Highlights From TIMSS 2007:

Mathematics and Science Achievement of U.S. Fourthand Eighth-Grade Students in an International Context

December 2008

Patrick Gonzales

Project Officer
National Center for Education Statistics

Trevor Williams
Leslie Jocelyn
Stephen Roey
David Kastberg
Summer Brenwald
Westat

U.S. Department of Education

Margaret Spellings
Secretary

Institute of Education Sciences

Sue Betka
Acting Director

National Center for Education Statistics

Stuart Kerachsky
Acting Commissioner
The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other countries. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries.

NCES activities are designed to address high-priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high-quality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. Unless specifically noted, all information contained herein is in the public domain.

We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively. If you have any comments or suggestions about this or any other NCES product or report, we would like to hear from you. Please direct your comments to National Center for Special Education Research

National Center for Education Statistics
Institute of Education Sciences
U.S. Department of Education
1990 K Street NW
Washington, DC 20006-5651

December 2008

The NCES World Wide Web Home Page address is http://nces.ed.gov.
The NCES World Wide Web Electronic Catalog is http://nces.ed.gov/pubsearch.

Suggested Citation

Gonzales, P., Williams, T., Jocelyn, L., Roey, S., Kastberg, D., and Brenwald, S. (2008). Highlights From TIMSS 2007:
Mathematics and Science Achievement of U.S. Fourth- and Eighth-Grade Students in an International Context (NCES 2009-001).
National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

For ordering information on this report, write to

U.S. Department of Education

ED Pubs
P.O. Box 1398

Jessup, MD 20794-1398
or call toll free 1-877-4ED-Pubs or order online at http://www.edpubs.org.

Content Contact

Patrick Gonzales
(415) 920-9229
patrick.gonzales@ed.gov

Executive Summary

The 2007 Trends in International Mathematics and Science Study (TIMSS) is the fourth administration since 1995 of this international comparison. Developed and implemented at the international level by the International Association for the Evaluation of Educational Achievement (IEA)—an international organization of national research institutions and governmental research agencies-TIMSS is used to measure over time the mathematics and science knowledge and skills of fourth- and eighth-graders. TIMSS is designed to align broadly with mathematics and science curricula in the participating countries.

This report focuses on the performance of U.S. students relative to that of their peers in other countries in 2007, and on changes in mathematics and science achievement since 1995. ${ }^{1}$ Thirty-six countries or educational jurisdictions participated at grade four in 2007, while 48 participated at grade eight. ${ }^{2}$ This report also describes additional details about the achievement of U.S. student subpopulations. All differences described in this report are statistically significant at the . 05 level. No statistical adjustments to account for multiple comparisons were used.

Key findings from the report include the following:

- In 2007, the average mathematics scores of both U.S. fourth-graders (529) and eighth-graders (508) were higher than the TIMSS scale average (500 at both grades). ${ }^{3}$ The average U.S. fourth-grade mathematics score was higher than those of students in 23 of the 35 other countries, lower than those in 8 countries (all located in Asia or Europe), and not measurably different from those in the remaining 4 countries. ${ }^{4}$ At eighth grade, the average U.S. mathematics score was higher than those of students in 37 of the 47 other countries, lower than those in 5 countries (all of them located in Asia), and not measurably different from those in the other 5 countries.
- Compared to 1995, the average mathematics scores for both U.S. fourth- and eighth-grade students were higher in 2007. At fourth grade, the U.S. average score in 2007 was 529,11 points higher than the 1995 average of 518 . At eighth grade, the U.S. average mathematics score in 2007 was 508,16 points higher than the 1995 average of 492.
- In 2007, 10 percent of U.S. fourth-graders and 6 percent of U.S. eighth-graders scored at or above the advanced international benchmark in mathematics. ${ }^{5}$ At grade four, seven countries had higher percentages of students performing at or above the advanced international mathematics benchmark than the United States: Singapore, Hong Kong SAR, Chinese Taipei, Japan, Kazakhstan, England, and the Russian Federation. Fourth-graders in these seven countries were also found to outperform U.S. fourth-graders, on average, on the overall mathematics scale. At grade eight, a slightly different set of seven countries had higher percentages of students performing at or above the advanced mathematics benchmark than the United States: Chinese Taipei, Korea, Singapore, Hong Kong SAR, Japan, Hungary, and the Russian Federation. These seven countries include the five countries that had higher average overall mathematics scores than the United States, as well as Hungary and the Russian Federation.
- In 2007, the average science scores of both U.S. fourthgraders (539) and eighth-graders (520) were higher than the TIMSS scale average (500 at both grades). The average U.S. fourth-grade science score was higher than those of students in 25 of the 35 other countries, lower than those in 4 countries (all of them in Asia), and not measurably different from those in the remaining 6 countries. At eighth grade, the average U.S. science score was higher than the average scores of students in 35 of the 47 other countries, lower than those in 9 countries (all located in Asia or Europe), and not measurably different from those in the other 3 countries.

[^0]- The average science scores for both U.S. fourth- and eighth-grade students in 2007 were not measurably different from those in 1995. The U.S. fourth-grade average science score in 2007 was 539 and in 1995 was 542 . The U.S. eighth-grade average science score in 2007 was 520 and in 1995 was 513.
- In 2007, 15 percent of U.S. fourth-graders and 10 percent of U.S. eighth-graders scored at or above the advanced international benchmark in science. At grade four, two countries had higher percentages of students performing at or above the advanced international science benchmark than the United States: Singapore and Chinese Taipei. Fourth-graders in these two countries were also found to outperform U.S. fourth-graders, on average, on the overall science scale. At grade eight, six countries had higher percentages of students performing at or above the advanced science benchmark than the United States: Singapore, Chinese Taipei, Japan, England, Korea, and Hungary. These six countries also had higher average overall eighth-grade science scores than the United States.

Acknowledgments

The authors wish to thank all those who assisted with TIMSS 2007, from its design to the reporting of findings. Most importantly, the authors wish to thank the many principals, teachers, and students who participated in the study.

Page intentionally left blank

Contents

Page
Executive Summary iii
Acknowledgments v
List of Tables viii
List of Figures ix
List of Exhibits xi
Introduction 1
TIMSS in brief. 1
Design and administration of TIMSS 1
Reporting TIMSS results 3
Nonresponse bias in the U.S. TIMSS samples 4
Further information 4
Mathematics Performance in the United States and Internationally
The TIMSS mathematics assessment 5
Average scores in 2007 6
Trends in scores since 1995 8
Content and cognitive domain scores in 2007 10
Performance on the TIMSS international benchmarks 13
Performance within the United States 15
Effect size of the difference in average scores 28
Science Performance in the United States and Internationally
The TIMSS science assessment 31
Average scores in 2007 31
Trends in scores since 1995 33
Content and cognitive domain scores in 2007 35
Performance on the TIMSS international benchmarks 38
Performance within the United States 41
Effect size of the difference in average scores 51
References 55
Appendix A: Technical Notes. A- 1
Appendix B: Example Items B-1
Appendix C: TIMSS-NAEP Comparison C-1
Appendix D: Online Resources and Publications D-1

List of Tables

Table Page

1. Participation in the TIMSS fourth- and eighth-grade assessments, by grade and country: 1995, 1999, 2003, and 2007 2
2. Percent of fourth- and eighth-grade TIMSS mathematics assessment devoted to content and cognitive domains: 2007 5
3. Average mathematics scores of fourth- and eighth-grade students, by country: 2007 7
4. Trends in average mathematics scores of fourth- and eighth-grade students, by country: 1995 to 2007 8
5. Description of TIMSS mathematics cognitive domains: 2007 10
6. Average mathematics content and cognitive domain scores of fourth-grade students, by country: 2007 11
7. Average mathematics content and cognitive domain scores of eighth-grade students, by country: 2007 12
8. Description of TIMSS international mathematics benchmarks, by grade: 2007 13
9. Mathematics scores of fourth- and eighth-grade students defining 10th and 90th percentiles, by country: 2007 17
10. Percent of fourth- and eighth-grade TIMSS science assessment devoted to content and cognitive domains: 2007 31
11. Average science scores of fourth- and eighth-grade students, by country: 2007 32
12. Trends in average science scores of fourth- and eighth-grade students, by country: 1995 to 2007 33
13. Description of TIMSS science cognitive domains: 2007 35
14. Average science content and cognitive domain scores of fourth-grade students, by country: 2007 36
15. Average science content and cognitive domain scores of eighth-grade students, by country: 2007 37
16. Description of TIMSS international science benchmarks, by grade: 2007 38
17. Science scores of fourth- and eighth-grade students defining 10th and 90th percentiles, by country: 2007 42
A-1. Coverage of target populations and participation rates, by grade and country: 2007 A-5
A-2. Total number of schools and students, by grade and country: 2007 A-7
A-3. Number of new and trend mathematics and science items in the TIMSS grade four and grade eight assessments, by type: 2007 A-12
A-4. Number of mathematics and science items in the TIMSS grade four and grade eight assessments, by type and content domain: 2007 A-13
A-5. Within-country constructed-response scoring reliability for TIMSS grade four and grade eight mathematics and science items, by exact percent score agreement and country: 2007 A-16
A-6. Weighted response rates for unimputed variables for TIMSS grade four and grade eight: 2007 A-20
A-7. Difference between average scores, standard deviations, pooled standard deviations, and effect sizes of mathematics and science scores of fourth- and eighth-grade students, by country, sex, race/ethnicity, and school poverty level: 2007 A-24

List of Figures

Figure Page

1. Countries that participated in TIMSS 2007 3
2. Difference between average mathematics scores of U.S. fourth-and eighth-grade students and the TIMSS scale average: 1995, 1999, 2003, and 2007 9
3. Percentage of US fourth- and eighth-grade students who reached each TIMSS international mathematics benchmark compared with the international median percentage: 2007 14
4. Percentage of fourth- and eighth-grade students who reached the TIMSS advanced international benchmark in mathematics, by country: 2007 16
5. Cutpoints at the 10th and 90th percentile for mathematics content domain scores of U.S. fourth- and eighth-grade students: 2007 18
6. Trends in 10th and 90th percentile mathematics scores of U.S. fourth- and eighth-grade students: 1995, 1999, 2003, and 2007 19
7. Difference in average mathematics scores of fourth- and eighth-grade students, by sex and country: 2007 20
8. Average mathematics scores of U.S. fourth- and eighth-grade students, by content domain and sex: 2007 21
9. Trends in sex differences in average mathematics scores of U.S. fourth- and eighth-grade students: 1995, 1999, 2003, and 2007 22
10. Average mathematics scores of U.S. fourth- and eighth-grade students, by race/ethnicity: 2007 23
11. Trends in differences in average mathematics scores of U.S. fourth- and eighth-grade students, by selected race/ethnicity: 1995, 1999, 2003 and 2007 24
12. Average mathematics scores of U.S. fourth- and eighth-grade students, by percentage of students in public school eligible for free or reduced-price lunch: 2007 25
13. Trends in differences in average mathematics scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007 26
14. Effect size of difference in average mathematics achievement of fourth- and eighth-grade students, by country, sex, race/ethnicity, and school poverty level: 2007 29
15. Difference between average science scores of U.S. fourth- and eighth-grade students and the TIMSS scale average: 1995, 1999, 2003, and 2007 34
16. Percentage of U.S. fourth- and eighth-grade students who reached each TIMSS international science benchmark compared with the international median percentage: 2007 39
17. Percentage of fourth- and eighth-grade students who reached the TIMSS advanced international benchmark in science, by country: 2007 40
18. Cutpoints at the 10th and 90th percentile for science content domain scores of U.S. fourth- and eighth-grade students: 2007 43
19. Trends in 10th and 90th percentile science scores of U.S. fourth- and eighth-grade students: 1995, 1999, 2003, and 2007 44
20. Difference in average science scores of fourth- and eighth-grade students, by sex and country: 2007 45
21. Average science scores of U.S. fourth- and eighth-grade students, by content domain and sex: 2007 46
Figure Page
22. Trends in sex differences in average science scores of U.S. fourth- and eighth-grade students: 1995, 1999, 2003, and 2007 47
23. Average science scores of U.S. fourth- and eighth-grade students, by race/ethnicity: 2007 48
24. Trends in differences in average science scores of U.S. fourth- and eighth-grade students, by selected race/ethnicity: 1995, 1999, 2003, and 2007 49
25. Average science scores of U.S. fourth- and eighth-grade students, by percentage of students in public school eligible for free or reduced-price lunch: 2007 50
26. Trends in differences in average science scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007 51
27. Effect size of difference in average science achievement of fourth- and eighth-grade students, by country, sex, race/ethnicity, and school poverty level: 2007 53

List of Exhibits

Exhibit Page
B1. Example fourth-grade mathematics item: 2007 B-2
B2. Example fourth-grade mathematics item: 2007 B-3
B3. Example fourth-grade mathematics item: 2007 B-4
B4. Example eighth-grade mathematics item: 2007 B-5
B5. Example eighth-grade mathematics item: 2007 B-6
B6. Example eighth-grade mathematics item: 2007 B-7
B7. Example eighth-grade mathematics item: 2007 B-8
B8. Example fourth-grade science item: 2007 B-9
B9. Example fourth-grade science item: 2007 B-10
B10. Example fourth-grade science item: 2007 B-11
B11. Example eighth-grade science item: 2007 B-12
B12. Example eighth-grade science item: 2007 B-13
B13. Example eighth-grade science item: 2007 B-14
B14. Example eighth-grade science item: 2007 B-15

Page intentionally left blank

Introduction

TIMSS in brief

The Trends in International Mathematics and Science Study (TIMSS) 2007 is the fourth time since 1995 that this international comparison of student achievement has been conducted. Developed and implemented at the international level by the International Association for the Evaluation of Educational Achievement (IEA), an international organization of national research institutions and governmental research agencies, TIMSS is used to measure over time the mathematics and science knowledge and skills of fourthand eighth-graders.

TIMSS is designed to align broadly with mathematics and science curricula in the participating countries. The results, therefore, suggest the degree to which students have learned mathematics and science concepts and skills likely to have been taught in school. TIMSS also collects background information on students, teachers, and schools to allow cross-national comparison of educational contexts that may be related to student achievement. In 2007, there were 58 countries and educational jurisdictions ${ }^{1}$ that participated in TIMSS, at the fourth- or eighth-grade level, or both. ${ }^{2}$

This report presents the performance of U.S. students relative to their peers in other countries, and on changes in mathematics and science achievement since 1995. Most of the findings in the report are based on the results presented in two reports published by the IEA and available online at http://www.timss.org:

- TIMSS 2007 International Mathematics Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades (Mullis et al. 2008); and
- TIMSS 2007 International Science Report: Findings From IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades (Martin et al. 2008).

For a number of participating countries, changes in achievement can be documented over the last 12 years,
from 1995 to 2007. For other countries, changes can be documented over a shorter period of time. Table 1 and figure 1 show the countries that participated in TIMSS 2007 as well as their participation status in the earlier TIMSS data collections. The TIMSS fourth-grade assessment was implemented in 1995, 2003, and 2007, while the eighth-grade assessment was implemented in 1995, 1999, 2003, and 2007.

This report describes additional details about the achievement of U.S. students that are not available in the international reports, such as trends in the achievement of students of different racial and ethnic and socioeconomic backgrounds.

Design and administration of TIMSS

TIMSS 2007 is sponsored by the IEA and carried out under a contract with the TIMSS \& PIRLS ${ }^{3}$ International Study Center at Boston College. The National Center for Education Statistics (NCES), in the Institute of Education Sciences at the U.S. Department of Education, is responsible for the implementation of TIMSS in the United States. Data collection in the United States was carried out under contract to Windwalker Corporation and its subcontractors, Westat and Pearson Educational Measurement.

Participating countries administered TIMSS to two national probability samples of students and schools, based on a standardized definition. Countries were required to draw samples of students who were nearing the end of their fourth year or eighth year of formal schooling, beginning with the International Standard Classification of Education (ISCED) Level $1 .{ }^{4}$ In most countries, including the United States, these students were in the fourth and eighth grades. Details on the grades assessed in each country are included in appendix A.

In the United States, TIMSS was administered between April and June 2007. The U.S. sample included both public and private schools, randomly selected and weighted to be representative of the nation. ${ }^{5}$ In total, 257 schools and 10,350 students participated at grade four, and 239 schools and 9,723 students participated at grade eight. The overall weighted school response rate in the United States was 70

[^1]Table 1. Participation in the TIMSS fourth- and eighth-grade assessments, by grade and country: 1995, 1999, 2003, and 2007

Country	Grade four			Grade eight				Country	Grade four			Grade eight			
	1995	2003	2007	1995	1999	2003	2007		1995	2003	2007	1995	1999	2003	2007
Total	26	25	36	41	38	46	48	Total	26	25	36	41	38	46	48
Algeria			\checkmark				\checkmark	Korea, Rep. of	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
Armenia		\checkmark	\checkmark			\checkmark	\checkmark	Kuwait	\checkmark		\checkmark	\checkmark			\checkmark
Australia ${ }^{1}$	\checkmark	Latvia ${ }^{5}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
Austria	\checkmark		\checkmark	\checkmark				Lebanon						\checkmark	\checkmark
Bahrain						\checkmark	\checkmark	Lithuania		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Belgium (Flemish)		\checkmark		\checkmark	\checkmark	\checkmark		Macedonia, Rep. of					\checkmark	\checkmark	
Belgium (French)				\checkmark				Malaysia					\checkmark	\checkmark	\checkmark
Bosnia and Herzegovina							\checkmark	Malta							\checkmark
Botswana						\checkmark	\checkmark	Moldova, Rep. of		\checkmark			\checkmark	\checkmark	
Bulgaria				\checkmark	\checkmark	\checkmark	\checkmark	Morocco ${ }^{4}$		\checkmark	\checkmark		\checkmark	\checkmark	
Canada	\checkmark			\checkmark	\checkmark			Netherlands	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Chile					\checkmark	\checkmark		New Zealand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Chinese Taipei		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	Norway	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Colombia			\checkmark	\checkmark			\checkmark	Oman							\checkmark
Cyprus	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	Palestinian Nat'l Auth.						\checkmark	\checkmark
Czech Republic	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	Philippines		\checkmark			\checkmark	\checkmark	
Denmark			\checkmark	\checkmark				Portugal	\checkmark			\checkmark			
Egypt						\checkmark	\checkmark	Qatar			\checkmark				\checkmark
El Salvador			\checkmark				\checkmark	Romania				\checkmark	\checkmark	\checkmark	\checkmark
England ${ }^{2}$	\checkmark	Russian Federation		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
Estonia						\checkmark		Saudi Arabia						\checkmark	\checkmark
Finland					\checkmark			Scotland	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
France				\checkmark				Serbia						\checkmark	\checkmark
Georgia			\checkmark				\checkmark	Singapore	\checkmark						
Germany			\checkmark	\checkmark				Slovak Republic			\checkmark	\checkmark	\checkmark	\checkmark	
Ghana						\checkmark	\checkmark	Slovenia ${ }^{1}$	\checkmark						
Greece	\checkmark			\checkmark				South Africa ${ }^{6}$				\checkmark	\checkmark	\checkmark	
Hong Kong SAR ${ }^{3}$	\checkmark	Spain				\checkmark									
Hungary	\checkmark	Sweden			\checkmark	\checkmark		\checkmark	\checkmark						
Iceland	\checkmark			\checkmark				Switzerland				\checkmark			
Indonesia					\checkmark	\checkmark	\checkmark	Syrian Arab Republic							\checkmark
Iran, Islamic Rep. of	\checkmark	Thailand	\checkmark			\checkmark	\checkmark		\checkmark						
Ireland	\checkmark			\checkmark				Tunisia		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Israel ${ }^{4}$	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	Turkey					\checkmark		\checkmark
Italy ${ }^{4}$		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	Ukraine			\checkmark				\checkmark
Japan	\checkmark	United States	\checkmark												
Jordan					\checkmark	\checkmark	\checkmark	Yemen			\checkmark				
Kazakhstan			\checkmark												

${ }^{1}$ Because of national-level changes in the starting age/date for school, 1999 data for Australia and Slovenia cannot be compared to 2003 data.
${ }^{2}$ England collected data at grade eight in 1995, 1999, and 2003, but due to problems with meeting the minimum sampling requirements for 2003, its eighth-grade data are not shown in this report.
${ }^{3}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{4}$ Because of changes in the population tested, 1995 data for Israel and Italy, and 1999 data for Morocco are not shown.
${ }^{5}$ Only Latvian-speaking schools were included in 1995 and 1999. For trend analyses, only Latvian-speaking schools are included in the estimates. ${ }^{6}$ Because within-classroom sampling was not accounted for, 1995 data are not shown for South Africa.
NOTE: No fourth-grade assessment was conducted in 1999. Only countries that completed the necessary steps for their data to appear in the reports from the International Study Center are listed. In addition to the countries listed above, eight separate jurisdictions participated in the Trends in International Mathematics and Science Study (TIMSS) 2007: the provinces of Alberta, British Columbia, Ontario, and Quebec in Canada; the Basque region of Spain; Dubai, UAE, and the states of Massachusetts and Minnesota. Information on these eight jurisdictions can be found in the international TIMSS 2007 reports. Morocco participated in TIMSS 2007 at both the fourth and eighth grades, but due to sampling difficulties, its grade eight data are not shown in this report. Mongolia also participated in TIMSS 2007 but could not complete the steps necessary to have its data included in the report. Countries could participate at either grade level. Countries were required to sample students enrolled in the grade corresponding to the fourth and eighth year of schooling, beginning with International Standard Classification of Education (ISCED) level 1, providing that the mean age at the time of testing was at least 9.5 years and 13.5 years, respectively. In the United States and most countries, this corresponds to grade four and grade eight. See table A1 in appendix A for details.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995,
1999, 2003 and 2007.

Figure 1. Countries that participated in TIMSS 2007

SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.
percent at grade four before the use of substitute schools and 89 percent with the inclusion of substitute schools. ${ }^{6}$ At grade eight, the overall weighted school response rate before the use of substitute schools was 68 percent and 83 percent with the inclusion of substitute schools. The final weighted student response rate at grade four was 95 percent and at grade eight was 93 percent. Student response rates are based on a combined total of students from both sampled and substitute schools. Detailed information on sampling, administration, response rates, and other technical issues are included in appendix A.

Reporting TIMSS results

Achievement results from TIMSS are reported on a scale from 0 to 1,000, with a TIMSS scale average of 500 and standard deviation of 100. Even though the countries participating in TIMSS have changed across the four assessments between

1995 and 2007, comparisons between the 2007 results and prior results are still possible because the achievement scores in each of the TIMSS assessments are placed on a scale which is not dependent on the list of participating countries in any particular year. A brief description of the assessment equating and scaling is presented in appendix A to this volume. A more detailed presentation can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

In addition to numerical scale results, TIMSS also includes international benchmarks. The TIMSS international benchmarks provide a way to interpret the scale scores and to understand how students' proficiency in mathematics and science varies along the TIMSS scale. The TIMSS benchmarks describe four levels of student achievement in each subject, based on the kinds of skills and knowledge students at each score cutpoint would need to successfully answer the mathematics and science items. In general, the score cutpoints for the TIMSS benchmarks were set based on the distribution of students

[^2]along the TIMSS scale. More information on the development of the benchmarks and the procedures used to set the score cutpoints can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

All differences described in this report are statistically significant at the .05 level. No statistical adjustments to account for multiple comparisons were used. Differences that are statistically significant are discussed using comparative terms such as "higher" and "lower." Differences that are not statistically significant are either not discussed or referred to as "not measurably different" or "not statistically significant." In this latter case, failure to find a difference as statistically significant does not necessarily mean that there was no difference. It simply means that, given the precision of the estimates, there is a larger than five percent chance that the difference was zero. In addition, because the results of tests of statistical significance are, in part, influenced by sample sizes, statistically significant results may not identify those findings that have policy or practical importance. For this reason, this report includes effect sizes to provide the reader with a sense of the magnitude of statistically significant differences. Further information about effect sizes and about the tests conducted to determine statistical significance can be found in appendix A. Supplemental tables providing all estimates and standard errors discussed in this report are available online at http://nces.ed.gov/pubsearch/pubsinfo. asp?pubid=2009001.

All data presented in this report are used to describe relationships between variables. These data are not intended, nor can they be used, to imply causality. Student performance can be affected by a complex mix of educational and other factors that are not examined here.

Nonresponse bias in the U.S. TIMSS samples

NCES standards require a nonresponse bias analysis if school-level response rates fall below 85 percent, as they did for both the fourth- and eighth-grade school samples in TIMSS 2007. ${ }^{7}$ As a consequence, a nonresponse bias analysis was undertaken, similar to that used for TIMSS 2003 (Ferraro and Van De Kerckhove 2006).

These analyses examined whether the participation status of schools (participant/non-participant) was related to seven school characteristics: the region of the country in which the school was located (Northeast, Southeast, Central, West);
the type of community served by the school (central city, urban fringe/large town, rural/small town); whether the school was public or private; percentage of students eligible for free or reduced-price lunch; number of students enrolled in fourth or eighth grade; total number of students; and percentage of students from minority backgrounds. Details are provided in appendix A. ${ }^{8}$

The findings indicate some potential for bias in the data arising from regional and community-type differences in participation, along with the fact that schools with higher percentages of minority students were less likely to participate. Specifically, grade 4 schools in the central region were more likely to participate than schools in the other regions, and schools in rural/small towns were more likely to participate than schools in central cities. However with the inclusion of substitute schools there were no measurable differences by region and differences by community type were substantially reduced. At grade 8, after substitution, the results of the analyses indicated that schools in central cities were still more likely to participate than schools in urban/fringe/large towns. At both grades, schools with higher percentages of minority students were less likely to participate, but the measurable differences were small after substitution especially at grade 8 . Since TIMSS is conducted under a set of standard rules designed to facilitate international comparisons, the U.S. nonresponse bias analysis results were not used to adjust the U.S. data for this source of bias. While this may be possible at some later date, at present the variables identified above remain as potential sources of bias in the published estimates.

Further information

To assist the reader in understanding how TIMSS relates to the National Assessment of Educational Progress (NAEP), the primary source of national- and state-level data on U.S. students' mathematics and science achievement, NCES compared the form and content of the TIMSS and NAEP mathematics and science assessments. A summary of the results of this comparison is included in appendix C. Appendix D includes a list of TIMSS publications and resources published by NCES and the IEA. Standard errors for the estimates discussed in the report are available online at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid= 2009001. Detailed information on TIMSS can also be found on the NCES website (http://nces.ed.gov/timss) and the international TIMSS website (http://www.timss.org).

[^3]
Mathematics Performance in the United States and Internationally

The TIMSS mathematics assessment

The TIMSS mathematics assessment is designed along two dimensions: the mathematical topics or content that students are expected to learn and the cognitive skills students are expected to have developed. The topical or content domains (as they are called in TIMSS) covered at grade four are number, geometric shapes and measures, and data display (table 2). At grade eight, the content domains are number, algebra, geometry, and data and chance. The cognitive domains in each grade are knowing, applying, and reasoning. Example items from the TIMSS mathematics assessment are included in appendix B (see items B1 through B7).

The proportion of items devoted to a domain, and, therefore, the contribution of the domain to the overall mathematics scale score differs somewhat across grades. For example, in 2007 at grade four, 52 percent of the TIMSS mathematics assessment focused on the number domain, while the analogous percentage at grade eight was 29 percent. The proportion of items devoted to each cognitive domain was similar across grades.

Also, within a content or cognitive domain, the makeup of items, in terms of difficulty and form of knowledge and skills addressed, differs across grade levels to reflect the nature, difficulty, and emphasis of the subject matter encountered in school at each grade. TIMSS 2007 Assessment Frameworks (Mullis et al. 2005) provides a more detailed description of the content and cognitive domains assessed in TIMSS. The development and validation of the cognitive domains is detailed in IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings From a Developmental Project (Mullis, Martin, and Foy 2005).

TIMSS provides an overall mathematics scale score as well as content and cognitive domain scores at each grade level. The TIMSS mathematics scale is from 0 to 1,000 and the international mean score is set at 500 , with a standard deviation of 100 . The scaling of data is conducted separately for each grade and each content domain. Thus, a score of 500 on the grade four scale is not equivalent to a score of 500 on the grade eight scale The scaling of data is conducted separately for each grade and each content domain. While the scales were created to each have a mean of 500 and a standard deviation of 100, the subject matter and the level of difficulty of items necessarily differ between the assessments at both grades. Therefore, direct comparisons between scores across grades should not be made. See appendix A for more details.

Table 2. Percentage of fourth- and eighth-grade TIMSS mathematics assessment devoted to content and cognitive domains: 2007

Grade four		Grade eight	
Content domains	Percent of assessment	Content domains	Percent of assessment
Number	52	Number	29
Geometric shapes and measures	34	Algebra	30
Data display	15	Geometry	22
		Data and chance	19
Cognitive domains	Percent of assessment	Cognitive domains	Percent of assessment
Knowing	39	Knowing	38
Applying	39	Applying	41
Reasoning	22	Reasoning	21

NOTE: The content and cognitive domains are the foundation of the Trends in International Mathematics and Science Study (TIMSS) assessment. The content domains define the specific mathematics subject matter covered by the assessment, and the cognitive domains define the sets of behaviors expected of students as they engage with the mathematics content. Each mathematics content domain has several topic areas. Each topic area is presented as a list of objectives covered in a majority of participating countries, at either grade four or grade eight. However, the cognitive domains of mathematics are defined by the same three sets of expected behaviors-knowing, applying, and reasoning. Detail may not sum to totals because of rounding. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Scores within a subject and grade are comparable over time. The TIMSS scale was established originally to have a mean of 500 based on the average of all of the countries that participated in TIMSS 1995 at the fourth and eighth grades. Successive TIMSS assessments since then (TIMSS 1999, 2003, and 2007) have scaled the achievement data so that scores are equivalent from assessment to assessment. That is, a score of 500 in eighth-grade mathematics in 2007 is equivalent to a score of 500 in eighth-grade mathematics in 2003, in 1999, and in 1995. The same is true for the fourthgrade scale: a score of 500 in fourth-grade mathematics in 2007 is equivalent to a score of 500 in fourth-grade mathematics in 2003 and 1995. More information on how the TIMSS scale was created can be found in appendix A.

Average scores in 2007

The average mathematics scores for both U.S. fourth- and eighth-graders were higher than the TIMSS scale average (table 3). In 2007, the average score of U.S. fourth-graders was 529 and the average score of U.S. eighth-graders was 508 , compared with the TIMSS scale average of 500 at each grade level.

At grade four, the average U.S. mathematics score was higher than those in 23 of the 35 other countries, lower than those in 8 countries (all 8 were in Asia or Europe), and not measurably different from the average scores in the remaining 4 countries.

At grade eight, the average U.S. mathematics score was higher than those in 37 of the 47 other countries, lower than those in 5 countries (all of them located in Asia), and not measurably different from the average scores in the other 5 countries.

