MESSAGE sip:userl@userlpc.domain.com SIP/2.0

Via: SIP/2.0/UDP user2pc.domain.com

To: im:userl@domain.com

From: im:user2@domain.com;tag=ab8asdasd9

Contact: sip:user2@user2pc.domain.com

Call-ID: asd8B8asd77a®1.2.3.4

CSeq: 1 MESSAGE

Content -Type: multipart/signed; boundary=next ;
MDALG=SHA-1; type=application/pkcs?

Content-Length: <however many bytes that is belows

--next
Content -Type: message/cpim

From: <im:user2@domain.coms>

To: <im:userl@domain.coms

Date: 2001-02-28T01:20:00-06:00
Content-Type: text/plain

My name is User2, not Watson.

--next
Content-Type: application/pkcs?

(signature stuff)

--next--

This is sent directly to userl, who responds with a 200 OK in
message F6:

SIP/2.0 200 OK
Via: SIP/2.0/UDP user2pc.domain.com
To: im:userl@domain.com;tag=2c09s8j3sd9
From: im:user2@domain.com;tag=ab8asdasd9
Call-ID: asd88asd77a@l1.2.3.4
CSeq: 1 MESSAGE
Content -Length: 0
9. Open Issues
9.1 Must a MESSAGE actually include a message?

Section 6 specifies that a MESSAGE MAY contain a MIME body. Should
this be MUST? Does it make sense to have a MESSAGE with no body?

Rosenberg, et. al. Expires October 11, 2001 [Page 156]
Internet-Draft SIP Extensions for Instant Messaging April 2001

9.2 Should support for message/cpim be mandatory in all UAs?

Section 6 requires that UAs implementing MESSAGE support text/plain




bodies as the lowest common denominator. Should this be message/cpim
instead? Any UA wishing to Ssupport end-end signing or encryption of
messages passing across simple/apex/prim boundaries MUST support
message/cpim. If, however, end-end security is not desired, clients
and messaging can be made a little lighter by not including the
message/cpim wrapper. An unsigned message/cpim body can be created
from messages from those clients when crossing a boundary that
requires one.

9.3 message/cpim and the Accept header

Do we need text to make it clear that a UA should indicate the mime
types it supports _inside_ a message/cpim body as well as supporting
message/cpim?

9.4 Message Sessions

Several implementations of the -00 version of this draft grouped
messages in a common thread by placing them in a "call-leg" (common
To, From, and Call-ID). The first message sent or received in a
thread established the leg. This has provided enough information to
allow user interfaces to present separate threads in separate
dialcogs. There is some concern that there is no way to formally
terminate this "call-leg".

The -00 version noded that there is state at the UA associated with
this notion of session, encapsulated in the Call-ID, Route headers,
and CSeq numbers. A UA MAY terminate this session at any time,
including after each MESSAGE. No messaging is required to terminate
it. Any associated state with the session is simply discarded. The
idempotency of SIP requests will ensure that if one side (side A)
discards session state, and the other (side B) does not, a message
from side B will appear as a new IM, and standard processing will
reconstitute the session on side A.

o Should we define a way to use INVITE/BYE to surround a group of
MESSAGE requests that are part of a logical session?

9.5 What would a body in a 200 OK to a MESSAGE mean?
Section 6.5 states "A 200 class response to a MESSAGE request MAY
contain a body, but this will often not be the case, since these

responses are denerated automatically." If one were to appear, what
would it mean?

Rosenberg, et. al. Expires Qctober 11, 2001 [Page 17]

Internet-Draft SIP Extensions for Instant Messaging April 2001

9.6 The im: URL and RFC2543 proxies and registrars
What are the implications of an im: URL showing up in the request
URI in a MESSAGE request received by an RFC2543 proxy, or the To:
header of a REGISTER request received by an RFC2543 registrar?

9.7 Providing im: URL in Contact headers




What are the ramifications of a UA providing an im: URL in a
Contact: header for a REGISTER method, or a MESSAGE method? For the
forseeable future, most SIP endpoints aren't going to have SRV
records of the form _im. sip.host or even _8ip.host pointing to
them. Falling back to A records in that case seems to preclude the
use of non-UDP transports.

9.8 Congestion control

Per the amendments made to the SIMPLE charter by the IESG prior to
approval, congestion control needs attention. In particular the
requirements of BCP 41 must be met by this extension. Specifying the
use of transport protocols with congestion control built in,
particularly with the recommendation of reuse of connections, is an
option. The question is when can we use those that don't (UDP) and
what needs to be done in addition to what SIP already does in that
case. Among other things, this interacts with Sectiocn 9.7

9.9 Mapping to CPIM

10.

This document needs to detail the mapping of this extension onto
CPIM,

Acknowledgements
The authors would like to thank the following people for their

support of the concept of SIP for IM, support for this work, and for
their useful comments and insights:

Jon Peterson Level (3} Communications
Sean Olson Ericsson

Adam Roach Ericsson

Billy Biggs University of Waterloo
Stuart Barkley UUNet

Mauricio Arango SUN

Richard Shockey Shockey Consulting LLC
Jorgen Bjorker Hotsip

Henry Sinnreich MCI Worldcom

Ronald Akers Motorola

Rosenberg, et. al.

Internet-Draft

References

[1] DellaFera, C.

Expires October 11, 2001

A., Eichin, M. Ww.,

SIP Extensions for Instant Messaging

French, R. S.,

[Page 18]

April 2001

Jedlinski, D.

