a numerical value that describes some property of a data set. The most commonly 43 

used statistics are the average (or “mean”) value, and the “standard deviation”, which is a 44 

measure of the variability within a data set around the mean value. The “variance” is the square 45 

of the standard deviation. The linear trend is another example of a data “statistic”.  46 

 47 

Two important concepts in statistics are the “population” and the “sample”. The population is a 48 

theoretical concept, an idealized representation of the set of all possible values of some measured 49 

quantity. An example would be if we were able to measure temperatures continuously at a single 50 

site for all time – the set of all values (which would be infinite in size in this case) would be the 51 

population of temperatures for that site. A sample is what we actually see and can measure: i.e., 52 

what we have available for statistical analysis, and a necessarily limited subset of the population. 53 

In the real world, all we ever have is limited samples, from which we try to estimate the 54 

properties of the population.  55 

 56 

As an analogy, the population might be an infinite jar of marbles, a certain proportion of which 57 

(say 60%) is blue and the rest (40%) are red. We can only draw off a finite number of these 58 

marbles (a sample) at a time; and, when we measure the numbers of blue and red marbles in the 59 

sample, they need not be in the precise ratio 60:40. The ratio we measure is called a “sample 60 
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statistic”. It is an estimate of some hypothetical underlying population value (the corresponding 61 

“population parameter”). The techniques of statistical science allow us to make optimum use of 62 

the sample statistic and obtain a best estimate of the population parameter. Statistical science 63 

also allows us to quantify the uncertainty in this estimate. 64 

 65 
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(2) Definition of a linear trend 66 

 67 

If data show underlying smooth changes with time, we refer to these changes as a trend. The 68 

simplest type of change is a linear (or straight line) trend, a continuous increase or decrease over 69 

time. For example, the net effect of increasing greenhouse-gas concentrations and other human-70 

induced factors is expected to cause warming at the surface and in the troposphere and cooling in 71 

the stratosphere (see Figure 1). Warming corresponds to a positive (or increasing) linear trend, 72 

while cooling corresponds to a negative (or decreasing) trend. These changes are not expected to 73 

be strictly linear, but the linear trend provides a simple way of characterizing the change and of 74 

quantifying its magnitude. 75 

 76 

 77 
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 78 

Figure 1: Examples of temperature time series with best-fit (least squares) linear trends: A, global-mean surface 79 
temperature from the UKMO Hadley Centre/Climatic Research Unit data set (HadCRUT2v); and B, MSU channel 4 80 
data (T4) for the lower stratosphere from the University of Alabama at Huntsville (UAH). Note the much larger 81 
temperature scale on the lower panel. Temperature changes are expressed as anomalies relative to the 1979 to 1999 82 
mean (252 months). Dates for the eruptions of El Chichón and Mt Pinatubo are shown by vertical lines. El Niños are 83 
shown by the shaded areas.  84 
 85 

 86 

Alternatively, there may be some physical process that causes a rapid switch or change from one 87 

mode of behavior to another. In such a case the overall behavior might best be described as a 88 

linear trend to the changepoint, a step change at this point, followed by a second linear trend 89 

portion. Many temperature data sets show this type of behavior, arising from a change in the 90 

pattern of variability in the Pacific that occurred around 1976 (a switch in a mode of climate 91 

variability called the Pacific Decadal Oscillation). 92 
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 93 

Step changes can lead to apparently contradictory results. For example, a data set that shows an 94 

initial cooling trend, followed by a large upward step, followed by a renewed cooling trend could 95 

have an overall warming trend. To state simply that the data showed overall warming would 96 

misrepresent the true underlying behavior.  97 

 98 

A linear trend may therefore be deceptive if the trend number is given in isolation, removed from 99 

the original data. Nevertheless, used appropriately, linear trends provide the simplest and most 100 

convenient way to describe the overall change over time in a data set, and are widely used. 101 

 102 

Linear temperature trends are usually quantified as the temperature change per year or per 103 

decade (even when the data are available on a month by month basis). For example, the trend for 104 

the surface temperature data shown below in Figure 1 is 0.169oC per decade. This is a more 105 

convenient representation than the trend per month, which would be 0.169/120 = 0.00141oC per 106 

month, a very small number. An alternative method is to use the “total trend” over the full data 107 

period – i.e., the total change for the fitted line from the start to the end of the record (see Figure 108 

2 in the Executive Summary). In Figure 1, the data shown span January 1979 through December 109 

2004 (312 months or 2.6 decades). The total change is therefore 0.169x2.6 = 0.439oC.  110 

 111 
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(3) Expected temperature changes: signal and noise 112 

 113 

Different physical processes generally cause different spatial and temporal patterns of change. 114 

For example, anthropogenic emissions of halocarbons at the surface have led to a reduction in 115 

stratospheric ozone and a contribution to stratospheric cooling over the past three or four 116 

decades. Now that these chemicals are controlled under the Montreal Protocol, the 117 

concentrations of the controlled species are decreasing and there is a trend towards a recovery of 118 

the ozone layer. The eventual long-term effect on stratospheric temperatures is expected to be 119 

non-linear: a cooling up until the late 1990s followed by a warming as the ozone layer recovers.  120 