Table 3. Average mathematics scores of fourth- and eighth-grade students, by country: 2007

Grade four		Grade eight	
Country	Average score	Country	Average score
TIMSS scale average	500	TIMSS scale average	500
Hong Kong SAR ${ }^{1}$	607	Chinese Taipei	598
Singapore	599	Korea, Rep. of	597
Chinese Taipei	576	Singapore	593
Japan	568	Hong Kong SAR ${ }^{1,4}$	572
Kazakhstan ${ }^{2}$	549	Japan	570
Russian Federation	544	Hungary	517
England	541	England ${ }^{4}$	513
Latvia ${ }^{2}$	537	Russian Federation	512
Netherlands ${ }^{3}$	535	United States ${ }^{4,5}$	508
Lithuania ${ }^{2}$	530	Lithuania ${ }^{2}$	506
United States ${ }^{4,5}$	529	Czech Republic	504
Germany	525	Slovenia	501
Denmark ${ }^{4}$	523	Armenia	499
Australia	516	Australia	496
Hungary	510	Sweden	491
Italy	507	Malta	488
Austria	505	Scotland ${ }^{4}$	487
Sweden	503	Serbia ${ }^{2,5}$	486
Slovenia	502	Italy	480
Armenia	500	Malaysia	474
Slovak Republic	496	Norway	469
Scotland ${ }^{4}$	494	Cyprus	465
New Zealand	492	Bulgaria	464
Czech Republic	486	Israel ${ }^{7}$	463
Norway	473	Ukraine	462
Ukraine	469	Romania	461
Georgia ${ }^{2}$	438	Bosnia and Herzegovina	456
Iran, Islamic Rep. of	402	Lebanon	449
Algeria	378	Thailand	441
Colombia	355	Turkey	432
Morocco	341	Jordan	427
El Salvador	330	Tunisia	420
Tunisia	327	Georgia ${ }^{2}$	410
Kuwait ${ }^{6}$	316	Iran, Islamic Rep. of	403
Qatar	296	Bahrain	398
Yemen	224	Indonesia	397
		Syrian Arab Republic	395
		Egypt	391
		Algeria	387
		Colombia	380
		Oman	372
		Palestinian Nat'l Auth.	367
		Botswana	364
		Kuwait ${ }^{6}$	354
		El Salvador	340
		Saudi Arabia	329
		Ghana	309
		Qatar	307

Average score is higher than U.S. average score ($p<.05$)
Average score is not measurably different from the U.S. average score ($p<.05$)
\square Average score is lower than the U.S. average score ($p<.05$)
${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{3}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{4}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{5}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
NOTE: Countries are ordered by 2007 average score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors of the estimates are shown in tables E-1 and E-2 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Trends in scores since 1995

Several countries participated in both the first TIMSS in 1995 and the most recent TIMSS in 2007 and therefore the average scores can be compared over a 12-year period. At grade four, 16 countries, including the United States, participated in both the first and most recent TIMSS administrations. Comparing 2007 mathematics scores with those from 1995, one-half of the countries (8 of 16), including the United States, showed improvement in average scores and one-quarter of the countries (4 of 16) showed declines (table 4). In 2007, the U.S. fourth-grade average mathematics score of 529 was 11 scale score points higher than the 1995 average of 518.

The gain in the U.S. fourth-grade average mathematics score (11 scale score points) was greater than the difference in six countries (the four countries with declines in average scores,
as well as two other countries) and less than the gain of four countries (England, Hong Kong SAR, Slovenia, and Latvia). There was no measurable difference between the 11 score point gain in the United States and the gains or declines in score points experienced in the other countries.

At grade eight, 20 countries, including the United States, participated in TIMSS in both 1995 and 2007. About onequarter of the countries (6 of 20), including the United States, had higher average mathematics scores in 2007 than in 1995 and students in one-half of the countries (10 of 20) showed declines in their average scores. The U.S. eighth-grade average mathematics score of 508 was 16 scale score points higher than the 1995 average of 492.

The gain in the U.S. eighth-grade mathematics score (16 scale score points) was greater than the difference

Table 4. Trends in average mathematics scores of fourth- and eighth-grade students, by country: 1995 to 2007

Grade four				Grade eight			
Country	Average score		$\begin{array}{\|c\|} \hline \text { Difference }^{1} \\ \hline 2007-1995 \end{array}$	Country	Average score		$\begin{array}{\|c\|} \hline \text { Difference }{ }^{1} \\ \hline 2007-1995 \end{array}$
	1995	2007			1995	2007	
England	484	541	57^{*}	Colombia	332	380	47*
Hong Kong SAR ${ }^{2}$	557	607	50*	Lithuania ${ }^{3}$	472	506	34^{*}
Slovenia	462	502	40*	Korea, Rep. of	581	597	17*
Latvia ${ }^{3}$	499	537	38^{*}	United States ${ }^{4,5}$	492	508	16*
New Zealand	469	492	23*	England ${ }^{4}$	498	513	16*
Australia	495	516	22*	Slovenia	494	501	7*
Iran, Islamic Rep. of	387	402	15*	Hong Kong SAR ${ }^{2,4}$	569	572	4
United States ${ }^{4,5}$	518	529	11*	Cyprus	468	465	-2
Singapore	590	599	9	Scotland ${ }^{4}$	493	487	-6
Scotland ${ }^{4}$	493	494	1	Hungary	527	517	-10*
Japan	567	568	1	Japan	581	570	-11*
Norway	476	473	-3	Russian Federation	524	512	-12
Hungary	521	510	-12*	Romania	474	461	-12*
Netherlands ${ }^{6}$	549	535	-14*	Australia	509	496	-13*
Austria	531	505	-25*	Iran, Islamic Rep. of	418	403	-15*
Czech Republic	541	486	-54*	Singapore	609	593	-16*
				Norway	498	469	-29*
				Czech Republic	546	504	-42*
				Sweden	540	491	-48*
				Bulgaria	527	464	-63*

Country difference in average scores between 1995 and 2007 is greater than analogous U.S. difference ($p<.05$)
\square Country difference in average scores between 1995 and 2007 is not measurably different from analogous U.S. difference ($p<.05$)
\square Country difference in average scores between 1995 and 2007 is less than analogous U.S. difference ($p<.05$)
${ }^{*} p<.05$. Within-country difference between 1995 and 2007 average scores is significant.
${ }^{1}$ Difference calculated by subtracting 1995 from 2007 estimate using unrounded numbers.
${ }^{2}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{3}$ In 2007, National Target Population did not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{4}$ In 2007, met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{5}$ In 2007, National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{6}$ In 2007, nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
NOTE: Countries are ordered based on the difference in 1995 and 2007 average scores. All countries met international sampling and other guidelines in 2007, except as noted. Data are not shown for some countries, because comparable data from previous cycles are not available. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for one country may be significant while a large difference for another country may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in tables E-1 and E-2 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995 and 2007.
in 13 countries (including the 10 countries with declining scores and 3 others) and less than the gain of 2 countries (Colombia and Lithuania). There was no measurable difference between the 16 score point gain in the United States and the gains or declines in score points experienced in the other countries.

The size of the difference in scores between the U.S. fourthgraders' and TIMSS scale averages was larger in 2007 at 29 scale score points than it was in 1995 at 18 scale score points (figure 2). U.S. fourth-graders' average mathematics scores were higher than the TIMSS scale average in each of the 3 data collection years: 1995, 2003, and 2007.
U.S. eighth-graders' average mathematics scores showed no measurable difference from the TIMSS scale average in 3 of the 4 data collection years between 1995 and 2007. However, the 2007 U.S. score was higher than the U.S. score in 1995, with the U.S. score in 1995 some 8 points below the TIMSS scale average, but 8 points above the average in 2007.

Figure 2. Difference between average mathematics scores of U.S. fourthand eighth-grade students and the TIMSS scale average: 1995, 1999, 2003, and 2007

${ }^{*} p<.05$. Difference between U.S. average and Trends in International Mathematics and Science Study (TIMSS) scale average is statistically significant. ${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). Difference calculated by subtracting the TIMSS scale average (500) from the U.S. average mathematics score. The standard errors of the estimates are shown in table E-39 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid= 2009001.

SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Content and cognitive domain scores in 2007

In addition to an overall mathematics score, TIMSS provides scores for content domains and cognitive domains (see table 5 for a description of the cognitive domains). U.S. fourthgraders scored higher than the TIMSS scale average across the mathematics content domains in 2007 (table 6). U.S. fourth-graders' average scores in number, geometric shapes and measures, and data display were between 22 and 43 scale score points above the TIMSS scale average of 500 in each content domain.
U.S. fourth-graders performed better on average in the data display domain than in the number and geometric shapes and measures domains, at least in terms of comparisons with other countries. That is, there were fewer countries that outperformed the United States in data display than in the other two domains. U.S. fourth-graders outperformed their peers in 22 countries in the number domain, 20 countries in the geometric shapes and measures domain, and 28 countries in the data display domain. They were outperformed by their peers in 9 countries in the number domain, 10 countries in the geometric shapes and measures domain, and 4 countries in the data display domain.

In the three cognitive domains, U.S. fourth-graders scored higher than the TIMSS scale average in 2007. U.S. fourthgraders' average scores in the knowing, applying, and reasoning domains were between 23 and 41 scale score points higher than the TIMSS scale average of 500.

In terms of comparisons with other countries, U.S. fourthgraders performed relatively better on average in the applying domain than the knowing and reasoning domains. U.S. fourthgraders outperformed students in 16 to 27 countries across the three cognitive domains and were outperformed by their peers in 5 to 11 countries across the three cognitive domains.

At the eighth-grade level, U.S. students scored higher, on average, than the TIMSS scale average in two of the four mathematics content domains in 2007 (table 7). U.S. eighthgraders' average scores in number and data and chance were 10 and 31 scale score points above the TIMSS scale score average of 500 , respectively. On the other hand, U.S. eighthgraders' average score in the geometry domain was lower than the TIMSS scale score average by 20 scale score points. There was no measurable difference between U.S. eighth-graders' average score in algebra and the TIMSS scale score average.
U.S. eighth-graders performed relatively better, on average, in the data and chance domain than in the number, algebra,

Table 5. Description of TIMSS mathematics cognitive domains: 2007

Cognitive domain	Description		
	Knowing addresses the facts, procedures, and concepts that students need to know to function mathematically. The key skills of this cognitive domain include recalling definitions, terminology, number properties, geometric properties, and notation; recognizing mathematical objects, shapes, numbers, and expressions; recognizing mathematical entities that are mathematically equivalent; computing algorithmic procedures for basic functions with whole numbers, fractions, decimals, and integers; approximating		
	numbers to estimate computations; carrying out routine algebraic procedures; retrieving information from graphs, tables, and charts; reading simple scales; using appropriate units of measure and measuring instruments; estimating measures; classifying or grouping objects, shapes, numbers, and expressions according to common properties; making correct decisions about class membership; and ordering numbers and objects by attributes.		Applying focuses on students' abilities to apply knowledge and conceptual understanding to solve problems or answer questions.
:---			
The key skills of this cognitive domain include selecting appropriate operations, methods, or strategies for solving problems where			

NOTE: The descriptions of the cognitive domains are the same for grades four and eight, except where noted.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Table 6. Average mathematics content and cognitive domain scores of fourth-grade students, by country: 2007

Country	Content domain			Cognitive domain		
	Number	Geometric shapes and measures	Data display	Knowing	Applying	Reasoning
TIMSS scale average	500	500	500	500	500	500
Hong Kong SAR ${ }^{1}$	606	599	585	599	617	589
Singapore	611	570	583	590	620	578
Chinese Taipei	581	556	567	569	584	566
Japan	561	566	578	566	565	563
Kazakhstan ${ }^{2}$	556	542	522	547	559	539
Russian Federation	546	538	530	547	538	540
England	531	548	547	540	544	537
Latvia ${ }^{2}$	536	532	536	540	530	537
Netherlands ${ }^{3}$	535	522	543	540	525	534
Lithuania ${ }^{2}$	533	518	530	539	520	526
United States ${ }^{4,5}$	524	522	543	524	541	523
Germany	521	528	534	531	514	528
Denmark ${ }^{4}$	509	544	529	528	513	524
Australia	496	536	534	523	509	516
Hungary	510	510	504	507	511	509
Italy	505	509	506	501	514	509
Austria	502	509	508	507	505	506
Sweden	490	508	529	508	482	519
Slovenia	485	522	518	504	497	505
Armenia	522	483	458	493	518	489
Slovak Republic	495	499	492	498	492	499
Scotland ${ }^{4}$	481	503	516	500	489	497
New Zealand	478	502	513	495	482	503
Czech Republic	482	494	493	496	473	493
Norway	461	490	487	479	461	489
Ukraine	480	457	462	466	472	474
Georgia ${ }^{2}$	464	415	414	433	450	437
Iran, Islamic Rep. of	398	429	400	405	410	410
Algeria	391	383	361	376	384	387
Colombia	360	361	363	357	360	372
Morocco	353	365	316	346	354	-
El Salvador	317	333	367	339	312	356
Tunisia	352	334	307	329	343	-
Kuwait ${ }^{6}$	321	316	318	305	326	-
Qatar	292	296	326	296	293	-
Yemen	-	-	-	-	-	-

[^4]SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Table 7. Average mathematics content and cognitive domain scores of eighth-grade students, by country: 2007

Country	Content domain				Cognitive domain		
	Number	Algebra	Geometry	Data and chance	Knowing	Applying	Reasoning
TIMSS scale average	500	500	500	500	500	500	500
Chinese Taipei	577	617	592	566	592	594	591
Korea, Rep. of	583	596	587	580	595	596	579
Singapore	597	579	578	574	593	581	579
Hong Kong SAR ${ }^{1,2}$	567	565	570	549	569	574	557
Japan	551	559	573	573	565	560	568
Hungary	517	503	508	524	513	518	513
England ${ }^{2}$	510	492	510	547	514	503	518
Russian Federation	507	518	510	487	510	521	497
United States ${ }^{2,3}$	510	501	480	531	503	514	505
Lithuania ${ }^{4}$	506	483	507	523	511	508	486
Czech Republic	511	484	498	512	504	502	500
Slovenia	502	488	499	511	503	500	496
Armenia	492	532	493	427	493	507	489
Australia	503	471	487	525	500	487	502
Sweden	507	456	472	526	497	478	490
Malta	496	473	495	487	492	490	475
Scotland ${ }^{2}$	489	467	485	517	489	481	495
Serbia ${ }^{3,4}$	478	500	486	458	478	500	474
Italy	478	460	490	491	483	476	483
Malaysia	491	454	477	469	478	477	468
Norway	488	425	459	505	477	458	475
Cyprus	464	468	458	464	465	468	461
Bulgaria	458	476	468	440	458	477	455
Ukraine	460	464	467	458	464	471	445
Romania	457	478	466	429	462	470	449
Israe ${ }^{5}$	469	470	436	465	456	473	462
Bosnia and Herzegovina	451	475	451	437	440	478	452
Lebanon	454	465	462	407	448	464	429
Thailand	444	433	442	453	446	436	456
Turkey	429	440	411	445	425	439	441
Jordan	416	448	436	425	422	432	440
Tunisia	425	423	437	411	423	421	425
Georgia ${ }^{4}$	421	421	409	373	401	427	389
Iran, Islamic Rep. of	395	408	423	415	402	403	427
Bahrain	388	403	412	418	403	395	413
Indonesia	399	405	395	402	398	397	405
Syrian Arab Republic	393	406	417	387	401	393	396
Egypt	393	409	406	384	393	392	396
Algeria	403	349	432	371	412	371	-
Colombia	369	390	371	405	384	364	416
Oman	363	391	387	389	368	372	397
Palestinian Nat'l Auth.	366	382	388	371	371	365	381
Botswana	366	394	325	384	351	376	-
Kuwait ${ }^{6}$	347	354	385	366	361	347	-
El Salvador	355	331	318	362	347	336	-
Saudi Arabia	309	344	359	348	335	308	-
Ghana	310	358	275	321	297	313	-
Qatar	334	312	301	305	305	307	-

[^5]and geometry domains and relatively worse, on average, in geometry than the other three content domains, at least in terms of comparisons with other countries. U.S. eighthgraders outperformed students in 38 countries in the data and chance domain, 35 countries in the number domain, 37 countries in the algebra domain, and 29 countries in the geometry domain. They were outperformed by their peers in 6 countries in the data and chance domain, 5 countries in the number domain, 7 countries in the algebra domain, and 14 countries in the geometry domain.

In two of the three cognitive domains, the U.S. eighth-grade average score was higher than the TIMSS scale average in 2007. U.S. eighth-graders' scores in the applying and reasoning domains were 14 and 5 scale score points above the TIMSS scale score average of 500, respectively. On the other hand, U.S. eighth-graders' average score in the knowing domain was not measurably different from the TIMSS scale score average.

Like their fourth-grade counterparts, U.S. eighth-graders performed relatively better in the applying domain than in the
knowing and reasoning domains in terms of comparisons with other countries. U.S. eighth-graders outperformed students in 30 to 38 countries across the three cognitive domains. They were outperformed by their peers in 5 to 8 countries across the three cognitive domains.

Performance on the TIMSS international benchmarks

Abstract

The TIMSS international benchmarks provide a way to understand how students' proficiency in mathematics varies along the TIMSS scale (table 8). TIMSS defines four levels of student achievement: advanced, high, intermediate, and low. The benchmarks can then be used to describe the kinds of skills and knowledge students at each score cutpoint would need to successfully answer the mathematics items included in the assessment. The descriptions of the benchmarks differ between the two grade levels, as the mathematical skills and knowledge needed to respond to the assessment items reflect the nature, difficulty, and emphasis at each grade.

Table 8. Description of TIMSS international mathematics benchmarks, by grade: 2007

Benchmark

(score cutpoint)	Grade four
Advanced (625)	Students can apply their understanding and knowledge in a variety of relatively complex situations and explain their reasoning. They can apply proportional reasoning in a variety of contexts. They demonstrate a developing understanding of fractions and decimals. They can select appropriate information to solve multistep word problems. They can formulate or select a rule for a relationship. Students can apply geometric knowledge of a range of two- and three-dimensional shapes in a variety of situations. They can organize, interpret, and represent data to solve problems.
High	Students can apply their knowledge and understanding to solve problems. Students can solve multistep word problems involving (550) operations with whole numbers. They can use division in a variety of problem situations. They demonstrate understanding of place value and simple fractions. Students can extend patterns to find a later specified term and identify the relationship between ordered pairs. Students show some basic geometric knowledge. They can interpret and use data in tables and graphs to solve problems.
Intermediate Students can apply basic mathematical knowledge in straightforward situations. Students at this level demonstrate an understanding of whole numbers. They can extend simple numeric and geometric patterns. They are familiar with a range of two-dimensional shapes. They can read and interpret different representations of the same data. Low Students have some basic mathematical knowledge. Students can demonstrate an understanding of adding and subtracting with whole numbers. They demonstrate familiarity with triangles and informal coordinate systems. They can read information from simple bar graphs and tables. 400$)$	

	Grade eight
Advanced (625)	Students can organize and draw conclusions from information, make generalizations, and solve nonroutine problems. They can solve a variety of ratio, proportion, and percent problems. They can apply their knowledge of numeric and algebraic concepts and relationships. Students can express generalizations algebraically and model situations. They can apply their knowledge of geometry in complex problem situations. Students can derive and use data from several sources to solve multistep problems.
High (550)	Students can apply their understanding and knowledge in a variety of relatively complex situations. They can relate and compute with fractions, decimals, and percents, operate with negative integers, and solve word problems involving proportions. Students can work with algebraic expressions and linear equations. Students use knowledge of geometric properties to solve problems, including area, volume, and angles. They can interpret data in a variety of graphs and table and solve simple problems involving probability.
Intermediate (475)	Students can apply basic mathematical knowledge in straightforward situations. They can add and multiply to solve one-step word problems involving whole numbers and decimals. They can work with familiar fractions. They understand simple algebraic relationships. They demonstrate understanding of properties of triangles and basic geometric concepts. They can read and interpret graphs and tables. They recognize basic notions of likelihood.
Low (400)	Students have some knowledge of whole numbers and decimals, operations, and basic graphs.
NOTE: Score cutpoints for the international benchmarks are determined through scale anchoring. Scale anchoring involves selecting benchmarks (scale points) on the achievement scales to be described in terms of student performance, and then identifying items that students scoring at the anchor points can answer correctly. The score cutpoints are set at equal intervals along the achievement scales. The score cutpoints were selected to be as close as possible to the standard percentile cutpoints (i.e., 90th, 75th, 50th, and 25th percentiles). More information on the setting of the score cutpoints can be found in appendix A and Martin et al. (2008). SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.	

In 2007, there were higher percentages of U.S. fourth-graders performing at or above each of the four TIMSS international benchmarks than the international medians ${ }^{9}$ of the percentages performing at each level (figure 3). For example, 10 percent of U.S. fourth-graders performed at or above the advanced benchmark (625) compared to the international median of 5 percent. These students demonstrated an ability to apply their understanding and knowledge to a variety of relatively complex mathematical situations (see description in table 8). At the other end of the scale, 95 percent of U.S. fourthgraders performed at or above the low benchmark (400) compared with the international median of 90 percent. These students showed at least some basic mathematical skills by demonstrating an understanding of adding and subtracting with whole numbers, showing familiarity with triangles and informal coordinate systems, and reading information from simple bar graphs and tables.

Similar to their fourth-grade counterparts, there were higher percentages of U.S. eighth-graders performing at or above each of the four TIMSS international benchmarks than the international medians of the percentage performing at each level (figure 3). For example, 6 percent of U.S. eighth-graders performed at or above the advanced benchmark (625) compared to the international median of 2 percent. These students demonstrated an ability to organize information, make generalizations, solve nonroutine problems, and draw and justify conclusions from data (see description in table 8). At the other end of the scale, 92 percent of U.S. eighthgraders performed at or above the low benchmark (400) compared with the international median of 75 percent. These students showed at least a basic mathematical understanding of whole numbers and decimals, could perform simple computations, and complete a basic graph.

Figure 3. Percentage of U.S. fourth- and eighthgrade students who reached each TIMSS international mathematics benchmark compared with the international median percentage: 2007

${ }^{*} p<.05$. U.S. percentage is significantly different from the Trends in International Mathematics and Science (TIMSS) international median percentage.
NOTE: The United States met guidelines for sample participation rates only after substitute schools were included and the National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A). The TIMSS international median represents all participating TIMSS jurisdictions, including the United States. The international median represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. The standard errors for the estimates are shown in table E-5 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^6]At grade four, seven countries had higher percentages of students performing at or above the advanced international mathematics benchmark than the United States (figure 4). Fourth-graders in these seven countries were also found to outperform U.S. fourth-graders, on average, on the overall mathematics scale (see table 3). At grade eight, a slightly different set of seven countries had higher percentages of students performing at or above the advanced mathematics benchmark than the United States (figure 4). These seven countries include the five countries that had higher average overall mathematics scores than the United States (see table 3), as well as Hungary and the Russian Federation.

At grade four in 2007, higher percentages of U.S. students performed at or above the intermediate and low international benchmarks than in 1995 (intermediate: 77 v. 71 percent; low: 95 v. 92 percent; data not shown). There were no measurable differences in the percentage of U.S. fourth-graders performing at or above either the high or advanced international benchmarks between 1995 and 2007 (high: 37 v . 40 percent; advanced: 9 v. 10 percent). At grade eight, higher percentages of U.S. students performed at or above the high, intermediate, and low international benchmarks in 2007 than in 1995 (high: 31 v. 26 percent; intermediate: 67 v. 61 percent; low: 92 v .86 percent; data not shown). There was no measurable difference in the percentage of U.S. eighthgraders performing at or above the advanced international benchmark in 2007 than in 1995 (6 v. 4 percent).

Performance within the United States

TIMSS not only provides a measure of mathematics performance of the nation as a whole, but also of the performance of student subpopulations. For this report, TIMSS data were analyzed to investigate the performance of students grouped in four ways: higher and lower performing students; males and females; racial and ethnic groups; and public schools serving students with different low-income concentrations.

Scores of lower and higher performing students

To examine the mathematics performance of each participating country's higher and lower performing students, cutpoint scores were calculated for students performing at or above the 90th percentile (that is, the top 10 percent of students) and those performing at or below the 10th percentile (the bottom 10 percent of students). The cutpoint scores were calculated for each country, rather than across all countries combined.

In 2007, the highest-performing U.S. fourth-graders (those performing at or above the 90th percentile) scored 625 or higher (table 9). This was higher than the 90th percentile scores for fourth-graders in 23 countries and lower than the 90th percentile score for students in 7 countries. The countries in which the 90th percentile cutpoint score was higher than the cutpoint score for U.S. are the same as those that outperformed the United States as a whole (table 3), with the exception of Latvia where the 90th percentile score of 628 is not significantly different from 625 in the United States. The 90th percentile scores ranged between 371 (Yemen) and 702 (Singapore). The difference in the 90th percentile score between Singapore, the highest performing country, and the United States was 77 score points.

The lowest-performing U.S. fourth-graders (those performing at or below the 10th percentile) scored 430 or lower in 2007 (table 9). This was higher than the 10th percentile score in 23 countries and lower than the 10th percentile score in 6 countries: Singapore, Hong Kong SAR, Japan, Chinese Taipei, Latvia, and the Netherlands. The score at the 10th percentile ranged between 81 (Yemen) and 520 (Hong Kong SAR). The difference in the cutpoint scores between the lowest-performing students in Hong Kong SAR and the United States was 90 score points.

Figure 4. Percentage of fourth- and eighth-grade students who reached the TIMSS advanced international benchmark in mathematics, by country: 2007

[^7]Table 9. Mathematics scores of fourth- and eighth-grade students defining 10th and 90th percentiles, by country: 2007

Grade four			Grade eight		
Country	90th percentile	10th percentile	Country	90th percentile	10th percentile
International average	576	366	International average	559	339
Singapore	702	487	Chinese Taipei	721	448
Hong Kong SAR ${ }^{1}$	691	520	Korea, Rep. of	711	475
Japan	663	471	Singapore	706	463
Chinese Taipei	663	488	Hong Kong SAR ${ }^{1,3}$	681	438
Kazakhstan ${ }^{2}$	653	435	Japan	677	460
England	647	429	Hungary	624	405
Russian Federation	647	436	England ${ }^{3}$	618	400
Latvia ${ }^{2}$	628	444	Russian Federation	617	402
United States ${ }^{\text {3,4 }}$	625	430	Lithuania ${ }^{2}$	609	402
Lithuania ${ }^{2}$	624	430	United States ${ }^{\text {3,4 }}$	607	408
Hungary	620	389	Armenia	601	390
Australia	620	408	Australia	600	394
Armenia	617	385	Czech Republic	599	408
Netherlands ${ }^{5}$	612	454	Malta	597	359
Denmark ${ }^{3}$	611	431	Serbia ${ }^{2,4}$	597	368
Germany	607	440	Slovenia	594	409
Italy	601	406	Scotland ${ }^{3}$	590	381
New Zealand	598	377	Romania	587	328
Slovak Republic	597	389	Bulgaria	586	324
Scotland ${ }^{3}$	592	389	Israel ${ }^{7}$	584	328
Austria	590	416	Sweden	582	399
Slovenia	589	408	Turkey	581	297
Sweden	586	417	Malaysia	578	372
Czech Republic	576	392	Cyprus	575	347
Ukraine	573	356	Italy	574	381
Norway	566	372	Ukraine	572	346
Georgia ${ }^{2}$	549	322	Thailand	562	327
Iran, Islamic Rep. of	508	290	Jordan	556	290
Algeria	493	261	Norway	552	382
Colombia	470	238	Bosnia and Herzegovina	552	352
Tunisia	469	178	Lebanon	549	354
Morocco	466	223	Georgia ${ }^{2}$	532	280
El Salvador	448	212	Egypt	521	258
Kuwait ${ }^{6}$	443	184	Iran, Islamic Rep. of	516	295
Qatar	413	179	Indonesia	509	286
Yemen	371	81	Tunisia	508	336
			Bahrain	505	289
			Syrian Arab Republic	502	290
			Palestinian Nat'I Auth.	498	233
			Oman	492	245
			Colombia	477	281
			Algeria	465	311
			Botswana	460	264
			Kuwait ${ }^{6}$	455	252
			El Salvador	433	248
			Saudi Arabia	429	231
			Ghana	428	192
			Qatar	427	186

Percentile cutpoint score is higher than U.S. cutpoint score ($p<.05$)
\square Percentile cutpoint score is not measurably different from U.S. cutpoint score ($p<.05$)
\square Percentile cutpoint score is lower than U.S. cutpoint score ($p<.05$)
${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS, see appendix A)
${ }^{3}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
NOTE: Countries are ordered based on the 90th percentile cutpoint for mathematics scores. Cutpoints are calculated based on distribution of student scores within each country. The international average is the average of the cutpoint scores for all reported countries. The standard errors of the estimates are shown in tables E-6 and E-7 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

On the three mathematics content domains at grade four, the highest-performing U.S. fourth-graders (90th percentile or higher) scored 632 or higher on the number domain, 615 or higher on the geometric shapes and measures domain, and 621 or higher on the data display domain (figure 5). The lowest-performing U.S. students (10th percentile or lower) scored 413 or lower on the number domain, 428 or lower on the geometric shapes and measures domain, and 464 or lower on the data display domain in 2007.

At grade eight, the highest-performing U.S. students (90th percentile or higher) in mathematics scored 607 or higher (table 9). The U.S. 90th percentile score was higher than that of 34 countries and lower than the 90th percentile score in 6 countries: Chinese Taipei, Korea, Singapore, Hong Kong SAR, Japan, and Hungary. The range at the eighth grade in 90th percentile scores was between 427 (Qatar) and 721 (Chinese Taipei). The difference in average scores between the 90th percentile in Chinese Taipei and the United States was 114 score points.

The lowest-performing U.S. eighth-graders (10th percentile or lower) scored 408 or less in 2007 (table 9). The 10th percentile score for U.S. eighth-graders in mathematics was higher than the 10th percentile score in 34 countries and lower than the 10th percentile score in 4 countries: Chinese Taipei, Korea, Singapore, and Japan. The range in 10th percentile scores was between 186 (Qatar) and 475 (Korea). The difference in the cutpoint scores between the lowest-performing students in Korea and the United States was 66 score points.

On the four mathematics content domains at grade eight, the highest-performing U.S. eighth-graders (90th percentile or higher) scored 615 or higher on the number domain, 598 or higher on the algebra domain, 572 or higher on the geometry domain, and 643 or higher on the data and chance domain (figure 5). The same general pattern appears to hold among the lowest-performing U.S. students (10th percentile or lower) who scored 406 or lower on the number domain, 405 or lower on the algebra domain, 388 or lower on the geometry domain, and 418 or lower on the data and chance domain.

Figure 5. Cutpoints at the 10th and 90th percentile for mathematics content domain scores of U.S. fourth- and eighth-grade students: 2007

NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). Cutpoints are calculated based on distribution of U.S. student scores. The standard errors of the estimates are shown in table E-8 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

A comparison of 1995, when TIMSS was first administered, and 2007 shows no measurable change in the cutpoint score at the 90th percentile for U.S. fourth graders, the point marking the top 10 percent of students (figure 6). In 2007, the 90th percentile score for U.S. fourth-graders was 625; the 90th percentile score for 1995 was 619. However, a comparison of data from 2003 and 2007 shows there was an increase in the 90th percentile score defining the top-performing students: from 614 to 625 . On the other hand, the lowest-performing U.S. fourth graders' showed statistically significant improvement in mathematics: the 10th percentile score increased from 408 in 1995 and 417 in 2003 to 430 in 2007.