C., Kohl, J. T. and W. E. Sommerfeld, "The Zephyr notification

service", in USENIX Winter Conference (Dallas, Texas), Feb.
1988.
(2] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,

"SIP: Session Initiation Protocol", RFC 2543, March 1999.

[3] Day, M.,

Aggarwal, S.

and J. Vincent,

"Instant Messaging /




Presence Protocol Requirements", RFC 2779, February 2000.

4] Day, M., Rosenberg, J. and H. Suganoc, "A Model for Presence
and Instant Messaging", RFC 2778, February 2000.

(5] Rosenberg, J. and H. Schulzrinne, "SCTP as a transport for
SIP", draft-rosenberg-sip-sctp-00 (work in progress), June
2000.

(6] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
(ESP)", RFC 2406, November 1998.

[7] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.

[8] Rosenberg, J. and H. Schulzrinne, “"SIP caller preferences and
callee capabilities", draft-ietf-sip-callerprefs-03 (work in
progress), November 2000.

[9] Donovan, S., "The SIP INFO Method", RFC 2976, Octcber 2000.

{10] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
"SIP: Session Initiation Protocol", RFC 2543, March 1999.

{11] Dierks, T., Allen, C., Treese, W., Karlton, P. L., Freier, A.
0. and P. C. Kocher, "The TLS Protocol Version 1.0", RFC 2246,
January 1999.

{12] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", RFC 2782,
February 2000.

{13] Handley, M. and V. Jacobson, "SDP: Session Description
Protocol", RFC 2327, April 1998.

[14] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies”, RFC 2045, November 1996.

Rosenberg, et. al. Expires October 11, 2001 [Page 19]

Internet-Draft SIP Extensions for Instant Messaging April 2001

(1s] Crocker, D., Diacakis, A., Mazzoldi, F., Huitema, C., Klyne,
G., Rose, M., Rosenberg, J., Sparks, R. and H. Sugano, "A
Common Profile for Instant Messaging (CPIM)",
draft-ietf-impp-cpim-01 (work in progress), February 2001.

(16] Atkins, D. and G. Klyne, "Common Presence and Instant
Messaging Message Format", draft-ietf-impp-cpim-msgfmt-00
(work in progress), February 2001.

Authors' Addresses
Jonathan Rosenberg

dynamicsoft
200 Executive Drive




Suite 120 .
West Orange, NJ 07052

email: jdrosen@dynamicsoft.com

Dean Willis
dynamicsoft

5100 Tennyson Parkway
Suite 1200

Plano, TX 75024

email: dwillis@dynamicsoft.com

Robert J. Sparks
dynamicsoft

5100 Tennyson Parkway
Suite 1200

Plano, TX 75024

email: rsparks@dynamicsoft.com

Ben Cambpell
dynamicsoft

5100 Tennyson Parkway
Suite 1200

Plano, TX 75024

email: bcampbell@dynamicsoft.com

Rosenberg, et. al. Expires October 11, 2001

Internet-Draft SIP Extensions for Instant Messaging

Henning Schulzrinne
Columbia University

M/S 0401

1214 Amsterdam Ave.

New York, NY 10027-7003

email: schulzrinne@cs.columbia.edu
Jonathan Lennox

Columbia University

M/S 0401

1214 Amsterdam Ave.

New York, NY 10027-7003

email: lennox@cs.columbia.edu

Christian Huitema

[Page 20]

April 2001




Microgoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

email: huitema@microsoft .com

Bernard Aboba

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

email: bernarda@microsoft.com

David Gurle

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

email: dgurle@microsoft.com

David Oran

Cisco Systems

170 West Tasman Dr.
San Jose, CA 95134

email: oran@cisco.com

Rosenberg, et. al. Expires October 11, 2001 [Page 21]

Internet-Draft SIP Extensions for Instant Messaging April 2001

Appendix A. Requirements Evaluation
This section was moved forward verbatim from -00.

RFC 2779 [3] outlines requirements for IM and presence protocols.
The document describes both shared requirements and IM and presence
specific requirements. Examining each of the IM requirements in
turn, we also observe that they are met by this proposal:

"Requirement 2.1.1: The protocols MUST allow a PRESENCE SERVICE to
be available independent of whether an INSTANT MESSAGE SERVICE is
available, and vice-versa." This requirement is met by the
separation of presence and IM which we propose here.

"Requirement 2.1.2. The protocols must not assume that an INSTANT
INBOX is necessarily reached by the same IDENTIFIER as that of a
PRESENTITY. Specifically, the protocols must assume that some
INSTANT INBOXes may have no associated PRESENTITIES, and vice
versa." This requirement is also easily met by any architecture
which completely separates IM and presence as we propose.

"Requirement 2.1.3. The protocols MUST also allow an INSTANT INBOX
to be reached via the same IDENTIFIER as the IDENTIFIER of some
PRESENTITY." Same as above.




"Requirement 2.1.4. The administration and naming of ENTITIES
within a given DOMAIN MUST be able to operate independently of
actions in any other DOMAIN." This requirement is met by SIP. SIP
uses email-like identifiers which consist of a user name at a
domain. Administration of user names is done completely within
the domain, and these user names have no defined rules or
organization that needs to be known outside of the domain in
order for SIP to operate.

"Requirement 2.1.5. The protocol MUST allow for an arbitrary number
of DOMAINS within the NAMESPACE." This requirement is met by SIP.
SIP uses standard DNS domains, which are not restricted in
number.