 121 

This is not the only process affecting stratospheric temperatures. Increasing concentrations of 122 

greenhouse gases lead to stratospheric cooling; and explosive volcanic eruptions cause sharp, but 123 

relatively short-lived stratospheric warmings (see Figure 1)1. There are also natural variations, 124 

most notably those associated with the Quasi-Bienniel Oscillation (QBO)2. Stratospheric 125 

temperature changes (indeed, changes at all levels of the atmosphere) are therefore the combined 126 

results of a number of different processes acting across all space and time scales.  127 

 128 

In climate science, a primary goal is to identify changes associated with specific physical 129 

processes (causal factors) or combinations of processes. Such changes are referred to as 130 

“signals”. Identification of signals in the climate record is referred to as the “detection and 131 

attribution” (D&A) problem. “Detection” is the identification of an unusual change, through the 132 

use of statistical techniques like significance testing (see below); while “attribution” is the 133 

association of a specific cause or causes with the detected changes in a statistically rigorous way.  134 
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 135 

The reason why D&A is a difficult and challenging statistical problem is because climate signals 136 

do not occur in isolation. In addition to these signals, temperature fluctuations in all parts of the 137 

atmosphere occur even in the absence of external driving forces. These internally-driven 138 

fluctuations represent the “noise” against which we seek to identify specific externally-forced 139 

signals. All climate records, therefore, are “noisy”, with the noise of this natural variability 140 

tending to obscure the externally-driven changes. Figure 1 illustrates this. At the surface, a 141 

primary noise component is the variability associated with ENSO (the El Niño/Southern 142 

Oscillation phenomenon)1, while, in the stratosphere, if our concern is to identify anthropogenic 143 

influences, the warmings after the eruptions of El Chichón and Mt Pinatubo constitute noise.  144 

 145 

If the underlying response to external forcing is small relative to the noise, then, by chance, we 146 

may see a trend in the data due to random fluctuations purely as a result of the noise. The science 147 

of statistics provides methods through which we can decide whether the trend we observe is 148 

“real” (i.e., a signal associated with some causal factor) or simply a random fluctuation (i.e., 149 

noise).   150 

 151 
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(4) Deriving trend statistics 152 

 153 

There are a number of different ways to quantify linear trends. Before doing anything, however, 154 

we should always inspect the data visually to see whether a linear trend model is appropriate. For 155 

example, in Fig. 1, the linear warming trend appears to be a reasonable description for the 156 

surface data (top panel), but it is clear that a linear cooling model for the lower stratosphere 157 

(lower panel) fails to capture some of the more complex changes that are evident in these data. 158 

Nevertheless, the cooling trend line does give a good idea of the magnitude of the overall 159 

change. 160 

 161 

There are different ways to fit a straight line to the data. Most frequently, a “best fit” straight line 162 

is defined by finding the particular line that minimizes the sum, over all data points, of the 163 

squares of deviations about the line (these deviations are generally referred to as “residuals” or 164 

“errors”). This is an example of a more general procedure called least squares regression.  165 

 166 

In linear regression analysis, a predictand (Y) is expressed as a linear combination of one or 167 

more predictors (Xi): 168 

 169 

     Yest = b0 + b1 X1 + b2 X2 + …                                      ….. (1) 170 

 171 

where the subscript ‘est’ is used to indicate that this is the estimate of Y that is given by the fitted 172 

relationship. Differences between the actual and estimated values of Y, the residuals, are defined 173 

by 174 
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 175 

     e = Y – Yest          ….. (2) 176 

 177 

For linear trend analysis of temperature data (T) there is a single predictor, time (t; t = 1,2,3, …). 178 

The time points are almost always evenly spaced, month by month, year by year, etc. – but this is 179 

not a necessary restriction.  In the linear trend case, the regression equation becomes: 180 

 181 

      Test = a + b t           ….. (3) 182 

 183 

In equ. (3), ‘b’ is the slope of the fitted line – i.e., the linear trend value. This is a sample statistic, 184 

i.e., it is an estimate of the corresponding underlying population parameter. To distinguish the 185 

population parameter from the sample value, the population trend value is denoted �.  186 

 187 

The formula for b is: 188 

 189 

     b = [�((t - <t>)Tt)]/[� (t - <t>)2)]       ….. (4) 190 

 191 

where <…> denotes the mean value, and the summation is over t = 1,2,3, … n (i.e., the sample 192 

size is n).  Tt denotes the value of temperature, T, at time ‘t’. Equation (4) produces an unbiased 193 

estimate3 of population trend, �.  194 

 195 

For the usual case of evenly spaced time points, <t> = (n+1)/2, and 196 

 197 
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     � (t - <t>)2) = n(n2 – 1)/12        ….. (5)  198 

 199 

When we are examining deviations from the fitted line the sign of the deviation is not important. 200 

