
July 23, 2001

Ms. Magalie Roman Salas
Secretary
Federal Communications Commission
445 12th Street, SW
Washington, DC 20554

Re: Progress Report on Instant Messaging Interoperability

Dear Ms. Salas:

Pursuant to the FCC’s Memorandum Opinion and Order approving the merger

between America Online, Inc. (“AOL”) and Time Warner Inc. (“Time Warner”),1 AOL

Time Warner Inc. (“AOL Time Warner”) hereby submits this progress report to update

the Commission on AOL’s ongoing efforts to develop a server-to-server IM

interoperability solution that will allow a user of one of its IM services to exchange

messages with users of unaffiliated IM services in a way that adequately protects IM

network performance, privacy, and security.

1 Memorandum Opinion and Order, In the Matter of Applications for Consent to
the Transfer of Control of Licenses and Section 214 Authorizations by Time Warner Inc.
and America Online, Inc., Transferors, to AOL Time Warner Inc., Transferee, CS Docket
No. 00-30, FCC 01-12, ¶ 327 (rel. Jan. 22, 2001).

July 23, 2001
Page 2

AOL publicly stated last July that it anticipated that it would require

approximately one year to develop a server-to-server protocol, to be followed by a period

of time to test and refine its interoperability solution. Consistent with this commitment,

AOL has largely completed its development of the necessary technology, has recently

begun internal testing of that technology, and remains on schedule to begin testing server-

to-server interoperability with a leading technology company later this summer.

The Challenge Of IM Interoperability Is To Create A Safe And Secure
Solution That Does Not Undermine The Essential Qualities That Have
Made IM Popular

AOL attributes much of the success of its IM services to the qualities that distinguish

these services from other forms of text-based communication: it is instant, it is reliable,

and it is secure and private.2

• Instant. Messages and other communications are delivered quickly (i.e., in
near real-time), and users are notified immediately when their buddies sign on
or off the service;3

• Reliable. IM systems perform at a high quality of service level and are
designed to recognize and promptly address network failures (e.g., PC

2 Indeed, one of the biggest reasons for AOL’s success in IM has been its vigilant
approach, both in the design and day-to-day operations of its IM services, to protecting
the user experience from disruptions, service outages, and/or security lapses that might
jeopardize user confidence in its IM offerings.

3 AOL’s IM services today are specifically designed to ensure the prompt
transmission of such data. For example, the AIM protocol is a binary protocol that
provides more efficient data transmission than text-based protocols. In addition, AOL
routes all server-to-server traffic within its IM networks on a private, high-speed LAN,
thereby bypassing the threat to immediacy posed by data traffic congestion on the public
Internet.

July 23, 2001
Page 3

“crashes” and Internet traffic congestion);4 and

• Secure and Private. IM services allow users to assume and control an
identity (i.e., a user name and password), and users are able to opt-out of
messages they find intrusive.5

As explained below, interoperability, by definition, introduces a number of complicating

issues that must be addressed in order to maintain these characteristics; otherwise,

interoperability risks undermining the very reasons that IM has become as popular as it is

today. As a result, it is not altogether surprising that to date others in the industry have

yet to implement an interoperability solution, or that the IETF—while having made

significant progress—has still not completed its work on server-to-server interoperability

standards.

First, interoperability increases the potential for unacceptable delays in the

transmission of messages and/or presence information, particularly across services.

4 The AIM network incorporates a number of safeguards designed to minimize
threats to its reliability. For example, the AIM network includes hundreds of servers,
including back-up servers that are constantly in “alert mode.” Moreover, all of AOL’s
clients and servers communicate frequently to make sure that the connections between
them are being maintained, and when AOL’s IM clients detect a connection failure, they
immediately notify users that they are no longer online.

5 AOL’s IM offerings have been specifically designed to provider users with a
number of security and privacy features, including: (1) AIM’s “knock-knock” feature,
which, upon activation, requires user consent before displaying a message from a user not
on their buddy list; (2) rate limits and user warnings, which impose limits on behavior
within the AIM community; and (3) the IM feature of the AOL online service’s “Notify
AOL” function, which makes it possible to report offensive subscriber behavior directly
to AOL.

July 23, 2001
Page 4

By linking IM servers together, interoperability creates a single “virtual host” requiring

continuous coordination and exchange of data between services:

“Virtual Host” System

Z

X
AIM Users X Users

Z Users

Internet

The problem with the “virtual host” approach, however, is that, to the extent that it relies

upon the public Internet for the purpose of server-to-server communications, it potentially

could lead to unacceptable delays in the transmission of message and presence data due to

the data traffic congestion problems and bandwidth limitations that exist on the public

Internet today.

Second, because interoperable IM providers will rely upon each other for accurate

information, IM services will be affected by the service performance of all those systems

with which they are interoperable—the reliable and unreliable alike. As is the case with

email, IM systems participating in an interoperable network will operate to varying

standards. Some potentially will suffer from poor performance and service outages. This

is not a serious problem in email, because user expectations are more generous and the

systems are designed to resend data whose receipt on the other end is not confirmed. In

an interoperable IM network, however, failures will be difficult to identify and will

July 23, 2001
Page 5

cascade inaccurate information throughout the IM systems participating in that network.

As a result, the best performing systems could appear to be malfunctioning, potentially as

often as those that are actually causing the problems. To illustrate:

Z

Z

1 User logs onto system Z, and
X user sees him come online
via presence notification.

2

2 Z system’s Internet
connection fails (internal Z
system messages still work).

3 X user tries to IM Z user, but
is unable to get message
through (since Z system’s
connection has failed). Calls
Z user who says he is still
online. X user assumes X is
at fault.

1

Schematic of Interoperable Systems

3

X

X

Internet

InternetInternet

Thus, since IM services must rely upon each other for accurate presence and message

information, outages will affect all systems—the reliable and unreliable alike.

Third, interoperability introduces potentially vulnerable points of access into IM

providers’ networks and forces IM providers to depend upon one another in their efforts

to protect the privacy and security of their users. The points of vulnerability introduced

by interoperability potentially enable bad actors, for example, to spam users with

inappropriate images and/or text (e.g., pornography), transmit viruses, impersonate IM

users, or intercept messages. That is because interconnection points between two

different networks, particularly if they are located on the public Internet, provide hackers

with the opportunity to gain unauthorized access to those networks. In addition,

July 23, 2001
Page 6

interoperability also requires an IM provider to rely upon others to help enforce its

policies regarding harassment and other inappropriate conduct.

A viable interoperability approach must adequately address these concerns if it is

to enhance the user experience rather than undermine IM’s basic appeal. Moreover, if all

of these concerns are not fully addressed from day one, there is no way to resolve them at

a later date: once a flawed protocol has been implemented, it is virtually impossible—

witness email—to undo the damage.

In light of these technical challenges, it is not surprising that none of the efforts

others have initiated to allow users of different IM services to exchange messages has

been successful to date.6 Indeed, the IETF, the leading Internet standards-setting body,

established the Instant Messaging and Presence Protocol (“IMPP”) working group for the

purpose of developing a single server-to-server IM interoperability standard. Last

summer, however, the IMPP working group abandoned that goal due to its inability to

reach consensus support for any single, comprehensive protocol, and has instead limited

its efforts to developing common messaging formats which other working groups,

subsequently formed by the IETF, are implementing as they develop several different

6 One of these initiatives was launched—during the height of the IM debate before
the FCC last summer—by IMUnified. Originally, IMUnified announced that it would
“provide a basic framework for detailing the mechanics of IM exchange among our
members systems by the end of August [2000], with final implementation across member
communities expected by the end of [2000].” See IMUnified FAQ
<http://www.imunified.org/faq.html>. Both of those deadlines have since passed unmet.

July 23, 2001
Page 7

server-to-server interoperability protocols.7 At this point, there is no announced timetable

indicating when the efforts to develop those protocols will be completed.

AOL Has Made Significant Progress Toward Developing A Server-To-Server
Interoperability Solution, Has Recently Begun Internal Testing, And Is On
Schedule To Conduct A System-To-System Trial With A Leading
Technology Company

Last July, AOL publicly stated that it would require approximately twelve months

from that date to develop a server-to-server IM interoperability protocol, plus an

additional testing period to ensure that that protocol will not undermine AOL’s continued

ability to protect its IM users’ experience from the types of risks described above.

Consistent with this commitment (and despite the challenges described above), AOL has

assembled the technology necessary to exchange messages and presence information

between IM networks, has recently begun internal testing of that technology, and remains

on schedule to begin testing server-to-server interoperability with a leading technology

company by late Summer 2001.

On July 15, 2000, AOL submitted a white paper to the IETF outlining its

proposed framework for server-to-server interoperability. Subsequently, additional

working groups were formed within the IETF to implement a number of divergent

approaches to server-to-server interoperability.8 In addition, other server-to-server

7 The IMPP working group is working on the following Internet-drafts defining
common messaging formats: “Common Presence and Instant Messaging: Message
Format,” <http://www.ietf.org/internet-drafts/draft-ietf-impp-cpim-msgfmt-03.txt>; and
“Date and Time on the Internet: Time Stamps,” <http://www.ietf.org/internet-
drafts/draft-ietf-impp-datetime-04.txt>. Copies of these documents are attached.

8 As noted above, the IETF originally chartered a single working group, the IMPP
(Continued...)

July 23, 2001
Page 8

interoperability efforts have been initiated in the IM marketplace, including open-source

projects. AOL has evaluated each of these approaches with respect to its ability to satisfy

AOL’s requirements—in essence, whether it is capable of ensuring that IM’s instant,

reliable, and secure and private qualities survive the transition from an environment

where a single provider controls the IM network from end to end to an environment in

which IM providers depend upon the performance of all other providers’ networks with

which they are interoperable.

In the end, AOL determined that the optimal approach would be to develop a

server-to-server interoperability framework using one of the standards being developed by

the IETF. Of those, AOL selected the protocol being developed by the IETF’s SIP for

Instant Messaging and Presence Leverage (“SIMPLE”) working group, which is working

on an IM-specific implementation of the IETF’s telephony-oriented Session Initiation

Protocol (“SIP”). Among its considerations, AOL found that SIMPLE (and/or the SIP

protocol from which it is derived) is already supported by a number of hardware and

software companies and has a significant following among developers. The IETF

Internet-draft describing in technical detail the SIMPLE messaging protocol, “SIP

Extensions for Instant Messaging,” is attached hereto and is also available at

http://search.ietf.org/internet-drafts/draft-ietf-simple-im-00.txt; “SIP Extensions for

(...Continued)

working group, to develop a single IM server-to-server Internet standard. Because that
working group was unable to achieve consensus support for any single protocol, three
additional working groups—APEX, PRIM, and SIMPLE—were established to pursue
divergent approaches to server-to-server interoperability. To date, none of these working
groups has finished specifying its protocol.

July 23, 2001
Page 9

Presence,” the IETF Internet-draft describing in technical detail the SIMPLE presence

protocol, is attached hereto and is also available at http://search.ietf.org/internet-

drafts/draft-ietf-simple-presence-00.txt.

Because the SIMPLE working group has not finalized these protocols, however,

AOL has had to resolve certain unsettled issues in the few functional areas where the

working group has yet to make its final decisions. In particular, the comprehensive

approach to interoperability AOL is working to complete will specify:

• That IM systems may establish dedicated, high-speed connections between
their networks, thereby minimizing any bandwidth-related threats to the
“instant” nature of IM;

• A quality of service level to which participating systems shall perform; and

• A standardized approach to privacy and security, including measures to
protect users from spam and harassment.

Having thus assembled the components necessary to achieve basic

interoperability—i.e., the exchange of presence and message data—with other providers’

IM systems, AOL is working to address additional implementation issues that must be

resolved before it can introduce its interoperability solution into a real-world

environment. At the same time, AOL is currently testing its basic interoperability

components internally and is preparing to begin testing its comprehensive interoperability

solution with an external partner.

To this end, AOL had to first develop an interoperable version of each component

of the AIM service. This involved:

• creating a new version of the AIM client software;

July 23, 2001
Page 10

• incorporating the ability to accept and process presence and message
information from non-AOL systems into the AIM servers; and

• developing a gateway to translate the internal AIM protocol into the SIMPLE
protocol in order to enable communication with other servers.

AOL completed this work in early July, and AOL has since been conducting internal

trials intended to confirm its ability to pass presence and message information

successfully between two model IM networks.

Once internal testing is completed, AOL intends to conduct a trial of its

comprehensive interoperability solution, and is close to finalizing an agreement with a

leading technology company that will allow the two companies to conduct a live server-

to-server interoperability trial. In addition, AOL is working with this potential partner to

draft a contractual agreement that addresses such concerns as performance requirements,

cost sharing, and privacy and security policies. Upon successful completion of these

tasks, AOL then plans to finalize its gateway, install updated code on its production

servers, and begin developing a finished client that supports interoperability.

* * *

July 23, 2001
Page 11

We appreciate this opportunity to have updated the Commission on AOL’s

progress on IM interoperability.

Respectfully submitted,

Steven N. Teplitz
Vice President, Communications Policy

And Regulatory Affairs
AOL Time Warner Inc.

cc: Chairman Michael K. Powell
Commissioner Gloria Tristani
Commissioner Kathleen Q. Abernathy
Commissioner Michael J. Copps
Commissioner Kevin J. Martin
W. Kenneth Ferree, Chief, Cable Services Bureau

Attachments:

“SIP Extensions for Instant Messaging”
“SIP Extensions for Presence”
“Common Presence and Instant Messaging: Message Format”
“Date and Time on the Internet: Time Stamps”

Internet Engineering Task Force J. Rosenberg
Internet-Draft D. Willis
Expires: October 11, 2001 R. Sparks
 B. Campbell
 dynamicsoft
 H. Schulzrinne
 J. Lennox
 Columbia University
 C. Huitema
 B. Aboba
 D. Gurle
 Microsoft Corporation
 D. Oran
 Cisco Systems
 April 12, 2001

 SIP Extensions for Instant Messaging
 draft-ietf-simple-im-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 11, 2001.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Rosenberg, et. al. Expires October 11, 2001 [Page 1]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

Abstract

 This document defines a SIP extension (a single new method) that

 supports Instant Messaging (IM).

Table of Contents

 1. Introduction . 4
 2. Changes Introduced in draft-ietf-simple-im-00 4
 3. Changes Introduced in draft-rosenberg-impp-im-01 5
 4. Terminology . 5
 5. Overview of Operation 5
 6. The MESSAGE request 6
 6.1 Method Definition . 6
 6.2 UAC processing of initial MESSAGE request 8
 6.3 Finding the next hop 9
 6.4 Proxy processing of MESSAGE requests 9
 6.5 UAS processing of MESSAGE requests 10
 6.6 UAS processing of initial MESSAGE response 10
 6.7 Subsequent MESSAGE requests 11
 6.8 Supporting multiple message destinations 11
 6.9 Caller Preferences . 12
 6.10 Security . 12
 6.10.1 Privacy . 12
 6.10.2 Message Integrity and Authenticity 13
 6.10.3 Outbound authentication 13
 6.10.4 Replay Prevention . 14
 7. Congestion Control . 14
 8. Example Messages . 14
 9. Open Issues . 17
 9.1 Must a MESSAGE actually include a message? 17
 9.2 Should support for message/cpim be mandatory in all UAs? . 18
 9.3 message/cpim and the Accept header 18
 9.4 Message Sessions . 18
 9.5 What would a body in a 200 OK to a MESSAGE mean? 18
 9.6 The im: URL and RFC2543 proxies and registrars 19
 9.7 Providing im: URL in Contact headers 19
 9.8 Congestion control . 19
 9.9 Mapping to CPIM . 19
 10. Acknowledgements . 19
 References . 20
 Authors' Addresses . 21
 A. Requirements Evaluation 23
 Full Copyright Statement 27

Rosenberg, et. al. Expires October 11, 2001 [Page 2]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

1. Introduction

 This document defines an extension to SIP (RFC2543 [2]) to support
 Instant Messaging.

 Instant messaging is defined as the exchange of content between a
 set of participants in real time. Generally, the content is short

 textual messages, although that need not be the case. Generally, the
 messages that are exchanged are not stored, but this also need not
 be the case. IM differs from email in common usage in that instant
 messages are usually grouped together into brief live conversations,
 consisting of numerous small messages sent back and forth.

 Instant messaging as a service has been in existence within
 intranets and IP networks for quite some time. Early implementations
 include zephyr [1], the unix talk application, and IRC. More
 recently, IM has been used as a service coupled with presence and
 buddy lists; that is, when a friend comes online, a user can be made
 aware of this and have the option of sending the friend an instant
 message. The protocols for accomplishing this are all proprietary,
 which has seriously hampered interoperability. Furthermore, most of
 these protocols tightly couple presence and IM, due to the way in
 which the service is offered.

 Despite the popularity of presence coupled IM services, IM is a
 separate application from presence. There are many ways to use IM
 outside of presence (for example, as part of a voice communications
 session). Another example are interactive games (possibly
 established with SIP - SIP can establish any type of session, not
 just voice or video); IM is already a common component of
 multiplayer online games. Keeping it apart from presence means it
 can be used in such ways. Furthermore, keeping them separate allows
 separate providers for IM and for presence service. Of course, it
 can always be offered by the same provider, with both protocols
 implemented into a single client application.

 Along a similar vein, the mechanisms needed in an IM protocol are
 very similar to those needed to establish an interactive session -
 rapid delivery of small content to a user at their current location,
 which may, in general, be dynamically changing as the user moves.
 The similarity of needed function implies that existing solutions
 for initiation of sessions (namely, the Session Initiation Protocol
 (SIP) [2]) is an ideal base on which to build an IM protocol.

2. Changes Introduced in draft-ietf-simple-im-00

 The draft name changed to reflect its status as a SIMPLE working
 group item. This version introduces no other changes.

Rosenberg, et. al. Expires October 11, 2001 [Page 3]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

3. Changes Introduced in draft-rosenberg-impp-im-01

 This submission serves to track transition of the work on a SIP
 implementation of IM to the newly formed SIMPLE working group. It
 endeavors to capture the progress made in IMPP since the original
 submission (in particular, including the im: URL and the
 message/cpim body) and detail a set of open issues for the SIMPLE
 working group to address.

 To support those goals, a great deal of the background and
 motivation material in the original text has been shortened or

 removed.

4. Terminology

 Most of the terminology used here is defined in RFC2778 [4].
 However, we duplicate some of the terminology from SIP in order to
 clarify this document:

 User Agent (UA): A UA is a piece of software which is capable of
 initiating requests, and of responding to requests.

 User Agent Server (UAS): A UAS is the component of a UA which
 receives requests, and responds to them.

 User Agent Client (UAC): A UAC is the component of a UA which sends
 requests, and receives responses.

 Registrar: A registrar is a SIP server which can receive and
 process REGISTER requests. These requests are used to construct
 address bindings.