"Requirement 2.2.1. It MUST be possible for ENTITIES in one DOMAIN
to interoperate with ENTITIES in another DOMAIN, without the
DOMAINS having previously been aware of each other." This
requirement is met by SIP, as it is essential for establishing
sessions as well. DNS SRV records are used to discover servers
for a particular service within a domain. They are a
generalization of MX records, used for email routing. SIP defines
procedures for usage of DNS records to find servers in another
domaing, which include SRV lookups. This allows domains to
communicate without prior setup.

Rosenberg, et. al. Expires October 11, 2001 [Page 22]

Internet-Draft SIP Extensions for Instant Messaging April 2001

"Requirement 2.2.2: The protocol MUST be capable of meeting its
other functional and performance requirements even when there are
millions of ENTITIES within a single DOMAIN." Whilst it is hard
to judge whether this can be met by examining the architecture of
a protocol, SIP has numerous mechanisms for achieving large
scales of users within a domain. It allows hierarchies of
servers, whereby the namespace can be partitioned among servers.
Servers near the top of the hierarchy, used solely for routing,
can be stateless, providing excellent scale.

"Requirement 2.2.3: The protocol MUST be capable of meeting its
other functional and performance requirements when there are
millions of DOMAINS within the single NAMESPACE." The usage of
DNS for dividing the namespace into domains provides the same
scale as todays email systems, which support millions of DOMAINS.

"Requirement 2.3.5: The PRINCIPAL controlling an INSTANT INBOX MUST
be able to control which other PRINCIPALS, if any, can send
INSTANT MESSAGES to that INSTANT INBOX." This is provided by
access control mechanisms, outside the scope of this extension.

"Requirement 2.3.6: The PRINCIPAL controlling an INSTANT INBOX MUST
be able to control which other PRINCIPALS, if any, can read
INSTANT MESSAGES from that INSTANT INBOX." This is accomplished
through authenticated registration requests. Registrations are
used to determine which user gets delivered an instant message.
Policy in proxies can allow only certain users to register




contact address for a particular inbox {(an inbox is defined by
the address-of- record in the To field in the registration).

"Requirement 2.4.3: The protocol MUST allow the sending of an
INSTANT MESSAGE both directly and via intermediaries, such as
PROXIES." This is fundamental to the operation of SIP.

"Requirement 2.4.4: The protocol proxying facilities and transport
practices MUST allow ADMINISTRATORS ways to enable and disable
protocol activity through existing and commonly-deployed
FIREWALLS. The protocol MUST specify how it can be effectively
filtered by such FIREWALLS." Although SIP itself runs on port
5060 by default, any other port can be used. It is simple to
specify that IM should run on a different port, if so desired.

"Requirement 2.5.1. The protocol MUST provide means to ensure
confidence that a received message (NOTIFICATION or INSTANT
MESSAGE) has not been corrupted or tampered with." This is
supported by SIPs PGP and S/MIME authentication mechanism.

"Requirement 2.5.2. The protocol MUST provide means to ensure
confidence that a received message (NOTIFICATION or INSTANT

Rosenberg, et. al. Expires October 11, 2001 [Page 23}

Internet-Draft SIP Extensions for Instant Messaging April 2001

MESSAGE) has not been recorded and played back by an adversary."
This is provided by SIP's challenge response authentication
mechanisms, through timestamp-based replay prevention, or through
stateful storage of previous transaction identifiers (the
combination of To, From, Call-ID, CSeq).

"Requirement 2.5.3. The protocol MUST provide means to ensure that
a sent message (NOTIFICATION or INSTANT MESSAGE) is only readable
by ENTITIES that the sender allows." This is supported through
SIPs end to end and hop by hop encryption mechanisms.

"Requirement 2.5.4. The protocol MUST allow any client to use the
means to ensure non-corruption, non-playback, and privacy, but
the protocol MUST NOT require that all clients use these means at
all times." All algorithms for security in SIP are optional.

"Requirement 4.1.1. All ENTITIES sending and receiving INSTANT
MESSAGES MUST implement at least a common base format for INSTANT
MESSAGES." We specify text/plain here.

"Requirement 4.1.2. The common base format for an INSTANT MESSAGE
MUST identify the sender and intended recipient." This is
accomplished with the To and From fields in SIP.

"Requirement 4.1.3. The common message format MUST include a return
address for the receiver to reply to the sender with another
INSTANT MESSAGE." This is done through the Contact headers
defined in SIP.

"Requirement 4.1.4. The common message format SHOULD include
standard forms of addresses or contact means for media other than




INSTANT MESSAGES, such as telephone numbers or email addresges."
SIP supports any URL format in the Contact headers. Furthermore,
the body of a MESSAGE request can be multipart, and contain
things like vCards.

"Requirement 4.1.5. The common message format MUST permit the

encoding and identification of the message payload to allow for
non-ASCII or encrypted content." MIME content labeling is used in
SIP.

"Requirement 4.1.6. The protocol must reflect best current
practices related to internationalization." SIP uses UTF-8 and is
completely internationalized.

"Requirement 4.1.7. The protocol must reflect best current

practices related to accessibility."” Additional requirements are
needed on what is required for accessibility.

Rosenberg, et. al. Expires October 11, 2001 [Page 24]

Internet-Draft SIP Extensions for Instant Messaging April 2001

"Reguirement 4.1.9. The working group MUST determine whether the

common message format includes fields for numbering or
identifying messages. If there are such fields, the working group
MUST define the scope within which such identifiers are unique
and the acceptable means of generating such identifiers.® This is
done with the combination of Call-ID and CSeq. The mechanisms for
guaranteeing uniqueness are specified in SIP.