This is why we consider the squares of the residuals in least squares regression. An important 201 

and desirable characteristic of the least squares method is that the average of the residuals is 202 

zero.  203 

 204 

Estimates of the linear trend are sensitive to points at the start or end of the data set. For 205 

example, if the last point, by chance, happened to be unusually high, then the fitted trend might 206 

place undue weight on this single value and lead to an estimate of the trend that was too high. 207 

This is more of a problem with small sample sizes (i.e., for trends over short time periods). For 208 

example, if we considered tropospheric data over 1979 through 1998, because of the unusual 209 

warmth in 1998 (associated with the strong 1997/98 El Niño; see Figure 1), the calculated trend 210 

may be an overestimate of the true underlying trend. 211 

 212 

There are alternative ways to estimate the linear trend that are less sensitive to endpoints. 213 

Although we recognize this problem, for the data used in this Report tests using different trend 214 

estimators give results that are virtually the same as those based on the standard least-squares 215 

trend estimator.    216 

 217 

218 
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(5) Trend uncertainties 218 

 219 

Some examples of fitted linear trend lines are shown in Figure 1. This Figure shows monthly 220 

temperature data for the surface and for the lower stratosphere (MSU channel 4) over 1979 221 

through 2004 (312 months). In both cases there is a clear trend, but the fit is better for the surface 222 

data. The trend values (i.e., the slopes of the best fit straight lines that are shown superimposed 223 

on monthly data) are +0.169oC/decade for the surface and –0.452oC/decade for the stratosphere. 224 

For the stratosphere, although there is a pronounced overall cooling trend, as noted above 225 

describing the change simply as a linear cooling considerably oversimplifies the behavior of the 226 

data1. 227 

 228 

A measure of how well the straight line fits the data (i.e., the “goodness of fit”) is the average 229 

value of the squares of the residuals. The smaller this is, the better is the fit. The simplest way to 230 

define this average would be to divide the sum of the squares of the residuals by the sample size 231 

(i.e., the number of data points, n). In fact, it is usually considered more correct to divide by n – 2 232 

rather than n, because some information is lost as a result of the fitting process and this loss of 233 

information must be accounted for. Dividing by n – 2 is required in order to produce an unbiased 234 

estimator. 235 

 236 

The population parameter we are trying to estimate here is the standard deviation of the trend 237 

estimate, or its square, the variance of the distribution of b, which we denote Var(b). The larger 238 

the value of Var(b), the more uncertain is b as an estimate of the population value, �. 239 

 240 
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The formula for Var(b) is … 241 

 242 

     Var(b) = [�2]/[� (t - <t>)2)]        ….. (6) 243 

 244 

where �2 is the population value for the variance of the residuals. Unfortunately, we do not in 245 

general know what �2 is, so we must use an unbiased sample estimate of �2. This estimate is 246 

known as the Mean Square Error (MSE), defined by … 247 

 248 

      MSE = [�(e2)]/(n – 2)         ….. (7) 249 

 250 

Hence, equ. (6) becomes 251 

 252 

     Var(b) = (SE)2 = MSE/[� (t - <t>)2)]      ….. (8)  253 

          254 

where SE, the square root of Var(b), is called is called the “standard error” of the trend estimate. 255 

The smaller the value of the standard error, the better the fit of the data to the linear change 256 

description and the smaller the uncertainty in the sample trend as an estimate of the underlying 257 

population trend value. The standard error is the primary measure of trend uncertainty. The 258 

standard error will be large if the MSE is large, and the MSE will be large if the data points show 259 

large scatter about the fitted line. 260 

 261 

There are assumptions made in going from equ. (6) to (8): viz. that the residuals have mean zero 262 

and common variance, that they are Normally (or “Gaussian”) distributed4, and that they are 263 
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uncorrelated or statistically independent. In climatological applications, the first two are 264 

generally valid. The third assumption, however, is often not justified. We return to this below. 265 

 266 
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(6) Confidence intervals and significance testing 267 

 268 

In statistics we try to decide whether a trend is an indication of some underlying cause, or merely 269 

a chance fluctuation. Even purely random data may show periods of noticeable upward or 270 

downward trends, so how do we identify these cases?  271 

 272 

There are two common approaches to this problem, through significance testing and by defining 273 

confidence intervals. The basis of both methods is the determination of the “sampling 274 

distribution” of the trend, i.e., the distribution of trend estimates that would occur if we analyzed 275 

data that were randomly scattered about a given straight line with slope �. This distribution is 276 

approximately Gaussian with a mean value equal to � and a variance (standard deviation 277 

squared) given by equ. (8). More correctly, the distribution to use is Student’s ‘t’ distribution, 278 

named after the pseudonym ‘Student’ used by the statistician William Gosset. For large samples, 279 

however (n more than about 30), the distribution is very nearly Gaussian.  280 

    281 

Confidence intervals 282 

 283 

The larger the standard error of the trend, the more uncertain is the slope of the fitted line. We 284 

express this uncertainty probabilistically by defining confidence intervals for the trend associated 285 

with different probabilities. If the distribution of trend values were strictly Gaussian, then the 286 

range b – SE to b + SE would represent the 68% confidence interval (C.I.) because the 287 

probability of a value lying in that range for a Gaussian distribution is 0.68. The range b – 288 