5. Overview of Operation

 When one user wishes to send an instant message to another, the
 sender formulates and issues a SIP request using the new MESSAGE
 method defined by this document. The request URI of this request
 will normally be the im: URL of the party to whom the message is
 directed (see CPIM [15]), but can also be a normal SIP URL. The body
 of the request will contain the message to be delivered. This body
 can be of any MIME type, including "message/cpim" [16].

 The request may traverse a set of SIP proxies using a variety of
 transport mechanism (UDP, TCP, even SCTP [5]) before reaching its
 destination. The destination for each hop is located using the
 address resolution rules detailed in the CPIM and SIP specifications
 (see Section 6 for more detail). During traversal, each proxy may
 rewrite the request URI based on available routing information.

Rosenberg, et. al. Expires October 11, 2001 [Page 4]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 Provisional and final responses to the request will be returned to
 the sender as with any other SIP request. Normally, a 200 OK
 response will be generated by the user agent of the request's final
 recipient. Note that this indicates that the user agent accepted the
 message, not that the user has seen it.

 Groups of messages in a common thread may be associated by keeping
 them in the same session as identified by the combination of the To,
 From and Call-ID headers. Other potential means of grouping messages
 are discussed below.

 It is possible that a proxy may fork a MESSAGE request based on its
 available routing mechanism. This draft proposes a mechanism that
 takes advangage of this, delivering messages in a session to
 multiple endpoints until one sends a message back. After that, all

 remaining messages in the session are delivered to the responding
 agent.

6. The MESSAGE request

 This section defines the syntax and semantics of this extension.

6.1 Method Definition

 This specification defines a new SIP method, MESSAGE. The BNF for
 this method is:

 Message = "MESSAGE"

 As with all other methods, the MESSAGE method name is case
 sensitive.

 Tables 1 and 2 extend Tables 4 and 5 of SIP by adding an additional
 column, defining the headers that can be used in MESSAGE requests
 and responses.

Rosenberg, et. al. Expires October 11, 2001 [Page 5]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 where enc. e-e MESSAGE
 __
 Accept R e o
 Accept 415 e o
 Accept-Encoding R e o
 Accept-Encoding 415 e o
 Accept-Language R e o
 Accept-Language 415 e o
 Allow 200 e o
 Allow 405 e m
 Authorization R e o
 Authorization r e o
 Call-ID gc n e m
 Contact R e m
 Contact 2xx e o
 Contact 3xx e o
 Contact 485 e o
 Content-Encoding e e o
 Content-Length e e m

 Content-Type e e *
 CSeq gc n e m
 Date g e o
 Encryption g n e o
 Expires g e o
 From gc n e m
 Hide R n h o
 Max-Forwards R n e o
 Organization g c h o

 Table 1: Summary of header fields, A--O

Rosenberg, et. al. Expires October 11, 2001 [Page 6]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 where enc. e-e MESSAGE
 __
 Priority R c e o
 Proxy-Authenticate 407 n h o
 Proxy-Authorization R n h o
 Proxy-Require R n h o
 Record-Route R h o
 Record-Route 2xx,401,484 h o
 Require R e o
 Retry-After R c e -
 Retry-After 404,413,480,486 c e o
 500,503 c e o
 600,603 c e o
 Response-Key R c e o
 Route R h o
 Server r c e o
 Subject R c e o
 Timestamp g e o
 To gc(1) n e m
 Unsupported 420 e o
 User-Agent g c e o
 Via gc(2) n e m
 Warning r e o

 WWW-Authenticate R c e o
 WWW-Authenticate 401 c e o

 (1): copied with possible addition of tag
 (2): UAS removes first Via header field

 Table 2: Summary of header fields, P--Z

 A MESSAGE request MAY (Open Issue Section 9.1) contain a body, using
 the standard MIME headers to identify the content.

 Unless stated otherwise in this document, the protocol for emitting
 and responding to a MESSAGE request is identical to that for a BYE
 request as defined in [2]. The behavior of SIP entities not
 implementing the MESSAGE (or any other unknown) method is explicitly
 defined in [2].

6.2 UAC processing of initial MESSAGE request

 A MESSAGE request MUST contain a To, From, Call-ID, CSeq, Via,
 Content-Length, and Contact header, formatted as specified in [2].

 All UAs MUST be prepared to send and receive MESSAGE requests with a
 body of type text/plain. All UAs wishing to provide the end to end
 security mechanisms defined in CPIM MUST be prepared to send and
 receive MESSAGE requests with a body type of message/cpim. All UAs

Rosenberg, et. al. Expires October 11, 2001 [Page 7]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 implementing MESSAGE SHOULD provide the end to end security
 mechanisms defined in CPIM (Open Issue Section 9.2).

 MESSAGE requests MAY contain an Accept header listing the allowable
 MIME types which may be sent in the response, or in subsequent
 requests in the reverse direction. The absence of the Accept header
 implies that the only allowed MIME type is text/plain. This
 simplifies operation in small devices, such as wireless appliances,
 which will generally only have support for text, but still allows
 any other MIME type to be used if both sides support it. (Open Issue
 Section 9.3)

 A UAC MAY send a MESSAGE request within an existing SIP call,
 established with an INVITE. In this case, the MESSAGE request is
 processed identically to the INFO method [9]. The only difference is
 that a MESSAGE request is assumed to be for the purpose of instant
 messaging as part of the call, whereas INFO is less specific.

 A UAC MAY associate sequential MESSAGEs in a common thread by
 constructing them with common To, From, and Call-ID headers and
 increasing CSeq values. (Open Issue Section 9.4)

6.3 Finding the next hop

 The mechanism used to determine the next hop destination for a SIP
 MESSAGE request is detailed in [15] and [2]. Briefly, for the URL
 im:user@host,

 1. The UA makes a DNS SRV [12] query for _im._sip.host. If any RRs
 are returned, they determine the next hop. Otherwise:
 2. The UA makes a DNS SRV query for _sip.host. If any RRs are
 returned, they determine the next hop. Otherwise:
 3. The UA makes a DNS A query for host. If any records are
 returned, they determine the address of the next hop. The
 desination port is determined from the input URL (if the input
 was an im: URL, the request is sent to the default SIP port of
 5060).
 For sip: URLs, the UA starts at step 2.

6.4 Proxy processing of MESSAGE requests

 Proxies route requests with method MESSAGE the same as they would
 any other SIP request (proxy routing in SIP does not depend on the
 method). Note that the MESSAGE request MAY fork; this allows for
 delivery of the message to several possible terminals where the user
 might be.

 If a MESSAGE request hits a proxy that uses registrations to route
 requests, but no registration exists for the target user in the
 request-URI, the request is rejected with a 404 (Not Found).

Rosenberg, et. al. Expires October 11, 2001 [Page 8]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 Proxies MAY have access rules which prohibit the transmission of
 instant messages based on certain criteria. Typically, this criteria
 will be based on the identity of the sender of the instant messages.
 Establishment of this criteria in the proxy is outside the scope of
 this extension. We anticipate that such access controls will often
 be controlled through web pages accessible by users, mitigating the
 need for standardization of a protocol for defining access rules.

6.5 UAS processing of MESSAGE requests

 As specified in RFC 2543, if a UAS receives a request with a body of
 type it does not understand, it MUST respond with a 415 (Unsupported
 Media Type) containing an Accept header listing those types which
 are acceptable. (This brings up Open Issue Section 9.3 again)

 Servers MAY reject requests (using a 413 response code) that are too
 long, where too long is a matter of local configuration. All servers
 MUST accept requests which are up to 1184 bytes in length.

 1184 = minimum IPv6 guaranteed length (1280 bytes) minus UDP (8
 bytes) minus IPSEC (48 bytes) minus layer one encapsulation (40
 bytes).

 A UAS receiving a MESSAGE request SHOULD respond with a final
 response immediately. A 200 OK is sent if the request is acceptable.
 Note, however, that the UAS is not obliged to display the message to
 the user either before or after responding with a 200 OK. A 200
 class response to a MESSAGE request MAY contain a body, but this
 will often not be the case, since these responses are generated
 automatically. (Open Issue Section 9.5)

 Like any other SIP request, an IM MAY be redirected, or otherwise
 responded to with any SIP response code. Note that a 200 OK response
 to a MESSAGE request does not mean the user has read the message.

 A UAS which is, in fact, a message relay, storing the message and
 forwarding it later on, or forwarding it into a non-SIP domain,
 SHOULD return a 202 (Accepted) response indicating that the message
 was accepted, but end to end delivery has not been guaranteed.

6.6 UAS processing of initial MESSAGE response

 A 200 OK response to an initial IM may contain Record-Route headers.
 If present, these MUST be used to construct a Route header for use
 in subsequent requests for the same call-leg (defined as the
 combination of remote address, local address, and Call-ID), using
 the process described in Section 6.29 of SIP [2] as if the request
 were INVITE. Note that per Section 6.8 the 200 OK response may not
 contain a Contact header.

Rosenberg, et. al. Expires October 11, 2001 [Page 9]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 A 400 or 500 class response indicates that the message was not
 delivered successfully. A 600 response means it was delivered
 successfully, but refused.

6.7 Subsequent MESSAGE requests

 Any subsequent MESSAGEs in a session (see Section 9.4 follow the
 path established by the Route headers computed by the UA. The CSeq
 header MUST be larger than a CSeq header used in a previous request
 for the same call leg. Is is strongly RECOMMENDED that the CSeq
 number be computed as described in Section 6.17 of SIP, using a
 clock. This allows for the CSeq to increment without requiring the
 UA to store the previous CSeq values.

6.8 Supporting multiple message destinations

 A UAS MAY include a Contact in a 200 class response. Including a
 Contact header enables end to end messaging, which is good for
 efficiency. However, it rules out the possibility of effectively
 supporting more than one terminal which can handle IM
 simultaneously.

 This odd but seemingly innocuous requirement enables a very
 important feature. If a user is connected at several hosts, an
 initial IM will fork, and arrive at each. Each UAS responds with
 a 200 OK immediately, one of which is arbitrarily forwarded
 upstream towards the UAC. If another IM is sent for the same
 call-leg, we still wish for this IM to fork, since we still don't
 know where the user is currently residing. This information is
 known when the user sends an IM in the reverse direction. This IM
 will contain a Contact, and when it arrives at the originator of
 the initial MESSAGE, will update the Route so that now IMs are
 delivered only to that one host where the user is residing.

 A UAS constructs a set of Route headers from the Record-Route and

 Contact headers in the MESSAGE request, as per the procedure defined
 in [10].

 MESSAGE requests for an established IM session MUST contain a Tag in
 the From field. Responses to an IM SHOULD contain a tag in the To
 field. This represents a slightly different operation than for
 INVITE. When a user sends an INVITE, they will receive a 200 OK with
 a tag. Requests in the reverse direction then contain that tag, and
 that tag only, in the From field. Here, the response to IM will
 contain a tag in the To field, and a MESSAGE will contain a tag in
 the From field. However, the UA may receive MESSAGE requests with
 tags in the From field that do not match the tag in the 200 OK
 received to the initial IM. This is because only a single 200 OK is
 returned to a MESSAGE request, as opposed to multiple 200 OK for

Rosenberg, et. al. Expires October 11, 2001 [Page 10]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 INVITE. Thus, the UA MUST be prepared to receive MESSAGEs with many
 different tags, each from a different PUA.

 A UAS MUST be prepared to update the Route is has stored for an IM
 session with a Contact received in a request, if that Contact is
 different from one previously received, or if there was no Contact
 previously.

6.9 Caller Preferences

 User agents SHOULD add the "methods" tag defined in the caller
 preference specification [8] to Contact headers with SIP URLs placed
 in REGISTER requests, indicating support for the MESSAGE method.
 Other elements of caller preferences MAY be supported. For example:

 REGISTER sip:dynamicsoft.com SIP/2.0
 Via: SIP/2.0/UDP mypc.dynamicsoft.com
 To: sip:jdrosen@dynamicsoft.com
 From: sip:jdrosen@dynamicsoft.com
 Call-ID: asidhasd@1.2.3.4
 CSeq: 39 REGISTER
 Contact: sip:jdrosen@im-pc.dynamicsoft.com;methods="MESSAGE"
 Content-Length: 0

 Registrar/proxies which wish to offer IM service SHOULD implement
 the proxy processing defined in the caller preferences specification
 [8].

6.10 Security

 End-to-end security concerns for instant messaging were a primary
 driving force behind the creation of message/cpim [16]. Applications
 needing end-to-end security should study that work carefully.

 SIP provides numerous security mechanisms which can be utilized in
 addition to those made available through the use of message/cpim.

6.10.1 Privacy

 In order to enhance privacy of instant messages, it is RECOMMENDED
 that between network servers (proxies to proxies, proxies to
 redirect servers), transport mode ESP [6] or TLS is used to encrypt
 all traffic. Coupled with persistent connections, this makes it
 impossible for eavesdroppers on non-UA connections to determine when
 a particular user has even sent an IM, let alone what the content
 is. Of course, the content of unencrypted IMs are exposed to
 proxies.

Rosenberg, et. al. Expires October 11, 2001 [Page 11]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 Between a UAC and its local proxy, TLS [11] is RECOMMENDED.
 Similarly, TLS SHOULD be used between a proxy and the UAS receiving
 the IM. The proxy can determine whether TLS is supported by the
 receiving client based on the transport parameter in the Contact
 header of its registration. If that registration contains the token
 "tls" as transport, it implies that the UAS supports TLS. (Open
 issue Section 9.7)

 Furthermore, we allow for the Contact header in the MESSAGE request
 to contain TLS as a transport. The Contact header is used to route
 subsequent messages between a pair of entities. It defines the
 address and transport used to communicate with the user agent for
 subsequent requests in the reverse direction. If no proxies insert
 Record-Route headers, the recipient of the original IM, when it
 wishes to send an IM back, will use the Contact header, and
 establish a direct TLS connection for the remainder of the IM
 communications. If a proxy does Record-Route, the situation is
 different. When the recipient of the original IM (call this
 participant B) sends an IM back to the originator of the original IM
 (call this participant A), this will be sent to the proxy closest to
 B which inserted Record- Route. This proxy, in turn, sends the
 request to the proxy before it which Record-Routed. The first proxy
 after A which inserted Record- Route will then use TLS to contact A.
 Since we suspect that most proxies will not insert Record-Route into
 instant messages, efficient, secure, direct IM will occur
 frequently.

 If encrypted message/cpim bodies are not available, sensitive data
 may be protected from being observed by intermediate proxies by
 using SIP encryption for the transmission of MESSAGE requests. SIP
 supports PGP based encryption, which does not require the
 establishment of a session key for encryption of messages within a
 session (basically, a new session key is established for each
 message as part of the PGP encryption).

6.10.2 Message Integrity and Authenticity

 In addition to the integrity and authenticity protections offered
 through message/cpim, SIP provides PGP based authentication and
 message integrity checks (both challenge-response and normal
 signatures), as well as http basic and digest authentication.

6.10.3 Outbound authentication

 When local proxies are used for transmission of outbound messages,
 proxy authentication is RECOMMENDED. This is useful to verify the
 identity of the originator, and prevent spoofing and spamming at the
 originating network.

Rosenberg, et. al. Expires October 11, 2001 [Page 12]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

6.10.4 Replay Prevention

 To prevent the replay of old SIP requests, all signed MESSAGE
 requests and responses SHOULD contain a Date header covered by the
 message signature. Any message with a date older than several
 minutes in the past, or which is more than several minutes in the
 future, SHOULD be answered with a 400 (Incorrect Date or Time)
 message, unless such messages arrive repeatedly from the same
 source, in which case they MAY be discarded without sending a
 response. Obviously, this replay attack prevention mechanism does
 not work for devices without clocks.

 Furthermore, all signed SIP MESSAGE requests MUST contain a Call-ID
 and CSeq header covered by the message signature. A user agent MAY
 store a list of Call-ID values, and for each, the higest CSeq seen
 within that Call-ID. Any message that arrives for a Call-ID that
 exists, whose CSeq is lower than the highest seen so far, is
 discarded.

 Finally, challenge-response authentication MAY be used to prevent
 replay protection.

7. Congestion Control

 (Open Issue Section 9.8) Discussion needs to take place to populate
 this section.

8. Example Messages

 An example message flow is shown in Figure 1. The message flow shows
 an initial IM sent from User 1 to User 2, both users in the same
 domain, "domain", through a single proxy. A second IM, sent in
 response, flows directly from User 2 to User 1.

 | F1 MESSAGE | |
 |--------------------> | F2 MESSAGE |
 | | ----------------------->|
 | | |
 | | F3 200 OK |
 | | <-----------------------|
 | F4 200 OK | |
 |<-------------------- | |
 | | |
 | | |
 | | |

 | | F5 MESSAGE |
 | <--------------------|------------------------ |

Rosenberg, et. al. Expires October 11, 2001 [Page 13]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 | | |
 | F6 200 OK | |
 | ---------------------|-----------------------> |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |

 User 1 Proxy User 2

 Figure 1: Example Message Flow

 Message F1 looks like:

 MESSAGE im:user2@domain.com SIP/2.0
 Via: SIP/2.0/UDP user1pc.domain.com
 From: im:user1@domain.com
 To: im:user2@domain.com
 Contact: sip:user1@user1pc.domain.com
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Type: text/plain
 Content-Length: 18

 Watson, come here.

 User1 forwards this message to the server for domain.com (discovered
 through the combination of SRV and A record processing described in
 Section 6.3 , using UDP. The proxy receives this request, and
 recognizes that it is the server for domain.com. It looks up user2
 in its database (built up through registrations), and finds a
 binding from im:user2@domain.com to sip:user2@user2pc.domain.com. It
 forwards the request to user2, and does not insert a Record-Route
 header. The resulting message, F2, looks like:

Rosenberg, et. al. Expires October 11, 2001 [Page 14]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 MESSAGE sip:user2@domain.com SIP/2.0
 Via: SIP/2.0/UDP proxy.domain.com
 Via: SIP/2.0/UDP user1pc.domain.com
 From: im:user1@domain.com
 To: im:user2@domain.com
 Contact: sip:user1@user1pc.domain.com
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Type: text/plain
 Content-Length: 18

 Watson, come here.