"Requirement 4.1.10. The common message format SHOULD be based on
IETF-standard MIME (RFC 2045) [14]." SIP uses MIME.

"Requirement 4.2.1. The protocol MUST include mechanisms so that a
sender can be informed of the SUCCESSFUL DELIVERY of an INSTANT
MESSAGE or reasons for failure. The working group must determine
what mechanisms apply when final delivery status is unknown, such
as when a message is relayed to non-IMPP systems." SIP specifies
notification of successful delivery through 200 OK. When delivery
of requests through gateways, success can be indicated only
through the SIP component (if the gateway acts as a UAS/UAC) or
through the entire system (if it acts like a proxy).

"Requirement 4.3.1. The transport of INSTANT MESSAGES MUST be

sufficiently rapid to allow for comfortable conversational
exchanges of short messages." The support for end to end
messaging (i.e., without intervening proxies) allows IMs to be
delivered as rapidly as possible. The UDP reliability mechanisms
also support fast recovery from loss.




Rosenberg, et. al. Expires October 11, 2001 [Page 25]

Internet-Draft SIP Extensions for Instant Messaging April 2001

Full Copyright Statement

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC editor function is currently provided by the
Internet Society.




Rosenberg, et. al.

Expires October 11,

2001

[Page 26]




Internet Engineering Task Force SIMPLE WG
Internet Draft Rosenberg et al.
draft-ietf-simple-presence-00.txt Various Places
March 30, 2001

Expires: September 2001

SIP Extensions for Presence
STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference
material or to cite them other than as work in progress.

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This document proposes an extension to SIP for subscriptions and
notifications of user presence. User presence is defined as the
willingness and ability of a user to communicate with other users on
the network. Historically, presence has been limited to "on-line" and
"off-line" indicators; the notion of presence here is broader.
Subscriptions and notifications of user presence are supported by
defining an event package within the general SIP event notification
framework. This protocol is also compliant with the Common Presence
and Instant Messaging (CPIM) framework.

1 Introduction

Presence is (indirectly) defined in RFC2778 [1] as subscription to
and notification of changes in the communications state of a user.

Rosenberg et al. [Page 1]

Internet Draft presence March 30, 2001




This communications state consists of the set of communications
means, communications address, and status of that user. A pPresence
protocol is a protocol for providing such a service over the Internet
or any IP network.

This document proposes an extension to the Session Initiation
Protocol (SIP) [2] for presence. This extension is a concrete
instantiation of the general event notification framework defined for
SIP [3], and as such, makes use of the SUBSCRIBE and NOTIFY methods
defined there. User presence is particularly well suited for SIP. SIP
registrars and location services already hold user presence
information; it is uploaded to these devices through REGISTER
messages, and used to route calls to those users. Furthermore, SIP
networks already route INVITE messages from any user on the network
to the proxy that helds the registration state for a user. As this
state i3 user presence, those SIP networks can also allow SUBSCRIBE
requests to be routed to the same proxy. This means that SIP networks
can be reused to establish global connectivity for presence
subscriptions and notifications.

This extension is based on the concept of a presence agent, which is
a new logical entity that is capable of accepting subscriptions,
storing subscription state, and generating notifications when there
are changes in user presence. The entity is defined as a logical one,
since it is generally co-resident with another entity, and can even
move around during the lifetime of a subscription.

This extension is also compliant with the Common Presence and Instant
Messaging (CPIM) framework that has been defined in (4]. This allows
SIP for presence to easily interwork with other presence systems
compliant to CPIM.

2 Definitions

This document uses the terms as defined in [1]. Additionally, the
following terms are defined and/or additionally clarified:

Presence User Agent (PUA): A Presence User Agent manipulates
presence information for a presentity. In SIP terms, this
means that a PUA generates REGISTER requests, conveying
some kind of information about the presentity. We
explicitly allow multiple PUAs per presentity. This means
that a user can have many devices (such as a cell phone and
PDA}, each of which is independently generating a component
of the overall presence information for a presentity. PUAs
push data into the presence system, but are outside of it,
in that they do not receive SUBSCRIBE megsages, or send

NOTIFY.
Rosenberg et al. [Page 2]
Internet Draft presence March 30, 2001

Presence Agent (PA): A presence agent is a SIP user agent which
is capable of receiving SUBSCRIBE requests, responding to
them, and generating notifications of changes in presence
state. A presence agent must have complete knowledge of the




presence state of a presentity. Typically, this is
accomplished by co-locating the PA with the
proxy/registrar, or the presence user agent of the
presentity. A PA is always addressable with a SIP URL.

Presence Server: A presence server is a logical entity that can
act as either a presence agent or as a proxy server for
SUBSCRIBE requests. When acting as a PA, it is aware of the
presence information of the presentity through some
protocol means. This protocol means can be SIP REGISTER
requests, but other mechanisms are allowed. When acting as
a proxy, the SUBSCRIBE requests are proxied to another
entity that may act as a PA.

Presence Client: A presence client is a presence agent that is
colocated with a PUA. It is aware of the presence
information of the presentity because it is co-located with
the entity that manipulates this presence information.

3 Overview of Operation

In this section, we present an overview of the operation of this
extension.