1.645(SE) to b + 1.645(SE) would give the 90% C.I.; the range b – 1.96(SE) to b + 1.96(SE) 289 
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would give the 95% C.I.; and so on. Quite often, for simplicity, we use b – 2(SE)to b + 2(SE) to 290 

represent (to a good approximation) the 95% confidence interval. 291 

 292 

Because of the way C.I.s are usually represented graphically, as a bar centered on the best-fit 293 

estimate, they are often referred to as “error bars”. Confidence intervals may be expressed in two 294 

ways, either (as above) as a range, or as a signed error magnitude. The approximate 95% 295 

confidence interval, therefore, may be expressed as b ± 2(SE), with appropriate numerical values 296 

inserted for b and SE. 297 

  298 

As will be explained further below, showing confidence interval for linear trends may be 299 

deceptive, because the purely statistical uncertainties that they represent are not the only sources 300 

of uncertainty. Such confidence intervals quantify only one aspect of trend uncertainty, that 301 

arising from statistical noise in the data set. There are many other sources of uncertainty within 302 

any given data set and these may be as or more important than statistical uncertainty. Showing 303 

just the statistical uncertainty may therefore provide a false sense of accuracy in the calculated 304 

trend.        305 

 306 

Significance testing 307 

 308 

An alternative method for assessing trends is hypothesis testing. In practice, it is much easier to 309 

disprove rather than prove a hypothesis. Thus, the standard statistical procedure in significance 310 

testing is to set up a hypothesis that we would like to disprove. This is called a “null hypothesis”. 311 

In the linear trend case, we are often interested in trying to decide whether an observed data trend 312 
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that is noticeably different from zero is sufficiently different that it could not have occurred by 313 

chance – or, at least, that the probability that it could have occurred by chance is very small. The 314 

appropriate null hypothesis in this case would be that there was no underlying trend (� = 0). If 315 

we disprove (i.e., “reject”) the null hypothesis, then we say that the observed trend is 316 

“statistically significant” at some level of confidence and we must accept some alternate 317 

hypothesis. The usual alternate hypothesis in temperature analyses is that the data show a real, 318 

externally-forced warming (or cooling) trend. (In cases like this, the statistical analysis is 319 

predicated on the assumption that the observed data are reliable. If a trend were found to be 320 

statistically significant, then an alternative possibility might be that the observed data were 321 

flawed.)   322 

 323 

An alternative null hypothesis that often arises is when we are comparing an observed trend with 324 

some model expectation. Here, the null hypothesis is that the observed trend is equal to the 325 

model value. If our results led us to reject this null hypothesis, then (assuming again that the 326 

observed data are reliable) we would have to infer that the model result was flawed – either 327 

because the external forcing applied to the model was incorrect and/or because of deficiencies in 328 

the model itself. 329 

 330 

An important factor in significance testing is whether we are concerned about deviations from 331 

some hypothesized value in any direction or only in one direction. This leads to two types of 332 

significance test, referred to as “one-tailed” (or “one-sided”) and “two-tailed” tests. A one-tailed 333 

test arises when we expect a trend in a specific direction (such as warming in the troposphere due 334 

to increasing greenhouse-gas concentrations). Two-tailed tests arise when we are concerned only 335 
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with whether the trend is different from zero, with no specification of whether the trend should 336 

be positive or negative. In temperature trend analyses we generally know the sign of the expected 337 

trend, so one-tailed tests are more common.  338 

     339 

The approach we use in significance testing is to determine the probability that the observed 340 

trend could have occurred by chance. As with the calculation of confidence intervals, this 341 

involves calculating the uncertainty in the fitted trend arising from the scatter of points about the 342 

trend line, determined by the standard error of the trend estimate (equ. (8)). It is the ratio of the 343 

trend to the standard error (b/SE) that determines the probability that a null hypothesis is true or 344 

false. A large ratio (greater than 2, for example) would mean that (except for very small samples) 345 

the 95% C.I. did not include the zero trend value. In this case, the null hypothesis is unlikely to 346 

be true, because the zero trend value, the value assumed under the null hypothesis, lies outside 347 

the range of trend values that are likely to have occurred purely by chance.  348 

 349 

If the probability that the null hypothesis is true is small, and less than a predetermined threshold 350 

level such as 0.05 (5%) or 0.01 (1%), then the null hypothesis is unlikely to be correct. Such a 351 

low probability would mean that the observed trend could only have occurred by chance one 352 

time in 20 (or one time in 100), a highly unusual and therefore “significant” result. In technical 353 

terms we would say that “the null hypothesis is rejected at the prescribed significance level”, and 354 

declare the result “significant at the 5% (or 1%) level”. We would then accept the alternate 355 

hypothesis that there was a real deterministic trend and, hence, some underlying causal factor. 356 