At grade eight, both the 90th and 10th percentile scores were higher in 2007 than in 1995 (figure 6). Though the 90th percentile score has been relatively stable over the last three administrations of TIMSS, the 2007 score of 607 was higher than the 1995 score of 594, showing improvement among top students. The 10th percentile score for eighth-graders was higher in 2007 than in 1995 or 1999.

Average scores of male and female students

In 2007, U.S. fourth-grade males outperformed females by 6 score points on average in mathematics (figure 7). In addition to the United States, of the 35 other countries participating at grade four, 20 showed a significant difference in the average mathematics scores of males and females: 12 in favor of males and 8 in favor of females. The difference in average scores between males and females ranged from 37 score points in Kuwait (in favor of females) to 17 score points in Colombia (in favor of males).

Figure 6. Trends in 10th and 90th percentile mathematics scores of U.S. fourthand eighth-grade students: 1995, 1999, 2003, and 2007

${ }^{*} p<.05$. Percentile cutpoint score is significantly different from 2007 percentile cutpoint score.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). Cutpoints are calculated based on distribution of U.S. student scores. The standard errors of the estimates are shown in table E-9 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Figure 7. Difference in average mathematics scores of fourth- and eighth-grade students, by sex and country: 2007

[^8]The higher average for U.S. male fourth graders on the total mathematics scale reflects higher average performance on one content area: males outscored females 528 to 520, on average, in number (figure 8). There were no measurable sex differences detected in the average scores in either the geometric shapes and measures domain or the data display domain.

At grade eight, there was no measurable difference in the average mathematics scores of U.S. males and females in 2007 (figure 7). Among the 47 other countries participating in TIMSS at grade eight, 24 showed a difference in the
average mathematics scores of males and females: 8 in favor of males and 16 in favor of females. The difference in average scores between males and females ranged from 54 score points in Oman (in favor of females) to 32 score points in Colombia (in favor of males).

Though there was no measurable difference detected in the average mathematics scores of U.S. eighth-grade males and females, U.S. males outperformed U.S. females in three of four mathematics content domains: number (515 v .506), geometry (483 v. 477), and data and chance (535 v. 527; figure 8).

Figure 8. Average mathematics scores of U.S. fourth- and eighth-grade students, by content domain and sex: 2007

${ }^{*} p<.05$. Difference between average mathematics scores for males and females is statistically significant and favors males.
NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The standard errors of the estimates are shown in table E-12 available at http://nces.ed.gov/ pubsearch/pubsinfo.asp? pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007

Both U.S. males and females' average scores, at the fourth and eighth grades, were higher in 2007 than in 1995 (figure 9). At grade four, the 2007 average scores of both males and females were higher than their average scores in both 1995 and 2003. U.S. fourth-grade males scored 12 points higher on average in mathematics in 2007 than in 1995 (532 v. 520), and U.S. fourth-grade females scored 10 points higher, on average (526 v. 516).

At grade eight in 2007, U.S. males and females had higher scores, on average, compared to their scores in 1995: by 15 scale score points among males (510 v .495) and by 17 scale score points among females (507 v .490 ; figure 9).

Figure 9. Trends in sex differences in average mathematics scores of U.S. fourthand eighth-grade students: 1995, 1999, 2003, and 2007

* $p<.05$. Significantly different from 2007.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A) The standard errors of the estimates are shown in table E-13 available at http:// nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003 and 2007.

Average scores of students of different races and ethnicities

In 2007 U.S. non-Hispanic White, non-Hispanic Asian and multiracial fourth-graders scored higher on average than the TIMSS scale average in mathematics, while U.S. nonHispanic Black fourth-graders scored lower (figure 10). ${ }^{10}$ U.S. Hispanic fourth-graders' average score showed no measurable difference from the TIMSS scale average. In comparison to the U.S. national average, U.S. White and Asian fourth-graders scored higher, on average, while U.S. Black and Hispanic fourth-graders scored lower. U.S. multiracial fourth-graders did not score measurably different from the U.S. national average in mathematics.

At grade eight, U.S. White, and Asian students scored higher, on average, than both the TIMSS scale average and the U.S. national average in mathematics. On the other hand, U.S. Black and Hispanic eighth-graders scored lower, on average, than the TIMSS scale average and U.S. national average. U.S. multiracial eighth-graders did not score measurably different from either the TIMSS scale average or the U.S. national average score in mathematics.

Over time, U.S. White, Black, Hispanic, and Asian students, in both fourth and eighth grades, have generally shown overall improvement in mathematics (figure 11). At grade four, U.S. White, Black, and Asian students had higher scores in 2007 than in 1995 or 2003; Hispanic students improved their average mathematics score over a shorter period of time, between 2003 and 2007, but not over the 12-year period since 1995. ${ }^{11}$ Though in each of the data collection years the differences in the average scores of White fourth-graders and their Black peers were statistically significant, the gap in scores decreased between 1995 and 2007 (84 points v. 67 points). On the other hand, the difference in average scores between White and Asian fourth-graders has reversed and grown over the same period of time, from being in favor of Whites in 1995 (541 v. 525) to being in favor of Asians in 2007 (550 v. 582). There has been no detectable change in the size of the gap in scores between White fourth-graders and their Hispanic classmates.

At grade eight, U.S. White, Black, Hispanic, and Asian students improved in mathematics, on average, when 2007 scores are compared to those from 1995 (figure 11). Black and Hispanic eighth-graders also showed an increase in scores over a shorter period of time, when 2007 is compared to 1999. Though in each of the data collection years the differences in the average scores of White eighth-graders and their Black and Hispanic peers were statistically significant, the sizes of the gap in scores between these groups of students were smaller in 2007 than they were 12 years earlier in 1995 (White v. Black: 76 points v. 97 points; White v. Hispanic: 58 points v. 73 points). There has been no detectable change in the size of the gap in scores between White eighth-graders and their Asian peers.

Figure 10. Average mathematics scores of U.S. fourth- and eighth-grade students, by race/ethnicity: 2007

NOTE: Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. totals shown throughout the report. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population (see appendix A). See appendix A in this report for more information. The standard errors of the estimates are shown in table E-14 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^9]Figure 11. Trends in differences in average mathematics scores of U.S. fourth- and eighth-grade students, by selected race/ethnicity: 1995, 1999, 2003, and 2007

${ }^{*} p<.05$. Significantly different from 2007.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: Only the four numerically largest racial categories are shown. Multiracial data were not collected in 1995 and 1999. Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. totals shown throughout the report. In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendixA). The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for one student group may be significant while a large difference for another student group may not be significant. See appendix A in this report for more information. The standard errors of the estimates are shown in table E-15 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Average scores of students attending public schools of various poverty levels

The U.S. results are also arrayed by the concentration of lowincome enrollment in the public schools, as measured by eligibility for free or reduced-price lunch, and shown in relation to the TIMSS scale average and the U.S. national average. In comparison to the TIMSS scale average, the average mathematics score of U.S. fourth graders in the highest poverty public schools (at least 75 percent of students eligible for free or reduced-price lunch) in 2007 was lower (479 v . 500); the average scores of fourth-graders in each of the other categories of school poverty was higher than the TIMSS scale average (figure 12). In comparison to the U.S. national average score, fourth-graders in schools with 50 percent or more students eligible for free or reduced-price lunch scored lower, on average, while those in schools with lower proportions of poor students scored higher, on average, than the U.S. national average.

On average, U.S. eighth-graders in public schools with at least 50 percent eligible for free and reduced price lunch scored lower than the TIMSS scale average in 2007 (482 and 465 v. 500). U.S. eighth-graders attending public schools with fewer than 50 percent of students eligible for the free or reduced-price lunch program scored higher than the TIMSS scale average in mathematics. In comparison to the U.S. national average, U.S. eighth-graders in public schools with fewer than 25 percent of students eligible scored higher in mathematics, on average, while students in public schools with at least 50 percent eligible scored lower, on average.

Figure 12. Average mathematics scores of U.S. fourth- and eighth-grade students, by percentage of students in public school eligible for free or reducedprice lunch: 2007

Percentage of students eligible for free or reduced-price lunch

Percentage of students eligible for free or reduced-price lunch

[^10]Comparisons of scores in 2007 to 2003 showed an inconsistent pattern of improvement in mathematics among U.S. fourth-graders in public schools serving students from various levels of poverty (figure 13). ${ }^{12}$ On the one hand, fourth graders in public schools with relatively lower levels of poverty (less than 10 percent to 24.9 percent eligible) and in public schools with relatively higher levels of poverty (50 to almost 75 percent eligible) had higher average mathematics scores in 2007 than in 2003. On the other hand, there was no measurable difference detected in the average scores of students in public schools serving students from medium
and the highest level of poverty. Moreover, though the average mathematics scores were higher in 2007, the score gaps evident in the earlier data collections did not appear to diminish over time. ${ }^{13}$

Consistent with the lack of significant change between 1999 and 2007 in eighth-grade mathematics scores overall, students in different types of public schools categorized by poverty also did not show detectable change in performance generally. And, as at grade four, the score gaps evident in earlier data collections did not appear to diminish over time.

Figure 13. Trends in differences in average mathematics scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007

See notes at end of table.

[^11]Figure 13. Trends in differences in average mathematics scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007—Continued

${ }^{*} p<.05$. Significantly different from 2007.
NOTE: Information on the percentage of students in school eligible for free or reduced-price lunch was not collected in 1995. No fourth-grade assessment was conducted in 1999. Analyses are limited to public schools only, based on school reports of the percentage of students in public school eligible for the federal free or reduced-price lunch program. In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population (see appendix A). The standard errors of the estimates are shown in table E-17 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1999, 2003, and 2007.

Effect size of the difference in average scores

As noted in the introduction, this report includes effect sizes to provide the reader with a sense of the magnitude of the statistically significant differences reported thus far. Statistically significant results do not necessarily indicate those findings that are important or large enough to consider as informing policy or practice. Small differences may be statistically significant, but may not have much practical import.

One way of looking at within-country differences in achievement between groups of students is to ask how large these differences are relative to across-country differences between the U.S. national average and an international benchmark, such as the national average for the country with the highest estimated score. As shown previously, the countries with the highest scores outpaced the United States on a number of measures. For example, the difference at grade four between the U.S. average mathematics score (529) and Hong Kong SAR average score (607) was 78 score points (see table 3). The gap between the United States and Hong Kong SAR is also apparent in the percentage of students scoring at the advanced level: 10 percent of U.S. fourth-graders met the advanced international benchmark compared with 40 percent in Hong Kong SAR (see figure 4). Are differences within the United States between groups
of students (e.g., by race/ethnicity or poverty concentration in schools) bigger or smaller than these international differences? Effect sizes help make these comparisons. Figure 14 shows the effect size of the difference only for those groups with statistically significant score differences. Appendix A provides a discussion of how effect sizes were calculated.

As shown in figure 14, in grade four mathematics, the effect size of the difference between U.S. White and Black students is roughly the same as the effect size between the United States and Hong Kong SAR, the country with the highest estimated score, while the effect size between U.S. White and Hispanic students is roughly three-fifths the effect size between the United States and Hong Kong SAR. The largest effect size, between U.S. fourth-graders in schools with the lowest and highest poverty levels, is 1.4 times the effect size between the United States and Hong Kong SAR.

At grade eight, the effect size of the difference in mathematics scores between U.S. White and Black students is 1.1 times the effect size between the United States and Chinese Taipei, the country with the highest estimated score. The effect size between U.S. White and Hispanic students is four-fifths the effect size between the United States and Chinese Taipei. The largest effect size, between U.S. eighth-graders in schools with the lowest and highest poverty levels, is 1.3 times the effect size between the United States and Chinese Taipei.

Figure 14. Effect size of difference in average mathematics achievement of fourth- and eighth-grade, by country, sex, race/ethnicity, and school poverty level: 2007

Groups compared

[^12]Page intentionally left blank

Science Performance in the United States and Internationally

The TIMSS science assessment

Like the TIMSS mathematics assessment, the TIMSS science assessment is designed along two dimensions: the science topics or content that students are expected to learn and the cognitive skills students are expected to have developed. The content domains covered at grade four are life science, physical science, and Earth science (see table 10). At grade eight, the content domains are biology, chemistry, physics, and Earth science. The cognitive domains in each grade are knowing, applying, and reasoning. Example items from the TIMSS science assessment are included in appendix B (see items B8 through B14).

The proportion of items devoted to a domain, and therefore the contribution of the domain to the overall science scale score, differs somewhat across grades. For example, at grade four in 2007, 37 percent of the TIMSS science assessment focused on the physical science domain, while at grade eight, 46 percent of the assessment focused on the analogous chemistry and physics domains. The proportion of items devoted to each cognitive domain is similar across grades.

Also, within a content or cognitive domain, the makeup of items, in terms of difficulty and form of knowledge and skills addressed, differs across grade levels to reflect the nature, difficulty, and emphasis of the subject matter encountered in school at each grade. The TIMSS 2007 Assessment Frameworks (Mullis et al. 2005) provides a more detailed description of the content and cognitive domains assessed
in TIMSS. The development and validation of the science cognitive domains is based on the same processes used in the development of the mathematics cognitive domains. Details of the development of the mathematics cognitive domains can be found in IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings From a Developmental Project (Mullis, Martin, and Foy 2005).

TIMSS provides an overall science scale score as well as content and cognitive domain scores at each grade level. As with the mathematics scale, the TIMSS science scale is from 0 to 1,000, and the international mean score is set at 500 , with an international standard deviation of 100 . The scaling of data is conducted separately for each grade and each content domain. While the scales were created to each have a mean of 500 and a standard deviation of 100 , the subject matter and the level of difficulty of items necessarily differ between the assessments at both grades. Therefore, direct comparisons between scores across grades should not be made. Comparability over time is established by linking the data from each assessment to the data from the assessment that preceded it. More information on how the TIMSS scale was created can be found in appendix A.

Average scores in 2007

The average science scores for both U.S. fourth- and eighthgraders were higher than the TIMSS scale average (table 11).

Table 10. Percentage of fourth- and eighth-grade TIMSS science assessment devoted to content and cognitive domains: 2007

Grade four		Grade eight	
Content domains	Percent of assessment	Content domains	Percent of assessment
Life science	43	Biology	36
Physical science	37	Chemistry	20
Earth science	21	Physics	26
		Earth science	19
Cognitive domains	Percent of assessment	Cognitive domains	Percent of assessment
Knowing	44	Knowing	39
Applying	36	Applying	40
Reasoning	20	Reasoning	21

NOTE: The content and cognitive domains are the foundation of the Trends in International Mathematics and Science Study (TIMSS) assessment. The content domains define the specific science subject matter covered by the assessment, and the cognitive domains define the sets of behaviors expected of students as they engage with the science content. Each science content domain has several topic areas. Each topic area is presented as a list of objectives covered in a majority of participating countries, at either grade four or grade eight. However, the cognitive domains of science are defined by the same three sets of expected behaviors-knowing, applying, and reasoning. Detail may not sum to totals because of rounding.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Table 11. Average science scores of fourthand eighth-grade students, by country: 2007

Grade four		Grade eight	
Country	Average score	Country	Average score
TIMSS scale average	500	TIMSS scale average	500
Singapore	587	Singapore	567
Chinese Taipei	557	Chinese Taipei	561
Hong Kong SAR ${ }^{1}$	554	Japan	554
Japan	548	Korea, Rep. of	553
Russian Federation	546	England ${ }^{3}$	542
Latvia ${ }^{2}$	542	Hungary	539
England	542	Czech Republic	539
United States ${ }^{3,4}$	539	Slovenia	538
Hungary	536	Hong Kong SAR ${ }^{1,3}$	530
Italy	535	Russian Federation	530
Kazakhstan ${ }^{2}$	533	United States ${ }^{3,4}$	520
Germany	528	Lithuania ${ }^{2}$	519
Australia	527	Australia	515
Slovak Republic	526	Sweden	511
Austria	526	Scotland ${ }^{3}$	496
Sweden	525	Italy	495
Netherlands ${ }^{5}$	523	Armenia	488
Slovenia	518	Norway	487
Denmark ${ }^{3}$	517	Ukraine	485
Czech Republic	515	Jordan	482
Lithuania ${ }^{2}$	514	Malaysia	471
New Zealand	504	Thailand	471
Scotland ${ }^{3}$	500	Serbia ${ }^{2,4}$	470
Armenia	484	Bulgaria ${ }^{7}$	470
Norway	477	Israel ${ }^{7}$	468
Ukraine	474	Bahrain	467
Iran, Islamic Rep. of	436	Bosnia and Herzegovina	466
Georgia ${ }^{2}$	418	Romania	462
Colombia	400	Iran, Islamic Rep. of	459
El Salvador	390	Malta	457
Algeria	354	Turkey	454
Kuwait ${ }^{6}$	348	Syrian Arab Republic	452
Tunisia	318	Cyprus	452
Morocco	297	Tunisia	445
Qatar	294	Indonesia	427
Yemen	197	Oman	423
		Georgia ${ }^{2}$	421
		Kuwait ${ }^{6}$	418
		Colombia	417
		Lebanon	414
		Egypt	408
		Algeria	408
		Palestinian Nat'l Auth.	404
		Saudi Arabia	403
		El Salvador	387
		Botswana	355
		Qatar	319
		Ghana	303

In 2007, the average score of U.S. fourth-graders was 539 and the average score of U.S. eighth-graders was 520, compared to the TIMSS scale average of 500 at each grade level.

At grade four, the average U.S. science score was higher than those in 25 of the 35 other countries, lower than the average scores in 4 countries (all of them in Asia), and not measurably different from the average scores of students in the remaining 6 countries.

At grade eight, the average U.S. science score was higher than those in 35 of the 47 other countries, lower than in 9 countries (all located in Asia or Europe), and not measurably different from the average scores in the other 3 countries.

[^13]
Trends in scores since 1995

At grade four, 16 countries, including the United States, participated in both the first TIMSS in 1995 and the most recent TIMSS in 2007 and therefore can be compared over a 12 -year period. Comparing 2007 with 1995,7 of the 16 countries showed improvement in average science scores, 5 countries showed declines, and 4 countries, including the United States, had no measurable difference in average scores (table 12). In 2007, the U.S. fourth-grade average science score was 539, compared with 542 in 1995.

Table 12. Trends in average science scores of fourth- and eighth-grade students, by country: 1995 to 2007

Grade four				Grade eight			
	Average score		$\begin{array}{\|c\|} \hline \text { Difference }^{1} \\ \hline 2007-1995 \\ \hline \end{array}$	Country	Average score		$\begin{gathered} \hline \text { Difference }{ }^{1} \\ \hline 2007-1995 \end{gathered}$
Country	1995	2007			1995	2007	
Singapore	523	587	63^{*}	Lithuania ${ }^{2}$	464	519	55*
Latvia ${ }^{2}$	486	542	56^{*}	Colombia	365	417	52*
Iran, Islamic Rep. of	380	436	55*	Slovenia	514	538	24^{*}
Slovenia	464	518	54^{*}	Hong Kong SAR ${ }^{3,4}$	510	530	20*
Hong Kong SAR ${ }^{3}$	508	554	46*	England ${ }^{4}$	533	542	8
Hungary	508	536	28*	United States ${ }^{4,5}$	513	520	7
England	528	542	14*	Korea, Rep. of	546	553	7*
Australia	521	527	6	Russian Federation	523	530	7
New Zealand	505	504	-1	Hungary	537	539	2
United States ${ }^{4,5}$	542	539	-3	Australia	514	515	1
Japan	553	548	-5*	Cyprus	452	452	\#
Netherlands ${ }^{6}$	530	523	-7	Japan	554	554	-1
Austria	538	526	-12*	Iran, Islamic Rep. of	463	459	-4
Scotland	514	500	-14*	Scotland ${ }^{4}$	501	496	-5
Czech Republic	532	515	-17*	Romania	471	462	-9
Norway	504	477	-27^{*}	Singapore	580	567	-13
				Czech Republic	555	539	-16*
				Norway	514	487	-28*
				Sweden	553	511	-42*

Country difference in average scores between 1995 and 2007 is greater than analogous U.S. difference ($p<.05$)
\square Country difference in average scores between 1995 and 2007 is not measurably different from analogous U.S. difference ($p<.05$)
\square Country difference in average scores between 1995 and 2007 is less than analogous U.S. difference ($p<.05$)
\# Rounds to zero.
${ }^{*} p<.05$. Within-country difference between 1995 and 2007 average scores is significant.
${ }^{1}$ Difference calculated by subtracting 1995 from 2007 estimate using unrounded numbers.
${ }^{2}$ In 2007, National Target Population did not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{3}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{4}$ In 2007, met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{5}$ In 2007, National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{6}$ In 2007, nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
NOTE: Bulgaria collected data in 1995 and 2007, but due to a structural change in its education system, comparable science data from 1995 are not available. Countries are ordered by the difference between 1995 and 2007 overall average scores. All countries met international sampling and other guidelines in 2007, except as noted. Data are not shown for some countries, because comparable data from previous cycles are not available. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. Detail may not sum to totals because of rounding. The standard errors of the estimates are shown in tables E-20 and E-21 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995 and 2007.

At grade eight, 19 countries, including the United States, participated in TIMSS in both 1995 and 2007. Five countries had higher average science scores in 2007 than in 1995, 3 countries showed declines in their average scores, and 11 countries, including the United States, had no measurable difference between average scores in 1995 and 2007. The U.S. eighth-grade average science score was 520, compared with 513 in 1995.

Figure 15 shows the difference between the average U.S. science scores and the TIMSS scale average at grades four and eight for each of the TIMSS administrations. The average size of difference in science scores between the U.S. fourthgraders and the TIMSS scale average shows no significant change across the data collection years, from 36 to 42 scale score points above the TIMSS scale average. Similarly, at grade eight, there has been no measurable change in the size of the difference, on average, across the data collection years.

Figure 15. Difference between average science scores of U.S. fourth- and eighthgrade students and the TIMSS scale average: 1995, 1999, 2003, and 2007

${ }^{*} p<$.05. Difference between U.S. average and Trends in International Mathematics and Science Study (TIMSS) scale average is statistically significant.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A). Difference calculated by subtracting the TIMSS scale average (500) from the U.S. average science score. The standard errors of the estimates are shown in table E-40 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003 and 2007.

Content and cognitive domain scores in 2007

As in mathematics, TIMSS also provides scores for science content and cognitive domains (see table 13 for a description of the science cognitive domains). U.S. fourth-graders scored higher than the TIMSS scale average across the science content domains in 2007 (table 14). U.S. fourth-graders' average scores in life science, physical science, and Earth science were between 33 and 40 scale score points above the TIMSS scale average of 500 in each content domain.
U.S. fourth-graders outperformed their peers in 25 countries in the life science domain, 24 countries in the physical science domain, and 21 countries in the Earth science domain. They were outperformed by their peers in 3 countries in the life science and Earth science domains, and 7 countries in the physical science domain.
U.S. fourth-graders' average scores in the cognitive domains of knowing, applying, and reasoning were, on average, between 33 and 41 scale score points higher than the TIMSS scale
average of 500. U.S. fourth-graders outperformed students in 22 to 26 countries across the three cognitive domains. U.S. fourth-graders were outperformed by their peers in 1 country in the applying domain, and 5 countries in the knowing and reasoning domains.

At the eighth-grade level, U.S. students scored higher than the TIMSS scale average in three of the four science content domains and the three cognitive domains in 2007 (table 15). U.S. eighth-graders' average score in biology, chemistry, and Earth science was, on average, 10 to 30 scale score points above the TIMSS scale score average of 500 . On the other hand, U.S. eighth-graders' average score in the physics domain was not measurably different from the TIMSS scale score average.
U.S. eighth-graders outperformed students in 36 countries in the biology and Earth science domains, 35 countries in the chemistry domain, and 32 countries in the physics domain. They were outperformed by their peers in 5 countries in the biology and Earth science domains, 9 countries in the chemistry domain, and 10 countries in the physics domain.

Table 13. Description of TIMSS science cognitive domains: 2007

Cognitive Domain	Description
Knowing addresses the facts, information, concepts, tools, and procedures that students need to know to function scientifically. The key skills of this cognitive domain include making or identifying accurate statements about science facts, relationships, processes, and concepts; identifying the characteristics or properties of specific organisms, materials, and processes; providing or identifying definitions of scientific terms; recognizing and using scientific vocabulary, symbols, abbreviations, units, and scales in relevant contexts; describing organisms, physical materials, and science processes that demonstrate knowledge of properties, structure, function, and relationships; supporting or clarifying statements of facts or concepts with appropriate examples; identifying or providing specific examples to illustrate knowledge of general concepts; and demonstrating knowledge of the use of scientific apparatus, tools, equipment, procedures, measurement devices, and scales.	
Applying focuses on students' ability to apply knowledge and conceptual understanding to solve problems or answer questions. The key skills of this cognitive domain include identifying or describing similarities and differences between groups of organisms, materials, or processes; distinguishing, classifying, or ordering individual objects, materials, organisms, and processes based on given characteristics and properties; using a diagram or model to demonstrate understanding of a science concept, structure,	
relationship, process, or biological or physical system or cycle; relating knowledge of an underlying biological or physical concept to an observed or inferred property, behavior, or use of objects, organisms, or materials; interpreting relevant textual, tabular, or	
graphical information in light of a science concept or principle; identifying or using a science relationship, equation, or formula to	
find a quantitative or qualitative solution involving the direct application or demonstration of a concept; providing or identifying an	
explanation for an observation or natural phenomena, demonstrating understanding of the underlying science concept, principle,	
law, or theory.	

Table 14. Average science content and cognitive domain scores of fourth-grade students, by country: 2007

Country	Content domain			Cognitive domain		
	Life science	Physical science	Earth science	Knowing	Applying	Reasoning
TIMSS scale average	500	500	500	500	500	500
Singapore	582	585	554	579	587	568
Chinese Taipei	541	559	553	556	536	571
Hong Kong SAR ${ }^{1}$	532	558	560	549	546	561
Japan	530	564	529	542	528	567
Russian Federation	539	547	536	546	542	542
Latvia ${ }^{2}$	535	544	536	535	540	551
England	532	543	538	536	543	537
United States ${ }^{\text {3,4 }}$	540	534	533	533	541	535
Hungary	548	529	517	531	540	529
Italy	549	521	526	539	530	526
Kazakhstan ${ }^{2}$	528	528	534	536	534	519
Germany	529	524	524	526	527	525
Australia	528	522	534	523	529	530
Slovak Republic	532	513	530	527	527	513
Austria	526	514	532	526	529	513
Sweden	531	508	535	521	526	527
Netherlands ${ }^{5}$	536	503	524	525	518	525
Slovenia	511	530	517	525	511	527
Denmark ${ }^{3}$	527	502	522	515	516	525
Czech Republic	520	511	518	516	520	510
Lithuania ${ }^{2}$	516	514	511	515	511	524
New Zealand	506	498	515	500	511	505
Scotland ${ }^{3}$	504	499	508	494	511	501
Armenia	489	492	479	487	486	484
Norway	487	469	497	478	485	480
Ukraine	482	475	474	477	476	478
Iran, Islamic Rep. of	442	454	433	451	437	436
Georgia ${ }^{2}$	427	414	432	424	434	388
Colombia	408	411	401	404	409	409
El Salvador	410	392	393	393	410	376
Algeria	351	377	365	379	350	357
Kuwait ${ }^{6}$	353	345	363	338	360	331
Tunisia	323	340	325	329	316	349
Morocco	292	324	293	311	291	318
Qatar	291	303	305	283	304	293
Yemen	-	-	-	-	-	-

\square Average score is higher than the U.S. average score ($p<.05$)
\square Average score is not measurably different from the U.S. average score ($p<.05$)
\square Average score is lower than the U.S. average score ($p<.05$)

- Not available. Average achievement could not be accurately estimated.
${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{3}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are ordered by 2007 overall science average scale score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for the United States and one country may be significant while a large difference between averages for the United States and another country may not be significant. The standard errors of the estimates are shown in table E-22 available at http://nces.ed.gov/pubsearch/ pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Table 15. Average science content and cognitive domain scores of eighth-grade students, by country: 2007

Country	Content domain				Cognitive domain		
	Biology	Chemistry	Physics	Earth Science	Knowing	Applying	Reasoning
TIMSS scale average	500	500	500	500	500	500	500
Singapore	564	560	575	541	567	554	564
Chinese Taipei	549	573	554	545	560	565	541
Japan	553	551	558	533	555	534	560
Korea, Rep. of	548	536	571	538	547	543	558
England ${ }^{1}$	541	534	545	529	538	530	547
Hungary	534	536	541	531	549	524	530
Czech Republic	531	535	537	534	539	533	534
Slovenia	530	539	524	542	533	533	538
Hong Kong SAR ${ }^{1,2}$	527	517	528	532	522	532	533
Russian Federation	525	535	519	525	527	534	520
United States ${ }^{1,3}$	530	510	503	525	516	512	529
Lithuania ${ }^{4}$	527	507	505	515	512	513	527
Australia	518	505	508	519	510	501	530
Sweden	515	499	506	510	509	505	517
Scotland ${ }^{1}$	495	497	494	498	495	480	511
Italy	502	481	489	503	498	494	493
Armenia	490	478	503	475	502	493	459
Norway	487	483	475	502	486	486	491
Ukraine	477	490	492	482	488	477	488
Jordan	478	491	479	484	485	491	471
Malaysia	469	479	484	463	473	458	487
Thailand	478	462	458	488	472	473	473
Serbia ${ }^{3,4}$	474	467	467	466	469	485	455
Bulgaria ${ }^{5}$	467	472	466	480	471	489	448
Israel ${ }^{5}$	472	467	472	462	472	456	481
Bahrain	473	468	466	465	468	469	469
Bosnia and Herzegovina	464	468	463	469	463	486	452
Romania	459	463	458	471	470	451	460
Iran, Islamic Rep. of	449	463	470	476	454	468	462
Malta	453	461	470	456	462	436	473
Turkey	462	435	445	466	450	462	462
Syrian Arab Republic	459	450	447	448	445	474	440
Cyprus	447	452	458	457	456	438	460
Tunisia	452	458	432	447	445	441	458
Indonesia	428	421	432	442	425	426	438
Oman	414	416	443	439	423	428	428
Georgia ${ }^{4}$	423	418	416	425	422	440	394
Kuwait ${ }^{6}$	419	418	438	410	417	430	411
Colombia	434	420	407	407	417	418	428
Lebanon	405	447	431	389	422	403	420
Egypt	406	413	413	426	404	434	395
Algeria	411	414	397	413	410	409	414
Palestinian Nat'l Auth.	402	413	414	408	412	407	396
Saudi Arabia	407	390	408	423	403	417	395
El Salvador	398	377	380	400	388	394	384
Botswana	359	371	351	361	358	361	362
Qatar	318	322	347	312	322	325	-
Ghana	304	342	276	294	291	316	-

[^14]\square Average score is not measurably different from the U.S. average score ($p<.05$)
\square Average score is lower than the U.S. average score ($p<.05$)

- Not available. Average achievement could not be accurately estimated.
${ }^{1}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{2}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are ordered by 2007 overall science average scale score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for the United States and one country may be significant while a large difference between averages for the United States and another country may not be significant. The standard errors of the estimates are shown in table E-23 available at http://nces.ed.gov/pubsearch/ pubsinfo. asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

In the three cognitive domains, the average U.S. score at eighth grade was higher than the TIMSS scale average. In 2007, U.S. eighth-graders' average scores in the knowing, applying, and reasoning domains were between 12 and 29 scale score points higher than the TIMSS scale average of 500. U.S. eighth-graders outperformed students in 33 to 35 countries across the three cognitive domains. U.S. eighthgraders were outperformed by their peers in 6 to 10 countries across the three cognitive domains.