 The message is received by user2, displayed, and a response is
 generated, message F3, and sent to the proxy:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.domain.com
 Via: SIP/2.0/UDP user1pc.domain.com
 From: im:user1@domain.com
 To: im:user2@domain.com;tag=ab8asdasd9
 Contact: sip:user2@user1pc.domain.com
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Length: 0

 Note that most of the header fields are simply reflected in the
 response. The proxy receives this response, strips off the top Via,
 and forwards to the address in the next Via, user1pc.domain.com, the
 result being message F4:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP user1pc.domain.com
 From: im:user1@domain.com
 To: im:user2@domain.com;tag=ab8asdasd9
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Length: 0

 Now, user2 wishes to send an IM to user1, message F5. As there are
 no Record-Routes in the original IM, it can simply send the IM
 directly to the address in the Contact header. Note how the To and
 From fields are now reversed from the response it sent in message
 F4:

Rosenberg, et. al. Expires October 11, 2001 [Page 15]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 MESSAGE sip:user1@user1pc.domain.com SIP/2.0
 Via: SIP/2.0/UDP user2pc.domain.com
 To: im:user1@domain.com
 From: im:user2@domain.com;tag=ab8asdasd9
 Contact: sip:user2@user2pc.domain.com
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Type: multipart/signed; boundary=next;
 MDALG=SHA-1; type=application/pkcs7
 Content-Length: <however many bytes that is below>

 --next
 Content-Type: message/cpim

 From: <im:user2@domain.com>
 To: <im:user1@domain.com>
 Date: 2001-02-28T01:20:00-06:00

 Content-Type: text/plain

 My name is User2, not Watson.

 --next
 Content-Type: application/pkcs7

 (signature stuff)
 :
 --next--

 This is sent directly to user1, who responds with a 200 OK in
 message F6:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP user2pc.domain.com
 To: im:user1@domain.com;tag=2c09sj3sd9
 From: im:user2@domain.com;tag=ab8asdasd9
 Call-ID: asd88asd77a@1.2.3.4
 CSeq: 1 MESSAGE
 Content-Length: 0

9. Open Issues

9.1 Must a MESSAGE actually include a message?

 Section 6 specifies that a MESSAGE MAY contain a MIME body. Should
 this be MUST? Does it make sense to have a MESSAGE with no body?

Rosenberg, et. al. Expires October 11, 2001 [Page 16]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

9.2 Should support for message/cpim be mandatory in all UAs?

 Section 6 requires that UAs implementing MESSAGE support text/plain

 bodies as the lowest common denominator. Should this be message/cpim
 instead? Any UA wishing to support end-end signing or encryption of
 messages passing across simple/apex/prim boundaries MUST support
 message/cpim. If, however, end-end security is not desired, clients
 and messaging can be made a little lighter by not including the
 message/cpim wrapper. An unsigned message/cpim body can be created
 from messages from those clients when crossing a boundary that
 requires one.

9.3 message/cpim and the Accept header

 Do we need text to make it clear that a UA should indicate the mime
 types it supports _inside_ a message/cpim body as well as supporting
 message/cpim?

9.4 Message Sessions

 Several implementations of the -00 version of this draft grouped
 messages in a common thread by placing them in a "call-leg" (common
 To, From, and Call-ID). The first message sent or received in a
 thread established the leg. This has provided enough information to
 allow user interfaces to present separate threads in separate
 dialogs. There is some concern that there is no way to formally
 terminate this "call-leg".

 The -00 version noded that there is state at the UA associated with
 this notion of session, encapsulated in the Call-ID, Route headers,
 and CSeq numbers. A UA MAY terminate this session at any time,
 including after each MESSAGE. No messaging is required to terminate
 it. Any associated state with the session is simply discarded. The
 idempotency of SIP requests will ensure that if one side (side A)
 discards session state, and the other (side B) does not, a message
 from side B will appear as a new IM, and standard processing will
 reconstitute the session on side A.

 o Should we define a way to use INVITE/BYE to surround a group of
 MESSAGE requests that are part of a logical session?

9.5 What would a body in a 200 OK to a MESSAGE mean?

 Section 6.5 states "A 200 class response to a MESSAGE request MAY
 contain a body, but this will often not be the case, since these
 responses are generated automatically." If one were to appear, what
 would it mean?

Rosenberg, et. al. Expires October 11, 2001 [Page 17]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

9.6 The im: URL and RFC2543 proxies and registrars

 What are the implications of an im: URL showing up in the request
 URI in a MESSAGE request received by an RFC2543 proxy, or the To:
 header of a REGISTER request received by an RFC2543 registrar?

9.7 Providing im: URL in Contact headers

 What are the ramifications of a UA providing an im: URL in a
 Contact: header for a REGISTER method, or a MESSAGE method? For the
 forseeable future, most SIP endpoints aren't going to have SRV
 records of the form _im._sip.host or even _sip.host pointing to
 them. Falling back to A records in that case seems to preclude the
 use of non-UDP transports.

9.8 Congestion control

 Per the amendments made to the SIMPLE charter by the IESG prior to
 approval, congestion control needs attention. In particular the
 requirements of BCP 41 must be met by this extension. Specifying the
 use of transport protocols with congestion control built in,
 particularly with the recommendation of reuse of connections, is an
 option. The question is when can we use those that don't (UDP) and
 what needs to be done in addition to what SIP already does in that
 case. Among other things, this interacts with Section 9.7

9.9 Mapping to CPIM

 This document needs to detail the mapping of this extension onto
 CPIM.

10. Acknowledgements

 The authors would like to thank the following people for their
 support of the concept of SIP for IM, support for this work, and for
 their useful comments and insights:

 Jon Peterson Level(3) Communications
 Sean Olson Ericsson
 Adam Roach Ericsson
 Billy Biggs University of Waterloo
 Stuart Barkley UUNet
 Mauricio Arango SUN
 Richard Shockey Shockey Consulting LLC
 Jorgen Bjorker Hotsip
 Henry Sinnreich MCI Worldcom
 Ronald Akers Motorola

Rosenberg, et. al. Expires October 11, 2001 [Page 18]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

References

 [1] DellaFera, C. A., Eichin, M. W., French, R. S., Jedlinski, D.
 C., Kohl, J. T. and W. E. Sommerfeld, "The Zephyr notification
 service", in USENIX Winter Conference (Dallas, Texas), Feb.
 1988.

 [2] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
 "SIP: Session Initiation Protocol", RFC 2543, March 1999.

 [3] Day, M., Aggarwal, S. and J. Vincent, "Instant Messaging /

 Presence Protocol Requirements", RFC 2779, February 2000.

 [4] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence
 and Instant Messaging", RFC 2778, February 2000.

 [5] Rosenberg, J. and H. Schulzrinne, "SCTP as a transport for
 SIP", draft-rosenberg-sip-sctp-00 (work in progress), June
 2000.

 [6] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [7] Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",
 RFC 2409, November 1998.

 [8] Rosenberg, J. and H. Schulzrinne, "SIP caller preferences and
 callee capabilities", draft-ietf-sip-callerprefs-03 (work in
 progress), November 2000.

 [9] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

 [10] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
 "SIP: Session Initiation Protocol", RFC 2543, March 1999.

 [11] Dierks, T., Allen, C., Treese, W., Karlton, P. L., Freier, A.
 O. and P. C. Kocher, "The TLS Protocol Version 1.0", RFC 2246,
 January 1999.

 [12] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [13] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [14] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

Rosenberg, et. al. Expires October 11, 2001 [Page 19]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 [15] Crocker, D., Diacakis, A., Mazzoldi, F., Huitema, C., Klyne,
 G., Rose, M., Rosenberg, J., Sparks, R. and H. Sugano, "A
 Common Profile for Instant Messaging (CPIM)",
 draft-ietf-impp-cpim-01 (work in progress), February 2001.

 [16] Atkins, D. and G. Klyne, "Common Presence and Instant
 Messaging Message Format", draft-ietf-impp-cpim-msgfmt-00
 (work in progress), February 2001.

Authors' Addresses

 Jonathan Rosenberg
 dynamicsoft
 200 Executive Drive

 Suite 120
 West Orange, NJ 07052

 email: jdrosen@dynamicsoft.com

 Dean Willis
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, TX 75024

 email: dwillis@dynamicsoft.com

 Robert J. Sparks
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, TX 75024

 email: rsparks@dynamicsoft.com

 Ben Cambpell
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, TX 75024

 email: bcampbell@dynamicsoft.com

Rosenberg, et. al. Expires October 11, 2001 [Page 20]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003

 email: schulzrinne@cs.columbia.edu

 Jonathan Lennox
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003

 email: lennox@cs.columbia.edu

 Christian Huitema

 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 email: huitema@microsoft.com

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 email: bernarda@microsoft.com

 David Gurle
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399

 email: dgurle@microsoft.com

 David Oran
 Cisco Systems
 170 West Tasman Dr.
 San Jose, CA 95134

 email: oran@cisco.com

Rosenberg, et. al. Expires October 11, 2001 [Page 21]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

Appendix A. Requirements Evaluation
 This section was moved forward verbatim from -00.

 RFC 2779 [3] outlines requirements for IM and presence protocols.
 The document describes both shared requirements and IM and presence
 specific requirements. Examining each of the IM requirements in
 turn, we also observe that they are met by this proposal:

 "Requirement 2.1.1: The protocols MUST allow a PRESENCE SERVICE to
 be available independent of whether an INSTANT MESSAGE SERVICE is
 available, and vice-versa." This requirement is met by the
 separation of presence and IM which we propose here.

 "Requirement 2.1.2. The protocols must not assume that an INSTANT
 INBOX is necessarily reached by the same IDENTIFIER as that of a
 PRESENTITY. Specifically, the protocols must assume that some
 INSTANT INBOXes may have no associated PRESENTITIES, and vice
 versa." This requirement is also easily met by any architecture
 which completely separates IM and presence as we propose.

 "Requirement 2.1.3. The protocols MUST also allow an INSTANT INBOX
 to be reached via the same IDENTIFIER as the IDENTIFIER of some
 PRESENTITY." Same as above.

 "Requirement 2.1.4. The administration and naming of ENTITIES
 within a given DOMAIN MUST be able to operate independently of
 actions in any other DOMAIN." This requirement is met by SIP. SIP
 uses email-like identifiers which consist of a user name at a
 domain. Administration of user names is done completely within
 the domain, and these user names have no defined rules or
 organization that needs to be known outside of the domain in
 order for SIP to operate.

 "Requirement 2.1.5. The protocol MUST allow for an arbitrary number
 of DOMAINS within the NAMESPACE." This requirement is met by SIP.
 SIP uses standard DNS domains, which are not restricted in
 number.

 "Requirement 2.2.1. It MUST be possible for ENTITIES in one DOMAIN
 to interoperate with ENTITIES in another DOMAIN, without the
 DOMAINS having previously been aware of each other." This
 requirement is met by SIP, as it is essential for establishing
 sessions as well. DNS SRV records are used to discover servers
 for a particular service within a domain. They are a
 generalization of MX records, used for email routing. SIP defines
 procedures for usage of DNS records to find servers in another
 domains, which include SRV lookups. This allows domains to
 communicate without prior setup.

Rosenberg, et. al. Expires October 11, 2001 [Page 22]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 "Requirement 2.2.2: The protocol MUST be capable of meeting its
 other functional and performance requirements even when there are
 millions of ENTITIES within a single DOMAIN." Whilst it is hard
 to judge whether this can be met by examining the architecture of
 a protocol, SIP has numerous mechanisms for achieving large
 scales of users within a domain. It allows hierarchies of
 servers, whereby the namespace can be partitioned among servers.
 Servers near the top of the hierarchy, used solely for routing,
 can be stateless, providing excellent scale.

 "Requirement 2.2.3: The protocol MUST be capable of meeting its
 other functional and performance requirements when there are
 millions of DOMAINS within the single NAMESPACE." The usage of
 DNS for dividing the namespace into domains provides the same
 scale as todays email systems, which support millions of DOMAINS.

 "Requirement 2.3.5: The PRINCIPAL controlling an INSTANT INBOX MUST
 be able to control which other PRINCIPALS, if any, can send
 INSTANT MESSAGES to that INSTANT INBOX." This is provided by
 access control mechanisms, outside the scope of this extension.

 "Requirement 2.3.6: The PRINCIPAL controlling an INSTANT INBOX MUST
 be able to control which other PRINCIPALS, if any, can read
 INSTANT MESSAGES from that INSTANT INBOX." This is accomplished
 through authenticated registration requests. Registrations are
 used to determine which user gets delivered an instant message.
 Policy in proxies can allow only certain users to register

 contact address for a particular inbox (an inbox is defined by
 the address-of- record in the To field in the registration).

 "Requirement 2.4.3: The protocol MUST allow the sending of an
 INSTANT MESSAGE both directly and via intermediaries, such as
 PROXIES." This is fundamental to the operation of SIP.

 "Requirement 2.4.4: The protocol proxying facilities and transport
 practices MUST allow ADMINISTRATORS ways to enable and disable
 protocol activity through existing and commonly-deployed
 FIREWALLS. The protocol MUST specify how it can be effectively
 filtered by such FIREWALLS." Although SIP itself runs on port
 5060 by default, any other port can be used. It is simple to
 specify that IM should run on a different port, if so desired.

 "Requirement 2.5.1. The protocol MUST provide means to ensure
 confidence that a received message (NOTIFICATION or INSTANT
 MESSAGE) has not been corrupted or tampered with." This is
 supported by SIPs PGP and S/MIME authentication mechanism.

 "Requirement 2.5.2. The protocol MUST provide means to ensure
 confidence that a received message (NOTIFICATION or INSTANT

Rosenberg, et. al. Expires October 11, 2001 [Page 23]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 MESSAGE) has not been recorded and played back by an adversary."
 This is provided by SIP's challenge response authentication
 mechanisms, through timestamp-based replay prevention, or through
 stateful storage of previous transaction identifiers (the
 combination of To, From, Call-ID, CSeq).

 "Requirement 2.5.3. The protocol MUST provide means to ensure that
 a sent message (NOTIFICATION or INSTANT MESSAGE) is only readable
 by ENTITIES that the sender allows." This is supported through
 SIPs end to end and hop by hop encryption mechanisms.

 "Requirement 2.5.4. The protocol MUST allow any client to use the
 means to ensure non-corruption, non-playback, and privacy, but
 the protocol MUST NOT require that all clients use these means at
 all times." All algorithms for security in SIP are optional.

 "Requirement 4.1.1. All ENTITIES sending and receiving INSTANT
 MESSAGES MUST implement at least a common base format for INSTANT
 MESSAGES." We specify text/plain here.

 "Requirement 4.1.2. The common base format for an INSTANT MESSAGE
 MUST identify the sender and intended recipient." This is
 accomplished with the To and From fields in SIP.

 "Requirement 4.1.3. The common message format MUST include a return
 address for the receiver to reply to the sender with another
 INSTANT MESSAGE." This is done through the Contact headers
 defined in SIP.

 "Requirement 4.1.4. The common message format SHOULD include
 standard forms of addresses or contact means for media other than

 INSTANT MESSAGES, such as telephone numbers or email addresses."
 SIP supports any URL format in the Contact headers. Furthermore,
 the body of a MESSAGE request can be multipart, and contain
 things like vCards.

 "Requirement 4.1.5. The common message format MUST permit the
 encoding and identification of the message payload to allow for
 non-ASCII or encrypted content." MIME content labeling is used in
 SIP.

 "Requirement 4.1.6. The protocol must reflect best current
 practices related to internationalization." SIP uses UTF-8 and is
 completely internationalized.

 "Requirement 4.1.7. The protocol must reflect best current
 practices related to accessibility." Additional requirements are
 needed on what is required for accessibility.

Rosenberg, et. al. Expires October 11, 2001 [Page 24]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

 "Requirement 4.1.9. The working group MUST determine whether the
 common message format includes fields for numbering or
 identifying messages. If there are such fields, the working group
 MUST define the scope within which such identifiers are unique
 and the acceptable means of generating such identifiers." This is
 done with the combination of Call-ID and CSeq. The mechanisms for
 guaranteeing uniqueness are specified in SIP.

 "Requirement 4.1.10. The common message format SHOULD be based on
 IETF-standard MIME (RFC 2045)[14]." SIP uses MIME.

 "Requirement 4.2.1. The protocol MUST include mechanisms so that a
 sender can be informed of the SUCCESSFUL DELIVERY of an INSTANT
 MESSAGE or reasons for failure. The working group must determine
 what mechanisms apply when final delivery status is unknown, such
 as when a message is relayed to non-IMPP systems." SIP specifies
 notification of successful delivery through 200 OK. When delivery
 of requests through gateways, success can be indicated only
 through the SIP component (if the gateway acts as a UAS/UAC) or
 through the entire system (if it acts like a proxy).

 "Requirement 4.3.1. The transport of INSTANT MESSAGES MUST be
 sufficiently rapid to allow for comfortable conversational
 exchanges of short messages." The support for end to end
 messaging (i.e., without intervening proxies) allows IMs to be
 delivered as rapidly as possible. The UDP reliability mechanisms
 also support fast recovery from loss.

Rosenberg, et. al. Expires October 11, 2001 [Page 25]
ˇ
Internet-Draft SIP Extensions for Instant Messaging April 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC editor function is currently provided by the
 Internet Society.

Rosenberg, et. al. Expires October 11, 2001 [Page 26]
ˇ

Internet Engineering Task Force SIMPLE WG
Internet Draft Rosenberg et al.
draft-ietf-simple-presence-00.txt Various Places
March 30, 2001
Expires: September 2001

 SIP Extensions for Presence

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

Abstract

 This document proposes an extension to SIP for subscriptions and
 notifications of user presence. User presence is defined as the
 willingness and ability of a user to communicate with other users on
 the network. Historically, presence has been limited to "on-line" and
 "off-line" indicators; the notion of presence here is broader.
 Subscriptions and notifications of user presence are supported by
 defining an event package within the general SIP event notification
 framework. This protocol is also compliant with the Common Presence
 and Instant Messaging (CPIM) framework.

1 Introduction

 Presence is (indirectly) defined in RFC2778 [1] as subscription to
 and notification of changes in the communications state of a user.

Rosenberg et al. [Page 1]
ˇ
Internet Draft presence March 30, 2001

 This communications state consists of the set of communications
 means, communications address, and status of that user. A presence
 protocol is a protocol for providing such a service over the Internet
 or any IP network.

 This document proposes an extension to the Session Initiation
 Protocol (SIP) [2] for presence. This extension is a concrete
 instantiation of the general event notification framework defined for
 SIP [3], and as such, makes use of the SUBSCRIBE and NOTIFY methods
 defined there. User presence is particularly well suited for SIP. SIP
 registrars and location services already hold user presence
 information; it is uploaded to these devices through REGISTER
 messages, and used to route calls to those users. Furthermore, SIP
 networks already route INVITE messages from any user on the network
 to the proxy that holds the registration state for a user. As this
 state is user presence, those SIP networks can also allow SUBSCRIBE
 requests to be routed to the same proxy. This means that SIP networks
 can be reused to establish global connectivity for presence
 subscriptions and notifications.

 This extension is based on the concept of a presence agent, which is
 a new logical entity that is capable of accepting subscriptions,
 storing subscription state, and generating notifications when there
 are changes in user presence. The entity is defined as a logical one,
 since it is generally co-resident with another entity, and can even
 move around during the lifetime of a subscription.

 This extension is also compliant with the Common Presence and Instant
 Messaging (CPIM) framework that has been defined in [4]. This allows
 SIP for presence to easily interwork with other presence systems
 compliant to CPIM.