 357 
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Even with rigorous statistical testing, there is always a small probability that we might be wrong 358 

in rejecting a null hypothesis. The reverse is also true – we might accept a null hypothesis of no 359 

trend even when there is a real trend in the data. This is more likely to happen when the sample 360 

size is small. If the real trend is small and the magnitude of variability about the trend is large, it 361 

may require a very large sample in order to identify the trend above the background noise. 362 

 363 

For the null hypothesis of zero trend, the distribution of trend values has mean zero and standard 364 

deviation equal to the standard error. Knowing this, we can calculate the probability that the 365 

actual trend value could have exceeded the observed value by chance if the null hypotheses were 366 

true (or, if we were using a two-tailed test, the probability that the magnitude of the actual trend 367 

value exceeded the magnitude of the observed value). This probability is called the ‘p-value’. For 368 

example, a p-value of 0.03 would be judged significant at the 5% level (since 0.03<0.05), but not 369 

at the 1% level (since 0.03>0.01). 370 

 371 

Since both the calculation of confidence intervals and significance testing employ information 372 

about the distribution of trend values, there is a clear link between confidence intervals and 373 

significance testing.  374 

 375 

A complication; the effect of autocorrelation 376 

 377 

The significance of a trend, and its confidence intervals, depend on the standard error of the trend 378 

estimate. The formula given above for this standard error (equ. (8)) is, however, only correct if 379 

the individual data points are unrelated, or statistically independent. This is not the case for most 380 
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temperature data, where a value at a particular time usually depends on values at previous times; 381 

i.e., if it is warm today, then, on average, it is more likely to be warm tomorrow than cold. This 382 

dependence is referred to as “temporal autocorrelation” or “serial correlation”. When data are 383 

autocorrelated (i.e., when successive values are not independent of each other), many statistics 384 

behave as if the sample size was less than the number of data points, n. 385 

 386 

One way to deal with this is to determine an “effective sample size”, which is less than n, and 387 

use it instead of n in statistical formulae and calculations. The extent of this reduction from n to 388 

an effective sample size depends on how strong the autocorrelation is. Strong autocorrelation 389 

means that individual values in the sample are far from being independent, so the effective 390 

number of independent values must be much smaller than the sample size. Strong autocorrelation 391 

is common in temperature time series. This is accounted for by reducing the divisor ‘n – 2’ in the 392 

mean square error term (equ. (7)) that is crucial in determining the standard error of the trend 393 

(equ. (8)).  394 

 395 

There are a number of ways that this autocorrelation effect may be quantified. A common and 396 

relatively simple method is described in Santer et al. (2000). This method makes the assumption 397 

that the autocorrelation structure of the temperature data may be adequately described by a “first-398 

order autoregressive” process, an assumption that is a good approximation for most climate data. 399 

The lag-1 autocorrelation coefficient (r1) is calculated from the observed data5, and the effective 400 

sample size is determined by 401 

 402 

     neff = n (1 – r1)/(1 + r1)               ….. (9) 403 
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 404 

There are more sophisticated methods than this, but testing on observed data shows that this 405 

method gives results that are very similar to those obtained by more sophisticated methods.  406 

 407 

If the effective sample size is noticeably smaller than n, then, from equs. (7) and (8) it can be 408 

seen that the standard error of the trend estimate may be much larger than one would otherwise 409 

expect. Since the width of any confidence interval depends directly on this standard error (larger 410 

SE leading to wider confidence intervals), then the effect of autocorrelation is to produce wider 411 

confidence intervals and greater uncertainty in the trend estimate. A corollary of this is that 412 

results that may show a significant trend if autocorrelation is ignored are frequently found to be 413 

non-significant when autocorrelation is accounted for. 414 

 415 
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(7) Comparing trends in two data sets 416 

 417 

Assessing the magnitude and confidence interval for the linear trend in a given data set is 418 

standard procedure in climate data analysis. Frequently, however, we want to compare two data 419 

sets and decide whether differences in their trends could have occurred by chance. Some 420 

examples are:  421 

 422 

(a) comparing data sets that purport to represent the same variable (such as two versions of a 423 

satellite data set) – an example is given in Figure 2;  424 

(b) comparing the same variable at different levels in the atmosphere (such as surface and 425 

tropospheric data); or  426 

(c) comparing models and observations. 427 

 428 

 429 

 430 
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 431 

Figure 2: Three estimates of temperature changes for MSU channel 2 (T2), expressed as anomalies relative to the 432 
1979 to 1999 mean. Data are from: A, the University of Alabama at Huntsville (UAH); B, Remote Sensing Systems 433 
(RSS); and C, the University of Maryland (U.Md.) The estimates employ the same ‘raw’ satellite data, but make 434 
different choices for the adjustments required to merge the various satellite records and to correct for instrument 435 
biases. The statistical uncertainty is virtually the same for all three series. Differences between the series give some 436 
idea of the magnitude of structural uncertainties. Volcano eruption and El Niño information are as in Figure 1. 437 
 438 