Performance on the TIMSS international benchmarks

Abstract

The TIMSS international benchmarks distinguish four levels of student achievement: advanced, high, intermediate, and low, and provide a way to understand how students' proficiency in science varies along the TIMSS scale (table 16). The descriptions of the benchmarks differ between the two grade levels, as the science skills and knowledge needed to respond to the assessment items reflect the nature, difficulty, and emphasis at each grade.

Table 16. Description of TIMSS international science benchmarks, by grade: 2007

| Benchmark
 (score cutpoint) | \quad Grade four |
| :--- | :--- | | Advanced | Students can apply knowledge and understanding of scientific processes and relationships in beginning scientific inquiry. Students
 (625)
 communicate their understanding of characteristics and life processes of organisms as well as of factors relating to human health.
 They demonstrate understanding of relationships among various physical properties of common materials and have some practical
 knowledge of electricity. Students demonstrate some understanding of the solar system and Earth's physical features and processes.
 They show a developing ability to interpret the results of investigations and draw conclusions as well as a beginning ability to evaluate
 and support an argument. |
| :--- | :--- |
| | Students can apply knowledge and understanding to explain everyday phenomena. Students demonstrate some understanding of
 plant and animal structure, life processes, and the environment and some knowledge of properties of matter and physical phenomena.
 They show some knowledge of the solar system, and of Earth's structure, processes, and resources. Students demonstrate beginning
 (550)
 scientific inquiry knowledge and skills, and provide brief descriptive responses combining knowledge of science concepts with
 information from everyday experience of physical and life processes. |
| Intermediate
 (475)Students can apply basic knowledge and understanding to practical situations in the sciences. Students recognize some basic
 information related to characteristics of living things and their interaction with the environment, and show some understanding of
 human biology and health. They also show some understanding of familiar physical phenomena. Students know some basic facts
 about the solar system and have a developing understanding of Earth's resources. They demonstrate some ability to interpret
 information in pictorial diagrams and apply factual knowledge to practical situations. | |
| Students have some elementary knowledge of life science and physical science. Students can demonstrate knowledge of some
 simple facts related to human health and the behavioral and physical characteristics of animals. They recognize some properties
 of matter, and demonstrate a beginning understanding of forces. Students interpret labeled pictures and simple diagrams, complete
 simple tables, and provide short written responses to questions requiring factual information. | |

Grade eight	
Advanced	Students can demonstrate a grasp of some complex and abstract concepts in biology, chemistry, physics, and Earth science. (625)
	They have an understanding of the complexity of living organisms and how they relate to their environment. They show understanding of the properties of magnets, sound, and light, as well as demonstrating understanding the structure of matter and physical and chemical properties and changes. Students apply knowledge of the solar system and of Earth's features and processes, and apply understanding of major environmental issues. They understand some fundamentals of scientific investigation and can apply basic physical principles to solve some quantitative problems. They can provide written explanations to communicate scientific knowledge.
Students can demonstrate conceptual understanding of some science cycles, systems, and principles. They have some inderstanding of biological concepts including cell processes, human biology and health, and the interrelationship of plants and animals in ecosystems. They apply knowledge to situations related to light and sound, demonstrate elementary knowledge of heat and forces, and show some evidence of understanding the structure of matter, and chemical and physical properties and changes.	
	They demonstrate some understanding of the solar system, Earth's processes and resources, and some basic understanding of major environmental issues. Students demonstrate some scientific inquiry skills. They combine information to draw conclusions, interpret tabular and graphical information, and provide short explanations conveying scientific knowledge.
Intermediate (475)Students can recognize and communicate basic scientific knowledge across a range of topics. They demonstrate some understanding of characteristics of animals, food webs, and the effect of population changes in ecosystems. They are acquainted with some aspects of sound and force and have elementary knowledge of chemical change. They demonstrate elementary knowledge of the solar system, Earth's processes, and resources and the environment. Students extract information from tables and interpret pictorial diagrams. They can apply knowledge to practical situations and communicate their knowledge through brief descriptive responses.	
Students can recognize some basic facts from the life and physical sciences. They have some knowledge of the human body, and demonstrate some familiarity with everyday physical phenomena. Students can interpret pictorial diagrams and apply knowledge of simple physical concepts to practical situations.	

NOTE: Score cutpoints for the international benchmarks are determined through scale anchoring. Scale anchoring involves selecting benchmarks (scale points) on the achievement scales to be described in terms of student performance, and then identifying items that students scoring at the anchor points can answer correctly. The score cutpoints are set at equal intervals along the achievement scales. The score cutpoints were selected to be as close as possible to the standard percentile cutpoints (i.e., 90th, 75th, 50th, and 25th percentiles). More information on the setting of the score cutpoints can be found in appendix A and Martin et al. (2008).
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

In 2007, there were higher percentages of U.S. fourth-graders performing at or above three of the four TIMSS international benchmarks than the international median percentage (figure 16). ${ }^{14}$ For example, 15 percent of U.S. fourth-graders performed at or above the advanced benchmark (625) in science compared to the international median of 7 percent. These students demonstrated an ability to apply their knowledge and understanding of scientific processes and relationships in beginning scientific inquiry (see description in table 16). At the other end of the scale, 94 percent of U.S. fourth-graders performed at or above the low benchmark (400) which was not measurably different from the international median of 93 percent. These students showed at least some elementary knowledge of life science and physical science.

At the eighth grade, there were higher percentages of U.S. students performing at or above each of the four TIMSS international science benchmarks than the international median (figure 16). For example, 10 percent of U.S. eighthgraders performed at or above the advanced benchmark (625) compared to the international median of 3 percent. These students demonstrated a grasp of some complex and abstract concepts in biology, chemistry, physics, and Earth science (see description in table 14). At the other end of the scale, 92 percent of U.S. eighth-graders performed at or above the low benchmark (400) compared with the international median of 78 percent. These students recognized some basic facts from the life science and physical science.

At grade four, two countries had higher percentages of students performing at or above the advanced international science benchmark than the United States (figure 17). Fourth-graders in these two countries, Singapore and Chinese Taipei, were also found to outperform U.S. fourth-graders, on average, on the overall science scale (see table 11). At grade eight, six countries had higher percentages of students performing at or above the advanced science benchmark than the United States (figure 17). These six countries also had higher average overall eighthgrade science scores than the United States (see table 11).

In comparison with earlier data collections, a lower percentage of U.S. fourth-graders performed at or above the advanced benchmark in 2007 than in 1995 (15 v. 19 percent; data not shown). There were no measurable differences in the percentage of U.S. fourth-graders performing at or above the high, intermediate, or low international science benchmarks between 1995 and 2007 (high: 50 v. 47 percent; intermediate: 78 v. 78 percent; low: 92 v. 94 percent). At grade eight, there were fewer U.S. students performing at or above the advanced benchmark than in 1999 (10 v. 12 percent), but not between 1995 and 2007 (data not shown). On the other hand, there were more U.S. eighth-graders performing at or above the low science benchmark in 2007 than in 1995 (92 v. 87 percent). There was no measurable difference in the percentage of U.S. eighth-graders performing at or above the high or intermediate international benchmarks in 2007 than in 1995.

Figure 16. Percentage of U.S. fourth- and eighthgrade students who reached each TIMSS international science benchmark compared with the international median percentage: 2007

${ }^{*} p<.05$. U.S. percentage is significantly different from the Trends in International Mathematics and Science (TIMSS) international median percentage. NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The TIMSS international median represents all participating TIMSS jurisdictions, including the United States. The international median represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. The standard errors for the estimates are shown in table E-24 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.
${ }^{14}$ The international median at each benchmark represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. For example, the low international benchmark median of 93 percent at grade four indicates that half of the countries have 93 percent or more of their students who met the low benchmark, and half have less than 93 percent of their students who met the low benchmark.

Figure 17. Percentage of fourth- and eighth-grade students who reached the TIMSS advanced international benchmark in science, by country: 2007

[^15]
Performance within the United States

As with mathematics, the TIMSS science data were analyzed to investigate the performance of students grouped in four ways: the highest and lowest performing students; males and females; racial and ethnic groups; and public schools serving students with different low-income concentrations.

Scores of lower and higher performing students

To examine the science performance of each participating country's higher and lower performing students, cutpoint scores were calculated for students performing at or above the 90th percentile (the top 10 percent of students) and those performing at or below the 10th percentile (the bottom 10 percent of students). The 10th and 90th percentiles cutpoint scores were calculated for each country, rather than across all countries combined.

In 2007, the highest-performing U.S. fourth-graders (those performing at or above the 90th percentile) scored 643 or higher in science (table 17). This was higher than the 90th percentile score for fourth-graders in 27 countries and lower than 2 of the 35 other countries. Of the 4 countries that outperformed the United States, on average, in science at grade four (see table 11), 2 had higher 90th percentile cutpoint scores than the United States: Singapore and Chinese Taipei. Scores at the 90th percentile ranged between 379 (Yemen) and 701 (Singapore). The difference in scores between the highest-performing students in Singapore and the United States was 58 score points.

The lowest-performing U.S. fourth-graders in science (those performing at or below the 10th percentile) scored 427 or less in 2007 (table 17). The 10th percentile score for U.S. fourthgraders was higher than the 10th percentile score in 17 countries and lower than that in 7 countries: Singapore, Chinese Taipei, the Russian Federation, Hong Kong SAR, Japan, Latvia, and the Netherlands. The range in scores at the 10th percentile was between 20 (Yemen) and 466 (Hong Kong SAR). The difference in scores between the lowestperforming students in Hong Kong SAR and the United States was 39 score points.

Table 17. Science scores of fourth- and eighth-grade students defining 10 th and 90 th percentiles, by country: 2007

Grade four			Grade eight		
Country	90th percentile	10th percentile	Country	90th percentile	10th percentile
International average	586	359	International average	573	352
Singapore	701	464	Singapore	694	421
Chinese Taipei	653	457	Chinese Taipei	665	439
Russian Federation	646	443	England ${ }^{1}$	649	427
United States ${ }^{1,2}$	643	427	Japan	648	454
England	641	438	Korea, Rep. of	646	452
Armenia	640	336	Hungary	635	437
Hungary	637	425	Czech Republic	630	447
Hong Kong SAR ${ }^{3}$	637	466	Slovenia	628	442
Italy	636	429	Russian Federation	627	427
Japan	633	459	Hong Kong SAR ${ }^{3}$	625	419
Slovak Republic	627	416	United States ${ }^{1,2}$	623	410
Australia	626	423	Australia	617	410
Latvia ${ }^{4}$	625	454	Lithuania ${ }^{4}$	616	414
Kazakhstan ${ }^{4}$	623	433	Armenia	612	366
Germany	623	427	Sweden	608	405
Austria	620	423	Jordan	601	349
Sweden	617	429	Scotland ${ }^{1}$	597	388
New Zealand	614	382	Bulgaria ${ }^{7}$	595	330
Denmark ${ }^{1}$	610	417	Malta	595	298
Slovenia	610	416	Israel ${ }^{7}$	591	329
Czech Republic	610	416	Italy	590	393
Netherlands ${ }^{5}$	598	445	Ukraine	588	374
Lithuania ${ }^{4}$	595	428	Malaysia	581	357
Scotland ${ }^{1}$	593	400	Norway	578	389
Ukraine	576	364	Thailand	578	363
Norway	570	374	Turkey	577	336
Iran, Islamic Rep. of	558	304	Bahrain	575	351
Georgia ${ }^{4}$	524	306	Romania	572	345
Colombia	522	271	Serbia ${ }^{2,4}$	571	359
El Salvador	507	267	Iran, Islamic Rep. of	566	355
Kuwait ${ }^{6}$	505	182	Bosnia and Herzegovina	565	359
Tunisia	497	119	Cyprus	556	339
Algeria	483	220	Syrian Arab Republic	546	355
Morocco	465	139	Palestinian Nat'l Auth.	543	255
Qatar	464	121	Oman	541	293
Yemen	379	20	Lebanon	539	284
			Egypt	537	275
			Kuwait ${ }^{6}$	530	298
			Georgia ${ }^{4}$	527	309
			Tunisia	524	367
			Indonesia	520	330
			Colombia	514	319
			Saudi Arabia	503	300
			Algeria	488	327
			Qatar	480	146
			Botswana	478	220
			El Salvador	477	298
			Ghana	445	163

Percentile cutpoint score is higher than U.S. cutpoint score ($p<.05$)
\square Percentile cutpoint score is not measurably different from U.S. cutpoint score ($p<.05$)
\square Percentile cutpoint score is lower than U.S. cutpoint score ($p<.05$)
${ }^{1}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{2}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{3}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{4}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
NOTE: Countries are ordered based on the 90th percentile cutpoint for science scores. Cutpoints are calculated based on distribution of student scores within each country. The international average is the average of the cutpoint scores for all reported countries. The standard errors of the estimates are shown in tables E-25 and E-26 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

On the three science content domains at grade four in 2007, the highest-performing U.S. students (90th percentile or higher) scored 641 or higher on the life science domain and 630 or higher on both the physical science or Earth science domains (figure 18). The lowest-performing U.S. students (10th percentile or lower) scored 433 or lower on the life science, physical science, and Earth science domains.

At grade eight, the highest-performing U.S. students (90th percentile or higher) in science scored 623 or higher in 2007 (table 17). This was higher than the 90th percentile score in 34 countries and lower than in 6 countries: Singapore, Chinese Taipei, England, Japan, Korea, and Hungary. The range in 90 th percentile scores was between 445 (Ghana) and 694 (Singapore). The difference in scores between the highest-performing students in Singapore and the United States was 71 score points.

At the other end of the scale, the lowest-performing U.S. eighth-graders (10th percentile or lower) scored 410 or
lower in science in 2007 (table 17). The 10th percentile score for U.S. eighth-graders was higher than the 10th percentile score in 34 countries and lower than in 8 countries: Chinese Taipei, England, Japan, Korea, Hungary, the Czech Republic, Slovenia, and the Russian Federation. The range in 10th percentile scores was between 163 (Ghana) and 454 (Japan). The difference in scores between the lowest-performing students in Japan and the United States was 44 score points.

On the four science content domains at grade eight, the highest-performing U.S. eighth-graders (90th percentile or higher) scored 633 or higher on the biology domain, 607 or higher on the chemistry domain, 603 or higher on the physics domain, and 634 or higher on the Earth science domain (figure 18). The lowest-performing U.S. students (10th percentile or lower) scored 421 or lower on the biology domain, 410 or lower on the chemistry and Earth science domains, and 399 or lower on the physics domain in 2007.

Figure 18. Cutpoints at the 10 th and 90 th percentile for science content domain scores of U.S. fourth- and eighth-grade students: 2007

NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The standard errors of the estimates are shown in table E-27 available at http://nces.ed.gov/ pubsearch/pubsinfo. asp? pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

A comparison of 1995 and 2007 shows a decline in the 90th percentile cutpoint score for U.S. fourth graders in science, the point marking the top 10 percent of students (figure 19). In 2007, the 90th percentile score was 643, 11 score points lower than the analogous score of 654 in 1995. A comparison of the 10th percentile science scores for U.S. fourth-graders in 1995 and 2007 and 2003 and 2007 shows no measurable difference.

At grade eight, the data suggest a different picture. The 90th percentile cutpoint score in science showed no measurable differences in comparisons of 2007 to 1995 or 2003, but showed a decrease when the 2007 score was compared to the 1999 score (636 v. 623). The score identifying the lowestperforming U.S. eighth-graders in science was higher in 2007 than in 1995 (410 v. 384) and in 1999 (410 v. 386).

Average scores of male and female students

In 2007, U.S. fourth-grade males and females showed no measurable difference in their average science performance (figure 20). Fourteen of the 35 other countries participating at grade four showed a significant difference in average science scores of males and females: 8 countries in favor of males and 6 in favor of females. The largest differences were 64 score points in Kuwait (in favor of females) and 15 score points in Colombia (in favor of males).

Figure 19. Trends in 10 th and 90 th percentile science scores of U.S. fourthand eighth-grade students: 1995, 1999, 2003, and 2007

${ }^{*} p<.05$. Percentile cutpoint score is significantly different from 2007 percentile cutpoint score.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). Cutpoints are calculated based on distribution of U.S. student scores. The standard errors of the estimates are shown in table E-28 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Figure 20. Difference in average science scores of fourth- and eighth-grade students, by sex and country: 2007

[^16]Although there was no measurable sex difference on the total average science score, U.S. males outperformed U.S. females in one content area: Earth science (536 v. 531; figure 21). There was no measurable difference detected in the average scores of U.S. fourth-grade males and females in either the life science or physical science domains.

Unlike their fourth-grade counterparts, U.S. eighth-grade males outperformed their female classmates in science in 2007 (figure 20). Among the 47 other countries participating in TIMSS, 24 showed a difference in the average science scores of males and females: 10 countries in favor of males and 14 in
favor of females. The largest differences were 70 score points in Qatar (in favor of females) and 35 score points in Colombia and Germany (in favor of males).

Like the overall science scale at grade eight, U.S. males scored higher, on average, than their female classmates in three of the four science content domains: biology (533 v. 527), physics (514 v. 491), and Earth science (534 v. 516; figure 21). There was no measurable difference detected in the average science scores of U.S. eighth-grade males and females in the chemistry domain.

Figure 21. Average science scores of U.S. fourth- and eighth-grade students, by content domain and sex: 2007

${ }^{*} p<.05$. Difference between average science scores for males and females is statistically significant and favors males.
NOTE: The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The standard errors of the estimates are shown in table E-31 available at http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

There was no measurable change in the average scores of either U.S. males or females at grade four when 2007 scores were compared to those from 1995 and 2003 (figure 22). However, the advantage for males decreased, from 12 scale score points in 1995 to 5 scale score points in 2003 and 2007.

At grade eight, there was also no measurable change in the average science scores of U.S. males and females or the gap between them when 2007 scores were compared to 1995 (figure 22). However, the average science score for males was lower in 2007 than it was in 2003 (526 v. 536).

Figure 22. Trends in sex differences in average science scores of U.S. fourthand eighth-grade students: 1995, 1999, 2003, and 2007

* $p<.05$. Significantly different from 2007.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). Detail may not sum to totals due to rounding. The standard errors of the estimates are shown in table E-32 available at http://nces.ed.gov/pubsearch/ pubsinfo. asp? pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Average scores of students of different races and ethnicities

In 2007, in comparison to the TIMSS scale average, U.S. White, Asian, and multiracial fourth-graders scored higher in science, on average, while U.S. Black fourth-graders scored lower (figure 23). U.S. Hispanic fourth-graders' average score showed no measurable difference from the TIMSS scale average. In comparison to the U.S. national average, U.S. White and Asian fourth-graders scored higher in science, on average, while U.S. Black and Hispanic fourth-graders scored lower. U.S. multiracial fourth-graders' average score showed no measurable difference from the U.S. national average.

At grade eight, U.S. White, Asian, and multiracial students scored higher, on average, than the TIMSS scale average in science and U.S. Black and Hispanic eighth-graders scored lower, on average (figure 23). In comparison to the U.S. national average, U.S. White and Asian eighth-graders scored higher in science, on average, while U.S. Black and Hispanic eighth-graders scored lower. U.S. multiracial eighth-graders' average score showed no measurable difference from the U.S. national average.

Examination of performance over time shows that U.S. Black and Asian fourth-graders, and U.S. Black, Hispanic, and Asian eighth-graders had an overall pattern of improvement in science, on average (figure 24). There was no measurable change in the average science scores of White and Hispanic fourth-graders, and White eighth-graders when 2007 scores were compared to those from the earlier assessments. Moreover, though significant differences remain in the average scores of White students compared with most of their classmates, the score gap between White students and their counterparts decreased from 1995, at both grades. The exception is the score gap in science between White and Hispanic fourth-graders, which showed no measurable change over the data collection years.

Figure 23. Average science scores of U.S. fourth- and eighth-grade students, by race/ethnicity: 2007

NOTE: Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. totals shown throughout the report. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population (see appendix A). See appendix A in this report for more information. The standard errors of the estimates are shown in table E-33 available at http://nces. ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Figure 24. Trends in differences in average science scores of U.S. fourth- and eighth-grade students, by selected race/ethnicity: 1995, 1999, 2003, and 2007

* $p<.05$. Significantly different from 2007.
${ }^{1}$ No fourth-grade assessment was conducted in 1999.
NOTE: Only the four numerically largest racial categories are shown. Multiracial data were not collected in 1995 and 1999. Reporting standards were not met for American Indian/Alaska Native and Native Hawaiian/Other Pacific Islander. Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Although data for some race/ethnicities are not shown separately because the reporting standards were not met, they are included in the U.S. totals shown throughout the report. In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The tests for significance take into account the standard error for the reported difference. Thus, a small difference between averages for one student group may be significant while a large difference for another student group may not be significant. See appendix A in this report for more information. The standard errors of the estimates are shown in table E-34 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1995, 1999, 2003, and 2007.

Average scores of students attending public schools of various poverty levels

The U.S. results are also arrayed by the concentration of low-income enrollment in the public schools, as measured by eligibility for free or reduced-price lunch, and shown in relation to the TIMSS scale average and the U.S. national average. In comparison to the TIMSS scale average, the average science score of U.S. fourth graders in the highest poverty public schools (at least 75 percent of students eligible for free or reduced-price lunch) in 2007 was lower; the average scores of fourth-graders in each of the other categories of school poverty was higher than the TIMSS scale average (figure 25). In comparison to the U.S. national average score, fourth-graders in schools with 50 percent or more students eligible for free or reduced-price lunch scored lower in science, on average, while those in schools with lower proportions of poor students scored higher, on average, than the U.S. national average.

In comparison to the TIMSS scale average, U.S. eighth-graders attending public schools with fewer than 50 percent of students eligible for the free or reduced-price lunch program scored higher in science, on average (figure 25). On the other hand, U.S. eighth-graders in public schools with 75 percent or more of students eligible scored lower in science, on average, than the TIMSS scale average. In comparison to the U.S. national average, U.S. eighth-graders in public schools with fewer than 25 percent of students eligible scored higher in science, on average, while students in public schools with at least 50 percent eligible scored lower, on average.

Figure 25. Average science scores of U.S. fourth- and eighth-grade students, by percentage of students in public school eligible for free or reducedprice lunch: 2007

Percentage of students eligible for free or reduced-price lunch

Percentage of students eligible for free or reduced-price lunch
NOTE: Analyses are limited to public schools only, based on school reports of the percentage of students in public school eligible for the federal free or reducedprice lunch program. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population (see appendix A). The standard errors of the estimates are shown in table E-35 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Comparisons of the 2007 average science scores to those for the earlier years within each school poverty level revealed no measurable change in the average science scores at either grade four or eight, with one exception (figure 26). ${ }^{15}$ At grade eight, students in public schools with the highest poverty levels (75 percent or more) had a higher average science score in 2007 than in 1999 (466 v. 440).

In addition, the size of the difference in average scores, or the score gap, between U.S. fourth- and eighth-graders in public schools with the lowest poverty level (less than 10 percent) and their peers attending public schools with higher poverty levels showed no measurable change (figure 26).

Effect size of the difference in average scores

As noted in the mathematics section of this report, statistically significant results do not necessarily indicate those findings that are important or large enough to consider as informing policy or practice. Small differences may be statistically significant, but may not have much practical import.

As discussed earlier, the highest scoring countries outpaced the United States on a number of measures. The difference at grade four between the U.S. average science score (539) and the Singapore average score (587) was 48 score points (see table 11). The gap between the United States and Singapore is also apparent in the percentage of students scoring at the advanced level: 15 percent of U.S. fourth-graders met the advanced international benchmark compared with 36 percent

Figure 26. Trends in differences in average science scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007

[^17][^18] comparisons over time on the poverty measure are limited to a 8 -year period.
in Singapore (see figure 17). Are differences within the United States between groups of students (e.g., by race/ethnicity or poverty concentration in schools) bigger or smaller than these international differences? Effect sizes help make these comparisons. Figure 27 shows the effect size of the difference in science only for those groups with statistically significant score differences. Appendix A includes a discussion of how effect sizes were calculated.

As shown in figure 27, and as observed in mathematics, the effect sizes between groups vary considerably. For example, in grade four science, the effect size of the difference between U.S. White and Black students is 2.2 times and between U.S. White and Hispanic students is 1.6 times the effect size
between the United States and Singapore, the country with the highest estimated score. The largest observed effect size, between U.S. fourth-graders in schools with the lowest and highest poverty levels, is 3 times the effect size between the United States and Singapore.

At grade eight, the effect size of the difference in science scores between U.S. White and Black students is 2.6 times and between U.S. White and Hispanic students is 2 times the effect size between the United States and Singapore, the country with the highest estimated score. The largest observed effect size, between U.S. eighth-graders in schools with the lowest and highest poverty levels, is 2.8 times the effect size between the United States and Singapore.

Figure 26. Trends in differences in average science scores of U.S. fourth- and eighth-grade students, by school poverty level: 1999, 2003, and 2007-Continued

[^19]NOTE: Information on the percentage of students in school eligible for free or reduced-price lunch was not collected in 1995. No fourth-grade assessment was conducted in 1999. Analyses are limited to public schools only, based on school reports of the percentage of students in school eligible for the federal free or reduced-price lunch program. In 2007, the United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of National Target Population (see appendix A). The standard errors of the estimates are shown in table E-36 available at http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2009001.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 1999, 2003, and 2007.

Figure 27. Effect size of difference in average science achievement of fourth- and eighth-grade students, by country, sex, race/ethnicity, and school poverty level: 2007

Groups compared

[^20]Page intentionally left blank

References

Beaton, A.E., and González, E. (1995). The NAEP Primer. Chestnut Hill, MA: Boston College.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale, NJ: Erlbaum.

Ferraro, D., and Van de Kerckhove, W. (2006). Trends in International Mathematics and Science Study (TIMSS) 2003: Nonresponse Bias Analysis (NCES 2007-044). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Foy, P., Joncas, M., and Zuhlke, O. (2005).TIMSS 2007 School Sampling Manual. Unpublished Manuscript, Chestnut Hill, MA: Boston College.

IEA Data Processing Center. (2006). TIMSS 2007 Data Entry Manager Manual. Hamburg, Germany: Author.

Martin, M.O., Mullis, I.V.S., and Foy, P. (2008). TIMSS 2007 International Science Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College.

Matheson, N., Salganik, L., Phelps, R., Perie, M., Alsalam, N., and Smith, T. (1996). Education Indicators: An International Perspective (NCES 96-003). U.S. Department of Education. Washington, DC: National Center for Education Statistics.

Mullis, I.V.S., Martin, M.O., and Foy, P. (2005). IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings From a Developmental Project. Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., Ruddock, G.J., O'Sullivan, C.Y., Arora, A., and Erberber, E. (2005). TIMSS 2007 Assessment Frameworks. Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., and Foy, P. (2008). TIMSS 2007 International Mathematics Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. Chestnut Hill, MA: Boston College.

National Center for Education Statistics. (2002). NCES Statistical Standards (NCES 2003-601). Institute of Education Sciences, U.S. Department of Education. Washington, DC: Author.

Olson, J.F., Martin, M.O., and Mullis, I.V.S. (2008). TIMSS 2007 Technical Report. Chestnut Hill, MA: Boston College.

Rosnow, R.L., and Rosenthal, R. (1996). Computing Contrasts, Effect Sizes, and Counternulls on Other People's Published Data: General Procedures for Research Consumers. Psychological Methods, 1:331-340.

United Nations Educational, Scientific and Cultural Organization (UNESCO). (1999). Classifying Educational Programmes Manual for ISCED-97 Implementation in OECD Countries (1999 Edition). Paris: Author. Retrieved April 9, 2008 from http://www.oecd.org/dataoecd/7/2/1962350.pdf.

Westat. (2007). WesVar 5.0 User's Guide. Rockville, MD: Author.

Page intentionally left blank

Appendix A: Technical Notes

Introduction

The Trends in International Mathematics and Science Study (TIMSS) is a cross-national comparative study of the performance and schooling contexts of fourth- and eighthgrade students in mathematics and science. In this fourth cycle of TIMSS, mathematics and science assessments and associated questionnaires were administered in 43 jurisdictions at the fourth-grade level and 56 jurisdictions at the eighth-grade level during 2007. TIMSS is coordinated by the International Association for the Evaluation of Educational Achievement (IEA), with national sponsors in each participating jurisdiction. In the United States, TIMSS is sponsored by the National Center for Education Statistics (NCES), in the Institute of Education Sciences at the U.S. Department of Education. This appendix provides an overview of the technical aspects of TIMSS 2007, including the sampling, data collection, test development and administration, weighting and variance estimation, scaling, and statistical testing procedures used to collect and analyze the data. More detailed information can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

International requirements for sampling, data collection, and response rates

In order to ensure comparability of the data across countries, the IEA provided detailed international guidelines on the various aspects of data collection described here, and implemented quality control procedures. Participating countries were obliged to follow these guidelines.

Target populations

In order to identify comparable populations of students to be sampled, the IEA defined the target populations as follows (OIson, Martin, and Mullis 2008):

Fourth-grade student population. The international desired target population is all students enrolled in the grade that represents 4 years of schooling, counting from the first year of the International Standard Classification of Education (ISCED) ${ }^{1}$ Level 1, providing that the mean age at the time of testing is at least 9.5 years. For most countries, the target grade should be the fourth grade, or its national equivalent. All students enrolled in the target grade, regardless of their age, belong to the international desired target population.

Eighth-grade student population. The international desired target population is all students enrolled in the grade that represents 8 years of schooling, counting from the first year of ISCED Level 1, providing that the mean age at the time of testing is at least 13.5 years. For most countries, the target grade should be the eighth grade, or its national equivalent. All students enrolled in the target grade, regardless of their age, belong to the international desired target population.

Teacher population. The mathematics and science teachers linked to the selected students. Note that these teachers are not a representative sample of teachers within the country. Rather, they are the mathematics and science teachers who teach a representative sample of students in two grades within the country (grades four and eight in the United States).

School population. All eligible schools ${ }^{2}$ containing either of the following: one or more fourth-grade classrooms; or one or more eighth-grade classrooms.

Sampling

The sample design employed by the TIMSS 2007 assessment is generally referred to as a three-stage stratified cluster sample. The sampling units at each stage were defined as follows.

First-stage sampling units. The first-stage sampling units consisted of individual schools selected with probability proportionate to size (PPS), size being the estimated number of students enrolled in the target grade. Prior to sampling, schools in the sampling frame could be assigned to a predetermined number of explicit or implicit strata. Schools were to be sampled using a PPS systematic sampling method. Substitution schools-schools selected to replace those that were originally sampled but refused to participatewere to be identified simultaneously.

Second-stage sampling units. The second-stage sampling units were classrooms within sampled schools. Countries were required to randomly select a minimum of one eligible classroom per target grade per school from a list of eligible classrooms prepared for each target grade. However, countries also had the option of selecting more than one eligible classroom per target grade per school and were encouraged to do so.

[^21]Third-stage sampling units. The third-stage sampling units were students within sampled classrooms. Generally, all students in a sampled classroom were to be selected for the assessment though it was possible to sample a subgroup of students within a classroom, but only after consultation with Statistics Canada, the organization serving as the sampling referee.