2 Definitions

 This document uses the terms as defined in [1]. Additionally, the
 following terms are defined and/or additionally clarified:

 Presence User Agent (PUA): A Presence User Agent manipulates
 presence information for a presentity. In SIP terms, this
 means that a PUA generates REGISTER requests, conveying
 some kind of information about the presentity. We
 explicitly allow multiple PUAs per presentity. This means
 that a user can have many devices (such as a cell phone and
 PDA), each of which is independently generating a component
 of the overall presence information for a presentity. PUAs
 push data into the presence system, but are outside of it,
 in that they do not receive SUBSCRIBE messages, or send
 NOTIFY.

Rosenberg et al. [Page 2]
ˇ
Internet Draft presence March 30, 2001

 Presence Agent (PA): A presence agent is a SIP user agent which
 is capable of receiving SUBSCRIBE requests, responding to
 them, and generating notifications of changes in presence
 state. A presence agent must have complete knowledge of the

 presence state of a presentity. Typically, this is
 accomplished by co-locating the PA with the
 proxy/registrar, or the presence user agent of the
 presentity. A PA is always addressable with a SIP URL.

 Presence Server: A presence server is a logical entity that can
 act as either a presence agent or as a proxy server for
 SUBSCRIBE requests. When acting as a PA, it is aware of the
 presence information of the presentity through some
 protocol means. This protocol means can be SIP REGISTER
 requests, but other mechanisms are allowed. When acting as
 a proxy, the SUBSCRIBE requests are proxied to another
 entity that may act as a PA.

 Presence Client: A presence client is a presence agent that is
 colocated with a PUA. It is aware of the presence
 information of the presentity because it is co-located with
 the entity that manipulates this presence information.

3 Overview of Operation

 In this section, we present an overview of the operation of this
 extension.

 When an entity, the subscriber, wishes to learn about presence
 information from some user, it creates a SUBSCRIBE request. This
 request identifies the desired presentity in the request URI, using
 either a presence URL or a SIP URL. The subscription is carried along
 SIP proxies as any other INVITE would be. It eventually arrives at a
 presence server, which can either terminate the subscription (in
 which case it acts as the presence agent for the presentity), or
 proxy it on to a presence client. If the presence client handles the
 subscription, it is effectively acting as the presence agent for the
 presentity. The decision about whether to proxy or terminate the
 SUBSCRIBE is a local matter; however, we describe one way to effect
 such a configuration, using REGISTER.

 The presence agent (whether in the presence server or presence
 client) first authenticates the subscription, then authorizes it. The
 means for authorization are outside the scope of this protocol, and
 we expect that many mechanisms will be used. Once authorized, the
 presence agent sends a 202 Accepted response. It also sends an
 immediate NOTIFY message containing the state of the presentity. As
 the state of the presentity changes, the PA generates NOTIFYs for all

Rosenberg et al. [Page 3]
ˇ
Internet Draft presence March 30, 2001

 subscribers.

 The SUBSCRIBE message effectively establishes a session with the
 presence agent. As a result, the SUBSCRIBE can be record-routed, and
 rules for tag handling and Contact processing mirror those for
 INVITE. Similarly, the NOTIFY message is handled in much the same way
 a re-INVITE within a call leg is handled.

4 Naming

 A presentity is identified in the most general way through a presence
 URI [4], which is of the form pres:user@domain. These URIs are
 protocol independent. Through a variety of means, these URIs can be
 resolved to determine a specific protocol that can be used to access
 the presentity. Once such a resolution has taken place, the
 presentity can be addressed with a sip URL of nearly identical form:
 sip:user@domain. The protocol independent form (the pres: URL) can be
 thought of as an abstract name, akin to a URN, which is used to
 identify elements in a presence system. These are resolved to
 concrete URLs that can be used to directly locate those entities on
 the network.

 When subscribing to a presentity, the subscription can be addressed
 using the protocol independent form or the sip URL form. In the SIP
 context, "addressed" refers to the request URI. It is RECOMMENDED
 that if the entity sending a SUBSCRIBE is capable of resolving the
 protocol independent form to the SIP form, this resolution is done
 before sending the request. However, if the entity is incapable of
 doing this translation, the protocol independent form is used in the
 request URI. Performing the translation as early as possible means
 that these requests can be routed by SIP proxies that are not aware
 of the presence namespace.

 The result of this naming scheme is that a SUBSCRIBE request is
 addressed to a user the exact same way an INVITE request would be
 addressed. This means that the SIP network will route these messages
 along the same path an INVITE would travel. One of these entities
 along the path may act as a PA for the subscription. Typically, this
 will either be the presence server (which is the proxy/registrar
 where that user is registered), or the presence client (which is one
 of the user agents associated with that presentity).

 SUBSCRIBE messages also contain logical identifiers that define the
 originator and recipient of the subscription (the To and From header
 fields). Since these identifiers are logical ones, it is RECOMMENDED
 that these use the protocol independent format whenever possible.
 This also makes it easier to interwork with other systems which
 recognize these forms.

Rosenberg et al. [Page 4]
ˇ
Internet Draft presence March 30, 2001

 The Contact, Record-Route and Route fields do not identify logical
 entities, but rather concrete ones used for SIP messaging. As such,
 they MUST use the SIP URL forms in both SUBSCRIBE and NOTIFY.

5 Presence Event Package

 The SIP event framework [3] defines an abstract SIP extension for
 subscribing to, and receiving notifications of, events. It leaves the
 definition of many additional aspects of these events to concrete
 extensions, also known as event packages. This extension qualifies as
 an event package. This section fills in the information required by
 [3].

5.1 Package Name

 The name of this package is "presence". This name MUST appear within
 the Event header in SUBSCRIBE request and NOTIFY request. This
 section also serves as the IANA registration for the event package
 "presence".

 TODO: Define IANA template in sub-notify and fill it in here.

 Example:

 Event: presence

5.2 SUBSCRIBE bodies

 The body of a SUBSCRIBE request MAY contain a body. The purpose of
 the body depends on its type. In general, subscriptions will normally
 not contain bodies. The request URI, which identifies the presentity,
 combined with the event package name, are sufficient for user
 presence.

 We anticipate that document formats could be defined to act as
 filters for subscriptions. These filters would indicate certain user
 presence events that would generate notifies, or restrict the set of
 data returned in NOTIFY requests. For example, a presence filter
 might specify that the notifications should only be generated when
 the status of the users instant message inbox changes. It might also
 say that the content of these notifications should only contain the
 IM related information.

5.3 Expiration

Rosenberg et al. [Page 5]
ˇ
Internet Draft presence March 30, 2001

 User presence changes as a result of events that include:

 o Turning on and off of a cell phone

 o Modifying the registration from a softphone

 o Changing the status on an instant messaging tool

 These events are usually triggered by human intervention, and occur
 with a frequency on the order of minutes or hours. As such, it is
 subscriptions should have an expiration in the middle of this range,
 which is roughly one hour. Therefore, the default expiration time for
 subscriptions within this package is 3600 seconds. As per [3], the
 subscriber MAY include an alternate expiration time. Whatever the
 indicated expiration time, the server MAY reduce it but MUST NOT
 increase it.

5.4 NOTIFY Bodies

 The body of the notification contains a presence document. This
 document describes the user presence of the presentity that was
 subscribed to. All subscribers MUST support the presence data format
 described in [fill in with IMPP document TBD], and MUST list its MIME
 type, [fill in with MIME type] in an Accept header present in the
 SUBSCRIBE request.

 Other presence data formats might be defined in the future. In that
 case, the subscriptions MAY indicate support for other presence
 formats. However, they MUST always support and list [fill in with
 MIME type of IMPP presence document] as an allowed format.

 Of course, the notifications generated by the presence agent MUST be
 in one of the formats specified in the Accept header in the SUBSCRIBE
 request.

5.5 Processing Requirements at the PA

 User presence is highly sensitive information. Because the
 implications of divulging presence information can be severe, strong
 requirements are imposed on the PA regarding subscription processing,
 especially related to authentication and authorization.

 A presence agent MUST authenticate all subscription requests. This
 authentication can be done using any of the mechanisms defined for
 SIP. It is not considered sufficient for the authentication to be
 transitive; that is, the authentication SHOULD use an end-to-end
 mechanism. The SIP basic authentication mechanism MUST NOT be used.

Rosenberg et al. [Page 6]
ˇ
Internet Draft presence March 30, 2001

 It is RECOMMENDED that any subscriptions that are not authenticated
 do not cause state to be established in the PA. This can be
 accomplished by generating a 401 in response to the SUBSCRIBE, and
 then discarding all state for that transaction. Retransmissions of
 the SUBSCRIBE generate the same response, guaranteeing reliability
 even over UDP.

 Furthermore, a PA MUST NOT accept a subscription unless authorization
 has been provided by the presentity. The means by which authorization
 are provided are outside the scope of this document. Authorization
 may have been provided ahead of time through access lists, perhaps
 specified in a web page. Authorization may have been provided by
 means of uploading of some kind of standardized access control list
 document. Back end authorization servers, such as a DIAMETER [5],
 RADIUS [6], or COPS [7], can also be used. It is also useful to be
 able to query the user for authorization following the receipt of a
 subscription request for which no authorization information was
 present. Appendix A provides a possible solution for such a scenario.

 The result of the authorization decision by the server will be

 reject, accept, or pending. Pending occurs when the server cannot
 obtain authorization at this time, and may be able to do so at a
 later time, when the presentity becomes available.

 Unfortunately, if the server informs the subscriber that the
 subscription is pending, this will divulge information about the
 presentity - namely, that they have not granted authorization and are
 not available to give it at this time. Therefore, a PA SHOULD
 generate the same response for both pending and accepted
 subscriptions. This response SHOULD be a 202 Accepted response.

 If the server informs the subscriber that the subscription is
 rejected, this also divulges information about the presentity -
 namely, that they have explicitly blocked the subscription
 previously, or are available at this time and chose to decline the
 subscription. If the policy of the server is not to divulge this
 information, the PA MAY respond with a 202 Accepted response even
 though the subscription is rejected. Alternatively, if the policy of
 the presentity or the PA is that it is acceptable to inform the
 subscriber of the rejection, a 603 Decline SHOULD be used.

 Note that since the response to a subscription does not contain any
 useful information about the presentity, privacy and integrity of
 SUBSCRIBE responses is not deemed important.

5.6 Generation of Notifications

 Upon acceptance of a subscription, the PA SHOULD generate an

Rosenberg et al. [Page 7]
ˇ
Internet Draft presence March 30, 2001

 immediate NOTIFY with the current presence state of the presentity.

 If a subscription is received, and is marked as pending or was
 rejected, the PA SHOULD generate an immediate NOTIFY. This NOTIFY
 should contain a valid state for the presentity, yet be one which
 provides no useful information about the presentity. An example of
 this is to provide an IM URL that is the same form as the presence
 URL, and mark that IM address as "not available". The reason for this
 process of "lying" is that without it, a subscriber could tell the
 difference between a pending subscription and an accepted
 subscription based on the existence and content of an immediate
 NOTIFY. The approach defined here ensures that the presence delivered
 in a NOTIFY generated by a pending or rejected subscription is also a
 valid one that could have been delivered in a NOTIFY generated by an
 accepted subscription.

 If the policy of the presence server or the presentity is that it is
 acceptable to divulge information about whether the subscription
 succeeded or not, the immediate NOTIFY need not be sent for pending
 or rejected subscriptions.

 Of course, once a subscription is accepted, the PA SHOULD generate a
 NOTIFY for the subscription when it determines that the presence
 state of the presentity has changed. Section 6 describes how the PA

 makes this determination.

 For reasons of privacy, it will frequently be necessary to encrypt
 the contents of the notifications. This can be accomplished using the
 standard SIP encryption mechanisms. The encryption should be
 performed using the key of the subscriber as identified in the From
 field of the SUBSCRIBE. Similarly, integrity of the notifications is
 important to subscribers. As such, the contents of the notifications
 SHOULD be authenticated using one of the standardized SIP mechanisms.
 Since the NOTIFY are generated by the presence server, which may not
 have access to the key of the user represented by the presentity, it
 will frequently be the case that the NOTIFY are signed by a third
 party. It is RECOMMENDED that the signature be by an authority over
 domain of the presentity. In other words, for a user
 pres:user@example.com, the signator of the NOTIFY SHOULD be the
 authority for example.com.

5.7 Rate Limitations on NOTIFY

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the PA not generate notifications for a single presentity at a
 rate faster than once every 5 seconds.

Rosenberg et al. [Page 8]
ˇ
Internet Draft presence March 30, 2001

5.8 Refresh Behavior

 Since SUBSCRIBE is routed by proxies as any other method, it is
 possible that a subscription might fork. The result is that it might
 arrive at multiple devices which are configured to act as a PA for
 the same presentity. Each of these will respond with a 202 response
 to the SUBSCRIBE. Based on the forking rules in SIP, only one of
 these responses is passed to the subscriber. However, the subscriber
 will receive notifications from each of those PA which accepted the
 subscriptions. The SIP event framework allows each package to define
 the handling for this case.

 The processing in this case is identical to the way INVITE would be
 handled. The 202 Accepted to the SUBSCRIBE will result in the
 installation of subscription state in the subscriber. The
 subscription is associated with the To and From (both with tags) and
 Call-ID from the 202. When notifications arrive, those from the PA's
 whose 202's were discarded in the forking proxy will not match the
 subscription ID stored at the subscriber (the From tags will differ).
 These SHOULD be responded to with a 481. This will disable the
 subscriptions from those PA. Furthermore, when refreshing the
 subscription, the refresh SHOULD make use of the tags from the 202
 and make use of any Contact or Record-Route headers in order to
 deliver the SUBSCRIBE back to the same PA that sent the 202.

 The result of this is that a presentity can have multiple PAs active,
 but these should be homogeneous, so that each can generate the same
 set of notifications for the presentity. Supporting heterogeneous

 PAs, each of which generated notifications for a subset of the
 presence data, is complex and difficult to manage. If such a feature
 is needed, it can be accomplished with a B2BUA rather than through a
 forking proxy.

6 Publication

 The user presence for a presentity can be obtained from any number of
 different ways. Baseline SIP defines a method that is used by all SIP
 clients - the REGISTER method. This method allows a UA to inform a
 SIP network of its current communications addresses (ie., Contact
 addresses) . Furthermore, multiple UA can independently register
 Contact addresses for the same SIP URL. These Contact addresses can
 be SIP URLs, or they can be any other valid URL.

 Using the register information for presence is straightforward. The
 address of record in the REGISTER (the To field) identifies the
 presentity. The Contact headers define communications addresses that
 describe the state of the presentity. The use of the SIP caller
 preferences extension [8] is RECOMMENDED for use with UAs that are

Rosenberg et al. [Page 9]
ˇ
Internet Draft presence March 30, 2001

 interested in presence. It provides additional information about the
 Contact addresses that can be used to construct a richer presence
 document. The "description" attribute of the Contact header is
 explicitly defined here to be used as a free-form field that allows a
 user to define the status of the presentity at that communications
 address.

 We also allow REGISTER requests to contain presence documents, so
 that the PUAs can publish more complex information.

 Note that we do not provide for locking mechanisms, which would allow
 a client to lock presence state, fetch it, and update it atomically.
 We believe that this is not neeeded for the majority of use cases,
 and introduces substantial complexity. Most presence operations do
 not require get-before-set, since the SIP register mechanism works in
 such a way that data can be updated without a get.

 The application of registered contacts to presence increases the
 requirements for authenticity. Therefore, REGISTER requests used by
 presence user agents SHOULD be authenticated using either SIP
 authentication mechanisms, or a hop by hop mechanism.

 To indicate presence for instant messaging, the UA MAY either
 register contact addresses that are SIP URLs with the "methods"
 parameter set to indicate the method MESSAGE, or it MAY register an
 IM URL.

 TODO: This section needs work. Need to define a concrete example of
 mapping a register to a presence document, once IMPP generates the
 document format.

6.1 Migrating the PA Function

 It is important to realize that the PA function can be colocated with
 several elements:

 o It can be co-located with the proxy server handling
 registrations for the presentity. In this way, the PA knows
 the presence of the user through registrations.

 o It can be co-located with a PUA for that presentity. In the
 case of a single PUA per presentity, the PUA knows the state
 of the presentity by sheer nature of its co-location.

 o It can be co-located in any proxy along the call setup path.
 That proxy can learn the presence state of the presentity by
 generating its own SUBSCRIBE in order to determine it. In this
 case, the PA is effectively a B2BUA.

Rosenberg et al. [Page 10]
ˇ
Internet Draft presence March 30, 2001

 Because of the soft-state nature of the subscriptions, it becomes
 possible for the PA function to migrate during the lifetime of a
 subscription. The most workable scenario is for the PA function to
 migrate from the presence server to the PUA, and back.

 Consider a subscription that is installed in a presence server.
 Assume for the moment that the presence server can determine that a
 downstream UA is capable of acting as a PA for the presentity. When a
 subscription refresh arrives, the PA destroys its subscription, and
 then acts as a proxy for the subscription. The subscription is then
 routed to the UA, where it can be accepted. The result is that the
 subscription becomes installed in the PUA.

 For this migration to work, the PUA MUST be prepared to accept
 SUBSCRIBE requests which already contain tags in the To field.
 Furthermore, the PUA MUST insert a Contact header into the 202, and
 this header MUST be used by the subscriber to update the contact
 address for the subscription.

 TODO: Does this work? What about getting a Record-Route in place at
 the PUA. This might only be possible for refreshes that don't use
 Route or tags.

 The presence server determines that a PUA is capable of supporting a
 PA function through the REGISTER message. Specifically, if a PUA
 wishes to indicate support for the PA function, it SHOULD include a
 contact address in its registration with a caller preferences
 "methods" parameter listing SUBSCRIBE.

7 Mapping to CPIM

 This section defines how a SIP for presence messages are converted to
 CPIM, and how a CPIM messages are converted to SIP for presence. SIP
 to CPIM conversion occurs when a SIP system sends a SUBSCRIBE request
 that contains a pres URL or SIP URL that corresponds to a user in a
 domain that runs a different presence protocol. CPIM to SIP involves

 the case where a user in a different protocol domain generates a
 subscription that is destined for a user in a SIP domain.

 Note that the process defined below requires that the gateway store
 subscription state. This unfortunate result is due to the need to
 remember the Call-ID, CSeq, and Route headers for subscriptions from
 the SIP side, so that they can be inserted into the SIP NOTIFY
 generated when a CPIM notification arrives.

7.1 SIP to CPIM

 SIP for presnce is converted to CPIM through a SIP to CPIM abstract

Rosenberg et al. [Page 11]
ˇ
Internet Draft presence March 30, 2001

 gateway service, depicted in Figure 1.