 439 

In the first case (Figure 2), we know that the data sets being compared are attempts to measure 440 

precisely the same thing, so that differences can arise only as a result of differences in the 441 

methods used to create the final data sets from the same ‘raw’ original data. Here, there is a 442 

pitfall that some practitioners fall prey to by using what, at first thought, seems to be a 443 

reasonable approach. In this naïve method, one would first construct C.I.s for the individual trend 444 

estimates by applying the single sample methods described above. If the two C.I.s overlapped, 445 
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then we would conclude that there was no significant difference between the two trends. This 446 

approach, however, is seriously flawed.  447 

 448 

An analogous problem, comparing two means rather than two trends, discussed by Lanzante 449 

(2005), gives some insights. In this case, it is necessary to determine the standard error for the 450 

difference between two means. If this standard error is denoted ‘s’, and the individual standard 451 

errors are s1 and s2, then 452 

 453 

     s2 = (s1)2 + (s2)2         …..(10) 454 

 455 

The new standard error is often called the pooled standard error, and the pooling method is 456 

sometimes called “combining standard errors in quadrature”. In some cases, when the trends 457 

come from data series that are unrelated (as in the model/observed data comparison case; (c) 458 

above) a similar method may be applied to trends. If the data series are correlated with each 459 

other, however (cases (a) and (b)), this procedure is not correct. Here, the correct method is to 460 

produce a difference time series by subtracting the first data point in series 1 from the first data 461 

point in series 2, the second data points, the third data points, etc. The result of doing this with 462 

the microwave sounding unit channel 2 (MSU T2) data shown in Figure 2 is shown in Figure 3. 463 

To assess the significance of trend differences we then apply the same methods used for trend 464 

assessment in a single data series to the difference series.  465 

 466 

 467 
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 468 

Figure 3: Difference series for the MSU T2 series shown in Figure 2. Variability about the trend line is least for the 469 
UAH minus RSS series indicating closer correspondence between these two series than between U.Md. and either 470 
UAH or RSS. 471 
 472 

 473 

Analyzing differences removes the variability that is common to both data sets and isolates those 474 

differences that may be due to differences in data set production methods, temperature 475 

measurement methods (as in comparing satellite and radiosonde data), differences in spatial 476 

coverage, etc.  477 

 478 

Figures 2 and 3 provide a striking example of this. Here, the three series in Figure 2 have very 479 

similar volcanic and ENSO signatures. In the individual series, these aspects are noise that 480 

obscures the underlying linear trend and inflates the standard error and the trend uncertainty. 481 
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Since this noise is common to each series, differencing has the effect of canceling out a large 482 

fraction of the noise. This is clear from Figure 3, where the variability about the trend lines is 483 

substantially reduced. Figure 4 shows the effects on the trend confidence intervals (taking due 484 

account of autocorrelation effects). Even though the individual series look very similar in Figure 485 

2, this is largely an artifact of similarities in the noise. It is clear from Figures 3 and 4 that there 486 

are, in fact, very significant differences in the trends, reflecting differences in their methods of 487 

construction. 488 

 489 

 490 

 491 
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Figure 4: 95% confidence intervals for the three MSU T2 series shown in Figure 2 (see Table 3.3 in Chapter 3), and 492 
for the three difference series shown in Figure 3.  493 
 494 

 495 

Comparing model and observed data for a single variable, such as surface temperature, 496 

tropospheric temperature, etc., is a different problem. Here, when using data from a state-of-the-497 

art climate model (a coupled Atmosphere/Ocean General Circulation Model6, or “AOGCM”), 498 

there is no reason to expect the background variability to be common to both the model and 499 

observations. AOGCMs generate their own internal variability entirely independently of what is 500 

going on in the real world. In this case, standard errors for the individual trends can be combined 501 

in quadrature (equ. (10). (There are some model/observed data comparison cases where an 502 

examination of the difference series may still be appropriate, such as in experiments where an 503 

atmospheric GCM is forced by observed sea surface temperature variations so that ocean-related 504 

variability should be common to both the observations and the model.)  505 

 506 

For other comparisons, the appropriate test will depend on the degree of similarity between the 507 

data sets expected for perfect data. For example, a comparison between MSU T2 and MSU T2LT 508 

produced by a single group should use the difference test – although interpretation of the results 509 

may be tricky because differences may arise either from construction methods or may represent 510 

real physical differences arising from the different vertical weighting profiles, or both. 511 

 512 

There is an important implication of this comparison issue. While it may be common practice to 513 

use error bars to illustrate C.I.s for trends of individual time series, when the primary concern (as 514 

it is in many parts of this Report) is the comparison of trends, individual C.I.s can be quite 515 
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misleading. In some cases in this Report, therefore, where it might seem that error bars should be 516 

given, we consider the disadvantage of their possible misinterpretation to outweigh their 517 

potential usefulness. Instead, we have chosen to express individual trend uncertainties through 518 

the use of significance levels, which can be represented by a less obtrusive symbol. As noted in 519 