Sample size for the main survey

TIMSS guidelines call for a minimum of 150 schools to be sampled per grade, with a minimum of 4,000 students assessed per grade. The basic sample design of one classroom per target grade per school was designed to yield a otal sample of approximately 4,500 students per population. Countries with small class sizes or less than 30 students per school, were directed to consider sampling more schools, more classrooms per school, or both, to meet the minimum target of 4,000 tested students.

In 2007, countries that had participated in TIMSS 2003 were required to increase the size of their student samples to provide data for a bridge study. This study was designed to evaluate the effect of a small change in the assessment design between 2003 and 2007. Countries that participated in TIMSS 2003 were asked to include four additional booklets from 2003 in with the 14 booklets for TIMSS 2007 at each grade. As a result, student sample sizes needed to be increased to ensure that the number of students taking each booklet was sufficient for the purposes of scaling. The 2003-07 Bridge Study is described below in the section on "Scaling".

Exclusions

The following discussion draws on the TIMSS 2007 School Sampling Manual (Foy, Joncas, and Zuhlke 2005). All schools and students excluded from the national defined target population are referred to as the excluded population. Exclusions could occur at the school level, with entire schools being excluded, or within schools, with specific students or entire classrooms excluded. TIMSS 2007 did not provide accommodations for students with disabilities or students who were unable to read or speak the language of the test. The IEA requirement with regard to exclusions is that they should not exceed more than 5 percent of the national desired target population (Foy, Joncas, and Zuhlke 2005).

School exclusions. Countries could exclude schools that

- are geographically inaccessible;
- are of extremely small size;
- offer a curriculum, or school structure, radically different from the mainstream educational system; or
- provide instruction only to students in the excluded categories defined under "within-school exclusions," such as schools for the blind.

Within-school exclusions. Countries were asked to adapt the following international within-school exclusion rules to define excluded students:

- Students with intellectual disabilities-Students who, in the professional opinion of the school principal or other qualified staff members, are considered to have intellectual disabilities or who have been tested psychologically as such. This includes students who are emotionally or mentally unable to follow even the general instructions of the test. Students were not to be excluded solely because of poor academic performance or normal disciplinary problems.
- Students with functional disabilities-Students who are permanently physically disabled in such a way that they cannot perform in the TIMSS testing situation. Students with functional disabilities who are able to respond were to be included in the testing.
- Non-native-language speakers-Students who are unable to read or speak the language(s) of the test and would be unable to overcome the language barrier of the test. Typically, a student who had received less than 1 year of instruction in the language(s) of the test was to be excluded.

Defined participation rates

In order to minimize the potential for response biases, the IEA developed participation or response rate standards that apply to all countries and govern whether or not a nation's data are included in the TIMSS 2007 international dataset and the way in which national statistics are presented in the international reports. These standards were set using composites of response rates at the school, classroom, and student and teacher levels and response rates were calculated with and without the inclusion of substitute schools that were selected to replace schools refusing to participate.

The response rate standards determine how a jurisdiction's data will be reported in the international reports. These standards take the following two forms, distinguished primarily by whether or not meeting the school response rate of 85 percent requires the counting of substitute schools.

Category 1: Met requirements. Countries that meet all of the following conditions are considered to have fulfilled the IEA requirements: (a) a minimum school participation rate of 85 percent, based on original sampled schools only; and (b) a minimum classroom participation rate of 95 percent, from both original and substitute schools; and (c) a minimum student participation rate of 85 percent, from both original and substitute schools.

Category 2: Met requirements after substitutes. In the case of countries not meeting the category 1 requirements, provided that at least 50 percent of schools in the original sample participate, a country's data are considered acceptable if the following requirements are met: a minimum combined school, classroom and student participation rate of 75 percent, based on the product of the participation rates described above. That is, the product of (a), (b) and (c), as defined in the Category 1 standard, must be greater than or equal to 75 percent.

Countries satisfying the Category 1 standard are included in the international tabular presentations without annotation. Those only able to satisfy the Category 2 standard are included as well but are annotated to indicate their response rate status. The data from countries failing to meet either standard are presented separately in the international tabular presentations.

Sampling, data collection, and response rates in the United States and other countries

The U.S. TIMSS sample design

In the United States and most other countries, the target populations of students corresponded to the fourth and eighth grades. In sampling these populations TIMSS used a threestage stratified cluster sampling design. ${ }^{3}$ While the U.S. sampling frame was not explicitly stratified it was implicitly stratified (that is, sorted for sampling) by four categorical stratification variables: type of school (public or private), region of the country (Northeast, Central, West, Southeast); ${ }^{4}$ community type (eight levels); ${ }^{5}$ and minority status (above or below 15 percent of the student population).

The first stage made use of a systematic PPS technique to select schools for the original sample. Using a sampling frame based on the 2006 National Assessment of Educational Progress (NAEP) school sampling frame, ${ }^{6}$ schools were
selected with a probability proportionate to the school's estimated enrollment of fourth- or eighth-grade students. Data for public schools were taken from the Common Core of Data (CCD), and data for private schools were taken from the Private School Universe Survey (PSS). In addition, for each original school selected, the two neighboring schools in the sampling frame were designated as substitute schools. The first school following the original sample school was the first substitute and the first school preceding it was the second substitute. If an original school refused to participate, the first substitute was contacted. If that school also refused to participate, the second substitute was contacted. There were several constraints on the assignment of substitutes. One sampled school was not allowed to substitute for another, and a given school could not be assigned to substitute for more than one sampled school. Furthermore, substitutes were required to be in the same implicit stratum as the sampled school.

The second stage consisted of selecting intact mathematics classes within each participating school. Schools provided lists of fourth- or eighth-grade classrooms. Within schools, classrooms with fewer than 15 students were collapsed into pseudo-classrooms, so that each classroom on the school's classroom sampling frame had at least 20 students. ${ }^{7}$ An equal probability sample of two classrooms (pseudo-classrooms) was identified from the classroom frame for the school. In schools where there was only one classroom, this classroom was selected with certainty. At the fourth-grade level, 30 pseudo-classrooms were created prior to classroom sampling with 20 of these being selected in the final fourth-grade classroom sample. At the eighth-grade level, 253 pseudoclassrooms were created, of which 58 were included in the final classroom sample.

All students in sampled classrooms (pseudo-classrooms) were selected for assessment. In this way, the overall sample design for the United States was intended to approximate a self-weighting sample of students as much as possible, with each fourth- or eighth-grade student having an equal probability of selection.

[^22]
U.S.TIMSS fourth-grade sample

School sample. The fourth-grade school sample consisted of 300 schools. Ten ineligible schools were identified on the basis that they served special student populations, or had closed or altered their grade makeup since the sampling frame was developed. This left 290 schools eligible to participate, and 202 agreed to do so. The school response rate before substitution then was 70 percent unweighted. The analogous weighted school response rate was also 70 percent (see table A-1) and is given by the following formula:

$$
\begin{aligned}
& \text { weighted school response } \\
& \text { rate before replacement }
\end{aligned}=\frac{\sum_{i \in Y} W_{i} E_{i}}{\sum_{i \in(Y U N)} W_{i} E_{i}},
$$

where Y denotes the set of responding original-sample schools; N denotes the set of eligible non-responding original sample schools; W_{i} denotes the base weight for school $i ; W_{i}=$ $1 / P_{i}$, where P_{i} denotes the school selection probability for school i; and E_{i} denotes the enrollment size of age-eligible students, as indicated on the sampling frame.

In addition to the 202 participating schools from the original sample, 55 substitute schools participated for a total of 257 participating schools at the fourth grade in the United States (see table A-2). This gives a weighted (and unweighted) school participation rate after substitution of 89 percent (see table A-1). ${ }^{8}$

Classroom sample. Schools agreeing to participate were asked to list their fourth-grade mathematics classes as the basis for sampling at the classroom level, resulting in the identification of a total of 1,108 mathematics classrooms. At this time, schools were given the opportunity to identify special classes-classes in which all or most of the students had intellectual or functional disabilities or were non-nativelanguage speakers. While these classes were regarded as eligible, the students as a group were treated as "excluded" since, in the opinion of the school, their disabilities or language capabilities would render meaningless their performance on the assessment. Some 876 fourth-grade students in a total of 99 classrooms in 63 schools were excluded in this way. Schools identified 32 classrooms containing 222 students with intellectual disabilities (25 percent), 41 classrooms containing 221 students with functional disabilities (25 percent) and 26 classrooms containing 433 non-native-language speakers (50 percent). The remaining 1,009 classrooms served as the pool from which the classroom sample was drawn.

Classrooms with fewer than 15 students were collapsed into pseudo-classrooms prior to sampling so that each eligible classroom in a school had at least 20 students. Two classrooms (pseudo-classrooms) were selected per school where possible. In schools with only one classroom, this classroom was selected with certainty. Some 521 classrooms were selected as a result of this process. All selected classrooms participated in TIMSS yielding a classroom response rate of 100 percent (Olson, Martin, and Mullis 2008, exhibit A.6).

Student sample. Schools were asked to list the students in each of these 521 classrooms, along with the teachers who taught mathematics and science to these students. A total of 11,454 students were listed as a result. Subsequently, 2,454 of these students were allocated to the bridge study since they completed a TIMSS 2003 assessment booklet rather than the TIMSS 2007 assessment (see the description of the 2003-07 bridge study in the section on Scaling below). Eliminating these students from further consideration leaves 9,000 fourth-grade students as the pool of students selected to take part in TIMSS 2007 proper. These students are identified by IEA as "sampled students in participating schools" (Olson, Martin, and Mullis 2008, exhibit A.5).

This pool of students is reduced by within-school exclusions and withdrawals. At the time schools listed the students in the sampled classrooms, they had the opportunity to identify particular students who were not suited to take the test because of physical or intellectual disabilities (i.e., students with disabilities who had been mainstreamed) or because they were non-English-language speakers. Schools identified a total of 543 students they wished to have excluded from the assessment; 323 students with intellectual disabilities (59 percent), 92 students with functional disabilities (17 percent), and 128 students who were non-English-language speakers (24 percent). And, by the time of the assessment a further 140 of the listed students had withdrawn from the school or classroom. In total then, the pool of 9,000 sampled students was reduced by 683 students (543 excluded and 140 withdrawn) to yield 8,317 "eligible" students. The number of eligible students is used as the base for calculating student response rates (Olson, Martin, and Mullis 2008, exhibit A.5).

The number of eligible students was further reduced on assessment day by 421 student absences, leaving 7,896 "assessed students" identified as having completed a TIMSS 2007 assessment booklet (see Table A-2). IEA defines the student response rate as the number of students assessed as a percentage of the number of eligible students which, in this case yields a weighted (and unweighted) student response rate of 95 percent (see table A-1).

[^23]Table A-1. Coverage of target populations and participation rates, by grade and country: 2007

Country	Grade four						
	Years of formal schooling	Percentage of international desired population coverage	$\begin{array}{r} \text { National } \\ \text { desired } \\ \text { population } \\ \text { overall } \\ \text { exclusion rate } \\ \hline \end{array}$	Weighted school participation rate before substitution	Weighted school participation rate after substitution	Weighted student participation rate	
Algeria	4	100	2.1	99	99	97	97
Armenia	4	100	3.4	93	100	96	96
Australia	4	100	4.0	99	100	95	95
Austria	4	100	5.0	98	99	98	97
Chinese Taipei	4	100	2.8	100	100	100	100
Colombia	4	100	2.1	93	99	98	97
Czech Republic	4	100	4.9	89	98	94	92
Denmark	4	100	4.1	71	91	94	85
El Salvador	4	100	2.3	99	100	98	98
England	5	100	2.1	83	90	93	84
Georgia	4	85	4.8	92	100	98	98
Germany	4	100	1.3	96	100	97	96
Hong Kong SAR	4	100	5.4	81	84	96	81
Hungary	4	100	4.4	93	99	97	96
Iran, Islamic Rep. of	4	100	3.0	100	100	99	99
Italy	4	100	5.3	91	100	97	97
Japan	4	100	1.1	97	99	97	95
Kazakhstan	4	94	5.3	99	100	100	100
Kuwait	4	100	0.0	100	100	85	85
Latvia	4	72	4.6	93	97	95	92
Lithuania	5	93	5.4	99	100	94	94
Morocco	4	100	1.4	81	81	96	77
Netherlands	4	100	4.8	48	95	97	91
New Zealand	4.5-5.5	100	5.4	97	100	96	96
Norway	4	100	5.1	88	97	95	92
Qatar	4	100	1.8	100	100	97	97
Russian Federation	4	100	3.6	100	100	98	98
Scotland	5	100	4.5	77	94	94	88
Singapore	4	100	1.5	100	100	96	96
Slovak Republic	4	100	3.3	98	100	97	97
Slovenia	4	100	2.1	92	99	95	93
Sweden	4	100	3.1	98	100	97	97
Tunisia	4	100	2.9	100	100	99	99
Ukraine	4	100	0.6	96	96	97	93
United States	4	100	9.2	70	89	95	84
Yemen	4	100	2.0	99	100	98	98

[^24]
Table A-1. Coverage of target populations and participation rates, by grade and country: 2007 -Continued

Country	Grade eight						
	Years of formal schooling	Percentage of international desired population coverage	National desired population overall exclusion rate	Weighted school participation rate before substitution	Weighted school participation rate after substitution	Weighted student participation rate	Combined weighted school and student participation rate ${ }^{1}$
Algeria	8	100	0.1	99	99	96	95
Armenia	8	100	3.3	94	100	96	96
Australia	8	100	1.9	100	100	93	93
Bahrain	8	100	1.5	100	100	97	97
Bosnia and Herzegovina	8 or 9	100	1.5	100	100	98	98
Botswana	8	100	0.1	100	100	99	99
Bulgaria	8	100	20.3	94	98	96	94
Chinese Taipei	8	100	3.3	100	100	99	99
Colombia	8	100	1.6	96	100	98	98
Cyprus	8	100	2.5	100	100	96	96
Czech Republic	8	100	4.6	92	100	95	95
Egypt	8	100	0.5	99	100	98	98
El Salvador	8	100	2.8	99	100	98	98
England	9	100	2.3	78	86	88	75
Georgia	8	85	3.9	97	100	97	97
Ghana	8	100	0.9	100	100	98	98
Hong Kong SAR	8	100	3.8	73	79	96	75
Hungary	8	100	3.9	92	99	97	96
Indonesia	8	100	3.4	100	100	97	97
Iran, Islamic Rep. of	8	100	0.5	100	100	98	98
Israel	8	100	22.8	94	97	94	91
Italy	8	100	5.0	93	100	96	96
Japan	8	100	3.5	96	97	93	91
Jordan	8	100	2.0	100	100	96	96
Korea, Rep. of	8	100	1.6	100	100	99	99
Kuwait	8	100	0.3	97	97	87	84
Lebanon	8	100	1.4	81	92	93	85
Lithuania	8	92	4.2	98	99	91	90
Malaysia	8	100	3.3	100	100	98	98
Malta	9	100	2.9	100	100	95	94
Norway	8	100	2.6	88	93	93	86
Oman	8	100	1.2	100	100	99	99
Palestinian Nat'l Auth.	8	100	1.0	100	100	98	98
Qatar	9	100	0.8	100	100	97	97
Romania	8	100	1.8	99	99	97	97
Russian Federation	7 or 8	100	2.3	100	100	97	97
Saudi Arabia	8	100	0.5	99	99	95	94
Scotland	9	100	1.7	74	86	90	77
Serbia	8	80	6.8	100	100	98	98
Singapore	8	100	1.8	100	100	95	95
Slovenia	7 or 8	100	1.9	92	99	93	92
Sweden	8	100	3.6	100	100	94	94
Syrian Arab Republic	8	100	0.6	100	100	96	96
Thailand	8	100	3.4	90	100	99	99
Tunisia	8	100	0.0	100	100	98	98
Turkey	8	100	2.6	100	100	98	98
Ukraine	8	100	0.2	98	98	97	95
United States	8	100	7.9	68	83	93	77

${ }^{1}$ The combined weighted school and student participation rate is derived by multiplying the unrounded weighted school and student participation rates. NOTE: Only countries that completed the necessary steps for their data to appear in the reports from the International Study Center are listed. In addition to the countries listed above, seven separate jurisdictions participated in TIMSS 2007: the provinces of British Columbia, Ontario, and Quebec in Canada; the Basque region of Spain; Dubai, UAE; and the states of Massachusetts and Minnesota. Information on these seven jurisdictions can be found in the international TIMSS 2007 reports (Mullis, Martin, and Foy 2008; Martin, Mullis, and Foy 2008). Countries could participate at either grade level. Countries were required to sample students enrolled in the grade that represents 4 years of schooling, counting from the first year of the International Standard Classification of Education (ISCED) Level 1, providing that the mean age at the time of testing is at least 9.5 years, or students enrolled in the grade that represents eight years of schooling, counting from the first year of ISCED Level 1. In the United States and most countries, this corresponds to grade four and grade eight, respectively. In Bulgaria, the science assessment was administered to a diminished number of schools and students. The weighted school participation rate before substitution shown above refers to the mathematics assessment. This number should be reduced to 93 percent in describing the science assessment.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Note that the 876 students excluded because whole classes were excluded do not figure in the calculation of student response rates. They do, however, figure in the calculation of the coverage of the International Target Population.
Together, these 876 students excluded prior to classroom sampling, plus the 543 within-class exclusions resulted in an overall student exclusion rate of 9.2 percent (see table A-1 and Olson, Martin, and Mullis 2008, exhibit A.3). The reported coverage of the International Target Population then is 90.8 percent (see Olson, Martin, and Mullis 2008, Exhibit A.3). IEA standards define this degree of coverage as acceptable though falling outside the desired range of 95 percent or better.

Combined participation rates. The combined school, classroom, and student weighted response rate standard of 75 percent used by TIMSS in situations in which it is necessary
to recruit substitute schools was met in this instance. Both the weighted and unweighted product of the separate response rates (84 percent) exceeded this 75 percent standard (see table A-1). The application of international guidelines means, however, that U.S. statistics describing fourth-grade students are annotated in international reports to indicate that coverage of the defined student population was less than the IEA standard of 95 percent and that participation rates were met only after substitute schools were included.

Tables A-1 and A-2 are extracts from the international report Exhibits noted above and are designed to summarize information on school and student responses rates and coverage of the fourth- and eighth-grade target populations in each nation.

Table A-2. Total number of schools and students, by grade and country: 2007

Country	Grade four						
	$\begin{array}{r} \text { Schools } \\ \text { in original } \\ \text { sample } \\ \hline \end{array}$	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Algeria	150	150	149	0	149	4,366	4,223
Armenia	150	148	143	5	148	4,253	4,079
Australia	230	229	226	3	229	4,511	4,108
Austria	199	197	194	2	196	5,158	4,859
Chinese Taipei	150	150	150	0	150	4,260	4,131
Colombia	150	143	132	10	142	5,320	4,801
Czech Republic	150	147	132	12	144	4,583	4,235
Denmark	150	150	105	32	137	3,907	3,519
El Salvador	150	148	146	2	148	4,467	4,166
England	160	159	131	12	143	4,784	4,316
Georgia	152	144	131	13	144	4,384	4,108
Germany	250	247	239	7	246	5,464	5,200
Hong Kong SAR	150	150	122	4	126	3,965	3,791
Hungary	150	145	135	9	144	4,221	4,048
Iran, Islamic Rep. of	240	224	224	0	224	3,939	3,833
Italy	170	170	155	15	170	4,912	4,470
Japan	150	150	145	3	148	4,677	4,487
Kazakhstan	150	141	140	1	141	4,063	3,990
Kuwait	150	150	149	0	149	4,468	3,803
Latvia	150	150	140	6	146	4,188	3,908
Lithuania	163	156	154	2	156	4,345	3,980
Morocco	226	224	184	0	184	4,282	3,894
Netherlands	150	148	72	69	141	3,608	3,349
New Zealand	220	220	213	7	220	5,347	4,940
Norway	150	150	131	14	145	4,462	4,108
Qatar	114	114	114	0	114	7,411	7,019
Russian Federation	206	206	206	0	206	4,659	4,464
Scotland	150	148	114	25	139	4,320	3,929
Singapore	177	177	177	0	177	5,235	5,041
Slovak Republic	184	184	181	3	184	5,269	4,963
Slovenia	150	150	138	10	148	4,664	4,351
Sweden	160	155	151	4	155	4,965	4,676
Tunisia	150	150	150	0	150	4,242	4,134
Ukraine	150	150	144	0	144	4,459	4,292
United States	300	290	202	55	257	9,000	7,896
Yemen	150	144	143	1	144	6,128	5,811

See notes at end of table.

Table A-2. Total number of schools and students, by grade and country: 2007—Continued

Country	Grade eight						
	Schools in original sample	Eligible schools in original sample	Schools in original sample that participated	Substitute schools	Total schools that participated	Sampled students in participating schools	Students assessed
Algeria	150	150	149	0	149	5,793	5,447
Armenia	150	148	143	5	148	4,898	4,689
Australia	230	228	228	0	228	4,549	4,069
Bahrain	74	74	74	0	74	4,434	4,230
Bosnia and Herzegovina	150	150	150	0	150	4,373	4,220
Botswana	150	150	150	0	150	4,310	4,208
Bulgaria	170	166	158	5	163	4,312	4,019
Chinese Taipei	150	150	150	0	150	4,164	4,046
Colombia	150	148	142	6	148	5,343	4,873
Cyprus	67	67	67	0	67	4,755	4,399
Czech Republic	150	147	135	12	147	5,182	4,845
Egypt	237	233	231	2	233	6,906	6,582
El Salvador	150	145	143	2	145	4,329	4,063
England	160	160	126	11	137	4,768	4,025
Georgia	152	135	131	4	135	4,533	4,178
Ghana	163	163	163	0	163	5,678	5,294
Hong Kong SAR	152	152	112	8	120	3,657	3,470
Hungary	150	145	133	11	144	4,321	4,111
Indonesia	150	149	149	0	149	4,419	4,203
Iran, Islamic Rep. of	220	208	208	0	208	4,140	3,981
Israel	150	150	140	6	146	3,708	3,294
Italy	170	170	159	11	170	4,873	4,408
Japan	150	150	144	2	146	4,656	4,312
Jordan	200	200	200	0	200	5,733	5,251
Korea, Rep. of	150	150	150	0	150	4,358	4,240
Kuwait	163	163	158	0	158	4,721	4,091
Lebanon	150	148	120	16	136	4,062	3,786
Lithuania	150	144	141	1	142	4,537	3,991
Malaysia	150	150	150	0	150	4,589	4,466
Malta	60	59	59	0	59	5,053	4,670
Norway	150	150	133	6	139	5,085	4,627
Oman	150	146	146	0	146	4,894	4,752
Palestinian Nat'l Auth.	155	148	147	1	148	4,572	4,378
Qatar	67	67	66	0	66	7,558	7,184
Romania	150	150	149	0	149	4,447	4,198
Russian Federation	210	210	210	0	210	4,706	4,472
Saudi Arabia	167	166	165	0	165	4,515	4,243
Scotland	150	150	109	20	129	4,700	4,070
Serbia	150	147	147	0	147	4,246	4,045
Singapore	164	164	164	0	164	4,828	4,599
Slovenia	150	150	138	10	148	4,414	4,043
Sweden	160	159	158	1	159	5,712	5,215
Syrian Arab Republic	150	150	150	0	150	5,025	4,650
Thailand	150	150	134	16	150	5,579	5,412
Tunisia	150	150	150	0	150	4,258	4,080
Turkey	150	146	146	0	146	4,682	4,498
Ukraine	150	150	146	0	146	4,598	4,424
United States	300	287	197	42	239	8,447	7,377

NOTE: Only countries that completed the necessary steps for their data to appear in the reports from the International Study Center are listed. In addition to the countries listed above, seven separate jurisdictions participated in TIMSS 2007: the provinces of British Columbia, Ontario, and Quebec in Canada; the Basque region of Spain; Dubai, UAE; and the states of Massachusetts and Minnesota. Information on these seven jurisdictions can be found in the international TIMSS 2007 reports (Mullis, Martin, and Foy 2008; Martin, Mullis, and Foy 2008). Countries could participate at either grade level. Countries were required to sample students enrolled in the grade that represents 4 years of schooling, counting from the first year of the International Standard Classification of Education (ISCED) Level 1, providing that the mean age at the time of testing is at least 9.5 years, or students enrolled in the grade that represents eight years of schooling, counting from the first year of ISCED Level 1. In the United States and most countries, this corresponds to grade four and grade eight, respectively. In Bulgaria, the science assessment was administered to a diminished number of schools and students. The numbers shown in the table refer to the mathematics assessment. These should be reduced accordingly to describe the science assessment, as follows:eligible schools=142; participating schools in original sample $=134$; total participating schools=134; sampled students in participating schools=3,426; students assessed=3,079.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

U.S.TIMSS eighth-grade sample

School sample. The eighth-grade school sample consisted of 300 schools. Thirteen ineligible schools were identified on the basis that they served special student populations, or had closed or altered their grade makeup since the sampling frame was developed. This left 287 schools eligible to participate and 197 agreed to do so. The unweighted school response rate before substitution then was 69 percent. The analogous weighted school response rate was 68 percent (see table A-1).

In addition to the 197 participating schools from the original sample, 42 substitute schools participated for a total of 239 participating schools at the eighth grade in the United States (see table A-2). This gives a weighted (and unweighted) school participation rate after substitution of 83 percent (see table A-1). ${ }^{9}$

Classroom sample. Schools agreeing to participate were asked to list their eighth-grade mathematics classes as the basis for sampling at the classroom level, resulting in the identification of a total of 3,125 mathematics classrooms. At this time, schools were given the opportunity to identify special classes-classes in which all or most of the students had intellectual or functional disabilities or were non-Englishlanguage speakers. While these classes were regarded as eligible, the students as a group were treated as "excluded" since, in the opinion of the school, their disabilities or language capabilities would render meaningless their performance on the assessment. Some 2,834 eighth-grade students in a total of 308 classrooms in 133 schools were excluded in this way. Schools identified 106 classrooms containing 788 students with intellectual disabilities (28 percent), 136 classrooms containing 989 students with functional disabilities (35 percent) and 66 classrooms containing 1,057 non-native-language speakers (37 percent). The remaining 2,775 classrooms served as the pool from which the sample was drawn.

Classrooms with fewer than 15 students were collapsed into pseudo-classrooms prior to sampling so that each eligible classroom in a school had at least 20 students. Two classrooms (pseudo-classrooms) were selected per school where possible. In schools where there was only one classroom, this classroom was selected with certainty. Some 539 classrooms were selected as a result of this process. All selected classrooms participated in TIMSS yielding a classroom response rate of 100 percent (Olson, Martin, and Mullis 2008, exhibit A6).

Subsequently, schools were asked to list the students in each sampled classroom, along with the teachers who taught mathematics and science to these students. At this time, schools were given the opportunity to identify particular
students in these classrooms who were not suited to take the test because of physical or intellectual disabilities (i.e., students with disabilities who had been mainstreamed) or because they were non-native- language speakers.

Student sample. Schools were asked to list the students in each of these 539 sampled classrooms, along with the teachers who taught mathematics and science to these students. A total of 10,793 students were listed as being in the selected classrooms. Subsequently, 2,346 of these students were allocated to the bridge study since they completed a TIMSS 2003 assessment booklet rather than the TIMSS 2007 assessment (see the description of the 2003-07 bridge study in the section on Scaling below). Eliminating these students from further consideration leaves 8,447 eighth-grade students as the pool of students selected to take part in TIMSS 2007 proper. These students are identified by IEA as "sampled students in participating schools" (Olson, Martin, and Mullis 2008, exhibit A5).

This pool of students is reduced by within-school exclusions and withdrawals. At the time schools listed the students in sampled classrooms, they had the opportunity to identify particular students who were not suited to take the test because of physical or intellectual disabilities (i.e., students with disabilities who had been mainstreamed) or because they were non-native-language speakers. Schools identified a total of 272 students they wished to have excluded from the assessment; 154 students with intellectual disabilities (57 percent), 48 students with functional disabilities (18 percent) and 70 students who were non-English-language speakers (26 percent). And, by the time of the assessment a further 202 of the listed students had withdrawn from the school or classroom. In total then, the pool of 8,447 sampled students was reduced by 474 students (272 excluded and 202 withdrawn) to yield 7,973 "eligible" students. The number of eligible students is used as the base for calculating student response rates (Olson, Martin, and Mullis 2008, exhibit A5). .

The number of eligible students was further reduced on assessment day by 596 student absences, leaving 7,377 "assessed students" identified as having completed a TIMSS 2007 assessment booklet (see table A-2). The IEA defines the student response rate as the number of students assessed as a percentage of the number of eligible students which, in this case yields a weighted (and unweighted) student response rate of 93 percent (see table A-1).

Note that the 2,834 students excluded because whole classes were excluded do not figure in the calculation of student response rates. They do, however, figure in the calculation of the coverage of the International Target Population. Together, these 2,834 students excluded prior to classroom sampling, plus the 272 within-class exclusions resulted in an overall student exclusion rate of 7.9 percent (see table A-1 and Olson,

Martin, and Mullis 2008, exhibit A.3). The reported coverage of the International Target Population then is 92.1 percent (see Olson, Martin, and Mullis 2008, exhibit A.3). IEA standards define this degree of coverage as acceptable though falling outside the desired range of 95 percent or better.

Combined participation rates. The combined school, classroom and student weighted response rate standard of 75 percent used by TIMSS in situations where substitute schools were necessary was met in this instance. Both the weighted and unweighted product of the separate response rates (77 percent) exceeded this 75 percent standard (see table A-1). The application of international guidelines means, however, that U.S. statistics describing eighth-grade students are annotated in international reports to indicate that coverage of the defined student population was less than the IEA standard of 95 percent and that participation rates were met only after substitute schools were included. Table A-2 summarizes information on the coverage of the eighth-grade target populations in each nation.

Nonresponse bias in the U.S. TIMSS samples

NCES standards require a nonresponse bias analysis if the school-level response rate falls below 85 percent of the sampled schools (standard 2-2-2; National Center for Education Statistics 2002), as they did for both fourth- and eighth-grade samples. As a consequence a nonresponse bias analysis was initiated and took a form similar to that adopted for TIMSS 2003 (Ferraro and Van de Kerckhove 2006). A full report of this study will be included in a technical report to be released with the U.S. national TIMSS dataset.

Three methods were chosen to perform this analysis. The first method focused exclusively on the sampled schools and ignored substitute schools. The schools were weighted by their school base weights, excluding any nonresponse adjustment factor. The second method focused on sampled schools plus substitute schools, treating as nonrespondents those schools from which a final response was not received. Again, schools were weighted by their base weights, with the base weight for each substitute school set to the base weight of the
original school that it replaced. The third method repeated the analyses from the second method using nonresponse adjusted weights. ${ }^{10}$

In order to compare TIMSS respondents and nonrespondents, it was necessary to match the sample of schools back to the sample frame to identify as many characteristics as possible that might provide information about the presence of nonresponse bias. ${ }^{11}$ The characteristics available for analysis in the sampling frame were taken from the CCD for public schools, and from the PSS for private schools. For categorical variables, the distribution of the characteristics for respondents was compared with the distribution for all schools. The hypothesis of independence between a given school characteristic and the response status (whether or not the school participated) was tested using a Rao-Scott modified chi-square statistic. For continuous variables, summary means were calculated and the difference between means was tested using a t test. Note that this procedure took account of the fact that the two samples in question were not independent samples, but in fact the responding sample was a subsample of the full sample. This effect was accounted for in calculating the standard error of the difference. Note also that in those cases where both samples were weighted using just the base weights, the test is exactly equivalent to testing that the mean of the respondents was equal to the mean of the nonrespondents.