When an entity, the subscriber, wishes to learn about presence
information from some user, it creates a SUBSCRIBE request. This
request identifies the desired presentity in the request URI, using
either a presence URL or a SIP URL. The subscription is carried along
SIP proxies as any other INVITE would be. It eventually arrives at a
presence server, which can either terminate the subscription (in
which case it acts as the presence agent for the presentity), or
proxy it on to a presence client. If the presence client handles the
subscription, it is effectively acting as the presence agent for the
presentity. The decision about whether to proxy or terminate the
SUBSCRIBE is a local matter; however, we describe one way to effect
such a configuration, using REGISTER.

The presence agent (whether in the presence server or presence
client) first authenticates the subscription, then authorizes it. The
means for authorization are outside the scope of this protocol, and
we expect that many mechanisms will be used. Once authorized, the
presence agent sends a 202 Accepted response. It also sends an
immediate NOTIFY message containing the state of the presentity. As
the state of the presentity changes, the PA generates NOTIFYs for all

Rosenberg et al. [Page 3]
Internet Draft presence March 30, 2001
subscribers.

The SUBSCRIBE message effectively establishes a session with the
presence agent. As a result, the SUBSCRIBE can be record-routed, and
rules for tag handling and Contact processing mirror those for
INVITE. Similarly, the NOTIFY message is handled in much the same way
a re-INVITE within a call leg is handled.




4 Naming

A presentity is identified in the most general way through a presence
URI [4], which is of the form pres:user@domain. These URIS are
protocol independent. Through a variety of means, these URIs can be
resolved to determine a specific protocol that can be used to access
the presentity. Once such a resolution has taken place, the
presentity can be addressed with a sip URL of nearly identical form:
sip:user@domain. The protocol independent form (the pres: URL) can be
thought of as an abstract name, akin to a URN, which is used to
identify elements in a presence system. These are resolved to
concrete URLs that can be used to directly locate those entities on
the network.

When subscribing to a presentity, the subscription can be addressed
using the protocol independent form or the sip URL form. In the SIP
context, "addressed" refers to the request URI. It is RECOMMENDED
that if the entity sending a SUBSCRIBE is capable of resolving the
protocol independent form to the SIP form, this resolution is done
before sending the request. However, if the entity is incapable of
doing this translation, the protocol independent form is used in the
request URI. Performing the translation as early as possible means
that these requests can be routed by SIP proxies that are not aware
of the presence namespace.

The result of this naming scheme is that a SUBSCRIBE request is
addressed to a user the exact same way an INVITE request would be
addressed. This means that the SIP network will route these messages
along the same path an INVITE would travel. One of these entities
along the path may act as a PA for the subscription. Typically, this
will either be the presence server (which is the proxy/registrar
where that user is registered), or the presence client (which is one
of the user agents associated with that presentity).

SUBSCRIBE messages also contain logical identifiers that define the
originator and recipient of the subscription (the To and From header
fields). Since these identifiers are logical ones, it is RECOMMENDED
that these use the protocol independent format whenever possible.
This also makes it easier to interwork with other systems which
recognize these forms.

Rosenberg et al. [Page 4]

Internet Draft presence March 30, 2001

The Contact, Record-Route and Route fields do not identify logical
entities, but rather concrete ones used for SIP messaging. As such,
they MUST use the SIP URL forms in both SUBSCRIBE and NOTIFY.

5 Presence Event Package

The SIP event framework [3] defines an abstract SIP extension for
subscribing to, and receiving notifications of, events. It leaves the
definition of many additional aspects of these events to concrete
extensions, also known as event packages. This extension qualifies as
an event package. This section fills in the information required by
{31.




5.1 Package Name

The name of this package is "presence". This name MUST appear within
the Event header in SUBSCRIBE request and NOTIFY request. This
section also serves as the IANA registration for the event package
"presence".

TODO: Define IANA template in sub-notify and fill it in here.

Example:
Event: presence

5.2 SUBSCRIBE bodies

The body of a SUBSCRIBE request MAY contain a body. The purpose of
the body depends on its type. In general, subscriptions will normally
not contain bodies. The request URI, which identifies the presentity,
combined with the event package name, are sufficient for user
presence.

We anticipate that document formats could be defined to act as
filters for subscriptions. These filters would indicate certain user
presence eventsg that would generate notifies, or restrict the set of
data returned in NOTIFY requests. For example, a presence filter
might specify that the notifications should only be generated when
the status of the users instant message inbox changes. It might also
say that the content of these notifications should only contain the
IM related information.

5.3 Expiration

Rosenberg et al. [Page 5]

Internet Draft presence March 30, 2001

User presence changes as a result of events that include:
© Turning con and off of a cell phone
o0 Modifying the registration from a softphone
© Changing the status on an instant messaging tool

These events are usually triggered by human intervention, and occur
with a frequency on the order of minutes or hours. As such, it is
subscriptions should have an expiration in the middle of this range,
which is roughly one hour. Therefore, the default expiration time for
subscriptions within this package is 3600 seconds. As per [3], the
subscriber MAY include an alternate expiration time. Whatever the
indicated expiration time, the server MAY reduce it but MUST NOT
increase it.




5.4 NOTIFY Bodies

The body of the notification contains a presence document. This
document describes the user presence of the presentity that was
subscribed to. All subscribers MUST support the presence data format
described in (fill in with IMPP document TBD], and MUST list its MIME
type, [fill in with MIME typel in an Accept header present in the
SUBSCRIBE request.