 +-------------+
 | |
 | SIP to CPIM|
 | Conversion |
 | |
 SIP | | CPIM
 ---------------> | | ---------------->
 | |
 | |
 | |
 | |
 | |
 | |
 +-------------+

 Figure 1: SIP to CPIM Conversion

 The first step is that a SUBSCRIBE request is received at a gateway.
 The gateway generates a CPIM subscription request, with its
 parameters filled in as follows:

 o The watcher identity in the CPIM message is copied from the
 From field of the SUBSCRIBE. If the From field contains a SIP

 URL, it is converted to an equivalent pres URL by dropping all
 SIP URL parameters, and changing the scheme to pres.

 This conversion may not work - what if the SIP URL has
 no user name. Plus, converting from a URL back to a
 URN in this fashion may not do it correctly.

Rosenberg et al. [Page 12]
ˇ
Internet Draft presence March 30, 2001

 o The target identity in the CPIM message is copied from the
 Request-URI field of the SUBSCRIBE. This may need to be
 converted to a pres URL as well.

 o The duration parameter in the CPIM message is copied from the
 Expires header in the SUBSCRIBE. If the Expires header
 specifies an absolute time, it is converted to a delta-time by
 the gateway. If no Expires header is present, one hour is
 assumed.

 o The transID parameter in the CPIM message is constructed by
 appending the Call-ID, the URI in the To field, the URI in the
 From field, the CSeq and the tag in the From field, and the
 request URI, and computing a hash of the resulting string.
 This hash is used as the transID. Note that the request URI is
 included in the hash. This is to differentiate forked requests
 within the SIP network that may arrive at the same gateway.

 The CPIM service then responds with either a success or failure. In
 the case of success, the SIP to CPIM gateway service generates a 202
 response to the SUBSCRIBE. It adds a tag to the To field in the
 response, which is the same as the transID field in the success
 response. The 202 response also contains a Contact header, which is
 the value of the target from the SUBSCRIBE request. It is important
 that the Contact header be set to the target, since that makes sure
 that subscription refreshes have the same value in the request URI as
 the original subscription. The duration value from the CPIM success
 response is placed into the Expires header of the 202. The gateway
 stores the Call-ID and Route header set for this subscription.

 If the CPIM service responds with a failure, the SIP to CPIM gateway
 generates a 603 response. It adds a tag to the To field in the
 response, which is the same as the transID field in the failure
 response.

 When the CPIM system generates a notification request, the SIP to
 CPIM gateway creates a SIP NOTIFY request. The request is constructed
 using the standard RFC2543 [2] procedures for constructing a request
 within a call leg. This will result in the To field containing the
 watcher field from CPIM, and the From field containing the target
 field from the CPIM notification. The tag in the From field will

 contain the transID. The presence information is copied into the body
 of the notification. The Call-ID and Route headers are constructed
 from the subscription state stored in the gateway. If no notification
 has yet been generated for this subscription, an initial CSeq value

Rosenberg et al. [Page 13]
ˇ
Internet Draft presence March 30, 2001

 is selected and stored.

 SUBSCRIBE refreshes are handled identically to initial subscriptions
 as above.

 If a subscription is received with an Expires of zero, the SIP to
 CPIM gateway generates an unsubscribe message into the the CPIM
 system. The watcher parameter is copied from the From field of the
 SUBSCRIBE. The target parameter is copied from the Request URI field
 of the SUBSCRIBE. The transID is copied from the tag in the To field
 of the SUBSCRIBE request.

 The response to an unsubscribe is either success or failure. In the
 case of success, a 202 response is constructed in the same fashion as
 above for a success response to a CPIM subscriber. All subscription
 state is removed. In the case of failure, a 603 response is
 constructed in the same fashion as above, and then subscription state
 is removed, if present.

7.2 CPIM to SIP

 CPIM to SIP conversion occurs when a CPIM subscription request
 arrives on the CPIM side of the gateway. This scenario is shown in
 Figure 2.

 The CPIM subscription request is converted into a SIP SUBSCRIBE
 request. To do that, the first step is to determine if the subscribe
 is for an existing subscription. That is done by taking the target in
 the CPIM subscription request, and matching it against targets for
 existing subscriptions. If there are none, it is a new subscription,
 otherwise, its a refresh.

 If its a new subscription, the gateway generates a SIP SUBSCRIBE
 request in the following manner:

 o The From field in the request is set to the watcher field in
 the CPIM subscription request

 o The To field in the request is set to the target field in the
 CPIM subscription request

 o The Expires header in the SUBSCRIBE request is set to the
 duration field in the CPIM subscription request

 o The tag in the From field is set to the transID in the CPIM
 subscription request.

Rosenberg et al. [Page 14]
ˇ
Internet Draft presence March 30, 2001

 +-------------+
 | |
 | CPIM to SIP |
 | Conversion |
 | |
 SIP SUBSCRIBE | | CPIM subscription request
 <--------------> | | <--------------->
 | |
 | |
 | |
 | |
 | |
 | |
 +-------------+

 Figure 2: CPIM to SIP Conversion

 This SUBSCRIBE message is then sent.

 If the subscription is a refresh, a SUBSCRIBE request is generated in
 the same way. However, there will also be a tag in the To field,
 copied from the subscription state in the gateway, and a Route
 header, obtained from the subscription state in the gateway.

 When a response to the SUBSCRIBE is received, a response is sent to
 the CPIM system. The duration parameter in this response is copied
 from the Expires header in the SUBSCRIBE response (a conversion from
 an absolute time to delta time may be needed). The transID in the
 response is copied from the tag in the From field of the response. If
 the response was 202, the status is set to indeterminate. If the
 response was any other 200 class response, the status is set to
 sucess. For any other final response, the status is set to failure.

 If the response was a 200 class response, subscription state is

Rosenberg et al. [Page 15]

ˇ
Internet Draft presence March 30, 2001

 established. This state contains the tag from the To field in the
 SUBSCRIBE response, and the Route header set computed from the
 Record-Routes and Contact headers in the 200 class response. The
 subscription is indexed by the presentity identification (the To
 field of the SUBSCRIBE that was generated).

 If an unsubscribe request is received from the CPIM side, the gateway
 checks if the subscription exists. If it does, a SUBSCRIBE is
 generated as described above. However, the Expires header is set to
 zero. If the subscription does not exist, the gateway generates a
 failure response and sends it to the CPIM system. When the response
 to the SUBSCRIBE request arrives, it is converted to a CPIM response
 as described above for the initial SUBSCRIBE response. In all cases,
 any subscription state in the gateway is destroyed.

 When a NOTIFY is received from the SIP system, a CPIM notification
 request is sent. This notification is constructed as follows:

 o The CPIM watcher is set to the URI in the To field of the
 NOTIFY.

 o The CPIM target is set to the URI in the From field of the
 NOTIFY.

 o The transID is computed using the same mechanism as for the
 SUBSCRIBE in Section 7.1

 o The presence component of the notification is extracted from
 the body of the SIP NOTIFY request.

 The gateway generates a 200 response to the SIP NOTIFY and sends it
 as well.

 TODO: some call flow diagrams with the parameters

8 Firewall and NAT Traversal

 It is anticipated that presence services will be used by clients and
 presentities that are connected to proxy servers on the other side of
 firewalls and NATs. Fortunately, since the SIP presence messages do
 not establish independent media streams, as INVITE does, firewall and
 NAT traversal is much simpler than described in [9] and [10].

 Generally, data traverses NATs and firewalls when it is sent over TCP
 or TLS connections established by devices inside the firewall/NAT to
 devices outside of it. As a result, it is RECOMMENDED that SIP for
 presence entities maintain persistent TCP or TLS connections to their
 next hop peers. This includes connections opened to send a SUBSCRIBE,

Rosenberg et al. [Page 16]
ˇ
Internet Draft presence March 30, 2001

 NOTIFY, and most importantly, REGISTER. By keeping the latter
 connection open, it can be used by the SIP proxy to send messages
 from outside the firewall/NAT back to the client. It is also
 recommended that the client include a Contact cookie as described in
 [10] in their registration, so that the proxy can map the presentity
 URI to that connection.

 Furthermore, entities on either side of a firewall or NAT should
 record-route in order to ensure that the initial connection
 established for the subscription is used for the notifications as
 well.

9 Security considerations

 There are numerous security considerations for presence. Many are
 outlined above; this section considers them issue by issue.

9.1 Privacy

 Privacy encompasses many aspects of a presence system:

 o Subscribers may not want to reveal the fact that they have
 subscribed to certain users

 o Users may not want to reveal that they have accepted
 subscriptions from certain users

 o Notifications (and fetch results) may contain sensitive data
 which should not be revealed to anyone but the subscriber

 Privacy is provided through a combination of hop by hop encryption
 and end to end encryption. The hop by hop mechanisms provide scalable
 privacy services, disable attacks involving traffic analysis, and
 hide all aspects of presence messages. However, they operate based on
 transitivity of trust, and they cause message content to be revealed
 to proxies. The end-to-end mechanisms do not require transitivity of
 trust, and reveal information only to the desired recipient. However,
 end-to-end encryption cannot hide all information, and is susceptible
 to traffic analysis. Strong end to end authentication and encryption
 also requires that both participants have public keys, which is not
 generally the case. Thus, both mechanisms combined are needed for
 complete privacy services.

 SIP allows any hop by hop encryption scheme. It is RECOMMENDED that
 between network servers (proxies to proxies, proxies to redirect
 servers), transport mode ESP [11] is used to encrypt the entire
 message. Between a UAC and its local proxy, TLS [12] is RECOMMENDED.
 Similarly, TLS SHOULD be used between a presence server and the PUA.

Rosenberg et al. [Page 17]
ˇ
Internet Draft presence March 30, 2001

 The presence server can determine whether TLS is supported by the
 receiving client based on the transport parameter in the Contact
 header of its registration. If that registration contains the token
 "tls" as transport, it implies that the PUA supports TLS.

 Furthermore, we allow for the Contact header in the SUBSCRIBE request
 to contain TLS as a transport. The Contact header is used to route
 subsequent messages between a pair of entities. It defines the
 address and transport used to communicate with the user agent. Even
 though TLS might be used between the subscriber and its local proxy,
 placing this parameter in the Contact header means that TLS can also
 be used end to end for generation of notifications after the initial
 SUBSCRIBE message has been successfully routed. This would provide
 end to end privacy and authentication services with low proxy
 overheads.

 SIP encryption MAY be used end to end for the transmission of both
 SUBSCRIBE and NOTIFY requests. SIP supports PGP based encryption,
 which does not require the establishment of a session key for
 encryption of messages within a given subscription (basically, a new
 session key is established for each message as part of the PGP
 encryption). Work has recently begun on the application of S/MIME
 [13] for SIP.

9.2 Message integrity and authenticity

 It is important for the message recipient to ensure that the message
 contents are actually what was sent by the originator, and that the
 recipient of the message be able to determine who the originator
 really is. This applies to both requests and responses of SUBSCRIBE
 and NOTIFY. This is supported in SIP through end to end
 authentication and message integrity. SIP provides PGP based
 authentication and integrity (both challenge-response and public key
 signatures), and http basic and digest authentication. HTTP Basic is
 NOT RECOMMENDED.

9.3 Outbound authentication

 When local proxies are used for transmission of outbound messages,
 proxy authentication is RECOMMENDED. This is useful to verify the
 identity of the originator, and prevent spoofing and spamming at the
 originating network.

9.4 Replay prevention

 To prevent the replay of old subscriptions and notifications, all
 signed SUBSCRIBE and NOTIFY requests and responses MUST contain a
 Date header covered by the message signature. Any message with a date

Rosenberg et al. [Page 18]
ˇ
Internet Draft presence March 30, 2001

 older than several minutes in the past, or more than several minutes
 into the future, SHOULD be discarded.

 Furthermore, all signed SUBSCRIBE and NOTIFY requests MUST contain a
 Call-ID and CSeq header covered by the message signature. A user
 agent or presence server MAY store a list of Call-ID values, and for
 each, the higest CSeq seen within that Call-ID. Any message that
 arrives for a Call-ID that exists, whose CSeq is lower than the

 highest seen so far, is discarded.

 Finally, challenge-response authentication (http digest or PGP) MAY
 be used to prevent replay attacks.

9.5 Denial of service attacks

 Denial of service attacks are a critical problem for an open, inter-
 domain, presence protocol. Here, we discuss several possible attacks,
 and the steps we have taken to prevent them.

9.5.1 Smurf attacks through false contacts

 Unfortunately, presence is a good candidate for smurfing attacks
 because of its amplification properties. A single SUBSCRIBE message
 could generate a nearly unending stream of notifications, so long as
 a suitably dynamic source of presence data can be found. Thus, a
 simple way to launch an attack is to send subscriptions to a large
 number of users, and in the Contact header (which is where
 notifications are sent), place the address of the target.

 The only reliable way to prevent these attacks is through
 authentication and authorization. End users will hopefully not accept
 subscriptions from random unrecognized users. Also, the presence
 client software could be programmed to warn the user when the Contact
 header in a SUBSCRIBE is from a domain which does not match that of
 the From field (which identifies the subscriber).

 Also, note that as described in [3], if a NOTIFY is not acknowledged
 or was not wanted, the subscription that generated it is removed.
 This eliminates the amplification properties of providing false
 Contact addresses.

10 Example message flows

 The following subsections exhibit example message flows, to further
 clarify behavior of the protocol.

10.1 Client to Client Subscription with Presentity State Changes

Rosenberg et al. [Page 19]
ˇ
Internet Draft presence March 30, 2001

 This call flow illustrates subscriptions and notifications that do
 not involve a presence server.

 The watcher subscribes to the presentity, and the subscription is
 accepted, resulting in a 202 Accepted response. The presentity
 subsequently changes state (is on the phone), resulting in a new
 notification. The flow finishes with the watcher canceling the
 subscription.

 Watcher Presentity
 ------- -----------
 | F1 SUBSCRIBE |
 | ----------------------------->|
 | F2 202 Accepted |
 |<------------------------------|
 | F3 NOTIFY |
 |<------------------------------|
 | F4 200 OK |
 |------------------------------>|
 | F5 NOTIFY |
 |<------------------------------|
 | F6 200 OK |
 |------------------------------>|
 | F7 SUBSCRIBE (unsub) |
 |------------------------------>|
 | F8 202 Accepted |
 |<------------------------------|

 Message Details

 F1 SUBSCRIBE watcher -> presentity

 SUBSCRIBE sip:presentity@pres.example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Expires: 600
 Accept: application/xpidf+xml
 Event: presence
 Contact: sip:user@watcherhost.example.com

Rosenberg et al. [Page 20]
ˇ
Internet Draft presence March 30, 2001

 F2 202 Accepted presentity->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>;tag=88a7s
 Call-ID: 3248543@watcherhost.example.com
 Cseq: 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Contact: sip:presentity@pres.example.com

 F3 NOTIFY Presentity->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>;tag=88a7s
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 1 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:presentity@example.com">
 <tuple destination="sip:presentity@example.com" status="open"/>
 </presence>

 F4 200 OK watcher->presentity

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 1 NOTIFY

Rosenberg et al. [Page 21]
ˇ
Internet Draft presence March 30, 2001

 F5 NOTIFY Presentity->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:presentity@example.com">
 <tuple destination="sip:presentity@example.com" status="closed"/>
 </presence>

 F6 200 OK watcher->presentity

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 2 NOTIFY

 F7 SUBSCRIBE watcher -> presentity

 SUBSCRIBE sip:presentity@pres.example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 Event: presence
 CSeq : 2 SUBSCRIBE
 Expires: 0
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

Rosenberg et al. [Page 22]
ˇ
Internet Draft presence March 30, 2001

 F8 202 Accepted presentity->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 Event: presence
 Cseq: 2 SUBSCRIBE
 Expires:0

10.2 Presence Server with Client Notifications

 This call flow shows the involvement of a presence server in the
 handling of subscriptions. In this scenario, the client has indicated
 that it will handle subscriptions and thus notifications. The message
 flow shows a change of presence state by the client and a
 cancellation of the subscription by the watcher.

 Presence
 Watcher Server PUA
 | | F1 REGISTER |
 | |<---------------------|
 | | F2 200 OK |
 | |--------------------->|
 | F3 SUBSCRIBE | |
 |--------------------->| |
 | | F4 SUBSCRIBE |
 | |--------------------->|
 | | F5 202 |
 | |<---------------------|
 | F6 202 | |
 |<---------------------| |
 | F7 NOTIFY | |
 |<--+
 | F8 200 OK | |
 |-->|
 | | F9 REGISTER |
 | |<---------------------|
 | | F10 200 OK |
 | |--------------------->|
 | F11 NOTIFY | |

Rosenberg et al. [Page 23]
ˇ
Internet Draft presence March 30, 2001

 |<--+
 | F12 200 OK | |
 |-->|

 Message Details

 F1 REGISTER PUA->server

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 1 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="open"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F2 200 OK server->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 1 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="open"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F3 SUBSCRIBE watcher->server

Rosenberg et al. [Page 24]
ˇ
Internet Draft presence March 30, 2001

 SUBSCRIBE sip:resource@example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Expires: 600
 Event: presence
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

 F4 SUBSCRIBE server->PUA

 SUBSCRIBE sip:id@pua.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

 F5 202 Accepted PUA->server

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP server.example.com:5060
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600

Rosenberg et al. [Page 25]
ˇ
Internet Draft presence March 30, 2001

 F6 200 OK server->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600

 F7 NOTIFY PUA->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="open"/>
 </presence>

 F8 200 OK watcher->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 NOTIFY

Rosenberg et al. [Page 26]
ˇ
Internet Draft presence March 30, 2001

 F9 REGISTER PUA->server

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="busy"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F10 200 OK server->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="busy"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F11 NOTIFY PUA->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0

 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

Rosenberg et al. [Page 27]
ˇ
Internet Draft presence March 30, 2001

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="busy"/>
 </presence>

 F12 200 OK watcher->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 2 NOTIFY

10.3 Presence Server Notifications

 This message flow illustrates how the presence server can be the
 responsible for sending notifications for a presentity. The presence
 server will do this if the presentity has not sent a registration
 indicating an interest in handling subscriptions. This flow assumes
 that the watcher has previously been authorized to subscribe to this
 resource at the server.