In addition, multivariate logistic regression models were set up to identify whether any of the school characteristics were significant in predicting response status when the effects of all potential influences were considered simultaneously.

Public and private schools were modeled together using the following variables: ${ }^{12}$ community type (central city, urban fringe/large town, rural/small town); control of school (public or private); NAEP region (Northeast, Southeast, Central, West); poverty level (percentage of students in school eligible for free or reduced-price lunch); ${ }^{13}$ number of students enrolled in fourth or eighth grade; total number of students; and, percentage minority students. ${ }^{14}$

[^25]Results for the original sample of schools. In the analyses for the original sample of schools, all substituted schools were treated as nonresponding schools. The results of these analyses follow.

- Fourth grade. In the investigation into nonresponse bias at the school level for TIMSS fourth-grade schools, comparisons between schools in the eligible sample and participating schools showed that there was no relationship between response status and the majority of school characteristics available for analysis. In separate variable-by-variable bivariate analyses, three variables were found to be related to participation: community type, region, and racial/ethnic composition. Central city schools were underrepresented among participating schools by almost 4 percent and rural small-town schools were overrepresented by the same amount. Similarly, schools in the Central region were overrepresented by close to 5 percent, and schools in the West underrepresented by about 3.5 percent in the original sample of participating schools. And, in regard to racial/ethnic composition, both the percentage of White, non-Hispanic and the percentage of American Indian or Alaska Native students were higher in participating schools than in the eligible sample. Although each of these findings indicates some potential for nonresponse bias, when all of these factors were considered simultaneously in a regression analysis, the results indicated that the only independent source of bias lay with the fact that, relative to schools in the West, schools in the Central region were somewhat overrepresented among the participating schools.
- Eighth grade. The bivariate analyses for eighth-grade schools showed no relationship between participation and any of the school characteristics examined. However, the multivariate regression analysis showed that, relative to urban fringe/large town schools, central city schools were overrepresented among the participating schools. And, relative to schools in the West region, schools in the Central region were similarly overrepresented.

Results for the final sample of schools. In the analyses for the final sample of schools, all substitute schools were included with the original schools as responding schools, leaving nonresponding schools as those for which no assessment data were available. The results of these analyses follow and are somewhat more complicated than the analyses for the original sample of schools.

- Fourth grade. The bivariate results for the final sample of fourth-grade schools indicated that two of the three
variables were still found to be related to participation: community type, and racial/ethnic composition. As in the earlier analysis, central city schools were underrepresented among participating schools (by some 2.5 percent) and rural small-town schools were overrepresented (by some 2 percent). Similarly, both the percentage of White, nonHispanic and the percentage of American Indian or Alaska Native students were higher in participating schools than in the eligible sample. In each instance the differences were substantially reduced over those seen in connection with the original sample. These same differences could not be demonstrated in the multivariate regression analysis which failed to show any variables as significant predictors of participation.

For the final sample of schools with school nonresponse adjustments applied to the weights, ${ }^{15}$ the results were identical. These results suggest that there is some potential for nonresponse bias in the fourth-grade original sample based on the characteristics studied. It also suggests that the use of substitute schools reduced the potential for bias. The school nonresponse adjustment had no effect on the characteristics of the weighted responding sample of schools.

- Eighth grade. The bivariate results for the final sample indicated that two variables were related to participation: community type, and the percentage of American Indian or Alaska Native students. Central city schools were overrepresented among participating schools by some 4 percent, and schools in urban fringe/large town were underrepresented by nearly 4 percent, And, in regard to racial/ethnic composition, the percentage of American Indian or Alaska Native students in participating schools was higher than in all eligible schools. The multivariate regression analysis indicated that, relative to urban fringe/large town schools, central city schools were overrepresented among the participating schools, and that the percentage of minority students in participating schools was lower than in all eligible schools.

With school nonresponse adjustments applied to the weights, ${ }^{16}$ the results were identical. These results suggest that there is some potential for nonresponse bias in the original sample based on the characteristics studied. It also suggests that, while there is no evidence that the use of substitute schools reduced the potential for bias, it has not added to it substantially. The school nonresponse adjustment had no effect on the characteristics of the weighted responding sample of schools.

Test development

TIMSS is a cooperative effort involving representatives from every country participating in the study. For TIMSS 2007, the test development effort began with a revision of the frameworks that are used to guide the construction of the assessment (Mullis et al. 2005). The frameworks were updated to reflect changes in the curriculum and instruction of participating countries. Extensive input from experts in mathematics and science education, assessment, and curriculum, and representatives from national educational centers around the world contributed to the final shape of the frameworks. Maintaining the ability to measure change over time was an important factor in revising the frameworks.

As part of the TIMSS dissemination strategy, approximately one half of the 2003 assessment items were released for public use. To replace assessment items that had been released, countries submitted items for review by subjectmatter specialists, and additional items were written by the IEA Science and Mathematics Review Committee
in consultation with item-writing specialists in various countries to ensure that the content, as explicated in the frameworks, was covered adequately. Items were reviewed by an international Science and Mathematics Item Review Committee and field-tested in most of the participating countries. Results from the field test were used to evaluate item difficulty, how well items discriminated between highand low-performing students, the effectiveness of distracters in multiple-choice items, scoring suitability and reliability for constructed-response items, and evidence of bias toward or against individual countries or in favor of boys or girls. As a result of this review, 196 new fourth-grade items were selected for inclusion in the international assessment. In total, 353 mathematics and science items were included in the fourth-grade TIMSS assessment booklets. At the eighth grade, the review of the item statistics from the field test led to the inclusion 240 new eighth-grade items in the assessment. In total, 429 mathematics and science items were included in the eighth-grade TIMSS assessment booklets. More detail on the distribution of new and trend items is included in table A-3.

Table A-3. Number of new and trend mathematics and science items in the TIMSS grade four and grade eight assessments, by type: 2007

	Grade four					
	All items		New items		Trend items	
	Number	Percent	Number	Percent	Number	Percent
All items						
Total	353	100	196	100	157	100
Multiple choice	189	54	108	55	81	52
Constructed response	164	46	88	45	76	48
Mathematics items						
Total	179	100	98	100	81	100
Multiple choice	96	54	55	56	41	51
Constructed response	83	46	43	44	40	49
Science items						
Total	174	100	98	100	76	100
Multiple choice	93	53	53	54	40	53
Constructed response	81	47	45	46	36	47

	Grade eight					
	All items		New items		Trend items	
	Number	Percent	Number	Percent	Number	Percent
All items						
Total	429	100	240	100	189	100
Multiple choice	224	52	117	49	107	57
Constructed response	205	48	123	51	82	43
Mathematics items						
Total	215	100	120	100	95	100
Multiple choice	117	54	61	51	56	59
Constructed response	98	46	59	49	39	41
Science items						
Total	214	100	120	100	94	100
Multiple choice	107	50	56	47	51	54
Constructed response	107	50	64	53	43	46

SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS) 2007.

Design of instruments

TIMSS 2007 included booklets containing assessment items as well as self-administered background questionnaires for principals, teachers, and students.

Assessment booklets

The assessment booklets were constructed such that not all of the students responded to all of the items. This is consistent with other large-scale assessments, such as the NAEP. To keep the testing burden to a minimum, and to ensure broad subject-matter coverage, TIMSS used a rotated block design that included both mathematics and science items. That is, students encountered both mathematics and science items during the assessment.

The 2007 fourth-grade assessment consisted of 14 booklets, each requiring approximately 72 minutes of response time. To ensure that TIMSS 2007 maintains the trend, and to provide for a correction through equating, if necessary, four additional "bridge" booklets were required but only for countries that participated in TIMSS 2003. ${ }^{17}$ These bridge study booklets were identical to booklets used in 2003. Performance on the bridge booklets did not contribute to the overall score for TIMSS 2007 but the data were used in the trend scaling that placed the 2007 results on the same scale as previous TIMSS assessments and so allowed for comparisons across the years.

For the United States and other countries participating in the 2003 assessment, this meant a total of 18 booklets. The 18 booklets were rotated among students, with each participating student completing 1 booklet only. The mathematics and
science items were each assembled separately into 14 blocks, or clusters, of items. Each block contained either mathematics items or science items only. The secure, or trend, items used in prior assessments were included in 3 blocks, with the other 11 blocks containing new items. Each of the 14 TIMSS 2007 booklets contained 4 blocks in total. The 4 additional bridge study booklets from TIMSS 2003 contained 6 blocks of items each.

The 2007 eighth-grade assessment followed the same pattern and consisted of 18 booklets, each requiring approximately 90 minutes of response time. The 18 booklets were rotated among students, with each participating student completing 1 booklet only. The mathematics and science items were assembled into 14 blocks, or clusters, of items. Each block contained either mathematics items or science items only. The secure, or trend, items used in prior assessments were included in 3 blocks, with the other 11 blocks containing new items. Each of the 14 TIMSS 2007 booklets contained 4 blocks in total. The 4 additional bridge study booklets from TIMSS 2003 contained 6 blocks of items each. Performance on the bridge booklets did not contribute to the overall score for TIMSS 2007 but the data were used in the trend scaling that placed the 2007 results on the same scale as previous TIMSS assessments and so allowed for comparisons across the years.

As part of the design process, it was necessary to ensure that the booklets showed a distribution across the mathematics and science content domains as specified in the frameworks. The number of mathematics and science items in the fourth- and eighth-grade TIMSS 2007 assessments is shown in table A-4.

Table A-4. Number of mathematics and science items in the TIMSS grade four and grade eight assessments, by type and content domain: 2007

Grade four				Grade eight			
		Response type		Content domain	Total	Response type	
Content domain	Total	Multiple choice	Constructed response			Multiple choice	Constructed response
Total	353	189	164	Total	429	224	205
Mathematics	179	96	83	Mathematics	215	117	98
Number	78	50	28	Number	63	35	28
Geometric shapes and measures	44	32	12	Algebra	64	34	30
Data display	97	14	83	Geometry	47	31	16
				Data and chance	41	17	24
Science	174	93	81				
Life science	74	42	32	Science	214	107	107
Physical science	64	35	29	Biology	76	36	40
Earth science	36	16	20	Chemistry	42	21	21
				Physics	55	31	24
				Earth science	41	19	22

SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^26]
Background questionnaires

As in prior administrations of TIMSS, TIMSS 2007 included self-administered questionnaires for principals, teachers, and students. To create the questionnaires for 2007, the 2003 versions were reviewed extensively by the national research coordinators from the participating countries as well as a Questionnaire Item Review Committee (QIRC). Based on this review, the QIRC deleted or revised some questions, and added several new ones. Like the assessment items, all questionnaire items were field tested, and the results reviewed carefully. As a result, some of the questionnaire items needed to be revised prior to their inclusion in the final questionnaires. The questionnaires requested information to help provide a context for the performance scores, focusing on such topics as students' attitudes and beliefs about learning, their habits and homework, and their lives both in and outside of school; teachers' attitudes and beliefs about teaching and learning, teaching assignments, class size and organization, instructional practices, and participation in professional development activities; and principals' viewpoints on policy and budget responsibilities, curriculum and instruction issues and student behavior, as well as descriptions of the organization of schools and courses. Detailed results from the student, teacher, and school surveys are not discussed in this report but are available in the two international reports: the TIMSS 2007 International Mathematics Report (Mullis, Martin, and Foy 2008) and TIMSS 2007 International Science Report (Martin, Mullis, and Foy 2008).

Calculator usage

Calculators were not permitted during the TIMSS fourth-grade assessment. However, the TIMSS policy on calculator use at the eighth grade was to give students the best opportunity to operate in settings that mirrored their classroom experiences. Calculators were permitted but not required for the eighth-grade assessment materials. In the United States, students assigned one of the 14 TIMSS 2007 booklets were allowed, but not required, to use calculators. However, students assigned one of the trend booklets from the 2003 assessment were required to follow the 2003 rules in this respect. These students could use a calculator only for the second half of the booklet.

Translation

Source versions of all instruments (assessment booklets, questionnaires, and manuals) were prepared in English and translated into the primary language or languages of instruction in each country. In addition, it was sometimes necessary to adapt the instrument for cultural purposes, even in countries that use English as the primary language of instruction. All adaptations were reviewed and approved by the International Study Center to ensure they did not change the substance or intent of the question or answer choices. For example, proper
names were sometimes changed to names that would be more familiar to students (e.g., Marja-leena to Maria).

Each country prepared translations of the instruments according to translation guidelines established by the International Study Center. Adaptations to the instruments were documented by each country and submitted for review. The goal of the translation guidelines was to produce translated instruments of the highest quality that would provide comparable data across countries.

Translated instruments were verified by an independent, professional translation agency prior to final approval and printing of the instruments. Countries were required to submit copies of the final printed instruments to the International Study Center. Further details on the translation process can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

Recruitment, test administration, and quality assurance

TIMSS 2007 emphasized the use of standardized procedures in all countries. Each country collected its own data, based on comprehensive manuals and trainings provided by the international project team to explain the survey's implementation, including precise instructions for the work of school coordinators and scripts for test administrators to use in testing sessions.

Recruitment of schools and students

With the exception of private schools, the recruitment of schools required several steps. Beginning with the sampled schools, the first step entailed obtaining permission from the school district to approach the sampled school(s) in that district. If a district refused permission, then the district of the first substitute school was approached and the procedure was repeated. With permission from the district, the school(s) was contacted in a second step. If a sampled school refused to participate, the district of the first substitute was approached and the permission procedure repeated. During most of the recruitment period sampled schools and substitute schools were being recruited concurrently. Each participating school was asked to nominate a School Coordinator as the main point of contact for the study. The school coordinator worked with project staff to arrange logistics and liaise with staff, students and parents as necessary.

On the advice of the school, parental permission for students to participate was sought with one of three approaches to parents: a simple notification; a notification with a refusal form; and a notification with a consent form for parents to sign. In each approach, parents were informed that their students could opt out of participating.

Gifts to schools, School Coordinators, and students. Schools, School Coordinators, and students were provided with small gifts as a sign of appreciation for their willingness to participate. Schools were provided with an all-in-one printer/photocopier/scanner/fax, School Coordinators received a TIMSS satchel, and students were given a clockcompass carabiner.

Test administration

Test administration in the United States was carried out by professional staff trained according to the international guidelines. School personnel were asked only to assist with listings of students, identifying space for testing in the school, and specifying any parental consent procedures needed for sampled students.

Quality assurance

The International Study Center monitored compliance with the standardized procedures. National research coordinators were asked to nominate one or more persons unconnected with their national center, such as retired school teachers, to serve as quality control monitors for their countries. The International Study Center developed manuals for the monitors and briefed them in 2-day training sessions about TIMSS, the responsibilities of the national centers in conducting the study, and their own roles and responsibilities. Some 30 schools in the U.S. samples were visited by the monitors- 15 of the 257 schools in the fourth-grade sample, and 15 of the 239 schools in the eighth-grade sample. These schools were scattered geographically across the nation. In addition, each country conducted its own separate quality control procedures.

Scoring and scoring reliability

The TIMSS assessment items included both multiple-choice and constructed-response items. A scoring rubric (guide) was created for every item included in the TIMSS assessments. The rubrics were carefully written and reviewed by national research coordinators and other experts as part of the field test of items, and revised accordingly.

The national research coordinator in each country was responsible for the scoring and coding of data in that country, following established guidelines. The national research coordinator and, sometimes, additional staff attended scoring training sessions held by the International Study Center. The training sessions focused on the scoring rubrics and coding system employed in TIMSS. Participants in these training sessions were provided extensive practice in scoring example items over several days. Information on within-country agreement among coders was collected and documented by the International Study Center. Information on scoring and coding reliability was also used to calculate cross-country
agreement among coders. Information on scoring reliability for constructed-response scoring in TIMSS 2007 is provided in table A-5.

Data entry and cleaning

The national research coordinator from each country oversaw data entry. The data collected for TIMSS 2007 were entered into data files with a common international format, as specified in the Data Entry Manager Manual (IEA Data Processing Center 2006), which accompanied data entry software (WinDEM) available to all participating countries. The software facilitated the checking and correction of data by providing various data consistency checks. The data were then sent to the IEA Data Processing Center (DPC) in Hamburg, Germany, for cleaning. The DPC checked that the international data structure was followed; checked the identification system within and between files; corrected single case problems manually; and applied standard cleaning procedures to questionnaire files. Results of the data cleaning process were documented by the DPC. This documentation was shared with the national research coordinator with specific questions to be addressed. The national research coordinator then provided the DPC with revisions to coding or solutions for anomalies. The DPC subsequently compiled background univariate statistics and preliminary test scores based on classical and Rasch item analyses. Detailed information on the entire data entry and cleaning process can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

Weighting, scaling, and plausible values

Before the data were analyzed, responses from the groups of students assessed were assigned sampling weights to ensure that their representation in TIMSS 2007 results matched their actual percentage of the school population in the grade assessed. With these sampling weights in place, the analyses of TIMSS 2007 data proceeded in two phases: scaling and estimation. During the scaling phase, item response theory (IRT) procedures were used to estimate the measurement characteristics of each assessment question. During the estimation phase, the results of the scaling were used to produce estimates of student achievement. Subsequent analyses related these achievement results to the background variables collected by TIMSS 2007.

Weighting

Responses from the groups of students were assigned sampling weights to adjust for over- or under-representation during the sampling of a particular group. The use of sampling weights is necessary for the computation of sound, nationally representative estimates. The weight assigned to a student's responses is the inverse of the probability that the student

Table A-5. Within-country constructed-response scoring reliability for TIMSS grade four and grade eight mathematics and science items, by exact percent score agreement and country: 2007

Country	Grade four					
	Mathematics			Science		
	Average across items	Range		Average across items	Range	
		Min	Max		Min	Max
TIMSS average	98	88	100	96	81	100
Algeria	92	58	99	88	69	98
Armenia	99	94	100	98	93	100
Australia	100	98	100	99	95	100
Austria	99	95	100	98	90	100
Chinese Taipei	98	84	100	97	74	100
Colombia	99	93	100	98	50	100
Czech Republic	98	90	100	94	78	100
Denmark	97	83	100	91	72	100
El Salvador	99	96	100	99	78	100
England	99	91	100	98	88	100
Georgia	97	88	100	92	68	100
Germany	97	75	100	93	73	100
Hong Kong SAR	100	98	100	99	98	100
Hungary	100	97	100	99	96	100
Iran, Islamic Rep. of	99	96	100	97	83	100
Italy	99	94	100	98	85	100
Japan	99	94	100	97	88	100
Kazakhstan	99	96	100	99	97	100
Kuwait	100	98	100	99	94	100
Latvia	95	41	100	85	42	100
Lithuania	98	88	100	95	80	100
Morocco	95	33	100	93	75	100
Netherlands	97	86	100	92	71	100
New Zealand	99	95	100	97	90	100
Norway	99	92	100	97	88	100
Qatar	99	91	100	99	94	100
Russian Federation	100	98	100	100	99	100
Scotland	99	91	100	97	87	100
Singapore	99	93	100	96	90	100
Slovak Republic	99	92	100	99	97	100
Slovenia	100	99	100	99	93	100
Sweden	98	89	100	93	65	100
Tunisia	98	86	100	92	77	100
Ukraine	100	98	100	100	98	100
United States	98	83	100	94	68	100
Yemen	98	83	100	96	85	100

[^27]Table A-5. Within-country constructed-response scoring reliability for TIMSS grade four and grade eight mathematics and science items, by exact percent score agreement and country: 2007-Continued

Country	Grade eight					
	Mathematics			Science		
	Average across items	Range		Average across items	Range	
		Min	Max		Min	Max
TIMSS average	98	89	100	96	82	100
Algeria	95	60	100	94	75	100
Armenia	99	94	100	98	89	100
Australia	99	93	100	97	88	100
Bahrain	100	97	100	94	78	100
Bosnia and Herzegovina	98	90	100	95	74	100
Botswana	98	84	100	95	79	100
Bulgaria	96	70	100	91	69	100
Chinese Taipei	98	47	100	94	66	100
Colombia	99	92	100	98	88	100
Czech Republic	98	86	100	93	75	100
Egypt	99	94	100	97	88	100
El Salvador	100	98	100	100	98	100
England	99	94	100	97	88	100
Georgia	97	76	100	92	67	100
Ghana	100	98	100	99	96	100
Hong Kong SAR	99	95	100	99	96	100
Hungary	98	84	100	95	86	100
Indonesia	98	90	100	97	81	100
Iran, Islamic Rep. of	99	93	100	97	86	100
Israel	96	82	100	92	74	100
Italy	99	85	100	96	63	100
Japan	97	84	100	91	54	100
Jordan	100	97	100	99	93	100
Korea, Rep. of	99	96	100	99	95	100
Kuwait	99	96	100	99	88	100
Lebanon	100	97	100	100	97	100
Lithuania	98	94	100	97	90	100
Malaysia	99	96	100	99	96	100
Malta	97	81	100	93	81	100
Norway	99	94	100	97	88	100
Oman	99	95	100	99	95	100
Palestinian Nat'l Auth.	98	89	100	94	82	100
Qatar	99	91	100	99	95	100
Romania	99	96	100	99	89	100
Russian Federation	100	98	100	99	93	100
Saudi Arabia	100	97	100	99	90	100
Scotland	99	95	100	97	84	100
Serbia	99	94	100	97	74	100
Singapore	98	93	100	96	90	100
Slovenia	100	98	100	100	95	100
Sweden	98	86	100	92	70	100
Syrian Arab Republic	99	95	100	99	92	100
Thailand	98	89	100	90	73	100
Tunisia	97	87	100	91	61	100
Turkey	100	95	100	97	81	100
Ukraine	98	80	100	92	68	100
United States	97	86	100	93	73	100

[^28]would be selected for the sample. When responses are weighted, none are discarded, and each contributes to the results for the total number of students represented by the individual student assessed. Weighting also adjusts for various situations (such as school and student nonresponse) because data cannot be assumed to be randomly missing. The internationally defined weighting specifications for TIMSS require that each assessed student's sampling weight should be the product of (1) the inverse of the school's probability of selection, (2) an adjustment for school-level nonresponse, (3) the inverse of the classroom's probability of selection, and (4) an adjustment for student-level nonresponse. ${ }^{18}$ All TIMSS 1995, 1999, 2003, and 2007 analyses are conducted using sampling weights. A detailed description of this process is provided in the TIMSS Technical 2007 Report (Olson, Martin, and Mullis 2008).

Scaling

In TIMSS, scale scores were estimated for each student using an item response theory (IRT) model. With IRT the difficulty of each item is deduced using information about how likely it is for students to get some items correct versus other items. Once the difficulty of each item is determined, the ability of each student can be estimated even when different students have been administered different items. At this point in the estimation process achievement scores are expressed in a standardized logit scale which ranges from -4 to +4 . In order to make the scores more meaningful and to facilitate their interpretation, the scores are transformed to a new scale with a mean of 500 and a standard deviation of 100.

The procedures TIMSS used for the analyses were developed to produce accurate results for groups of students while limiting the testing burden on individual students. Furthermore, these procedures provided data that could be readily used in secondary analyses. IRT scaling provides estimates of item parameters (e.g., difficulty, discrimination) that define the relationship between the item and the underlying variable measured by the test. Parameters of the IRT model are estimated for each test question, with an overall scale being established as well as scales for each content area and cognitive domain specified in the assessment framework. For example, the TIMSS 2007 eighth-grade assessment had four scales describing four mathematics content areas and four science content areas, as well as three cognitive domains in each of mathematics and science.

In order to allow for the calculation of trends in achievement, comparisons of scores were necessary across the four TIMSS assessments conducted in 1995, 1999, 2003 and 2007. IRT estimation procedures were used to place scores from the multiple administrations on the same scale (the scale of the

1995 administration). This is made possible by the inclusion of common test items in successive administrations. This allows comparison of item parameters (such as the relative difficulty of items compared with each other and how well individual items predict overall scores) across administrations. This comparison of item parameters is used to drop items whose item parameters change dramatically across administrations and to equate scales across years. It is important to note that the item parameters do not depend directly on the average ability level of the students tested, though they may depend on the range of abilities among students tested (for example, to determine which of two difficult items is more difficult, it is important to test students of sufficient ability to get at least one of the items correct). Therefore, even if the average ability levels of students in countries participating in TIMSS over time changes, the scales still can be equated across administrations.

In TIMSS, scales are equated across administrations by linking the data from each administration to the data from the administration that preceded it, as follows. Data for students in adjacent assessments are pooled together and scaled using IRT to determine the difficulty and discrimination of each item. This puts the scores from adjacent assessments on the same scale. The achievement scores estimated from the new item parameters are then put on the original 1995 TIMSS metric by a linear transformation.

For example, in order to allow an examination of trends in eighth-grade achievement between 1995 and 1999, the TIMSS 1999 eighth-grade data were placed on the 1995 TIMSS scale by first scaling the 1995 and 1999 data for countries that participated in both years together to determine the item parameters. Ability estimates for all students (those assessed in 1995 and those assessed in 1999) based on the new item parameters were then estimated. In order to put these jointly calibrated 1995 and 1999 scores on the 1995 metric, a linear transformation is applied. This transformation is designed to give the jointly calibrated 1995 scores the same mean and standard deviation as the original 1995 scores that were reported in the 1995 assessment cycle. Once this linear transformation is established it is applied to the 1999 assessment scores for all countries participating in 1999. This puts the 1999 scores on the 1995 (longitudinal) metric while preserving any growth that has occurred between assessments.

Following this same procedure, TIMSS 2003 scores were jointly calibrated with the 1999 scores to place them on the same (1995) metric and, finally, TIMSS 2007 scores were jointly calibrated with the 2003 scores to place these on the same (1995) metric. By linking scores for each adjacent pair of assessments, all four sets of scores are placed on the same

[^29]longitudinal scale. As a result, even if the makeup of the countries participating in TIMSS changes over time, achievement comparisons within and between countries are legitimate at a single point in time and across time.

Information obtained from the bridge study described below was incorporated into this scaling to ensure strict comparability of scores across the four assessments. Details are provided in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

The 2003-07 Bridge Study. As the name suggests, TIMSS places a great deal of emphasis on the measurement of trends in achievement within and between countries. TIMSS provides for the measurement of these trends across the four TIMSS assessment years (1995, 1999, 2003, and 2007) by placing the scores from each assessment on the same scale. However, the TIMSS assessment design changed a little in 2007, and it was considered prudent to devise a procedure to measure the effect of this change, if any, on the comparability of the 2007 assessment scores with those from previous years. Given an effect, the intent was to incorporate a correction into the scaling procedures which establish the comparability of the 2007 achievement scores with those from 1995, 1999, and 2003.

In order to evaluate the effect of the change in assessment design in TIMSS 2007, a bridge study was incorporated into the main survey to allow a comparison of the 2007 assessment with the 2003 assessment. Countries that participated in TIMSS 2003 were asked to include four additional booklets from 2003 in with the 14 booklets for TIMSS 2007 at each grade. As a result, sample sizes needed to be increased to ensure that the number of students taking each booklet was sufficient for the purposes of scaling.

The findings from the bridge study indicated a small effect from the change in the assessment design. To accommodate this, a correction was introduced into the scaling procedures which placed the 2007 assessment scores on the same scale as the scores from the 1995, 1999 and 2003 assessments. A detailed description of the bridge study is provided in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

Plausible values

To keep student burden to a minimum, TIMSS administered a limited number of assessment items to each student-too few to produce accurate content-related scale scores for each student. To accommodate this situation, during the scaling process plausible values were estimated to characterize students participating in the assessment. Plausible values are imputed values and not test scores for individuals in the usual sense. In fact, they are biased estimates of the proficiencies of individual students. Plausible values do, however, provide unbiased estimates of population characteristics.

Plausible values represent what the true performance of an individual might have been, had it been observed. They are estimated as random draws (usually five) from an empirically derived distribution of score values based on the student's observed responses to assessment items and on background variables. Each random draw from the distribution is considered a representative value from the distribution of potential scale scores for all students in the sample who have similar characteristics and identical patterns of item responses. Differences between the plausible values quantify the degree of precision (the width of the spread) in the underlying distribution of possible scale scores that could have caused the observed performances.

An accessible treatment of the derivation and use of plausible values can be found in Beaton and González (1995). A more technical treatment can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

International benchmarks

International benchmarks for achievement were developed in an attempt to provide a concrete interpretation of what the scores on the TIMSS mathematics and science achievement scales mean (for example, what it means to have a scale score of 513 or 426). To describe student performance at various points along the TIMSS mathematics and science achievement scales, TIMSS used scale anchoring to summarize and describe student achievement at four points on the mathematics and science scales-Advanced International Benchmark (625), High International Benchmark (550), Intermediate International Benchmark (475), and Low International Benchmark (400). Scale anchoring involves selecting benchmarks (scale points) on the TIMSS achievement scales to be described in terms of student performance and then identifying items that students scoring at the anchor points can answer correctly. Subsequently, these items are grouped by content area within benchmarks and reviewed by mathematics and science experts. These experts focus on the content of each item and describe the kind of mathematics or science knowledge demonstrated by students answering the item correctly. The experts then provide a summary description of performance at each anchor point leading to a content-referenced interpretation of the achievement results. Detailed information on the creation of the benchmarks is provided in the international TIMSS reports (Mullis, Martin, and Foy 2008; Martin, Mullis, and Foy 2008).

Data limitations

As with any study, there are limitations to TIMSS 2007 that researchers should take into consideration. Estimates produced using data from TIMSS 2007 are subject to two types of error-nonsampling and sampling errors.

Nonsampling errors can be due to errors made in collecting and processing data. Sampling errors can occur because the data were collected from a sample rather than a complete census of the population.

Nonsampling errors

Nonsampling error is a term used to describe variations in the estimates that may be caused by population coverage limitations, nonresponse bias, and measurement error, as well as data collection, processing, and reporting procedures. The sources of nonsampling errors are typically problems like unit and item nonresponse, the difference in respondents' interpretations of the meaning of the survey questions, response differences related to the particular time the survey was conducted, and mistakes in data preparation.

Missing data. Five kinds of missing data were identified by separate missing data codes: omitted, uninterpretable, not administered, not applicable, and not reached. An item was considered omitted if the respondent was expected to answer the item but no response was given (e.g., no box was checked in the item which asked "Are you a girl or a boy?"). Items with invalid responses (e.g., multiple responses to a question calling for a single response) were coded as uninterpretable. The not administered code was used to identify items not administered to the student, teacher or principal (e.g., those items excluded from the student's test booklet because of the BIB-spiraling of the items). An item was coded as not applicable when it is not logical that the respondent answer the question (e.g., when the opportunity
to make the response is dependent on a filter question). Finally, items that are not reached were identified by a string of consecutive items without responses continuing through to the end of the assessment or questionnaire.