Other presence data formats might be defined in the future. In that
case, the subscriptions MAY indicate support for other presence
formats. However, they MUST always support and list [fill in with
MIME type of IMPP presence document] as an allowed format.

Of course, the notifications generated by the presence agent MUST be
in one of the formats specified in the Accept header in the SUBSCRIBE
reguest.

5.5 Processing Requirements at the PA

User presence is highly sensitive information. Because the
implications of divulging presence information can be severe, strong
requirements are imposed on the PA regarding subscription processing,
especially related to authentication and authorization.

A presence agent MUST authenticate all subscription requests. This
authentication can be done using any of the mechanisms defined for
SIP. It is not considered sufficient for the authentication to be
transitive; that is, the authentication SHOULD use an end-to-end
mechanism. The SIP basic authentication mechanism MUST NOT be used.

Rosenberg et al. (Page 6]

Internet Draft presence March 30, 2001

It is RECOMMENDED that any subscriptions that are not authenticated
do not cause state to be established in the PA. This can be
accomplished by generating a 401 in response to the SUBSCRIBE, and
then discarding all state for that transaction. Retransmissions of
the SUBSCRIBE generate the same response, guaranteeing reliability
even over UDP.

Furthermore, a PA MUST NOT accept a subscription unless authorization
has been provided by the presentity. The means by which authorization
are provided are outside the scope of this document. Authorization
may have been provided ahead of time through access lists, perhaps
specified in a web page. Authorization may have been provided by
means of uploading of some kind of standardized access control list
document. Back end authorization servers, such as a DIAMETER (5],
RADIUS [6], or COPS [7], can also be used. It is also useful to be
able to query the user for authorization following the receipt of a
subscription request for which no authorization information was
present. Appendix A provides a possible solution for such a scenario.

The result of the authorization decision by the server will be




reject, accept, -or pending. Pending occurs when the server cannot
obtain authorization at this time, and may be able to do so at a
later time, when the presentity becomes available.

Unfortunately, if the server informs the subscriber that the
subscription is pending, this will divulge information about the
presentity - namely, that they have not granted authorization and are
not available to give it at this time. Therefore, a PA SHOULD
generate the same response for both pending and accepted
subscriptions. This response SHOULD be a 202 Accepted response.

If the server informs the subscriber that the subscription is
rejected, this also divulges information about the presentity -
namely, that they have explicitly blocked the subscription
previously, or are available at this time and chose to decline the
subscription. If the policy of the server is not to divulge this
information, the PA MAY respond with a 202 Accepted response even
though the subscription is rejected. Alternatively, if the policy of
the presentity or the PA is that it is acceptable to inform the
subscriber of the rejection, a 603 Decline SHOULD be used.

Note that since the response to a subscription does not contain any
useful information about the presentity, privacy and integrity of
SUBSCRIBE responses is not deemed important.

5.6 Generation of Notifications

Upon acceptance of a subscription, the PA SHOULD generate an

Rosenberg et al. [Page 7]

Internet Draft presence March 30, 2001

immediate NOTIFY with the current presence state of the presentity.

If a subscription is received, and is marked as pending or was
rejected, the PA SHOULD generate an immediate NOTIFY. This NOTIFY
should contain a valid state for the presentity, yet be one which
provides no useful information about the presentity. An example of
this is to provide an IM URL that is the same form as the presence
URL, and mark that IM address as "not available". The reason for this
process of "lying" is that without it, a subscriber could tell the
difference between a pending subscription and an accepted
subscription based on the existence and content of an immediate
NOTIFY. The approach defined here ensures that the presence delivered
in a NOTIFY generated by a pending or rejected subscription is also a
valid one that could have been delivered in a NOTIFY generated by an
accepted subscription.

If the policy of the presence server or the presentity is that it is
acceptable to divulge information about whether the subscription
succeeded or not, the immediate NOTIFY need not be sent for pending
or rejected subscriptions.

Of course, once a subscription is accepted, the PA SHOULD generate a
NOTIFY for the subscription when it determines that the presence
state of the presentity has changed. Section 6 describes how the PA




makes this determination.

For reasons of privacy, it will frequently be necessary to encrypt
the contents of the notifications. This can be accomplished using the
standard SIP encryption mechanisms. The encryption should be
performed using the key of the subscriber as identified in the From
field of the SUBSCRIBE. Similarly, integrity of the notifications is
important to subscribers. As such, the contents of the notifications
SHOULD be authenticated using one of the standardized SIP mechanisms.
Since the NOTIFY are generated by the presence server, which may not
have access to the key of the user represented by the presentity, it
will frequently be the case that the NOTIFY are signed by a third
party. It is RECOMMENDED that the signature be by an authority over
domain of the presentity. In other words, for a user
pres:user@example.com, the signator of the NOTIFY SHOULD be the
authority for example.com.

5.7 Rate Limitations on NOTIFY

For reasons of congestion control, it is important that the rate of
notifications not become excessive. As a result, it is RECOMMENDED
that the PA not generate notifications for a single presentity at a
rate faster than once every S seconds.

Rosenberg et al. [Page 8]

Internet Draft presence March 30, 2001

5.8 Refresh Behavior

Since SUBSCRIBE is routed by proxies as any other method, it is
possible that a subscription might fork. The result is that it might
arrive at multiple devices which are configured to act as a PA for
the same presentity. Each of these will respond with a 202 response
to the SUBSCRIBE. Based on the forking rules in SIP, only one of
these responses is passed to the subscriber. However, the subscriber
will receive notifications from each of those PA which accepted the
subscriptions. The SIP event framework allows each package to define
the handling for this case.