 Watcher Server PUA
 | F1 SUBSCRIBE | |
 |------------------>| |
 | F2 202 Accepted | |
 |<------------------| |
 | F3 NOTIFY | |
 |<------------------| |
 | F4 200 OK | |
 |------------------>| |

 | | F5 REGISTER |
 | |<-------------------|
 | | F6 200 OK |
 | |------------------->|

Rosenberg et al. [Page 28]
ˇ
Internet Draft presence March 30, 2001

 | F7 NOTIFY | |
 |<------------------| |
 | F8 200 OK | |
 |------------------>| |

 Message Details

 F1 SUBSCRIBE watcher->server

 SUBSCRIBE sip:resource@example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 To: <pres:resource@example.com>
 From: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 SUBSCRIBE
 Event: presence
 Accept: application/xpidf+xml
 Contact: <sip:user@watcherhost.example.com>
 Expires: 600

 F2 202 OK server->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 To: <pres:resource@example.com>;tag=ffd2
 From: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Contact: sip:example.com

 F3 NOTIFY server-> watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060

Rosenberg et al. [Page 29]
ˇ
Internet Draft presence March 30, 2001

 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 Event: presence
 CSeq: 1 NOTIFY
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="open"/>
 </presence>

 F4 200 OK

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server.example.com:5060
 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 NOTIFY

 F5 REGISTER

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 110@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="Away from keyboard"
 Expires: 600

Rosenberg et al. [Page 30]

ˇ
Internet Draft presence March 30, 2001

 F6 200 OK

 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 110@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ; description="Away from keyboard"
 ; expires=600

 F7 NOTIFY

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060
 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="Away from keyboard"/>
 </presence>

 F8 200 OK

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server.example.com:5060
 From: <sip:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 2 NOTIFY

Rosenberg et al. [Page 31]
ˇ
Internet Draft presence March 30, 2001

11 Open Issues

 The following is the list of known open issues:

 o This draft recommends that the To and From field are populated
 with presence URLs rather than sip URLs. Is that reasonable?
 Will this lead to incompatibilities in proxies? Is there any
 issues with CPIM if the SIP URL format is used? This depends
 on what components of a message are signed in CPIM.

 o Rate limitations on NOTIFY: do we want that? How do we pick a
 value? 5 seconds is arbitrary.

 o Merging of presence data from multiple PA has been removed. Is
 that OK?

 o Placing IM URLs in the Contact header of a REGISTER: is that
 OK? What does it mean?

 o The process of migrating subscriptions from a presence server
 to PUA is not likely to work in the case where subscription
 refreshes use tags and Route headers. So, we have a choice.
 Either migration is disallowed, and we keep with leg oriented
 subscriptions, or migration is allowed, and there is no tags
 or Route's associated with subscriptions.

 o Converting SIP URLs back to pres URLs.

 o The SIP to CPIM and CPIM to SIP gateways are not stateless,
 because of the need to maintain Route, Call-ID, CSeq, and
 other parameters. Perhaps we can ask CPIM to define a token
 value which is sent in a CPIM request and returned in a CPIM
 response. Would that help?

 o Need to specify how to take Contacts from REGISTER and build a
 presence document. One obvious thing is that the contact
 addresses don't go in there directly; you probably want to put
 the address of record, otherwise calls might not go through
 the proxy.

12 Changes from -00

 The document has been completely rewritten, to reflect the change
 from a sales pitch and educational document, to a more formal
 protocol specification. It has also been changed to align with the
 SIP event architecture and with CPIM. The specific protocol changes
 resulting from this rewrite are:

Rosenberg et al. [Page 32]
ˇ
Internet Draft presence March 30, 2001

 o The Event header must now be used in the SUBSCRIBE and NOTIFY
 requests.

 o The SUBSCRIBE message can only have a single Contact header.

 -00 allowed for more than one.

 o The From and To headers can contain presence URIs.

 o The Request-URI can contain a presence URI.

 o Subscriptions are responded to with a 202 if they are pending
 or accepted.

 o Presence documents are not returned in the body of the
 SUBSCRIBE response. Rather, they are sent in a separate
 NOTIFY. This more cleanly separates subscription and
 notification, and is mandated by alignment with CPIM.

 o Authentication is now mandatory at the PA. Authorization is
 now mandatory at the PA.

 o Fake NOTIFY is sent for pending or rejected subscriptions.

 o A rate limit on notifications was introduced.

 o Merging of presence data has been removed.

 o The subscriber rejects notifications received with tags that
 don't match those in the 202 response to the SUBSCRIBE. This
 means that only one PA will hold subscription state for a
 particular subscriber for a particular presentity.

 o IM URLs allowed in Contacts in register

 o CPIM mappings defined.

 o Persistent connections recommended for firewall traversal.

 Obtaining Authorization

 When a subscription arrives at a PA, the subscription needs to be
 authorized by the presentity. In some cases, the presentity may have
 provided authorization ahead of time. However, in many cases, the
 subscriber is not pre-authorized. In that case, the PA needs to query
 the presentity for authorization.

 In order to do this, we define an implicit subscription at the PA.
 This subscription is for a virtual presentity, which is the "set of

Rosenberg et al. [Page 33]
ˇ
Internet Draft presence March 30, 2001

 subscriptions for presentity X", and the subscriber to that virtual
 presentity is X itself. Whenever a subscription is received for X,
 the virtual presentity changes state to reflect the new subscription
 for X. This state changes for subscriptions that are approved and for
 ones that are pending. As a result of this, when a subscription
 arrives for which authorization is needed, the state of the virtual
 presentity changes to indicate a pending subscription. The entire
 state of the virtual presentity is then sent to the subscriber (the

 presentity itself). This way, the user behind that presentity can see
 that there are pending subscriptions. It can then use some non-SIP
 means to install policy in the server regarding this new user. This
 policy is then used to either accept or reject the subscription.

 A call flow for this is shown in Figure 3.

 In the case where the presentity is not online, the problem is also
 straightforward. When the user logs into their presence client, it
 can fetch the state of the virtual presentity for X, check for
 pending subscriptions, and for each of them, upload a new policy
 which indicates the appropriate action to take.

 A data format to represent the state of these virtual presentities
 can be found in [14].

A Acknowledgements

 We would like to thank the following people for their support and
 comments on this draft:

 Rick Workman Nortel
 Adam Roach Ericsson
 Sean Olson Ericsson
 Billy Biggs University of Waterloo
 Stuart Barkley UUNet
 Mauricio Arango SUN
 Richard Shockey Shockey Consulting LLC
 Jorgen Bjorkner Hotsip
 Henry Sinnreich MCI Worldcom
 Ronald Akers Motorola

B Authors Addresses

 Jonathan Rosenberg

Rosenberg et al. [Page 34]
ˇ
Internet Draft presence March 30, 2001

 | SUBSCRIBE X | |
 | -------------------> | |
 | | |
 | 202 Accepted | |
 | <------------------- | NOTIFY X-subscriptions|
 | |---------------------->|
 | | |
 | | 200 OK |

 | |<----------------------|
 | | |
 | | |
 | | HTTP POST w/ policy |
 | |<----------------------|
 | | |
 | | 200 OK |
 | |---------------------->|
 | | |
 | | |
 | | |

 Figure 3: Sequence diagram for online authorization

Rosenberg et al. [Page 35]
ˇ
Internet Draft presence March 30, 2001

 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Dean Willis
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: dwillis@dynamicsoft.com

 Robert Sparks
 dynamicsoft
 5100 Tennyson Parkway

 Suite 1200
 Plano, Texas 75024
 email: rsparks@dynamicsoft.com

 Ben Campbell
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: bcampbell@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

 Jonathan Lennox
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: lennox@cs.columbia.edu

 Christian Huitema
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 email: huitema@microsoft.com

 Bernard Aboba
 Microsoft Corporation

Rosenberg et al. [Page 36]
ˇ
Internet Draft presence March 30, 2001

 One Microsoft Way
 Redmond, WA 98052-6399
 email: bernarda@microsoft.com

 David Gurle
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 email: dgurle@microsoft.com

 David Oran
 Cisco Systems
 170 West Tasman Dr.
 San Jose, CA 95134
 email: oran@cisco.com

C Bibliography

 [1] M. Day, J. Rosenberg, and H. Sugano, "A model for presence and
 instant messaging," Request for Comments 2778, Internet Engineering
 Task Force, Feb. 2000.

 [2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

 [3] A. Roach, "Event notification in SIP," Internet Draft, Internet
 Engineering Task Force, Oct. 2000. Work in progress.

 [4] D. Crocker et al. , "A common profile for instant messaging
 (CPIM)," Internet Draft, Internet Engineering Task Force, Nov. 2000.
 Work in progress.

 [5] P. Calhoun, A. Rubens, H. Akhtar, and E. Guttman, "DIAMETER base
 protocol," Internet Draft, Internet Engineering Task Force, Sept.
 2000. Work in progress.

 [6] C. Rigney, S. Willens, A. Rubens, and W. Simpson, "Remote
 authentication dial in user service (RADIUS)," Request for Comments
 2865, Internet Engineering Task Force, June 2000.

 [7] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A.
 Sastry, "The COPS (common open policy service) protocol," Request for
 Comments 2748, Internet Engineering Task Force, Jan. 2000.

Rosenberg et al. [Page 37]
ˇ
Internet Draft presence March 30, 2001

 [8] H. Schulzrinne and J. Rosenberg, "SIP caller preferences and
 callee capabilities," Internet Draft, Internet Engineering Task
 Force, July 2000. Work in progress.

 [9] J. Rosenberg, D. Drew, and H. Schulzrinne, "Getting SIP through
 firewalls and NATs," Internet Draft, Internet Engineering Task Force,
 Feb. 2000. Work in progress.

 [10] J. Rosenberg and H. Schulzrinne, "SIP traversal through
 enterprise and residential NATs and firewalls," Internet Draft,
 Internet Engineering Task Force, Nov. 2000. Work in progress.

 [11] S. Kent and R. Atkinson, "IP encapsulating security payload
 (ESP)," Request for Comments 2406, Internet Engineering Task Force,
 Nov. 1998.

 [12] T. Dierks and C. Allen, "The TLS protocol version 1.0," Request
 for Comments 2246, Internet Engineering Task Force, Jan. 1999.

 [13] B. Ramsdell and Ed, "S/MIME version 3 message specification,"
 Request for Comments 2633, Internet Engineering Task Force, June
 1999.

 [14] J. Rosenberg et al. , "An XML based format for watcher

 information," Internet Draft, Internet Engineering Task Force, June
 2000. Work in progress.

 Table of Contents

 1 Introduction .. 1
 2 Definitions ... 2
 3 Overview of Operation 3
 4 Naming .. 4
 5 Presence Event Package 5
 5.1 Package Name .. 5
 5.2 SUBSCRIBE bodies 5
 5.3 Expiration .. 5
 5.4 NOTIFY Bodies 6
 5.5 Processing Requirements at the PA 6
 5.6 Generation of Notifications 7
 5.7 Rate Limitations on NOTIFY 8
 5.8 Refresh Behavior 9

Rosenberg et al. [Page 38]
ˇ
Internet Draft presence March 30, 2001

 6 Publication ... 9
 6.1 Migrating the PA Function 10
 7 Mapping to CPIM 11
 7.1 SIP to CPIM ... 11
 7.2 CPIM to SIP ... 14
 8 Firewall and NAT Traversal 16
 9 Security considerations 17
 9.1 Privacy ... 17
 9.2 Message integrity and authenticity 18
 9.3 Outbound authentication 18
 9.4 Replay prevention 18
 9.5 Denial of service attacks 19
 9.5.1 Smurf attacks through false contacts 19
 10 Example message flows 19
 10.1 Client to Client Subscription with Presentity
 State Changes .. 19
 10.2 Presence Server with Client Notifications 23
 10.3 Presence Server Notifications 28
 11 Open Issues ... 32
 12 Changes from -00 32
 A Acknowledgements 34
 B Authors Addresses 34
 C Bibliography .. 37

Rosenberg et al. [Page 39]
ˇ

Network Working Group D. Atkins, Telcordia Technologies
Internet Draft G. Klyne, Baltimore Technologies
 13 June 2001
 Expires: December 2001

 Common Presence and Instant Messaging: Message Format
 <draft-ietf-impp-cpim-msgfmt-03.txt>

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Copyright Notice

 Copyright (C) The Internet Society 2001. All Rights Reserved.

Abstract

 This memo defines the mime type 'message/cpim', a message format for
 protocols that conform to the Common Profile for Instant Messaging
 (CPIM) specification.

Discussion of this document

 Please send comments to: <impp@iastate.edu>. To subscribe: send a
 message with the body 'subscribe' to <impp-request@iastate.edu>. The
 mailing list archive is at <http://www.imppwg.org>.

Atkins & Klyne [Page 1]
ˇ

Internet Draft CPIM Message Format June 2001

Table of Contents

 1. INTRODUCTION
 1.1 Motivation
 1.2 Background
 1.3 Goals
 1.4 Terminology and conventions
 2. OVERALL MESSAGE STRUCTURE
 2.1 Message/cpim MIME headers
 2.2 Message headers
 2.3 Character escape mechanism
 2.4 Message content
 3. MESSAGE HEADER SYNTAX
 3.1 Header names
 3.2 Header Value
 3.3 Language Tagging
 3.4 Namespaces for header name extensibility
 3.5 Mandatory-to-recognize features
 3.6 Collected message header syntax
 4. HEADER DEFINITIONS
 4.1 The 'From' header
 4.2 The 'To' header
 4.3 The 'cc' header
 4.4 The 'DateTime' header
 4.5 The 'Subject' header
 4.6 The 'NS' header
 4.7 The 'Require' header
 5. EXAMPLES
 5.1 An example message/cpim message
 5.2 An example using MIME multipart/signed
 6. APPLICATION DESIGN CONSIDERATIONS
 7. IANA CONSIDERATIONS
 8. INTERNATIONALIZATION CONSIDERATIONS
 9. SECURITY CONSIDERATIONS
 10. ACKNOWLEDGEMENTS
 11. REFERENCES
 12. AUTHORS' ADDRESSES
 Appendix A: Amendment history
 Full copyright statement

Atkins & Klyne [Page 2]
ˇ

Internet Draft CPIM Message Format June 2001

1. INTRODUCTION

 This memo defines the mime content-type 'message/cpim. This is a
 common message format for CPIM-compliant messaging protocols [14].

 While being prepared for CPIM, this format is quite general and may
 be reused by other applications with similar requirements.
 Application specifications that adopt this as a base format should
 answer the questions rasied in section 6 of this document.

1.1 Motivation

 The Common Profile for Instant Messaging (CPIM) [14] specification
 defines a number of operations to be supported and criteria to be
 satisfied for interworking diverse instant messaging protocols. The
 intent is to allow a variety of different protocols interworking
 through gateways to support cross-protocol messaging that meets the
 requirements of RFC 2779 [15].

 To adequately meet the security requirements of RFC 2779, a common
 message format is needed so that end-to-end signatures and encryption
 may be applied. This document describes a common canonical message
 format that must be used by any CPIM-compliant message transfer
 protocol, and over which signatures are calculated for end-to-end
 security.

1.2 Background

 RFC 2779 requires that an instant message can carry a MIME payload
 [3,4]; thus some level of support for MIME will be a common element
 of any CPIM compliant protocol. Therefore it seems reasonable that a
 common message format should use a MIME/RFC822 syntax, as protocol
 implementations must already contain code to parse this.

 Unfortunately, using pure RFC822/MIME [2] can be problematic:

 o Irregular lexical structure -- RFC822 allows a number of optional
 encodings and multiple ways to encode a particular value. For
 example RFC822 comments may be encoded in multiple ways. For
 security purposes, a single encoding method must be defined as a
 basis for computing message digest values. Protocols that
 transmit data in a different format would otherwise lose
 information needed to verify a signature.

 o Weak internationalization -- RFC822 requires header values to use
 7-bit ASCII, which is problematic for encoding international
 character sets. Mechanisms for language tagging in RFC822 headers
 [16] are awkward to use and have limited applicability.

Atkins & Klyne [Page 3]
ˇ

Internet Draft CPIM Message Format June 2001

 o Mutability -- addition, modification or removal of header
 information. Because it is not explicitly forbidden, many
 applications that process MIME content (e.g. MIME gateways)
 rebuild or restructure messages in transit. This obliterates most
 attempt at achieving security (e.g. signatures), leaving receiving
 applications unable to verify the received data.

 o Message and payload separation -- there is not a clear syntactic
 distinction between message metadata and message content.

 o Limited extensibility (X-headers are problematic).

 o No support for structured information (text string values only).

 o Some processors impose line length limitations The message format
 defined by this memo overcomes some of these difficulties by
 having a syntax that is generally compatible with the format
 accepted by MIME/RFC822 parsers, but simplified, and having a
 stricter syntax. It also defines mechanisms to support some
 desired features not covered by the RFC822/MIME format
 specifications.

1.3 Goals

 This specification aims to satisfy the following goals:

 o a securable end-to-end format for a message (a canonical message
 format for signature calculation)

 o independent of any specific application

 o capable of conveying a range of different address types

 o assumes an 8-bit clean message-transfer protocol

 o evolvable: extensible by multiple parties

 o to clearly separate message metadata from message content

 o a simple, regular, easily parsed syntax

 o a compact, low-overhead format for simple messages

Atkins & Klyne [Page 4]
ˇ

Internet Draft CPIM Message Format June 2001

1.4 Terminology and conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 NOTE: Comments like this provide additional nonessential
 information about the rationale behind this document.
 Such information is not needed for building a conformant
 implementation, but may help those who wish to understand
 the design in greater depth.

 [[[Editorial comments and questions about outstanding issues are
 provided in triple brackets like this. These working comments should
 be resolved and removed prior to final publication.]]]

2. OVERALL MESSAGE STRUCTURE

 The message/cpim format encapsulates an arbitrary MIME message
 content, together with message- and content-related metadata. This
 can optionally be signed or encrypted using MIME security multiparts
 in conjunction with an appropriate security scheme.

 A message/cpim object is a multipart entity, where the first part
 contains the message metadata and the second part is the message
 content. The two parts are syntactically separated by a blank line,
 to keep the message header information (with its more stringent
 syntax rules) separate from the MIME message content headers.

 Thus, the complete message looks something like this:

 m: Content-type: message/cpim
 s:
 h: (message-metadata-headers)
 s:
 e: (encapsulated MIME message-body)

 The end of the message body is defined by the framing mechanism of
 the protocol used. The tags 'm:', 's:', 'h:', 'e:', and 'x:' are not
 part of the message format and are used here to indicate the
 different parts of the message, thus:

 m: MIME headers for the overall message
 s: a blank separator line
 h: message headers
 e: encapsulated MIME object containing the message content
 x: MIME security multipart message wrapper

Atkins & Klyne [Page 5]
ˇ

Internet Draft CPIM Message Format June 2001

2.1 Message/cpim MIME headers

 The message MIME headers identify the message as a CPIM-formatted
 message. The only required header is:

 Content-type: message/cpim

 Other MIME headers may be used as appropriate for the message
 transfer environment.

2.2 Message headers

 Message headers carry information relevant to the end-to-end transfer
 of the message from sender to receiver. Message headers MUST NOT be
 modified, reformatted or reordered in transit, but in some
 circumstances they MAY be examined by a CPIM message transfer
 protocol.

 The message headers serve a similar purpose to RFC822 message headers
 in email [2], and have a similar but restricted allowable syntax.