Missing background data on other than key variables ${ }^{19}$ are not included in the analyses for this report and are not imputed. Item response rates for variables discussed in this report exceeded the NCES standard of 85 percent and so can be reported without notation. Of the three key variables identified in the TIMSS 2007 data for the United State-sex, race/ ethnicity and the percentage of students eligible for free- or reduced-price lunch (FRPL)—as table A-6 indicates, sex has no missing responses and race/ethnicity missing responses are minimal at some 2 percent. The FRPL variable, however, has some 17 percent missing responses among the public schools in the sample and these were imputed by substituting values taken from the CCD for the schools in question. Note, however, that the CCD provides this information only for public schools. The comparable database for private schools (PPS) does not include data on participation in the FRPL program. While most private schools are ineligible for this Federal program, a few indicated that some of their students were taking part-6 of the 18 fourth-grade schools and 3 of the 14 eighth-grade schools. The reported values for these schools are included along with the zero values for schools who reported that they had no students taking part. Missing value codes then are assigned only to the 3 fourthgrade and 7 eighth-grade private schools who did not respond to the question.

Table A-6. Weighted response rates for unimputed variables for TIMSS grade four and grade eight: 2007

Variable	Variable ID	Source of information	Grade four		Grade eight	
			U.S. $\begin{array}{r}\text { response } \\ \text { rate }\end{array}$	Range of response rates in other countries	U.S. $\begin{array}{r}\text { response } \\ \text { rate }\end{array}$	Range of response rates in other countries
Sex	ITSEX	Classroom tracking form	100	99.5-100 ${ }^{1}$	100	100
Race/ethnicity	STRACE	Student questionnaire	98	\dagger	98	\dagger
Free or reduced-price lunch	FRLUNCH	School questionnaire	83	\dagger	83	\dagger

\dagger Not applicable.
${ }^{1}$ All countries other than Morocco achieved 100 percent response on this variable.
NOTE: FRLUNCH variable available for public schools only.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^30]
Sampling errors

Sampling errors arise when a sample of the population, rather than the whole population, is used to estimate some statistic. Different samples from the same population would likely produce somewhat different estimates of the statistic in question. This fact means that there is a degree of uncertainty associated with statistics estimated from a sample. This uncertainty is referred to as sampling variance and is usually expressed as the standard error of a statistic estimated from sample data. The approach used for calculating standard errors in TIMSS was Jackknife Repeated Replication (JRR). Standard errors can be used as a measure for the precision expected from a particular sample. Standard errors for all of the reported estimates are included in appendix C.

Confidence intervals provide a way to make inferences about population statistics in a manner that reflects the sampling error associated with the statistic. Assuming a normal distribution, the population value of this statistic can be inferred to lie within the confidence interval in 95 out of 100 replications of the measurement on different samples drawn from the same population.

That is, there is a 95 percent chance that the population value of the statistic lies within the range of 1.96 times the standard error above or below the estimated score. For example, the average mathematics score for the U.S. eighth-grade students was 508 in 2007, and this statistic had a standard error of 2.8. Therefore, it can be stated with 95 percent confidence that the actual average of U.S. eighth-grade students in 2007 was between 503 and 514 ($1.96 \times 2.8=5.5$; confidence interval $=508+/-5.5)$.

Description of background variables

The international versions of the TIMSS 2007 student, teacher, and school questionnaires are available at http:// timss.bc.edu. The U.S. versions of these questionnaires are available at http://nces.ed.gov/timss.

Race/ethnicity

Students' race/ethnicity was obtained through student responses to a two-part question. Students were asked first whether they were Hispanic or Latino, and then whether they
were members of the following racial groups: American Indian or Alaska Native; Asian; Black or African American; Native Hawaiian or other Pacific Islander; or White. Multiple responses to the race classification question were allowed. Results are shown separately for Blacks, Hispanics, Whites, Asians and Mixed-Race as distinct groups. The small numbers of students indicating that they were American Indian or Alaska Native or Native Hawaiian or other Pacific Islander were combined into a group labeled "Other." This category is treated as a residual category and is not reported separately in the analyses.

Poverty level in public schools (percentage of students eligible for free or reduced-price lunch)

The poverty level in public schools was obtained from principals' responses to the school questionnaire. The question asked the principal to report, as of approximately the first of October 2006, the percentage of students at the school eligible to receive free or reduced-price lunch through the National School Lunch Program. The answers were grouped into five categories: less than 10 percent; 10 to 24.9 percent; 25 to 49.9 percent; 50 to 74.9 percent; and 75 percent or more. Analysis was limited to public schools only. Missing data on this variable were replaced with measures taken from the CCD. The effect of this replacement on the confidentiality of the data was examined as part of the confidentiality analyses described in the following section.

Confidentiality and disclosure limitations

In accord with NCES standard 4-2-6 (National Center for Education Statistics 2002), confidentiality analyses for the United States were implemented to provide reasonable assurance that public-use data files issued by the IEA would not allow identification of individual U.S. schools or students when compared against publicly available data collections. Disclosure limitations included the identification and masking of potential disclosure risks for TIMSS schools and adding an additional measure of uncertainty of school, teacher, and student identification through random swapping of a small number of data elements within the student, teacher, and school files.

Statistical procedures

Tests of significance

Comparisons made in the text of this report were tested for statistical significance. For example, in the commonly made comparison of country averages against the average of the United States, tests of statistical significance were used to establish whether or not the observed differences from the U.S. average were statistically significant. The estimation of the standard errors that are required in order to undertake the tests of significance is complicated by the complex sample and assessment designs, both of which generate error variance. Together they mandate a set of statistically complex procedures in order to estimate the correct standard errors. As a consequence, the estimated standard errors contain a sampling variance component estimated by the jackknife repeated replication (JRR) procedure; and, where the assessments are concerned, an additional imputation variance component arising from the assessment design. Details on the procedures used can be found in the WesVar 5.0 User's Guide (Westat 2007).

In almost all instances, the tests for significance used were standard t tests. ${ }^{20}$ These fell into two categories according to the nature of the comparison being made: comparisons of independent and nonindependent samples. Before describing the t tests used, some background on the two types of comparisons is provided below.

The variance of a difference is equal to the sum of the variances of the two initial variables minus two times the covariance between the two initial variables. A sampling distribution has the same characteristics as any distribution, except that units consist of sample estimates and not observations. Therefore,

$$
\sigma_{\left(\hat{\mu}_{X^{-}} \hat{\mu}_{Y}\right)}=\sigma_{\left(\hat{\mu}_{X}\right)}^{2}+\sigma_{\left(\hat{\mu}_{Y}\right)-2 \operatorname{cov}\left(\hat{\mu}_{X}, \hat{\mu}_{Y}\right)}
$$

The sampling variance of a difference is equal to the sum of the two initial sampling variances minus two times the covariance between the two sampling distributions on the estimates.

If one wants to determine whether girls' performance differs from boys' performance, for example, then, as for all statistical analyses, a null hypothesis has to be tested. In this particular example, it consists of computing the difference between the boys' performance mean and the girls' performance mean (or the inverse). The null hypothesis is

$$
H_{0}: \hat{\mu}_{(\text {boys })}-\hat{\mu}_{(\text {girls })}=0
$$

To test this null hypothesis, the standard error on this difference is computed and then compared to the observed difference. The respective standard errors on the mean estimate for boys and girls ($\left.\sigma_{\left(\hat{\mu}_{\text {boys }}\right),} \sigma_{\left(\hat{\mu}_{\text {girls }}\right)}\right)$ can be easily computed.

The expected value of the covariance will be equal to 0 if the two sampled groups are independent. If the two groups are not independent, as is the case with girls and boys attending the same schools within a country, or comparing a country mean with the international mean that includes that particular country, the expected value of the covariance might differ from 0.

In TIMSS, country samples are independent. Therefore, for any comparison between two countries, the expected value of the covariance will be equal to 0 , and thus the standard error on the estimate is

$$
\sigma_{\left(\hat{\theta}_{i}-\hat{\theta}_{j}\right)}=\sqrt{\sigma_{\left(\hat{\theta}_{i}\right)}^{2}+\sigma_{\left(\hat{\theta}_{j}\right)}^{2}}
$$

with θ being any statistic.
Within a particular country, any subsamples will be considered as independent only if the categorical variable used to define the subsamples was used as an explicit stratification variable.

If sampled groups are not independent, the estimation of the covariance between, for instance, $\hat{\mu}_{\text {(boys) }}$ and $\hat{\mu}_{\text {(girls) }}$ would require the selection of several samples and then the analysis of the variation of $\hat{\mu}_{\text {(boys) }}$ in conjunction with $\hat{\mu}_{\text {(girls). }}$. Such a procedure is, of course, unrealistic. Therefore, as for any computation of a standard error in TIMSS, replication methods using the supplied replicate weights are used to estimate the standard error on a difference. Use of the replicate weights implicitly incorporates the covariance between the two estimates into the estimate of the standard error on the difference.

Thus, in simple comparisons of independent averages, such as the U.S. average with other country averages, the following formula was used to compute the t statistic:

$$
t=\frac{\left(e s t_{1}-e s t_{2}\right)}{\sqrt{\left(s e_{1}\right)^{2}+\left(s e_{2}\right)^{2}}}
$$

$E s t_{1}$ and est t_{2} are the estimates being compared (e.g., average of country A and the U.S. average), and $s e_{1}$ and $s e_{2}$ are the corresponding standard errors of these averages.

The second type of comparison used in this report occurred when comparing differences of nonsubset, nonindependent groups (e.g., when comparing the average scores of males versus females within the United States). In such comparisons, the following formula was used to compute the t statistic:

$$
t=\frac{\left(e s t_{g r p 1}-e s t_{g I p ~ 2}\right)}{s e\left(e s t_{g r p 1}-e s t_{g r p 2}\right)}
$$

Est $t_{\text {grp } 1}$ and est $t_{\text {grp } 2}$ are the nonindependent group estimates being compared. $\mathrm{Se}\left(\right.$ est $_{\text {grp }} 1$ - est grp_{2}) is the standard error of the difference calculated using a JRR procedure, which accounts for any covariance between the estimates for the two nonindependent groups.

[^31]
Effect size

Tests of statistical significance are, in part, influenced by sample sizes. To provide the reader with an increased understanding of the importance of the significant difference between student populations in the United States, effect sizes are included in the report. Effect sizes use standard deviations, rather than standard errors and, therefore, are not influenced by the size of the student population samples. Following Cohen (1988) and Rosnow and Rosenthal (1996), effect size is calculated by finding the difference between the means of two groups and dividing that result by the pooled standard deviation of the two groups:

$$
d=\frac{e s t_{\text {grp } 1}-e s t_{\text {grp } 2}}{s d_{\text {pooled }}}
$$

Est $t_{\text {grp } 1}$ and est $t_{\text {grp } 2}$ are the student group estimates being compared. $S d_{\text {pooled }}$ is the pooled standard deviation of the groups being compared. The formula for the pooled standard deviation is as follows (Rosnow and Rosenthal 1996):

$$
s d_{\text {pooled }}=\sqrt{\frac{s d_{1}^{2}+s d_{2}^{2}}{2}}
$$

where $s d_{1}$ and $s d_{2}$ are the standard deviations of the groups being compared.

For example, to calculate the effect size between the 2007 fourth-grade U.S. average and Hong Kong SAR average in mathematics, the difference in the estimated averages (607$529=78$) is divided by the pooled standard deviation. The pooled standard deviation is calculated by finding the square root of the sum of the squared standard deviations for the United States ($\mathrm{sd}=75$) and Hong Kong SAR $(\mathrm{sd}=67)$ divided by 2 . Using this formula, the pooled standard deviation is 71 . Dividing the difference in average scores (78) by the pooled standard deviation (71) produces an effect size of 1.1.

Table A-7 shows the differences in average scores, standard deviations, pooled standard deviations, and effect sizes for the comparisons reported in figures 14 and 27. The standard deviations for all countries and U.S. student subpopulations discussed in this report are provided in tables E-18 and E-19 (mathematics) and E-37 and E-38 (science).

Table A-7. Difference between average scores, standard deviations, and pooled standard deviations used to calculate effects sizes of mathematics and sciences scores of fourth- and eighthgrade students, by country, sex, race/ethnicity, and school poverty level: 2007

Subject/grade and groups compared	Difference in average scores	Standard deviation of group 1	Standard deviation of group 2	Pooled standard deviation	$\begin{array}{r} \text { Effect } \\ \text { size } \end{array}$
Mathematics grade four					
United States v. Hong Kong SAR	78	75	67	71	1.1
U.S. males v. U.S. females	6	77	74	76	0.1
U.S. White students v. U.S. Black students	67	68	70	69	1.0
U.S. White students v. U.S. Hispanic students	46	68	70	69	0.7
U.S. White students v. U.S. Asian students	33	68	74	71	0.5
U.S. White students v. U.S. multiracial students	15	68	84	76	0.2
U.S. public schools with lowest levels of poverty v. U.S. schools with highest levels of poverty	103	64	72	68	1.5
Mathematics grade eight					
United States v. Chinese Taipei	90	77	106	93	1.0
U.S. White students v. U.S. Black students	76	69	70	70	1.1
U.S. White students v. U.S. Hispanic students	58	69	73	71	0.8
U.S. White students v. U.S. Asian students	16	69	68	69	0.2
U.S. White students v. U.S. multiracial students	27	69	73	71	0.4
U.S. public schools with lowest levels of poverty v. U.S. schools with highest levels of poverty	92	65	74	70	1.3
Science grade four					
United States v. Singapore	48	84	93	89	0.5
U.S. White students v. U.S. Black students	79	73	76	75	1.1
U.S. White students v. U.S. Hispanic students	65	73	81	77	0.8
U.S. White students v. U.S. multiracial students	17	73	85	79	0.2
U.S. public schools with lowest levels of poverty v. U.S. schools with highest levels of poverty	113	67	81	74	1.5
Science grade eight					
United States v. Singapore	47	82	104	94	0.5
U.S. males v. U.S. females	12	85	79	82	0.1
U.S. White students v. U.S. Black students	96	70	73	72	1.3
U.S. White students v. U.S. Hispanic students	71	70	77	74	1.0
U.S. White students v. U.S. multiracial students	29	70	77	74	0.4
U.S. public schools with lowest levels of poverty v. U.S. schools with highest levels of poverty	105	68	79	74	1.4

NOTE: Difference calculated by subtracting average score of group 1 from average score of group 2. Standard deviations and pooled standard deviations are shown only for statistically significant differences between group means. The pooled standard deviation is calculated by finding the square root of the sum of the squared standard deviations for the groups being compared divided by 2, following Rosnow and Rosenthal (1996). Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. Highpoverty schools are those in which 75 percent or more of students are eligible for the federal free or reduced-lunch program. Low-poverty schools are those in which less than 10 percent of students are eligible. The United States met guidelines for sample participation rates only after substitutes schools were included. The National Defined Population covered 90 to 95 percent of the National Target
Population. See tables E-18 and E-19 (available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001) for standard deviations of the U.S. and other countries' student populations in mathematics. See tables E-37 and E-38 (available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001) for the analogous standard deviations in science.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

Appendix B: Example Items

Exhibit B1. Example fourth-grade mathematics item: 2007

Content Domain	Number
Cognitive Domain	Applying

Al wanted to find how much his cat weighed. He weighed himself and noted that the scale read 57 kg . He then stepped on the scale holding his cat and found that it read 62 kg .
What was the weight of the cat in kilograms?

Answer:_ $\quad 5 \quad$ kilograms

Country	Percent full credit
International average	60
Chinese Taipei	95
Singapore	87
Russian Federation	86
Hong Kong SAR ${ }^{1}$	86
Kazakhstan ${ }^{2}$	85
Netherlands ${ }^{3}$	85
Japan	83
Lithuania ${ }^{2}$	81
Austria	80
Germany	80
Latvia ${ }^{2}$	80
Czech Republic	76
Denmark ${ }^{4}$	75
Hungary	73
Slovenia	69
Italy	68
Ukraine	68
Norway	67
Sweden	66
Armenia	65
Scotland ${ }^{4}$	64
England	63
Australia	61
Slovak Republic	60
United States ${ }^{4,5}$	60
Georgia ${ }^{2}$	59
New Zealand	53
Iran, Islamic Rep. of	43
Tunisia	28
Algeria	23
El Salvador	21
Morocco	19
Colombia	18
Kuwait ${ }^{6}$	12
Qatar	9
Yemen	5

[^32]Exhibit B2. Example fourth-grade mathematics item: 2007

Content Domain	Geometric Shapes and Measures
Cognitive Domain	Knowing

The square is cut into 7 pieces. Put an X on each of the 2 triangles that are the same size and shape.

Country	Percent full credit
International average	72
Hong Kong SAR ${ }^{1}$	91
Slovenia	91
Lithuania ${ }^{2}$	89
Denmark ${ }^{3}$	88
Scotland ${ }^{3}$	88
England	88
Singapore	88
Japan	87
Italy	87
Sweden	86
Australia	85
United States ${ }^{\text {3,4 }}$	85
Slovak Republic	84
Norway	84
Czech Republic	83
Austria	82
Chinese Taipei	81
Hungary	81
Latvia ${ }^{2}$	81
Russian Federation	81
New Zealand	81
Netherlands ${ }^{5}$	79
Kazakhstan ${ }^{2}$	77
Germany	76
Armenia	74
Ukraine	67
Colombia	59
Georgia ${ }^{2}$	59
Iran, Islamic Rep. of	58
El Salvador	50
Algeria	44
Kuwait ${ }^{6}$	40
Morocco	39
Tunisia	38
Qatar	32
Yemen	13

[^33]Exhibit B3. Example fourth-grade mathematics item: 2007

Content Domain	Data Display
Cognitive Domain	Reasoning

Class A and B each have 40 students.

Class B

There are more girls in Class A than in Class B. How many more?

- 14
(B) 16
\circ
$\stackrel{0}{*}$
$\stackrel{3}{8}$
(C) 24
(D) 30

[^34]Exhibit B4. Example eighth-grade mathematics item: 2007

Content Domain	Number
Cognitive Domain	Knowing

Which circle has approximately the same fraction of its area shaded as the rectangle above?

(B)

(C)

(E)

[^35]${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
Trends in International Mathematics and Science Study (TIMSS), 2007.

Percent
Country
full credit
International average
Korea, Rep. of 89
Japan
Hong Kong SAR ${ }^{1,2}$
Chinese Taipei
United States ${ }^{2,3}$
Singapore
Sweden
England ${ }^{2}$
Hungary
Australia
Czech Republic
Lithuania ${ }^{4}$
Malaysia
Scotland ${ }^{2}$
Norway
Russian Federation
Slovenia
Malta
Italy
Cyprus
Thailand 68
Israel ${ }^{5}$
Turkey
Ukraine
Romania
Bahrain
Tunisia 61
Serbia ${ }^{3,4} 60$
Bulgaria 59
Kuwait ${ }^{6} 56$

Iran, Islamic Rep. of 55
Lebanon 55

Colombia 54
Algeria 54
Bosnia and Herzegovina
Indonesia
Syrian Arab Republic
Georgia ${ }^{4}$
Jordan $\quad 48$
El Salvador
Oman
Armenia
Qatar
Egypt
Saudi Arabia
Botswana
Palestinian Nat'I Auth.
Ghana

Exhibit B5. Example eighth-grade mathematics item: 2007

Content Domain	Algebra
Cognitive Domain	Reasoning

Joe knows that a pen costs 1 zed more than a pencil.
His friend bought 2 pens and 3 pencils for 17 zeds.
How many zeds will Joe need to buy 1 pen and 2 pencils?
Show your work.

$$
\begin{aligned}
& \text { Pencil: } x \text { zeds } \\
& \text { Pen :y }=x+1 \text { zeds } \\
& 2 y+3 x=17 \\
& 2(x+1)+3 x=17 \\
& 2 x+2+3 x=17 /-2 \\
& 5 x=15 /: 5 \\
& x \text { pencil costs } 3 \text { reds. } \\
& \text { One }=3 \\
& y=x+1 \\
& y=3+1=4 \\
& \text { One pen costs } 4 \text { zeds. } \\
& x+2 y=4+2 \cdot 3=4+6=10 \\
& \text { One per and two perncies } \\
& \text { cost } 10 \text { zeels. }
\end{aligned}
$$

${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{4}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{5}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
Trends in International Mathematics and Science Study (TIMSS), 2007.

Exhibit B6. Example eighth-grade mathematics item: 2007

Content Domain	Geometry
Cognitive Domain	Applying

Two points M and N are shown in the figure above. John is looking for a point P such that MNP is an isosceles triangle. Which of these points could be point P ?
$(3,5)$
(B) $(3,2)$

ㅎ. (C) $(1,5)$
(D) $(5,1)$

Percent
Country full credit

Country	Percent full credit
International average	57
Chinese Taipei	86
Korea, Rep. of	82
Japan	81
Hong Kong SAR ${ }^{1,2}$	80
Slovenia	80
Lithuania ${ }^{3}$	78
Singapore	77
Russian Federation	77
Hungary	74
Malaysia	73
Scotland ${ }^{2}$	68
Ukraine	68
Serbia ${ }^{3,4}$	67
Malta	65
Lebanon	65
Israel ${ }^{5}$	64
England ${ }^{2}$	63
Czech Republic	63
Kuwait ${ }^{6}$	63
Romania	62
Italy	61
Bahrain	59
Indonesia	59
Oman	59
Bulgaria	58
Syrian Arab Republic	58
Egypt	58
Norway	56
Bosnia and Herzegovina	55
Thailand	55
Jordan	54
Armenia	53
Australia	51
Cyprus	51
Algeria	50
Iran, Islamic Rep. of	49
Sweden	48
Saudi Arabia	46
United States ${ }^{\mathbf{2}, 4}$	45
Georgia ${ }^{3}$	41
Palestinian Nat'l Auth.	41
Turkey	38
Qatar	38
El Salvador	33
Colombia	30
Botswana	30
Tunisia	26
Ghana	26

${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
${ }^{3}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
Trends in International Mathematics and Science Study (TIMSS), 2007.

Exhibit B7. Example eighth-grade mathematics item: 2007

Content Domain	Data and Chance
Cognitive Domain	Applying

The results of a survey of 200 students are shown in the pie chart.

Popularity of Rock Bands

Make a bar chart showing the number of students in each category in the pie chart.

Popularity of Rock Bands

${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
${ }^{3}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A)
${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
Trends in International Mathematics and Science Study (TIMSS), 2007.

Percent
Country full credit
International average 27

Korea, Rep. of	76
Singapore	75

Chinese Taipei 70
Japan 68

Hong Kong SAR ${ }^{1,2} 66$
Sweden 56
$\begin{array}{ll}\text { Lithuania }^{3} & 51 \\ \text { Hungary } & 48\end{array}$
Czech Republic 45
England ${ }^{2} 45$
Slovenia 44
Norway 41
United States ${ }^{2,4} 40$
Malta 40
$\begin{array}{ll}\text { Australia } & 38 \\ \text { Scotland }{ }^{2} & 38\end{array}$
Russian Federation 35
Malaysia 35
Cyprus 33
Israel ${ }^{5} \quad 31$
Romania 29
Serbia ${ }^{3,4} \quad 27$
Italy
Thailand 26
Ukraine 24
Bulgaria 23
Jordan 22
Turkey 17
Lebanon 15
Georgia $^{3} \quad 15$
Indonesia 14
Bosnia and Herzegovina 13
Armenia
Iran, Islamic Rep. of
Colombia
Egypt
Bahrain 9

Tunisia
Palestinian Nat'I Auth.
Botswana
Syrian Arab Republic
Oman
El Salvador
Qatar
Saudi Arabia
Algeria
Kuwait ${ }^{6}$
Ghana

Exhibit B8. Example fourth-grade science item: 2007

Content Domain	Life Science
Cognifive Domain	Knowing

The diagram below shows the life cycle of a moth.
Write the name of each stage in the boxes provided.
One stage has been completed for you.

[^36]Percent
Country full credit
International average
Japan 93
Slovak Republic 66
Singapore 64
Chinese Taipei 61
Hungary 56

Australia 56
Sweden 53
New Zealand 52
United States ${ }^{1,2} 48$
Denmark ${ }^{1} 45$
Lithuania $^{3} 43$
Czech Republic 40
Latvia $^{3} 39$
Germany 38
Netherlands ${ }^{4} \quad 37$
Austria 36
England 36
Scotland ${ }^{1} 33$
Kuwait ${ }^{5} 32$
Italy 32

Kazakhstan ${ }^{3} 26$
Slovenia 25
Iran, Islamic Rep. of 23
Russian Federation 23
Hong Kong SAR ${ }^{6} 22$
Armenia 21
Norway 20
Ukraine 18
Georgia $^{3} \quad 16$

Qatar
El Salvador
Colombia
Algeria
Tunisia
Yemen
Morocco

Exhibit B9. Example fourth-grade science item: 2007

Content Domain	Physical Science
Cognitive Domain	Reasoning

Beans are fixed on a metal ruler with butter as shown in the figure above. The ruler is heated at one end. In which order will the beans fall off?
$1,2,3,4,5$
(B) $5,4,3,2,1$
$\stackrel{\infty}{\circ}$
(C) $1,3,5,4,2$
(D) All at the same time

Country	Percent full credit
International average	57
Japan	92
Singapore	88
Hong Kong SAR ${ }^{1}$	75
Russian Federation	70
Slovenia	70
Czech Republic	69
Latvia ${ }^{2}$	69
Hungary	67
Kazakhstan ${ }^{2}$	67
England	67
United States ${ }^{\text {3,4 }}$	66
Netherlands ${ }^{5}$	65
Chinese Taipei	65
Italy	65
Ukraine	65
Germany	64
Austria	63
Lithuania ${ }^{2}$	63
Slovak Republic	63
Denmark ${ }^{3}$	62
Australia	59
Scotland ${ }^{3}$	58
New Zealand	58
Armenia	56
Sweden	55
Norway	53
Georgia ${ }^{2}$	41
Qatar	40
Colombia	39
El Salvador	36
Algeria	35
Kuwait ${ }^{6}$	35
Tunisia	31
Morocco	24
Iran, Islamic Rep. of	24
Yemen	20

[^37]Exhibit B10. Example fourth-grade science item: 2007

Content Domain	Earth Science
Cognitive Domain	Applying

A ribbon is tied to a pole to measure the wind strength as shown below.

Write the numbers $1,2,3$, and 4 in the correct order that shows the wind strength from the strongest to weakest.
Answer :
 2

Country	Percent full credit
International average	58
Chinese Taipei	90
Singapore	88
Japan	88
Hong Kong SAR ${ }^{1}$	82
Australia	80
England	78
Scotland ${ }^{2}$	76
Latvia ${ }^{3}$	76
Russian Federation	75
United States ${ }^{\text {2,4 }}$	75
Netherlands ${ }^{5}$	75
Kazakhstan ${ }^{3}$	74
Sweden	72
Slovak Republic	72
New Zealand	70
Italy	70
Slovenia	68
Hungary	68
Denmark ${ }^{2}$	68
Lithuania ${ }^{3}$	67
Czech Republic	64
Austria	63
Germany	57
Norway	53
Ukraine	53
Georgia ${ }^{3}$	49
Armenia	44
Colombia	37
Tunisia	29
Iran, Islamic Rep. of	29
Kuwait ${ }^{6}$	24
El Salvador	23
Qatar	20
Algeria	16
Yemen	15
Morocco	12

[^38]Exhibit B11. Example eighth-grade science item: 2007

Content Domain	Biology
Cognitive Domain	Knowing

Which characteristic is found ONLY in mammals?
(A) eyes that detect color

- glands that make milk
® (C) skin that absorbs oxygen
(D) bodies that are protected by scales

[^39]| Country | Percent full credit |
| :---: | :---: |
| International average | 63 |
| Chinese Taipei | 91 |
| Hong Kong SAR ${ }^{1,2}$ | 86 |
| Thailand | 84 |
| Turkey | 82 |
| Syrian Arab Republic | 79 |
| Hungary | 78 |
| Lithuania ${ }^{3}$ | 76 |
| Slovenia | 76 |
| Japan | 75 |
| Czech Republic | 74 |
| Armenia | 73 |
| Cyprus | 72 |
| Jordan | 72 |
| Saudi Arabia | 72 |
| Kuwait ${ }^{4}$ | 70 |
| Bulgaria ${ }^{5}$ | 70 |
| Korea, Rep. of | 70 |
| Georgia ${ }^{3}$ | 69 |
| Israel ${ }^{5}$ | 68 |
| Serbia ${ }^{3,6}$ | 67 |
| Bosnia and Herzegovina | 67 |
| Bahrain | 66 |
| Romania | 66 |
| Italy | 65 |
| Russian Federation | 63 |
| Iran, Islamic Rep. of | 60 |
| Singapore | 60 |
| Lebanon | 60 |
| Algeria | 58 |
| Australia | 56 |
| Palestinian Nat'I Auth. | 55 |
| Indonesia | 55 |
| Malaysia | 55 |
| Colombia | 54 |
| Ukraine | 54 |
| Botswana | 53 |
| United States ${ }^{2,6}$ | 53 |
| El Salvador | 53 |
| Sweden | 53 |
| England ${ }^{2}$ | 53 |
| Norway | 51 |
| Qatar | 49 |
| Oman | 49 |
| Tunisia | 48 |
| Malta | 44 |
| Scotland ${ }^{2}$ | 41 |
| Egypt | 40 |
| Ghana | 31 |

Exhibit B12. Example eighth-grade science item: 2007

Content Domain	Chemistry
Cognitive Domain	Applying

The mass of substances A and B are measured on a balance, as shown in
Figure 1. Substance B is put into the beaker and substance C is formed. The empty beaker is put back on the balance, as shown in Figure 2.

Figure 1

Figure 2

The scale in Figure 1 shows a mass of 110 grams.
What will it show in Figure 2?
(Check one box.)
\square More than 110 grams
110 grams
Less than 110 grams

Explain your answer.

The mass will be the same because the mass of reactants equals the

mass of products.

[^40]Percent

Country

 full credit| International average | 23 |
| :--- | :---: |
| Japan | 65 |

Korea, Rep. of	51
Chinese Taipei	51

Italy
Czech Republic 43
Slovenia 39
Hungary 39

Russian Federation 39
Sweden
Singapore
Lithuania ${ }^{1}$
Israel ${ }^{2}$
Hong Kong SAR ${ }^{3,4}$
Ukraine
England ${ }^{4}$
Armenia
Malta
Australia
Norway
Thailand
United States ${ }^{4,5}$
Cyprus
Scotland ${ }^{4}$
Tunisia
Romania
Serbia ${ }^{1,5}$
Jordan
Bulgaria ${ }^{2}$
Bahrain
Lebanon 18

Bosnia and Herzegovina 17
Colombia 16
Turkey
Malaysia
Iran, Islamic Rep. of
Syrian Arab Republic
Palestinian Natl Auth.
El Salvador
Oman
Egypt
Algeria
Kuwait ${ }^{6}$
Indonesia
Saudi Arabia
Georgia ${ }^{1}$
Qatar
Ghana
Botswana

Exhibit B13. Example eighth-grade science item: 2007

Content Domain	Physics
Cognitive Domain	Applying

Work is done when an object is moved in the direction of an applied force. A person performed different tasks as shown in the diagrams below. In which diagram is the person doing work?
(A)

Holding a heavy object
(B)

(D)

Pushing a cart up a ramp
${ }^{1}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
${ }^{2}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
${ }^{3}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
${ }^{4}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
${ }^{5}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
Trends in International Mathematics and Science Study (TIMSS), 2007.