Section (9) below, there are other reasons why error bars can be misleading.     520 

 521 
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(8) Multiple AOGCM simulations 522 

 523 

Both models and the real world show weather variability and other sources of internal variability 524 

that are manifest on all time scales, from daily up to multi-decadal. With AOGCM simulations 525 

driven by historical forcing spanning the late-19th and 20th Centuries, therefore, a single run with 526 

a particular model will show not only the externally-forced signal, but also, superimposed on 527 

this, underlying internally-generated variability that is similar to the variability we see in the real 528 

world. In contrast to the real world, however, in the model world we can perturb the model’s 529 

initial conditions and re-run the same forcing experiment. This will give an entirely different 530 

realization of the model’s internal variability. In each case, the output from the model is a 531 

combination of signal (the response to the forcing) and noise (the internally-generated 532 

component). Since the noise parts of each run are unrelated, averaging over a number of 533 

realizations will tend to cancel out the noise and, hence, enhance the visibility of the signal. It is 534 

common practice, therefore, for any particular forcing experiment with an AOGCM, to run 535 

multiple realizations of the experiment  (i.e., an ensemble of realizations). An example is given 536 

in Figure 5, which shows four separate realizations and their ensemble average for a simulation 537 

using realistic 20th Century forcing (both natural and anthropogenic).  538 

 539 

 540 
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 541 

Figure 5: Four separate realizations of model realizations of global-mean MSU channel 2 (T2) temperature changes, 542 
and their ensemble average, for a simulation using realistic 20th Century forcing (both natural and anthropogenic) 543 
carried out with one of the National Centre for Atmospheric Research’s AOGCMs, the Parallel Climare Model 544 
(PCM). The cooling events around 1982/3 and 1991/2 are the result of imposed forcing from the eruptions of El 545 
Chichón (1982) and Mt. Pinatubo (1991). Note that the El Chichón cooling is more obvious than in the observed 546 
data shown in Fig. 1, because, in the model simulations, the ENSO sequences differed from the real world, and from 547 
each other.  548 
 549 

 550 

This provides us with two different ways to assess the uncertainties in model results, such as in 551 

the model-simulated temperature trend over recent decades. One method is to express 552 

uncertainties using the spread of trends across the ensemble members (see, e.g., Figures 3 and 4 553 

in the Executive Summary). Alternatively, the temperature series from the individual ensemble 554 

members may be averaged and the trend and its uncertainty calculated using these average data. 555 

 556 

Ensemble averaging, however, need not reduce the width of the trend confidence interval 557 

compared with an individual realization. This is because of compensating factors: the time series 558 

variability will be reduced by the averaging process (as is clear in Figure 5), but, because 559 
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averaging can inflate the level of autocorrelation, there may be a compensating increase in 560 

uncertainty due to a reduction in the effective sample size. This is illustrated in Figure 6. 561 

 562 

 563 

Figure 6: 95% confidence intervals for individual model realizations of MSU T2 temperature changes (as shown in 564 
Fig. 5), compared with the 95% confidence interval for the ensemble (n=4) average. 565 
 566 

Averaging across ensemble members, however, does produce a net gain. Although the width of 567 

the C.I. about the mean trend may not be reduced relative to individual trend C.I.s, averaging 568 

leaves just a single best-fit trend rather than a spread of best-fit trend values. 569 
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(9) Practical versus statistical significance 570 

 571 

The Sections above have been concerned primarily with statistical uncertainty, uncertainty 572 

arising from random noise in climatological time series – i.e., the uncertainty in how well a data 573 

set fits a particular ‘model’ (a straight line in the linear trend case). Statistical noise, however, is 574 

not the only source of uncertainty in assessing trends. Indeed, as amply illustrated in this Report, 575 

other sources of uncertainty may be more important.  576 

 577 

The other sources of uncertainty are the influences of non-climatic factors. These are referred to 578 

in this Report as “construction uncertainties”. When we construct climate data records that are 579 

going to be used for trend analyses, we attempt to minimize construction uncertainties by 580 

removing, as far as possible, non-climatic biases that might vary over time and so impart a 581 

spurious trend or trend component – a process referred to as “homogenization”.  582 

 583 

The need for homogenization arises in part because most observations are made to serve the 584 

short-term needs of weather forecasting (where the long-term stability of the observing system is 585 

rarely an important consideration). Most records therefore contain the effects of changes in 586 

instrumentation, instrument exposure, and observing practices made for a variety of reasons. 587 

Such changes generally introduce spurious non-climatic changes into data records that, if not 588 

accounted for, can mask (or possibly be mistaken for) an underlying climate signal.  589 