 The basic header syntax is:

 Key: Value

 where "Key" is a header name and "Value" is the corresponding header
 value. The following considerations apply:

 o The entire header MUST be contained on a single line. The line
 terminator is not considered part of the header value.

 o Only one header per line. Multiple headers MUST NOT be included
 on a single line.

 o Processors SHOULD NOT impose any line-length limitations.

 o There MUST NOT be any whitespace at the beginning or end of a
 line.

 o UTF-8 character encoding [21] MUST be used throughout.

 o The character sequence CR,LF (13,10) MUST be used to terminate
 each line.

 o The header name contains only US-ASCII characters (see later for
 the specific syntax)

Atkins & Klyne [Page 6]
ˇ

Internet Draft CPIM Message Format June 2001

 o The header MUST NOT contain any control characters (0-31). If a
 header value needs to represent control characters then the escape
 mechanism described below MUST be used.

 o There MUST be a single space character (32) following the header
 name and colon.

 o Multiple headers using the same key (header name) are allowed.
 (Specific header semantics may dictate only one occurrence of any
 particular header.)

 o Headers names MUST match exactly (i.e. "From:" and "from:" are
 different headers).

 o If a header name is not recognized or not understood, the header
 should be ignored. But see also the "Requires:" header.

 o Interpretation (e.g. equivalence) of header values is dependent on
 the particular header definition. Message processors MUST
 preserve exactly all octets of all headers (both name and value).

 o Message processors MUST NOT change the order of message headers.

 Examples:

 To: Pooh Bear <im:pooh@100akerwood.com>
 From: <im:piglet@100akerwood.com>
 Date: 2001-02-02T10:48:54-05:00

2.3 Character escape mechanism

 This mechanism MUST be used to code control characters in a header,
 having Unicode code points in the range U+0000 to U+001f or U+007f.
 (The escape mechanism is as used by the Java programming language.)
 Note that the escape mechanism is applied to a UCS-2 character, NOT
 to the octets of its UTF-8 coding. Mapping from/to UTF-8 coding is
 performed without regard for escape sequences or character coding.
 (The header syntax is defined so that octets corresponding to control
 characters other than CR and LF do not appear in the output.)

Atkins & Klyne [Page 7]
ˇ

Internet Draft CPIM Message Format June 2001

 An arbitrary UCS-2 character is escaped using the form:

 \uxxxx

 where:

 \ is U+005c (backslash)
 u is U+0075 (lower case letter U)
 xxxx is a sequence of exactly four hexadecimal digits
 (0-9, a-f or A-F) or
 (U+0030-U+0039, U+0041-U+0046, or U+0061-0066)

 The hexadecimal number 'xxxx' is the UCS code-point value of the
 escaped character.

 Further, the following special sequences introduced by "\" are used:

 \\ for \ (backslash, U+005c)
 \" for " (double quote, U+0022)
 \' for ' (single quote, U+0027)
 \b for backspace (U+0008)
 \t for tab (U+0009)
 \n for linefeed (U+000a)
 \r for carriage return (U+000d)

2.3.1 Escape mechanism usage

 When generating messages conformant with this specification:

 o The special sequences listed above MUST be used to encode any
 occurrence of the following characters that appear anywhere in a
 header: backslash (U+005c), backspace (U+0008), tab (U+0009),
 linefeed (U+000a) or carriage return (U+000d).

 o The special sequence \' MUST be used for any occurrence of a
 single quote (U+0027) that appears within a string delimited by
 single quotes.

 o The special sequence \" MUST be used for any occurrence of a
 double quote (U+0022) that appears within a string delimited by
 double quotes.

 + Quote characters that delimit a string value MUST NOT be escaped.

 o The general escape sequence \uxxxx MUST be used for any other
 control character (U+0000 to U+0007, U+000b to U+000c, U+000e to
 U+001f or u+007f) that appears anywhere in a header.

Atkins & Klyne [Page 8]
ˇ

Internet Draft CPIM Message Format June 2001

 o All other characters MUST NOT be represented using an escape
 sequence.

 When processing a message based on this specification, the escape
 sequence usage described above MUST be recognized.

 Further, any other occurrence of any escape sequence described above
 SHOULD be recognized and treated as an occurrence of the
 corresponding Unicode character.

 Any backslash ('\') character SHOULD be interpreted as introducing an
 escape sequence. Any unrecognized escape sequence SHOULD be treated
 as an instance of the character following the backslash character.
 An isolated backslash that is the last character of a header SHOULD
 be ignored.

2.4 Message content

 The final section of a message/cpim is the MIME-encapsulated message
 content, which follows standard MIME formatting rules [3,4].

 The MIME content headers MUST include at least a Content-Type header.
 The content may be any MIME type.

 Example:

 e: Content-Type: text/plain; charset=utf-8
 e: Content-ID: <1234567890@foo.com>
 e:
 e: This is my encapsulated text message content

3. MESSAGE HEADER SYNTAX

 A header is made of two parts, a name and a value, separated by a
 colon character (':') followed by a single space (32), and terminated
 by a sequence of CR,LF (13,10).

 Headers use UTF-8 character encoding thoughout, per RFC 2279 [21].

3.1 Header names

 The header name is a sequence of US-ASCII characters, excluding
 control characters, SPACE or separator characters. Use of the
 character "." in a header name is reserved for a namespace prefix
 separator.

Atkins & Klyne [Page 9]
ˇ

Internet Draft CPIM Message Format June 2001

 Separator characters are:

 SEPARATORS = "(" / ")" / "<" / ">" / "@"
 / "," / ";" / ":" / "
 / "/" / "[" / "]" / "?" / "="
 / "{" / "}" / SP

 NOTE: the range of allowed characters was determined by
 examination of HTTP and RFC822 header name formats and
 choosing the more resticted. The intent is to allow CPIM
 headers to follow a syntax that is compatible with the
 allowed syntax for both RFC 822 [2] and HTTP [18]
 (including HTTP-derived protocols such as SIP).

3.2 Header Value

 A header value has a structure defined by the corresponding header
 specification. Implementations that use a particular header must
 adhere to the format and usage rules thus defined when creating or
 processing a message containing that header.

 The other general constraints on header formats MUST also be followed
 (one line, UTF-8 character encoding, no control characters, etc.)

3.3 Language Tagging

 Full internationalization of a protocol requires that a language can
 be indicated for any human-readable text [6,19].

 A message header may indicate a language for its value by including
 ';lang=tag' after the header name and colon, where 'tag' is a
 language identifying token per RFC 3066 [7].

 Example:

 Subject:;lang=fr Objet de message

 If the language parameter is not applied a header, any human-
 readable text is assumed to use the language identified as
 'i-default' [19].

3.4 Namespaces for header name extensibility

 NOTE: this section defines a framework for header
 extensibility whose use is optional. If no header
 extensions are allowed by an application then these
 structures may never be used.

Atkins & Klyne [Page 10]
ˇ

Internet Draft CPIM Message Format June 2001

 An application that uses this message format is expected to define
 the set of headers that are required and allowed for that
 application. This section defines a header extensibility framework
 that can be used with any application.

 The extensibility framework is based on that provided for XML [11] by
 XML namespaces [12]. All headers are associated with a "namespace",
 which is in turn associated with a globally unique URI.

 Within a particular message instance, header names are associated
 with a particular namespace through the presence or absence of a
 namespace prefix, which is a leading part of the header name followed
 by a period ("."); e.g.

 prefix.header-name: header-value

 Here, 'prefix' is the header name prefix, 'header-name' is the header
 name within the namespace associated with 'prefix', and
 'header-value' is the value for this header.

 header-name: header-value

 In this case, the header name prefix is absent, and the given
 'header-name' is associated with a default namespace.

 An application that uses this format designates a default namespace
 for any headers that are not more explicitly associated with any
 namespace. In many cases, the default namespace may be all that is
 needed.

 A namespace is identified by a URI. In this usage, the URI is used
 simply as a globally unique identifier, and there is no requirement
 that it can be used for any other purpose. Any legal globally unique
 URI MAY be used to identify a namespace. (By "globally unique", we
 mean constructed according to some set of rules so that it is
 reasonable to expect that nobody else will use the same URI for a
 different purpose.) A URI used as an identifier MUST be a full
 absolute-URI, per RFC 2396 [10]. (Relative URIs and URI- references
 containing fragment identifiers MUST NOT be used for this purpose.)

Atkins & Klyne [Page 11]
ˇ

Internet Draft CPIM Message Format June 2001

 Within a specific message, a 'NS' header is used to declare a
 namespace prefix and associate it with a URI that identifies a
 namespace. Following that declaration, within the scope of that
 message, the combination of namespace prefix and header name
 indicates a globally unique identifier for the header (consisting of
 the namespace URI and header name). For example:

 NS: MyFeatures <mid:MessageFeatures@id.foo.com>
 MyFeatures.WackyMessageOption: Use-silly-font

 This defines a namespace prefix 'MyFeatures' associated with the
 namespace identifier 'mid:MessageFeatures@id.foo.com'. Subsequently
 the prefix indicates that the WackyMessageOption header name
 referenced is associated with the identified namespace.

 A namespace prefix declaration MUST precede any use of that prefix.

 With the exception of any application-specific predefined namespace
 prefixes (see section 6), a namespace prefix is strictly local to the
 message in which it occurs. The actual prefix used has no global
 significance. This means that the headers:

 xxx.name: value
 yyy.name: value

 in two different messages may have exactly the same effect if
 namespace prefixes 'xxx' and 'yyy' are associated with the same
 namespace URI. Thus the following have exactly the same meaning:

 NS: acme <http://id.acme.widgets/wily-headers/>
 acme.runner-trap: set

 and

 NS: widget <http://id.acme.widgets/wily-headers/>
 widget.runner-trap: set

 A 'NS' header without a header prefix name specifies a default
 namespace for subsequent headers; that is a namespace that is
 associated with header names not having a prefix. For example:

 NS: <http://id.acme.widgets/wily-headers/>
 runner-trap: set

 has the same meaning as the previous examples.

Atkins & Klyne [Page 12]
ˇ

Internet Draft CPIM Message Format June 2001

 This framework allows different implementers to create extension
 headers without the worry of header name duplication; each defines
 headers within their own namespace.

3.5 Mandatory-to-recognize features

 Sometimes it is necessary for the sender of a message to insist that
 some functionality is understood by the recipient. By using the
 mandatory-to-recognize indicator, a sender is notifying the recipient
 that it MUST understand the named header or feature in order to
 properly understand the message.

 A header or feature is indicated as being mandatory-to-recognize by a
 'Require:' header. For example:

 Require: MyFeatures.VitalMessageOption
 MyFeatures.VitalMessageOption: Confirmation-requested

 Multiple required header names may be listed in a single 'Require'
 header, separated by commas.

 NOTE: indiscriminate use of 'Require:' headers could
 harm interoperability. It is suggested that any
 implementer who defines required headers also publish the
 header specifications so other implementations can
 succesfully interoperate.

 The 'Require:' header MAY also be used to indicate that some non-
 header semantics must be implemented by the recipient, even when it
 does not appear as a header. For example:

 Require: Locale.MustRenderKanji

 might be used to indicate that message content includes characters
 from the Kanji repertoire, which must be rendered for proper
 understanding of the message. In this case, the header name is just
 a token (using header name syntax and namespace association) that
 indicates some desired behaviour.

3.6 Collected message header syntax

 The following description of message header syntax uses ABNF, per RFC
 2234 [17]. Most of this syntax can be interpreted as defining UCS
 character sequences or UTF-8 octet sequences. Alternate productions
 at the end allow for either interpretation.

Atkins & Klyne [Page 13]
ˇ

Internet Draft CPIM Message Format June 2001

 Header = Header-name ":" *(";" Parameter) SP
 Header-value
 CRLF

 Header-name = [Name-prefix "."] Name
 Name-prefix = Name

 Parameter = Lang-param / Ext-param
 Lang-param = "lang=" Language-tag
 Ext-param = Param-name "=" Param-value
 Param-name = Name
 Param-value = Token / Number / String

 Header-value = *HEADERCHAR

 Name = 1*NAMECHAR
 Token = 1*TOKENCHAR
 Number = 1*DIGIT
 String = DQUOTE *(Str-char / Escape) DQUOTE
 Str-char = %x20-21 / %x23-5B / %x5D-7E / UCS-high
 Escape = "\" ("u" 4(HEXDIG) ; UCS codepoint
 / "b" ; Backspace
 / "t" ; Tab
 / "n" ; Linefeed
 / "r" ; Return
 / DQUOTE ; Double quote
 / "'" ; Single quote
 / "\") ; Backslash

 Formal-name = 1*(Token SP) / String
 URI = <defined as absolute-URI by RFC 2396>
 Language-tag = <defined by RFC 3066>

 ; Any UCS character except CTLs, or escape
 HEADERCHAR = UCS-no-CTL / Escape

 ; Any US-ASCII char except ".", CTLs or SEPARATORS:
 NAMECHAR = %21 / %23-26 / %2a-2b / %2d / %5e-60 / %7c / %7e
 / ALPHA / DIGIT

 ; Any UCS char except CTLs or SEPARATORS:
 TOKENCHAR = NAMECHAR / "." / UCS-high

Atkins & Klyne [Page 14]
ˇ

Internet Draft CPIM Message Format June 2001

 SEPARATORS = "(" / ")" / "<" / ">" / "@" ; 28/29/3c/3e/40
 / "," / ";" / ":" / "\" / <"> ; 2c/3b/3a/5c/22
 / "/" / "[" / "]" / "?" / "=" ; 2f/5b/5d/3f/3d
 / "{" / "}" / SP ; 7b/7d/20
 CTL = <Defined by RFC 2234 -- %x0-%x1f, %x7f>
 CRLF = <Defined by RFC 2234 -- CR, LF>
 SP = <defined by RFC 2234 -- %x20>
 DIGIT = <defined by RFC 2234 -- '0'-'9'>
 HEXDIG = <defined by RFC 2234 -- '0'-'9', 'A'-'F', 'a'-'f'>
 ALPHA = <defined by RFC 2234 -- 'A'-'Z', 'a'-'z'>
 DQUOTE = <defined by RFC 2234 -- %x22>

 To interpret the syntax in a general UCS character environment, use
 the following productions:

 UCS-no-CTL = %x20-7e / UCS-high
 UCS-high = %x80-ffffffff

 To interpret the syntax as defining UTF-8 coded octet sequences, use
 the following productions:

 UCS-no-CTL = UTF8-no-CTL
 UCS-high = UTF8-multi
 UTF8-no-CTL = %x20-7e / UTF8-multi
 UTF8-multi = %xC0-DF %x80-BF
 / %xE0-EF %x80-BF %x80-BF
 / %xF0-F7 %x80-BF %x80-BF %x80-BF
 / %xF8-FB %x80-BF %x80-BF %x80-BF %x80-BF
 / %xFC-FD %x80-BF %x80-BF %x80-BF %x80-BF %x80-BF

4. HEADER DEFINITIONS

 This specification defines a core set of headers that are defined and
 available for use by applications: the application specification
 must indicate the headers that may be used, those that must be
 recognized and those that must appear in any message (see section 6).

 The header definitions that follow fall into two categories:

 (a) those that are part of the CPIM format extensibility framework,
 and

 (b) some that have been based on similar headers in RFC 822,
 specified here with corresponding semantics.

 Header names and syntax are given without a namespace qualification,
 and the associated namespace URI is listed as part of the header

Atkins & Klyne [Page 15]
ˇ

Internet Draft CPIM Message Format June 2001

 description. Any of the namespace associations already mentioned
 (implied default namespace, explicit default namespace or implied
 namespace prefix or explicit namespace prefix declaration) may be
 used to identify the namespace.

 All headers defined here are associated with the namespace URI
 <[[[urn:iana:cpim-headers]]]>, which is defined according to [22].

4.1 The 'From' header

 Indicates the sender of a message.

 Header name: From

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 From-header = "From" ": " [Formal-name] "<" URI ">"

 Description:

 Indicates the sender or originator of a message.

 If present, the 'Formal-name' identifies the person or "real
 world" name for the originator.

 The URI indicates an address for the originator.

 Examples:

 From: Winnie the Pooh <im:pooh@100akerwood.com>

 From: <im:tigger@100akerwood.com>

Atkins & Klyne [Page 16]
ˇ

Internet Draft CPIM Message Format June 2001

4.2 The 'To' header

 Specifies an intended recipient of a message.

 Header name: To

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 To-header = "To" ": " [Formal-name] "<" URI ">"

 Description:

 Indicates the recipient of a message.

 If present, the 'Formal-name' identifies the person or "real
 world" name for the recipient.

 The URI indicates an address for the recipient.

 Multiple recipients may be indicated by including multiple 'To'
 headers.

 Examples:

 To: Winnie the Pooh <im:pooh@100akerwood.com>

 To: <im:tigger@100akerwood.com>

4.3 The 'cc' header

 Specifies a non-primary recipient ("courtesy copy") for a message.

 Header name: cc

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 Cc-header = "cc" ": " [Formal-name] "<" URI ">"

 Description:

 Indicates a courtesy copy recipient of a message.

 If present, the 'Formal-name', if present, identifies the person
 or "real world" name for the recipient.

Atkins & Klyne [Page 17]
ˇ

Internet Draft CPIM Message Format June 2001

 The URI indicates an address for the recipient.

 Multiple courtesy copy recipients may be indicated by including
 multiple 'cc' headers.

 Examples:

 cc: Winnie the Pooh <im:pooh@100akerwood.com>

 cc: <im:tigger@100akerwood.com>

4.4 The 'DateTime' header

 Specifies the date and time a message was sent.

 Header name: Date

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax:

 DateTime-header = "DateTime" ": " date-time

 (where the syntax of 'date-time' is a profile of ISO8601, defined
 in "Date and Time on the Internet" [23])

 Description:

 The 'Date' header supplies the current date and time at which the
 sender sent the message.

 One purpose of the this header is to provide for protection
 against a replay attack, by allowing the recipient to know when
 the message was intended to be sent. The value of the date header
 is the current time at the sender when the message was
 transmitted, using ISO 8601 date and time format as profiles in
 "Date and Time on the Internet: Timestamps" [23].

 Example:

 Date: 2001-02-01T12:16:49-05:00

Atkins & Klyne [Page 18]
ˇ

Internet Draft CPIM Message Format June 2001

4.5 The 'Subject' header

 Contains a description of the topic of the message.

 Header name: Subject

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 Subject-header = "Subject" ":" [lang-param] SP *HEADERCHAR

 Description:

 The 'Subject' header supplies the sender's description of the
 topic or content of the message.

 The sending agent should specify the language parameter if it has
 any reasonable knowledge of the language used by the sender to
 describe the message.

 Example:

 Subject:;lang=en Eeyore's feeling very depressed today

4.6 The 'NS' header

 The "NS" header is used to declare a local namespace prefix.

 Header name: NS

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 NS-header = "NS" ": " [Name-prefix] "<" URI ">"

 Description:

 Declares a namespace prefix that may be used in subsequent header
 names. See section 3.4 for more details.