Country	Percent full credit
International average	78
Singapore	96
United States ${ }^{1,2}$	91
Bulgaria ${ }^{3}$	91
Russian Federation	91
Korea, Rep. of	91
Hungary	90
Ukraine	90
Lithuania ${ }^{4}$	89
Slovenia	88
Turkey	88
Serbia ${ }^{2,4}$	87
Italy	87
Indonesia	86
Iran, Islamic Rep. of	86
Czech Republic	86
Australia	86
Lebanon	86
Malta	86
England ${ }^{1}$	85
Malaysia	84
Scotland ${ }^{1}$	83
Georgia ${ }^{4}$	82
Sweden	82
Japan	82
Chinese Taipei	81
Armenia	80
Romania	79
Syrian Arab Republic	79
Jordan	79
Bosnia and Herzegovina	78
Norway	76
Hong Kong SAR ${ }^{1,5}$	75
Thailand	74
Cyprus	72
Algeria	71
Israel ${ }^{3}$	71
Bahrain	70
Egypt	70
Colombia	70
El Salvador	68
Kuwait ${ }^{6}$	67
Palestinian Nat'I Auth.	65
Botswana	64
Ghana	63
Saudi Arabia	61
Oman	58
Qatar	55
Tunisia	49

Exhibit B14. Example eighth-grade science item: 2007

Content Domain	Earth science
Cognifive Domain	Reasoning

The Central City Power Station burns coal to generate power for the city. As the coal burns, sulfur that is present in the coal reacts with oxygen to form sulfur dioxide, which is given off as a gas.
How does this process result in acid rain?

This proceses reeults into acid rain, because the sulfar diaxide gets into the clouds and mixes in with the wate evoporated by the clad.

Percent
Country full credit
International average
Korea, Rep. of 48
Singapore 47
Hong Kong SAR ${ }^{1,2} 42$
Lithuania $^{3} \quad 42$
Japan 39
Slovenia 38
England ${ }^{2} \quad 38$

Chinese Taipei 35
Hungary 34

Australia 32
Jordan 30
Scotland ${ }^{2} \quad 28$
Italy 27

Russian Federation 25
Czech Republic 25
Sweden
United States ${ }^{2,4} \quad 23$
Bulgaria 23
Malta 22
Bosnia and Herzegovina 21
Norway 20
Armenia 20
Romania 19
Ukraine 18
Thailand 18
Bahrain 17
Israel ${ }^{5} 17$
Egypt 17
Serbia ${ }^{3,4} 16$
Malaysia 16
Iran, Islamic Rep. of 15
Syrian Arab Republic 13
Algeria 13
Georgia $^{3} \quad 12$
Indonesia 11
Palestinian Nat'I Auth. 11
Oman
Turkey 10
Lebanon 9

Saudi Arabia 8
Cyprus
Colombia
Kuwait ${ }^{6}$
Tunisia
El Salvador
Botswana
Ghana
Qatar

Page intentionally left blank

Appendix C: TIMSS-NAEP Comparison

How Does the Content of TIMSS Compare with That of Other Assessments?

It is often asked how TIMSS compares with other assessments that measure similar subjects and populations, in particular, the National Assessment of Educational Progress (NAEP). The various assessments in which the United States participates, including NAEP, TIMSS, and the Program for International Student Assessment (PISA), vary in some obvious ways, such as the goals of the studies (and whether they are focused on national objectives or shared international objectives); the precise definitions of the populations they are measuring; the degree of precision required for estimates and resulting different sample sizes; their frameworks and specifications; and, for TIMSS and PISA, the different groups of countries that participate. However, there also are differences that are less obvious and that can only be found by comparing the content of the assessments through examination of the items.

In a recent comparison study, TIMSS 2007 mathematics and science items were classified to the NAEP assessment frameworks (2005/2007 for mathematics and 2005 for science) in terms of content topics and objectives, grade-level expectations, and cognitive dimensions in order to allow a direct comparison of the two assessments. In other studies (one past and one recent), PISA mathematics and science items also were placed on the NAEP frameworks, which allows content comparison of the TIMSS and PISA via the national frameworks. This section highlights some of the main findings; additional details on the comparison study will be included in a technical report to be released with the U.S. national TIMSS dataset at a later date.

Although the TIMSS and NAEP fourth- and eighth-grade mathematics frameworks are organized similarly and, broadly, cover the same range of content (e.g., number, measurement, geometry, algebra, and data), there are some differences in the relative emphases on the different topic areas between the assessments. For example, at the fourth grade, NAEP has a greater percentage of items that focus on measurement topics than does TIMSS (21 versus 14 percent, respectively), whereas TIMSS has a greater percentage of items focusing on geometry than NAEP (20 versus 16 percent, respectively). There are similar examples at the eighth-grade level among TIMSS, NAEP, and PISA, which focuses on an older group of students.

As with mathematics, the TIMSS and NAEP science frameworks cover the same range of major content areas, including Earth, physical (including chemistry), and life sciences. However, again, there are differences in the distribution of items even at the broad content level. These differences tend to be larger for science than for mathematics, with differences between the two assessments in the percentage of items in a given content area reaching 14 percent or more in Earth science and 8 percent or more in physical sciences at both grades. As an example, 37 percent of the TIMSS fourth-grade assessment is devoted to physical science compared to 29 percent of NAEP's fourth-grade assessment. This pattern continues at eighth grade. NAEP, on the other hand, has higher percentages of Earth science items than does TIMSS at both grades. PISA's focus (with 47 percent of items) tends to be on life science.

There is one other notable finding from the comparison study of science assessments. Twelve and 20 percent of fourthand eighth-grade TIMSS items, respectively, could not be placed within the more detailed objectives of the NAEP framework, indicating that there are some differences at the item level between the two assessments, not just in distribution of items across content areas.

Page intentionally left blank

Appendix D: Online Resources and Publications

Online Resources

The NCES website (http://nces.ed.gov/timss) provides background information on the TIMSS surveys, copies of NCES publications that relate to TIMSS, information for educators about ways to use TIMSS in the classroom, and data files. The international TIMSS website (http://www. timss.org) includes extensive information on the study, including the international reports and databases.

NCES Publications

The following publications are intended to serve as examples of some of the numerous reports that have been produced in relation to the Trends in International Mathematics and Science Study (TIMSS) by NCES. All of the publications listed here are available at http://nces.ed.gov/timss.

TIMSS 2003 Achievement Report

Gonzales, P., Guzmán, J.C., Partelow, L., Pahlke, E., Jocelyn, L., Kastberg, D., and Williams, T. (2004). Highlights From the Trends in International Mathematics and Science Study (TIMSS) 2003 (NCES 2005-005). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

TIMSS 1999 Achievement Reports

Gonzales, P., Calsyn, C., Jocelyn, L., Mak, K., Kastberg, D., Arafeh, S., Williams, T., and Tsen, W. (2000). Pursuing Excellence: Comparisons of International Eighth-Grade Mathematics and Science Achievement From a U.S. Perspective, 1995 and 1999 (NCES 2001-028). National Center for Education Statistics, U.S. Department of Education. Washington, DC.
Gonzales, P., Calsyn, C., Jocelyn, L., Mak, D., Kastberg, D., Arafeh, S., Williams, T., and Tsen, W. (2000). Highlights From TIMSS-R (NCES 2001-027). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

TIMSS 1995 Achievement Reports

National Center for Education Statistics, U.S. Department of Education. (1997). Pursuing Excellence: A Study of U.S. Fourth-Grade Mathematics and Science Achievement in International Context (NCES 97-255). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Peak, L. (1996). Pursuing Excellence: A Study of U.S. Eighth-Grade Mathematics and Science Teaching, Learning, Curriculum, and Achievement in International Context (NCES 97-198). National Center for Education Statistics, U.S. Department of Education. Washington, DC.
Takahira, S., Gonzales, P., Frase, M., and Salganik, L.H. (1998). Pursuing Excellence: A Study of U.S. TwelfthGrade Mathematics and Science Achievement in International Context (NCES 98-049). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

TIMSS Videotape Classroom Study Reports

Hiebert, J., Gallimore, R., Garnier, H., Givvin Bogard, K., Hollingsworth, H., Jacobs, J., Miu-Ying Chui, A., Wearne, D., Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, W., Manaster, C., Gonzales, P., and Stigler, J. (2003). Teaching Mathematics in Seven Countries: Results From the TIMSS 1999 Video Study (NCES 2003013 Revised). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.
National Center for Education Statistics, U.S. Department of Education. (2000). Highlights From the TIMSS Videotape Classroom Study (NCES 2000-094). National Center for Education Statistics, U.S. Department of Education. Washington, DC.
Roth, K.J., Druker, S.L., Garnier, H., Lemmens, M., Chen, C., Kawanaka, T., Rasmussen, D., Trubacova, S., Warvi, D., Okamoto, Y., Gonzales, P., Stigler, J., and Gallimore, R. (2006). Teaching Science in Five Countries: Results From the TIMSS 1999 Video Study (NCES 2006-011). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.
Stigler, J.W., Gonzales, P., Kawanaka, T., Knoll, S., and Serrano, A. (1999). The TIMSS Videotape Classroom Study: Methods and Findings From an Exploratory Research Project on Eighth-Grade Mathematics Instruction in Germany, Japan, and the United States (NCES 1999-074). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

IEA Publications

The following publications are intended to serve as examples of some of the numerous reports that have been produced in relation to TIMSS by the IEA. All of the publications listed here are available at http://timss.bc.edu.

TIMSS 2007 Achievement Reports

Martin, M.O., Mullis, I.V.S., and Foy, P. (2008). TIMSS 2007 International Science Report: Findings From IEA's Trends in International Mathematics and Science Study at the Eighth and Fourth Grades. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., and Foy, P. (2008). TIMSS 2007 International Mathematics Report: Findings From IEA's Trends in International Mathematics and Science Study at the Eighth and Fourth Grades. Chestnut Hill, MA: Boston College.

TIMSS 2003 Achievement Reports

Martin, M.O., Mullis, I.V.S., González, E.J., and Chrostowski, S.J. (2004). TIMSS 2003 International Science Report: Findings From IEA's Trends in International Mathematics and Science Study at the Eighth and Fourth Grades. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., González, E.J., and Chrostowski, S.J. (2004). TIMSS 2003 International Mathematics Report: Findings From IEA's Trends in International Mathematics and Science Study at the Eighth and Fourth Grades. Chestnut Hill, MA: Boston College.

TIMSS 1999 Achievement Reports

Martin, M.O., Mullis, I.V.S., González, E.J., Gregory, K.D., Smith, T.A., Chrostowski, S.J., Garden, R.A., and O'Connor, K.M. (2000). TIMSS 1999 International Science Report: Findings From IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., González, E.J., Gregory, K.D., Garden, R.A., O'Connor, K.M., Chrostowski, S.J., and Smith, T.A. (2000). TIMSS 1999 International Mathematics Report: Findings From IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade. Chestnut Hill, MA: Boston College.

TIMSS 1995 Achievement Reports

Beaton, A.E., Martin, M.O., Mullis, I.V.S., González, E.J., Smith, T.A., and Kelly, D.L. (1996). Science Achievement in the Middle School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.
Beaton, A.E., Mullis, I.V.S., Martin, M.O., González, E.J., Kelly, D.L., and Smith, T.A. (1996). Mathematics Achievement in the Middle School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.

Martin, M.O., Mullis, I.V.S., Beaton, A.E., González, E.J., Smith, T.A., and Kelly, D.L. (1997). Science Achievement in the Primary School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.

Mullis, I.V.S., Martin, M.O., Beaton, A.E., González, E.J., Kelly, D.L., and Smith, T.A. (1997). Mathematics Achievement in the Primary School Years: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., Beaton, A.E., González, E.J., Kelly, D.L., and Smith, T.A. (1998). Mathematics and Science Achievement in the Final Year of Secondary School: IEA's Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.

TIMSS Technical Reports and Frameworks

Martin, M.O., and Kelly, D.L. (Eds.). (1996). Third International Mathematics and Science Study Technical Report, Volume I: Design and Development. Chestnut Hill, MA: Boston College.
Martin, M.O., and Kelly, D.L. (Eds.). (1998). Third International Mathematics and Science Study Technical Report, Volume II: Implementation and Analysis, Primary and Middle School Years. Chestnut Hill, MA: Boston College.
Martin, M.O., and Kelly, D.L. (Eds.). (1999). Third International Mathematics and Science Study Technical Report, Volume III: Implementation and Analysis, Final Year of Secondary School. Chestnut Hill, MA: Boston College
Martin, M.O., Gregory, K.D., and Stemler, S.E. (2000). TIMSS 1999 Technical Report. Chestnut Hill, MA: Boston College.

Martin, M.O., Mullis, I.V.S. and Chrostowski, S.J. (2004). TIMSS 2003 Technical Report: Findings From IEA’s Trends in International Mathematics and Science Study at the Eighth and Fourth Grades. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., Smith, T.A., Garden, R.A., Gregory, K.D., González, E.J., Chrostowski, S.J., and O'Connor, K.M. (2003). TIMSS Assessment Frameworks and Specifications 2003: 2nd Edition. Chestnut Hill, MA: Boston College.
Mullis, I.V.S., Martin, M.O., Ruddock, G.J., O'Sullivan, C.Y., Arora, A., and Erberber, E. (2005). TIMSS 2007 Assessment Frameworks. Chestnut Hill, MA: Boston College.
Olson, J.F., Martin, M.O., and Mullis, I.V.S. (2008). TIMSS 2007 Technical Report. Chestnut Hill, MA: Boston College.

TIMSS Encyclopedia

Mullis, I.V.S., Martin, M.O., Olson, J.F., Berger, D.R., Milne, D., and Stanco, G.M. (Eds.). (2008). TIMSS 2007 Encyclopedia: A Guide to Mathematics and Science Education Around the World. Chestnut Hill, MA: Boston College.

[^0]: ${ }^{1}$ At grade four, a total of 257 schools and 10,350 students participated in the United States in 2007. At grade eight, 239 schools and 9,723 students participated. The overall weighted school response rate in the United States was 70 percent at grade four before the use of substitute schools. The final weighted student response rate at grade four was 95 percent. At grade eight, the overall weighted school response rate before the use of substitute schools was 68 percent. The final weighted student response rate at grade eight was 93 percent.
 ${ }^{2}$ The total number of countries reported here differs from the total number reported in the international TIMSS reports (Mullis et al. 2008; Martin et al. 2008). In addition to the 36 countries at grade four and 48 countries at grade eight, 8 other educational jurisdictions, or "benchmarking" entities, participated: the states of Massachusetts and Minnesota; the Canadian provinces of Alberta, British Columbia, Ontario, and Quebec; Dubai, United Arab Emirates; and the Basque region of Spain.
 ${ }^{3}$ TIMSS provides two overall scales-mathematics and science-as well as several content and cognitive domain subscales for each of the overall scales. The scores are reported on a scale from 0 to 1,000, with the TIMSS scale average set at 500 and standard deviation set at 100.
 ${ }^{4}$ TIMSS is open to countries and subnational entities, or educational jurisdictions, which are part of larger countries. For example, Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China. For convenience, this report uses the term "country" or "nation" to refer to all participating entities. ${ }^{5}$ TIMSS reports on four benchmarks to describe student performance in mathematics and science. Each benchmark is associated with a score on the achievement scale and a description of the knowledge and skills demonstrated by students at that level of achievement. The advanced international benchmark indicates that students scored 625 or higher. More information on the benchmarks can be found in the main body of the report and appendix A.

[^1]: ${ }^{1}$ TIMSS is open to countries and subnational entities, or educational jurisdictions, which are part of larger countries. For example, Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China. For convenience, this report uses the term "country" or "nation" to refer to all participating entities. ${ }^{2}$ Data from two nations were judged problematic by the IEA. Morocco failed to meet the required school participation rates in grade eight because of a procedural difficulty with some schools. Also, the quality of the data from Mongolia was not well documented at either grade level. In the international reports, Morocco is included in the fourth-grade tables but is shown "below the line" in the eighth-grade tables to indicate a problem in data quality. Data on Mongolia are reported in an appendix. For the purposes of the present report, statistics relating to Moroccan eighth-graders and to Mongolian students in both grades are not reported. ${ }^{3}$ The international study center takes its name from the two main IEA studies it coordinates; the Trends in International Mathematics and Science Study (TIMSS) and the Progress in International Reading Literacy Study (PIRLS).
 ${ }^{4}$ The ISCED was developed by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) to assist countries in providing comparable, cross-national data. ISCED Level 1 is termed primary schooling, and in the United States is equivalent to the first through sixth grades (Matheson et al. 1996). ${ }^{5}$ The sample frame data for public schools in the United States was based on the 2006 National Assessment of Educational Progress (NAEP) sampling frame. This was done because recruitment of districts and schools began at the end of the 2005-06 school year to maximize response rates. The 2006 NAEP sampling frame was based on the 2003-04 Common Core of Data (CCD), and the data for private schools were from the 2003-04 Private School Universe Survey (PSS). Any school containing at least one grade four or one grade eight class was included in the school sampling frame.

[^2]: ${ }^{6}$ NCES standards advise that substitute schools should not be included in the calculation of response rates (standard 1-3-8; National Center for Education Statistics 2002). Response rates calculated "before replacement" are consistent with this standard. Response rates calculated "after replacement" include substitute schools and hence are not consistent with NCES standards. Both kinds of response rates are reported here in the interests of comparability with the TIMSS international reports which report response rates before and after replacement.

[^3]: ${ }^{7}$ Standard 2-2-2 found in National Center for Education Statistics 2002.
 ${ }^{8}$ The full text of the nonresponse bias analysis conducted for TIMSS 2007 will be included in a technical report released with the U.S. national dataset.
 See appendix A for a description of the analyses undertaken and additional details on the findings.

[^4]: \square Average score is higher than the U.S. average score ($p<.05$)
 \square Average score is not measurably different from the U.S. average score ($p<.05$)
 \square Average score is lower than the U.S. average score ($p<.05$)

 - Not available. Average achievement could not be accurately estimated.
 ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{4}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{5}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year. NOTE: Countries are ordered by 2007 overall mathematics average scale score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors of the estimates are shown in table $\mathrm{E}-3$ available at http://nces.ed.gov/pubsearch/pubsinfo.asp? pubid=2009001.

[^5]: \square Average score is higher than the U.S. average score ($p<.05$)
 \square Average score is not measurably different from the U.S. average score ($p<.05$)
 \square Average score is lower than the U.S. average score ($p<.05$)

 - Not available. Average achievement could not be accurately estimated.
 ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{4}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 NOTE: Countries are ordered by 2007 overall mathematics average scale score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors of the estimates are shown in table E-4 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^6]: ${ }^{9}$ The international median at each benchmark represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. For example, the low international benchmark median of 90 percent at grade four indicates that half of the countries have 90 percent or more of their students who met the low benchmark, and half have less than 90 percent of their students who met the low benchmark.

[^7]: Percentage is higher than U.S. percentage ($p<.05$)
 \square Percentage is not measurably different from U.S. percentage ($p<.05$)
 \square Percentage is lower than U.S. percentage ($p<.05$)
 ${ }^{*} p<.05$. Percentage is significantly different from the international median percentage.
 \# Rounds to zero.
 ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 ${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 NOTE: The TIMSS international median represents all participating TIMSS jurisdictions, including the United States. The international median represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors for the estimates are shown in table E-41 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^8]: Male-female difference in average mathematics scores favors males and is statistically significant ($p<.05$)
 \square Male-female difference in average mathematics scores is not measurably different ($p<.05$)
 \square Male-female difference in average mathematics scores favors females and is statistically significant ($p<.05$) \# Rounds to zero.
 ${ }^{1}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{2}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{4}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{5}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year (see appendix A).
 ${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 NOTE: The standard errors of the estimates are shown in tables E-10 and E-11 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^9]: ${ }^{10}$ Black includes African American and Hispanic includes Latino. Race categories exclude Hispanic origin.
 ${ }^{11}$ The large apparent difference is not statistically significant because of relatively large standard errors.

[^10]: NOTE: Analyses are limited to public schools only, based on school reports of the percentage of students in public school eligible for the federal free or reduced-price lunch program. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population (see appendix A). The standard errors of the estimates are shown in table E-16 available at http://nces.ed.gov/pubsearch/pubsinfo.
 asp?pubid=2009001.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^11]: ${ }^{12}$ Information on the percentage of students eligible for the federal free or reduced-price lunch program was not collected in 1995 for either grade. Thus, comparisons over time on this measure are limited to an 8 -year period.
 ${ }^{13}$ Large apparent differences are not statistically significant because of relatively large standard errors.

[^12]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 NOTE: Effect size is shown only for statistically significant differences between group means. Effect size is calculated by dividing the raw difference between group means by the pooled standard deviation (see appendix A). Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. High-poverty schools are those in which 75 percent or more of students are eligible for the federal free or reduced-price lunch program. Low-poverty schools are those in which less than 10 percent of students are eligible. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population. See table E-18 (available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001) for standard deviations of the U.S. and other countries' student populations. See table E-19 (available at http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2009001) for standard deviations of U.S. student subpopulations.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^13]: Average score is higher than the U.S. average score ($p<.05$)
 \square Average score is not measurably different from the U.S. average score ($p<.05$)
 \square Average score is lower than the U.S. average score ($p<.05$)
 ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 ${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 NOTE: Countries are ordered by 2007 average score. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors of the estimates are shown in tables E-20 and E-21 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^14]: Average score is higher than the U.S. average score ($p<.05$)

[^15]: Percentage is higher than U.S. percentage ($p<.05$)
 \square Percentage is not measurably different from U.S. percentage ($p<.05$)
 \square Percentage is lower than U.S. percentage ($p<.05$)
 \# Rounds to zero.
 ${ }^{*} p<.05$. Percentage is significantly different from the international median percentage.
 ${ }^{1}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{2}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{3}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{4}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS) (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 ${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 NOTE: The Trends in International Mathematics and Science Study (TIMSS) international median represents all participating TIMSS jurisdictions, including the United States. The international median represents the percentage at which half of the participating countries have that percentage of students at or above the median and half have that percentage of students below the median. The tests for significance take into account the standard error for the reported difference. Thus, a small difference between the United States and one country may be significant while a large difference between the United States and another country may not be significant. The standard errors for the estimates are shown in table E-42 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^16]: Male-female difference in average science scores favors males and is statistically significant ($p<.05$)
 \square Male-female difference in average science scores is not measurably different ($p<.05$)
 Male-female difference in average science scores favors females and is statistically significant ($p<.05$)
 \# Rounds to zero.
 ${ }^{1}$ Nearly satisfied guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{2}$ Met guidelines for sample participation rates only after substitute schools were included (see appendix A).
 ${ }^{3}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{4}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{5}$ National Target Population does not include all of the International Target Population defined by the Trends in International Mathematics and Science Study (TIMSS)
 (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year (see appendix A).
 ${ }^{7}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 NOTE: The standard errors of the estimates are shown in tables E-29 and E-30 available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^17]: See notes at end of table.

[^18]: ${ }^{15}$ Information on the percentage of students eligible for the federal free or reduced-price lunch program was not collected in 1995 for either grade. Thus,

[^19]: * $p<.05$. Significantly different from 2007.

[^20]: NOTE: Effect size is shown only for statistically significant differences between group means. Effect size is calculated by dividing the raw difference between group means by the pooled standard deviation (see appendix A). Black includes African American. Racial categories exclude Hispanic origin. Students who identified themselves as being of Hispanic origin were classified as Hispanic, regardless of their race. High-poverty schools are those in which 75 percent or more of students are eligible for the federal free or reduced-price lunch program. Low-poverty schools are those in which less than 10 percent of students are eligible. The United States met guidelines for sample participation rates only after substitute schools were included. The National Defined Population covered 90 percent to 95 percent of the National Target Population. See table E-37 (available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009001) for standard deviations of the U.S. and other countries' student populations. See table E-38 (available at http://nces.ed.gov/ pubsearch/pubsinfo.asp?pubid=2009001) for standard deviations of U.S. student subpopulations. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^21]: ${ }^{1}$ The ISCED was developed by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) to facilitate the comparability of educational levels across countries. ISCED Level 1 begins with the first year of formal, academic learning (UNESCO 1999). In the United States, ISCED Level 1 begins at grade one.
 ${ }^{2}$ Some sampled schools may be considered ineligible for reasons noted in the section below titled "School exclusions."

[^22]: ${ }^{3}$ The primary purpose of stratification is to improve the precision of the survey estimates. If explicit stratification of the population is used, the units of interest (schools, for example) are sorted into mutually exclusive subgroups-strata. Units in the same stratum are as homogeneous as possible, and units in different strata are as heterogeneous as possible, with respect to the characteristics of interest to the survey. Separate samples are then selected from each stratum. In the case of implicit stratification, the units of interest are simply sorted with respect to one or more variables known to have a high correlation with the variable of interest. In this way, implicit stratification guarantees that the sample of units selected will be spread across the categories of the stratification variables. ${ }^{4}$ The Northeast region consists of Connecticut, Delaware, the District of Columbia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. The Central region consists of Illinois, Indiana, lowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Wisconsin, and South Dakota. The West region consists of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oklahoma, Oregon, Texas, Utah, Washington, and Wyoming. The Southeast region consists of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia.
 ${ }^{5}$ Eight community types are distinguished: large city of $250,000+$; midsize city of $<250,000$; urban fringe of large city; urban fringe of mid-size city; large town of 25,000+; small town of 2,500-25,000; rural outside metropolitan statistical area (MSA); rural inside MSA.
 ${ }^{6}$ In order to maximize response rates from both districts and schools it was necessary to begin the recruitment of both prior to the end of the $2005-06$ school year. Since the 2007 NAEP sampling frame was not available until March 2006, it was necessary to base the TIMSS samples on the 2006 NAEP sampling frame. ${ }^{7}$ Since classrooms are sampled with equal probability within schools, small classrooms would have the same probability of selection as large classrooms. Selecting classrooms under these conditions would likely mean that student sample size would be reduced, and some instability in the sampling weights created. To avoid these problems, pseudo-classes are created for the purposes of classroom sampling. Following sampling, the pseudo-class combinations are dissolved and the small classes involved retain their own identity. In this way, data on students, teachers, and classroom practices are linked in small classes in the same way as with larger classes.

[^23]: ${ }^{8}$ Substitute schools are matched pairs and do not have an independent probability of selection. NCES standards (Standard 1-3-8) indicate that, in these circumstances, response rates should be calculated without including substitute schools (National Center for Education Statistics 2002). TIMSS response rates denoted as "before replacement" conform to this standard. TIMSS response rates denoted as "after replacement" are not consistent with NCES standards since, in the calculation of these rates, substitute schools are treated as the equivalent of sampled schools.

[^24]: (See notes at end of table)

[^25]: ${ }^{10}$ A detailed treatment of the meaning and calculation of sampling weights, including the nonresponse adjustment factors, is provided in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).
 ${ }^{11}$ Comparing characteristics for respondents and nonrespondents is not always a good measure of nonresponse bias if the characteristics are either unrelated or weakly related to more substantive items in the survey. Nevertheless, this is often the only approach available.
 ${ }^{12}$ NAEP region and community type were dummy coded for the purposes of these analyses. In the case of NAEP region, "West" was used as the omitted group. For community type, "urban fringe/large town" was chosen as the omitted group.
 ${ }^{13}$ The measure of school poverty is based on the proportion of students in a school eligible for the Free or Reduced-Price Lunch (FRPL) program, a federally assisted meal program that provides nutritionally balanced, low-cost or free lunches to eligible children each school day. For the purposes of the nonresponse bias analyses, schools were classified as "low poverty" if less than 50 percent of the students were eligible for FRPL, and "high poverty" if 50 percent or more of students were eligible. Since the nonresponse bias analyses involve both participating and nonparticipating schools, they are based, out of necessity, on data from the sampling frame. TIMSS data are not available for nonparticipating schools. The school frame data are derived from the CCD and PPS. The CCD data provide information on the percentage of students in each school who are eligible for free- or reduced-price lunch, but are limited to public schools. The PPS data do not provide the same information for private schools. In the interest of retaining all of the schools and students in these analyses, private schools were assumed to be low-poverty schools-that is, they were assumed to be schools in which less than 50 percent of students were eligible for FRPL. Separate analyses of the TIMSS data for participating private schools suggest the reasonableness of this assumption. Of the 21 grade four private schools, only one reports having 50 percent or more of students eligible for FRPL. Among the 21 grade eight private schools, only two report having 50 percent or more of students eligible for FRPL.
 ${ }^{14}$ Two forms of this school attribute were used in the analyses. In the bivariate analyses the percentage of each race/ethnic group was related separately to participation status. In the logistic regression analyses a single measure was used to characterize each school, namely, "percentage of minority students."

[^26]: ${ }^{17}$ A detailed description of the bridge study and the use of the data obtained through the bridge booklets in scaling the 2007 assessment can be found in the TIMSS 2007 Technical Report (Olson, Martin, and Mullis 2008).

[^27]: See notes at end of table.

[^28]: NOTE: The reliability of constructed-reponse scoring was determined by having two scorers independently score a random sample of some 200 student responses to each item. Table A-5 displays the average and range of the within-country exact percent of inter-rater agreement across all items. To gather and document within-country agreement among scorers, systematic subsamples of at least 100 students' responses to each constructed-response item were coded independently by two readers. The agreement score indicates the degree of agreement. SOURCE: International Association for the Evaluation of Educational Achievement (IEA), Trends in International Mathematics and Science Study (TIMSS), 2007.

[^29]: ${ }^{18}$ These adjustments are for overall response rates and did not include any of the characteristics associated with differential nonresponse as identified in the nonresponse bias analyses reported above.

[^30]: ${ }^{19}$ Key variables include survey-specific items for which aggregate estimates are commonly published by NCES. They include, but are not restricted to, variables most commonly used in table row stubs. Key variables also include important analytic composites and other policy-relevant variables that are essential elements of the data collection. For example, the National Assessment of Educational Progress (NAEP) consistently uses gender, race-ethnicity, urbanicity, region, and school type (public/private) as key reporting variables.

[^31]: ${ }^{20}$ Adjustments for multiple comparisons were not applied in any of the t-tests undertaken.

[^32]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by TIMSS
 (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{4}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{5}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^33]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by TIMSS
 (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A). ${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^34]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by TIMSS
 (see appendix A).
 ${ }^{3}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{4}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{5}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^35]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.

[^36]: \# Rounds to zero.
 ${ }^{1}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A). ${ }^{2}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A). ${ }^{3}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
 ${ }^{4}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{5}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 ${ }^{6}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^37]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ National Target Population does not include all of the International Target Population defined by TIMSS
 (see appendix A).
 ${ }^{3}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^38]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{3}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
 ${ }^{4}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{5}$ Nearly satisfied guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but late in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^39]: ${ }^{1}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{2}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{3}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
 ${ }^{4}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 ${ }^{5}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 ${ }^{6}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A). NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

[^40]: ${ }^{1}$ National Target Population does not include all of the International Target Population defined by TIMSS (see appendix A).
 ${ }^{2}$ National Defined Population covers less than 90 percent of National Target Population (but at least 77 percent, see appendix A).
 ${ }^{3}$ Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China.
 ${ }^{4}$ Met guidelines for sample participation rates only after replacement schools were included (see appendix A).
 ${ }^{5}$ National Defined Population covers 90 percent to 95 percent of National Target Population (see appendix A).
 ${ }^{6}$ Kuwait tested the same cohort of students as other countries, but later in 2007, at the beginning of the next school year.
 NOTE: Countries are sorted by 2007 average percent correct. The answer shown illustrates the type of student response that was given full credit.
 SOURCE: International Association for the Evaluation of Educational Achievement (IEA).
 Trends in International Mathematics and Science Study (TIMSS), 2007.