The processing in this case is identical to the way INVITE would be
handled. The 202 Accepted to the SUBSCRIBE will result in the
installation of subscription state in the subscriber. The
subscription is associated with the To and From (both with tags) and
Call-ID from the 202. When notifications arrive, those from the PA's
whose 202's were discarded in the forking proxy will not match the
subscription ID stored at the subscriber (the From tags will differ).
These SHOULD be responded to with a 481. This will disable the
subscriptions from those PA. Furthermore, when refreshing the
subscription, the refresh SHOULD make use of the tags from the 202
and make use of any Contact or Record-Route headers in order to
deliver the SUBSCRIBE back to the same PA that sent the 202.

The result of thisg is that a presentity can have multiple PAs active,
but these should be homogeneous, so that each can generate the same
set of notifications for the presentity. Supporting heterogeneous




PAs, each of which generated notifications for a subset of the
presence data, is complex and difficult to manage. If such a feature
is needed, it can be accomplished with a B2BUA rather than through a
forking proxy.

6 Publication

The user presence for a presentity can be obtained from any number of
different ways. Baseline SIP defines a method that is used by all sSIP
clients - the REGISTER method. This method allows a UA to inform a
SIP network of its current communications addresses (ie., Contact
addregses) . Furthermore, multiple UA can independently register
Contact addresses for the same SIP URL. These Contact addresses can
be SIP URLs, or they can be any other valid URL.

Using the register information for presence is straightforward. The
address of record in the REGISTER (the To field) identifies the
presentity. The Contact headers define communications addresses that
describe the state of the presentity. The use of the SIP caller
preferences extension [8] is RECOMMENDED for use with UAs that are

Rosenberg et al. {Page 9]

Internet Draft presence March 30, 2001

interested in presence. It provides additional information about the
Contact addresses that can be used to construct a richer presence
document. The "description" attribute of the Contact header is
explicitly defined here to be used as a free-form field that allows a
user to define the status of the presentity at that communications

address.

We also allow REGISTER reguests to contain presence documents, so
that the PUAs can publish more complex information.

Note that we do not provide for locking mechanisms, which would allow
a client to lock presence state, fetch it, and update it atomically.
We believe that this is not neeeded for the majority of use cases,
and introduces substantial complexity. Most presence operations do
not require get-before-set, since the SIP register mechanism works in
such a way that data can be updated without a get.

The application of registered contacts to presence increases the
requirements for authenticity. Therefore, REGISTER requests used by
presence user agents SHOULD be authenticated using either SIP
authentication mechanisms, or a hop by hop mechanism.

To indicate presence for instant messaging, the UA MAY either
register contact addresses that are SIP URLs with the "methodg"
parameter set to indicate the method MESSAGE, or it MAY register an
IM URL.

TODO: This section needs work. Need to define a concrete example of
mapping a register to a presence document, once IMPP generates the
document format.

6.1 Migrating the PA Function




It is important to realize that the PA function can be colocated with
several elements:

o It can be co-located with the proxy server handling
registrations for the presentity. In this way, the PA knows
the presence of the user through registrations.

o It can be co-located with a PUA for that presentity. In the
case of a single PUA per presentity, the PUA knows the state
of the presentity by sheer nature of its co-location.

© It can be co-located in any proxy along the call setup path.
That proxy can learn the presence state of the presentity by
generating its own SUBSCRIBE in order to determine it. In this
case, the PA is effectively a B2BUA.

Rosenberg et al. [Page 10]

Internet Draft presence March 30, 2001

Because of the soft-state nature of the subscriptions, it becomes
possible for the PA function to migrate during the lifetime of a
subscription. The most workable scenario is for the PA function to
migrate from the presence server to the PUA, and back.

Consider a subscription that is installed in a presence server.
Assume for the moment that the presence server can determine that a
downstream UA is capable of acting as a PA for the presentity. When a
subscription refresh arrives, the PA destroys its subscription, and
then acts as a proxy for the subscription. The subscription is then
routed to the UA, where it can be accepted. The result is that the
subscription becomes installed in the PUA.

For this migration to work, the PUA MUST be prepared to accept
SUBSCRIBE requests which already contain tags in the To field.
Furthermore, the PUA MUST insert a Contact header into the 202, and
this header MUST be used by the subscriber to update the contact
address for the subscription.

TODO: Does this work? What about getting a Record-Route in place at
the PUA. This might only be possible for refreshes that don't use
Route or tags.

The presence server determines that a PUA is capable of supporting a
PA function through the REGISTER message. Specifically, if a PUA
wishes to indicate support for the PA function, it SHOULD include a
contact address in its registration with a caller preferences
"methods" parameter listing SUBSCRIBE.

7 Mapping to CPIM

This section defines how a SIP for presence messages are converted to
CPIM, and how a CPIM messages are converted to SIP for presence. SIP
to CPIM conversion occurs when a SIP system sends a SUBSCRIBE request
that contains a pres URL or SIP URL that corresponds to a user in a
domain that runs a different presence protocol. CPIM to SIP involves




the case where a user in a different protocol domain generates a
subscription that is destined for a user in a SIP domain.

Note that the process defined below requires that the gateway store
subscription state. This unfortunate result is due to the need to
remember the Call-ID, CSeq, and Route headers for subscriptions from
the SIP side, so that they can be inserted into the SIP NOTIFY
generated when a CPIM notification arrives.