 590 

An added problem arises because temperatures are not always measured directly, but through 591 

some quantity related to temperature. Adjustments must therefore be made to obtain temperature 592 
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information. The satellite-based microwave sounding unit (MSU) data sets provide an important 593 

example. For MSU temperature records, the quantity actually measured is the upwelling 594 

emission of microwave radiation from oxygen atoms in the atmosphere. MSU data are also 595 

affected by numerous changes in instrumentation and instrument exposure associated with the 596 

progression of satellites used to make these measurements.  597 

 598 

Thorne et al. (2005) divide construction uncertainty into two components: “structural 599 

uncertainty” and “parametric uncertainty”. Structural uncertainty arises because there is no a 600 

priori knowledge of the correct way to homogenize a given raw data set. Independent 601 

investigators given the same raw data will make different seemingly sensible and defensible 602 

adjustment choices based on their training, technological options at their disposal, and their 603 

understanding of the raw data, amongst other factors. Differences in the choice of adjustment 604 

pathway and its structure lead to structural uncertainties. Parametric uncertainty arises because, 605 

once an adjustment approach or pathway has been chosen, additional choices may have to be 606 

made with regard to specific correction factors or parameters.  607 

 608 

Sensitivity studies using different parameter choices may allow us to quantify parametric 609 

uncertainty, but this is not always done. Quantifying structural uncertainty is very difficult 610 

because it involves consideration of a number of fundamentally different (but all plausible) 611 

approaches to data set homogenization, rather than simple parameter “tweaking”. Differences 612 

between results from different investigators give us some idea of the magnitude of structural 613 

uncertainty, but this is a relatively weak constraint. There are a large number of conceivable 614 

approaches to homogenization of any particular data set, from which we are able only to consider 615 
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a small sample – and this may lead to an under-estimation of structural uncertainty. Equally, if 616 

some current homogenization techniques are flawed then the resulting uncertainty estimate will 617 

be too large. 618 

 619 

An example is given above in Figure 2, showing three different MSU T2 records with trends of 620 

0.044oC/decade, 0.129oC/decade, and 0.199oC/decade over 1979 through 2004. These 621 

differences, ranging from 0.070oC/decade to 0.155oC/decade, represent a considerable degree of 622 

construction uncertainty. For comparison, the statistical uncertainty, which is very similar for 623 

each series and which can be quantified by the 95% confidence interval, is ±0.066 to 624 

±0.078oC/decade. 625 

 626 

An important implication of this comparison is that statistical and construction uncertainties may 627 

be of similar magnitude. For this reason, showing, through confidence intervals, information 628 

about statistical uncertainty alone, without giving any information about construction 629 

uncertainty, can be misleading.   630 
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Footnotes 631 

 632 

1 Figure 1 shows a number of interesting features. In the stratosphere, the warmings following 633 

the eruptions of El Chichón (April 1982) and Mt Pinatubo (June 1991) are pronounced. For El 634 

Chichón, the warming appears to start before the eruption, but this is just a chance natural 635 

fluctuation. The overall cooling trend is what is expected to occur due to anthropogenic 636 

influences. At the surface, on short time scales, there is a complex  combination of effects. There 637 

is no clear cooling after El Chichón, primarily because this was offset by the very strong 1982/83 638 

El Niño. Cooling after Pinatubo is more apparent, but this was also partly offset by the El Niño 639 

around 1992/93 (which was much weaker than that of 1982/83). El Niño events, characterized by 640 

warm temperatures in the tropical Pacific, have a noticeable effect on global-mean temperature, 641 

but the effect lags behind the Pacific warming by 3-7 months. This is very clear in the surface 642 

temperature changes at and immediately after the 1986/87 and 1997/98 El Niños, also very large 643 

events. The most recent El Niños were weak and have no clear signature in the surface 644 

temperatures.       645 

 646 

2 The QBO is a quasi-periodic reversal in winds in the tropical stratosphere that leads to 647 

alternating warm and cold tropical stratospheric temperatures with a periodicity of 18 to 30 648 

months. 649 

 650 

3 An unbiased estimator is one where, if the same experiment were to be performed over and 651 

over again under identical conditions, then the long-run average of the estimator will be equal to 652 

the parameter that we are trying to estimate. In contrast, in a biased estimator, there will always 653 
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be some slight difference between the long-run average and the true parameter value that does 654 

not tend to zero no matter how many times the experiment is repeated. Since our goal is to 655 

estimate population parameters, it is clear that unbiased estimators are preferred. 656 

 657 

4 The “Gaussian” distribution (often called the “Normal” distribution) is the most well-known 658 

probability distribution. This has a characteristic symmetrical “bell” shape, and has the property 659 

that values near the center (or mean value) of the distribution are much more likely than values 660 

far from the center. 661 

  662 

5 From the time series of residuals about the fitted line. 663 

 664 

6 An AOGCM interactively couples together a three-dimensional ocean General Circulation 665 

Model (GCM) and an atmospheric GCM (AGCM). The components are free to interact with one 666 

another and they are able to generate their own internal variability in much the same way that the 667 

real-world climate system generates its internal variability (internal variability is variability that 668 

is unrelated to external forcing). This differs from some other types of model (e.g, an AGCM) 669 

where there can be no component of variability arising from the ocean. An AGCM, therefore, 670 

cannot generate variability arising from ENSO, which depends on interactions between the 671 

atmosphere and ocean.  672 

   673 
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