7.1 SIP to CPIM

SIP for presnce is converted to CPIM through a SIP to CPIM abstract

Rosenberg et al. [Page 11]

Internet Draft presence March 30, 2001

gateway service, depicted in Figure 1.

SIP to CPIM|
Conversion |

Figure 1: SIP to CPIM Conversion

The first step is that a SUBSCRIBE request is received at a gateway.
The gateway generates a CPIM subscription request, with its
parameters filled in as follows:

© The watcher identity in the CPIM message is copied from the
From field of the SUBSCRIBE. If the From field contains a SIPp




URL, it is converted to an equivalent pres URL by dropping all
SIP URL parameters, and changing the scheme to pres.

This conversion may not work - what if the SIP URL has
no user name. Plus, converting from a URL back to a
URN in this fashion may not do it correctly.

Rosenberg et al. [Page 12]

Internet Draft presence March 30, 2001

o The target identity in the CPIM message is copied from the
Request-URI field of the SUBSCRIBE. This may need to be
converted to a pres URL as well.

o The duration parameter in the CPIM message is copied from the
Expires header in the SUBSCRIBE. If the Expires header
specifies an absolute time, it is converted to a delta-time by
the gateway. If no Expires header is present, one hour is
assumed.

© The transID parameter in the CPIM message is constructed by
appending the Call-ID, the URI in the To field, the URI in the
From field, the CSeq and the tag in the From field, and the
request URI, and computing a hash of the resulting string.
This hash is used as the transID. Note that the request URI is
included in the hash. This is to differentiate forked requests
within the SIP network that may arrive at the same gateway.

The CPIM service then responds with either a success or failure. In
the case of success, the SIP to CPIM gateway service generates a 202
response to the SUBSCRIBE. It adds a tag to the To field in the
response, which is the same as the transID field in the success
response. The 202 response also containg a Contact header, which is
the value of the target from the SUBSCRIBE request. It is important
that the Contact header be set to the target, since that makes sure
that subscription refreshes have the same value in the request URI as
the original subscription. The duration value from the CPIM success
response is placed into the Expires header of the 202. The gateway
stores the Call-ID and Route header set for this subscription.

If the CPIM service responds with a failure, the SIP to CPIM gateway
generates a 603 response. It adds a tag to the To field in the
response, which is the same as the transID field in the failure
response.

When the CPIM system generates a notification request, the SIP to
CPIM gateway creates a SIP NOTIFY request. The request is constructed
using the standard RFC2543 [2] procedures for constructing a request
within a call leg. This will result in the To field containing the
watcher field from CPIM, and the From field containing the target
field from the CPIM notification. The tag in the From field will




contain the transID. The presence information is copied into the body
of the notification. The Call-ID and Route headers are constructed
from the subscription state stored in the gateway. If no notification
has yet been generated for this subscription, an initial CSeq value

Rosenberg et al. (Page 13]

Internet Draft presence March 30, 2001

is selected and stored.

SUBSCRIBE refreshes are handled identically to initial subscriptions
as above.

If a subscription is received with an Expires of zero, the SIP to
CPIM gateway generates an unsubscribe message into the the CPIM
system. The watcher parameter is copied from the From field of the
SUBSCRIBE. The target parameter is copied from the Request URI field
of the SUBSCRIBE. The transID is copied from the tag in the To field
of the SUBSCRIBE request.

The response to an unsubscribe is either success or failure. In the
case of success, a 202 response is constructed in the same fashion as
above for a success response to a CPIM subscriber. All subscription
state is removed. In the case of failure, a 603 response is
constructed in the same fashion as above, and then subscription state
is removed, if present.

7.2 CPIM to SIP

CPIM to SIP conversion occurs when a CPIM subscription request
arrives on the CPIM side of the gateway. This scenario is shown in

Figure 2.

The CPIM subscription request is converted into a SIP SUBSCRIBE
request. To do that, the first step is to determine if the subscribe
is for an existing subscription. That is done by taking the target in
the CPIM subscription request, and matching it against targets for
existing subscriptions. If there are none, it is a new subscription,
otherwise, its a refresh.

If its a new subscription, the gateway generates a SIP SUBSCRIBE
request in the following manner:

o The From field in the request is set to the watcher field in
the CPIM subscription request

© The To field in the request is set to the target field in the
CPIM subscription request

© The Expires header in the SUBSCRIBE request is set to the
duration field in the CPIM subscription request

© The tag in the From field is set to the transID in the CPIM
subscription request.




Rosenberg et al. [Page 14]

Internet Draft presence March 30, 2001

CPIM to SIP
Conversion

SIP SUBSCRIBE

A
1
'
i
i
|
)
'
1
|
|
]
¢
[
1

v

Figure 2: CPIM to SIP Conversion

This SUBSCRIBE message is then sent.

If the subscription is a refresh, a SUBSCRIBE request is generated in
the same way. However, there will also be a tag in the To field,
copied from the subscription state in the gateway, and a Route
header, obtained from the subscription state in the gateway.

When a response to the SUBSCRIBE is received, a response is sent to
the CPIM system. The duration parameter in this response is copied
from the Expires header in the SUBSCRIBE response (a conversion from
an absolute time to delta time may be needed). The transID in the
response is copied from the tag in the From field of the response. If
the response was 202, the status is set to indeterminate. If the
response was any other 200 class response, the status is set to
sucess. For any other final response, the status is set to failure.

If the response was a 200 class response, subscription state is

Rosenberg et al. [Page 15]