 Example:

 NS: MyAlias <mid:MessageFeatures@id.foo.com>
 MyAlias.MyHeader: private-extension-data

Atkins & Klyne [Page 19]
ˇ

Internet Draft CPIM Message Format June 2001

4.7 The 'Require' header

 Specify a header or feature that must be implemented by the receiver
 for correct message processing.

 Header name: NS

 Namespace URI: <[[[urn:iana:cpim-headers]]]>

 Syntax: (see also section 3.6)

 Require-header = "Require" ": " Header-name *("," Header-name)

 Description:

 Declares a namespace prefix that may be used in subsequent header
 names. See section 3.5 for more details.

 Note that there is no requirement that the required header
 actually be used, but for brevity it is recommended that an
 implemention not use issue require header for unused headers.

 Example:

 Require: MyAlias.VitalHeader

5. EXAMPLES

 The examples in the following sections use the following per-line
 tags to indicate different parts of the overall message format:

 m: MIME headers for the overall message
 s: a blank separator line
 h: message headers
 e: encapsulated MIME object containing the message content
 x: MIME security multipart message wrapper

 The following examples also assume that <[[[urn:iana:cpim-
 headers]]]> is the implied default namespace for the application
 concerned.

Atkins & Klyne [Page 20]
ˇ

Internet Draft CPIM Message Format June 2001

5.1 An example message/cpim message

 The following example shows a message/cpim message:

 m: Content-type: message/cpim
 s:
 h: From: MR SANDERS <im:piglet@100akerwood.com>
 h: To: Depressed Donkey <im:eeyore@100akerwood.com>
 h: Date: 2000-12-13T13:40:00-08:00
 h: Subject: the weather will be fine today
 h: Subject:;lang=fr beau temps prevu pour aujourd'hui
 h: NS: MyFeatures <mid:MessageFeatures@id.foo.com>
 h: Require: MyFeatures.VitalMessageOption
 h: MyFeatures.VitalMessageOption: Confirmation-requested
 h: MyFeatures.WackyMessageOption: Use-silly-font
 s:
 e: Content-type: text/xml; charset=utf-8
 e: Content-ID: <1234567890@foo.com>
 e:
 e: <body>
 e: Here is the text of my message.
 e: </body>

5.2 An example using MIME multipart/signed

 In order to secure a message/cpim, an application or implementation
 should use RFC 1847 and some appropriate cryptographic scheme.

 Using S/MIME and pkcs7, the above message would look like this:

 x: Content-Type: multipart/signed; boundary=next;
 MDALG=SHA-1; type=application/pkcs
 x:
 x: --next
 m: Content-Type: message/cpim
 s:
 h: From: MR SANDERS <im:piglet@100akerwood.com>
 h: To: Dopey Donkey <im:eeyore@100akerwood.com>
 h: Date: 2000-12-13T13:40:00-08:00
 h: Subject: the weather will be fine today
 h: Subject:;lang=fr beau temps prevu pour aujourd'hui
 h: NS: MyFeatures <mid:MessageFeatures@id.foo.com>
 h: Require: MyFeatures.VitalMessageOption
 h: MyFeatures.VitalMessageOption: Confirmation-requested
 h: MyFeatures.WackyMessageOption: Use-silly-font
 s:

Atkins & Klyne [Page 21]
ˇ

Internet Draft CPIM Message Format June 2001

 e: Content-type: text/xml; charset=utf-8
 e: Content-ID: <1234567890@foo.com>
 e:
 e: <body>
 e: Here is the text of my message.
 e: </body>
 x: --next
 x: Content-Type: application/pkcs7
 x:
 x: (signature stuff)
 :
 x: --next--

6. APPLICATION DESIGN CONSIDERATIONS

 Applications using this specification must specify:

 o a default namespace URI for messages created and processed by that
 application

 o any namespace prefixes that are implicitly defined for messages
 created and processed by that application

 o all headers that must be recognized by implementations of the
 application

 o any headers that must be present in messages created by that
 application.

 o any headers that may appear more than once in a message, and how
 they are to be interpreted (e.g. how to interpret multiple
 'subject:' headers with different language parameter values).

 Within a network of message transfer agents, an intermediate gateway
 MUST NOT change the message/cpim content in any way. This implies
 that headers cannot be changed or reordered, transfer encoding cannot
 be changed, languages cannot be changed, etc.

 Because message/cpim messages are immutable, any transfer agent that
 wants to modify the message should create a new message/cpim message
 with the modified header and containing the original message as its
 content. (This approach is similar to real-world bill-of-lading
 handling, where each person in the chain attaches a new sheet to the
 message. Then anyone can validate the original message and see what
 was changed and who changed it by following the trail of amendments.
 Another metaphor is including the old message in a new envelope.)

Atkins & Klyne [Page 22]
ˇ

Internet Draft CPIM Message Format June 2001

7. IANA CONSIDERATIONS

 [[[Registration template for message/cpim content type]]]

 [[[Registration of namespace URN for CPIM headers]]]

8. INTERNATIONALIZATION CONSIDERATIONS

 Message headers use UTF-8 character encoding throughout, so can
 convey the full UCS-4 (Unicode, ISO/IEC 10646) character repertoire.

 Language tagging is provided for message headers using the "Language"
 parameter.

 Message content is any MIME-encapsulated content, and normal MIME
 content internationalization considerations apply.

9. SECURITY CONSIDERATIONS

 The message/cpim format is designed with security in mind. In
 particular it is designed to be used with MIME security multiparts
 for signatures and encryption. To this end, message/cpim messages
 must be considered immutable once created.

 Because message/cpim messages are binary messages (due to UTF-8
 encoding), if they are transmitted across non-8-bit-clean transports
 then the transfer agent must tunnel the entire message. Changing the
 message data encoding is not an allowable option. This implies that
 the message/cpim must be encapsulated by the message tranfer system
 and unencapsulated at the receiving end of the tunnel.

 The resulting message must have no data loss due to the encoding and
 unencoding of the message. For example, an application may choose to
 apply the MIME base64 content-transfer-encoding to the message/cpim
 object to meet this requirement.

10. ACKNOWLEDGEMENTS

 The authors thank the following for their helpful comments: Harald
 Alvestrand, Walter Houser, Leslie Daigle, [[[....]]]

Atkins & Klyne [Page 23]
ˇ

Internet Draft CPIM Message Format June 2001

11. REFERENCES

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [2] Crocker, D., "Standard for the format of ARPA Internet text
 messages", RFC 822, STD 11, August 1982.

 [3] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [4] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046 November
 1996.

 [5] Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Procedures", RFC
 2048, BCP 13, November 1996.

 [6] Weider, C., Preston, C., Simonsen, K., Alvestrand, H., Atkinson,
 R., Crispin, M., Svanberg, P., "Report from the IAB Character
 Set Workshop", RFC 2130, April 1997.

 [7] Alvestrand, H., "Tags for the Identification of Languages", RFC
 3066, January 2001. (Defines Content-language header.)

 [8] Ramsdell, B., "S/MIME Version 3 Message Specification", RFC
 2633, June 1999.

 [9] Callas, J., Donnerhacke, L., Finney, H. and R. Thayer, "OpenPGP
 Message Format", RFC 2440, November 1998.

 [10] Berners-Lee, T., Fielding, R.T. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [11] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible
 Markup Language (XML) 1.0", W3C recommendation:
 <http://www.w3.org/TR/REC-xml>, 10 February 1998.

 [12] Tim Bray, Dave Hollander, and Andrew Layman "Namespaces in XML",
 W3C recommendation: <http://www.w3.org/TR/REC-xml-names>, 14
 January 1999.

 [13] "Data elements and interchange formats - Information interchange
 - Representation of dates and times" ISO 8601:1988(E)
 International Organization for Standardization June 1988.

Atkins & Klyne [Page 24]
ˇ

Internet Draft CPIM Message Format June 2001

 [14] Crocker, D.H., Diacakis, A., Mazzoldi, F., Huitema, C., Klyne,
 G., Rose, M.T., Rosenberg, J., Sparks, R. and H. Sugano, "A
 Common Profile for Instant Messaging (CPIM)", draft-thenine-im-
 common-00 (work in progress), August 2000.

 [15] Day, M., Aggarwal, S., Mohr, G., and J. Vincent "Instant
 Messaging / Presence Protocol Requirements" RFC 2779 February
 2000.

 [16] N. Freed, K. Moore "MIME Parameter Value and Encoded Word
 Extensions: Character Sets, Languages, and Continuations" RFC
 2231 November 1997.

 [17] D. Crocker, P. Overell "Augmented BNF for Syntax Specifications:
 ABNF" RFC 2234 November 1997.

 [18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
 Leach, T. Berners-Lee "Hypertext Transfer Protocol -- HTTP/1.1"
 RFC 2616 June 1999.

 [19] Alvestrand, H, "IETF Policy on Character Sets and Languages",
 RFC 2277, BCP 18, January 1998.

 [20] Freed, N., and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2278, January 1998.

 [21] F. Yergeau "UTF-8, a transformation format of ISO 10646" RFC
 2279 January 1998.

 [22] M. Mealling "A URN Namespace for IANA Registered Protocol
 Elements" draft-mealling-iana-urn-00.txt (work in progress)
 November 2000

 [23] C. Newman, G. Klyne "Date and Time on the Internet: Timestamps"
 draft-ietf-impp-datetime-03.txt (work in progress) May 2001.

12. AUTHORS' ADDRESSES

 Derek Atkins
 Telcordia Technologies
 6 Farragut Ave
 Somerville, MA 02144
 USA.
 Telephone: +1 617 623 3745
 E-mail: warlord@research.telcordia.com
 E-mail: warlord@alum.mit.edu

Atkins & Klyne [Page 25]
ˇ

Internet Draft CPIM Message Format June 2001

 Graham Klyne
 Baltimore Technologies - Content Security Group,
 1310 Waterside,
 Arlington Business Park
 Theale
 Reading, RG7 4SA
 United Kingdom.
 Telephone: +44 118 903 8000
 Facsimile: +44 118 903 9000
 E-mail: GK@ACM.ORG

Appendix A: Amendment history

 00a 01-Feb-2001 Memo initially created.

 00b 06-Feb-2001 Editorial review. Reworked namespace framework
 description. Deferred specification of mandatory
 headers to the application specification, allowing
 this document to be less application-dependent.
 Expanded references. Replaced some text with ABNF
 syntax descriptions. Reordered some major sections.

 00c 07-Feb-2001 Folded in some review comments. Fix up some syntax
 problems. Other small editorial changes. Add some
 references.

 01a 29-Mar-2001 Incorporate review comments. State (simply) that
 this is a canonical end-to-end format for the purpose
 of signature calculation. Defined escape mechanism
 for control characters. Header name parameters
 placed after the ":". Changed name of Date: header
 to DateTime:. Revised syntax to separate character-
 level syntax from UTF-8 octet- level syntax.

 01b 30-Mar-2001 State explicitly that unrecognized header names
 should be ignored. Remove text about
 (non)significance of header order: simply say that
 order must be preserved.

 02a 30-May-2001 Updated reference to date/time draft. Editorial
 changes.

 03a 13-Jun-2001 Tighten up application of escape sequences.

 TODO:

Atkins & Klyne [Page 26]
ˇ

Internet Draft CPIM Message Format June 2001

 o confirm urn namespace for headers (currently depends on a work-
 in-progress).

 o Complete IANA considerations

 REVIEW CHECKLIST:

 (Points to be checked or considered more widely on or before final
 review.)

 o The desirability of a completely rigid syntax.

 o Escape mechanism details.

Full copyright statement

 Copyright (C) The Internet Society 2001. All Rights Reserved. This
 document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as
 by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the procedures
 for copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns. This
 document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
 NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
 OR FITNESS FOR A PARTICULAR PURPOSE.

Atkins & Klyne [Page 27]

Network Working Group G. Klyne, Baltimore Technologies
Internet Draft C. Newman, Sun Microsystems
 3 July 2001
 Expires: January 2002

 Date and Time on the Internet: Timestamps
 <draft-ietf-impp-datetime-04.txt>

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Copyright Notice

 Copyright (C) The Internet Society 2001. All Rights Reserved.

Abstract

 This document defines a date and time format for use in Internet
 protocols that is a profile of the ISO 8601 [ISO8601] standard for
 representation of dates and times using the Gregorian calendar.

Newman & Klyne [Page 1]
ˇ

Internet Draft Date and Time - Timestamps July 2001

Table of Contents

 1. Introduction
 2. Definitions
 3. Two Digit Years
 4. Local Time
 4.1. Coordinated Universal Time (UTC)
 4.2. Local Offsets
 4.3. Unknown Local Offset Convention
 4.4. Unqualified Local Time
 5. Date and Time format
 5.1. Ordering
 5.2. Human Readability
 5.3. Rarely Used Options
 5.4. Redundant Information
 5.5. Simplicity
 5.6. Internet Date/Time Format
 5.7. Restrictions
 5.8. Examples
 6. Acknowledgements
 7. References
 8. Security Considerations
 9. Authors' Addresses
 Appendix A. ISO 8601 Collected ABNF
 Appendix B. Day of the Week
 Appendix C. Leap Years
 Appendix D. Leap Seconds
 Appendix E. Amendment history
 Full copyright statement

1. Introduction

 Date and time formats cause a lot of confusion and interoperability
 problems on the Internet. This document addresses many of the
 problems encountered and makes recommendations to improve consistency
 and interoperability when representing and using date and time in
 Internet protocols.

 This document includes an Internet profile of the ISO 8601 [ISO8601]
 standard for representation of dates and times using the Gregorian
 calendar.

Newman & Klyne [Page 2]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 There are many ways in which date and time values might appear in
 Internet protocols: this document focuses on just one common usage,
 viz. timestamps for Internet protocol events. This limited
 consideration has the following consequences:

 o All dates and times are assumed to be in the "current era",
 somewhere between 0000AD and 9999AD.

 o All times expressed have a stated relationship (offset) to
 Coordinated Universal Time (UTC). (This is distinct from some
 usage in scheduling applications where a local time and location
 may be known, but the actual relationship to UTC may be dependent
 on the unknown or unknowable actions of politicians or
 administrators. The UTC time corresponding to 17:00 on 23rd March
 2005 in New York may depend on administrative decisions about
 daylight savings time. This specification steers well clear of
 such considerations.)

 o Timestamps can express times that occurred before the introduction
 of UTC. Such timestamps are expressed relative to universal time,
 using the best available practice at the stated time.

 o Date and time expressions indicate an instant in time.
 Description of time periods, or intervals, is not covered here.

2. Definitions

 UTC Coordinated Universal Time as maintained by the Bureau
 International des Poids et Mesures (BIPM).

 second A basic unit of measurement of time in the International
 System of Units. It is defined as the duration of
 9,192,631,770 cycles of microwave light absorbed or
 emitted by the hyperfine transition of cesium-133 atoms
 in their ground state undisturbed by external fields.

 minute A period of time of 60 seconds. However, see also the
 restrictions in section 5.7 and Appendix D for how leap
 seconds are denoted within minutes.

 hour A period of time of 60 minutes.

 day A period of time of 24 hours.

Newman & Klyne [Page 3]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 leap year In the Gregorian calendar, a year which has 366 days. A
 leap year is a year whose number is divisible by four an
 integral number of times, except that if it is a
 centennial year (i.e. divisible by one hundred) it shall
 also be divisible by four hundred an integral number of
 times.

 ABNF Augmented Backus-Naur Form, a format used to represent
 permissible strings in a protocol or language, as defined
 in [ABNF].

 Email Date/Time Format
 The date/time format used by Internet Mail as defined by
 RFC 2822 [IMAIL-UPDATE].

 Internet Date/Time Format
 The date format defined in section 5 of this document.

 For more information about time scales, see Appendix E of [NTP],
 Section 3 of [ISO8601], and the appropriate ITU documents [ITU-R-TF].

3. Two Digit Years

 The following requirements are to address the problems of ambiguity
 of 2-digit years:

 o Internet Protocols MUST generate four digit years in dates.

 o The use of 2-digit years is deprecated. If a 2-digit year is
 received, it should be accepted ONLY if an incorrect
 interpretation will not cause a protocol or processing failure
 (e.g. if used only for logging or tracing purposes).

 o It is possible that a program using two digit years will represent
 years after 1999 as three digits. This occurs if the program
 simply subtracts 1900 from the year and doesn't check the number
 of digits. Programs wishing to robustly deal with dates generated
 by such broken software may add 1900 to three digit years.

 o It is possible that a program using two digit years will represent
 years after 1999 as ":0", ":1", ... ":9", ";0", ... This occurs
 if the program simply subtracts 1900 from the year and adds the
 decade to the US-ASCII character zero. Programs wishing to
 robustly deal with dates generated by such broken software should
 detect non-numeric decades and interpret appropriately.

Newman & Klyne [Page 4]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 The problems with two digit years amply demonstrate why all dates
 and times used in Internet protocols MUST be fully qualified.

4. Local Time

4.1. Coordinated Universal Time (UTC)

 Because the daylight saving rules for local time zones are so
 convoluted and can change based on local law at unpredictable times,
 true interoperability is best achieved by using Coordinated Universal
 Time (UTC). This specification does not cater to local time zone
 rules.

4.2. Local Offsets

 The offset between local time and UTC is often useful information.
 For example, in electronic mail (RFC2822, [IMAIL-UPDATE]) the local
 offset provides a useful heuristic to determine the probability of a
 prompt response. Attempts to label local offsets with alphabetic
 strings have resulted in poor interoperability in the past [IMAIL],
 [HOST-REQ]. As a result, RFC2822 [IMAIL-UPDATE] has made numeric
 offsets mandatory.

 Numeric offsets are calculated as "local time minus UTC". So the
 equivalent time in UTC can be determined by subtracting the offset
 from the local time. For example, 18:50:00-04:00 is the same time as
 22:50:00Z.

 NOTE: Following ISO 8601, numeric offsets represent only time
 zones that differ from UTC by an integral number of minutes.
 However, many historical time zones differ from UTC by a non-
 integral number of minutes. To represent such historical time
 stamps exactly, applications must convert them to a representable
 time zone.

4.3. Unknown Local Offset Convention

 If the time in UTC is known, but the offset to local time is unknown,
 this can be represented with an offset of "-00:00". This differs
 semantically from an offset of "Z" or "+00:00", which imply that UTC
 is the preferred reference point for the specified time. RFC2822
 [IMAIL-UPDATE] describes a similar convention for email.

Newman & Klyne [Page 5]
ˇ

Internet Draft Date and Time - Timestamps July 2001

4.4. Unqualified Local Time

 A number of devices currently connected to the Internet run their
 internal clocks in local time and are unaware of UTC. While the
 Internet does have a tradition of accepting reality when creating
 specifications, this should not be done at the expense of
 interoperability. Since interpretation of an unqualified local time
 zone will fail in approximately 23/24 of the globe, the
 interoperability problems of unqualified local time are deemed
 unacceptable for the Internet. Systems that are configured with a
 local time, are unaware of the corresponding UTC offset, and depend
 on time synchronization with other Internet systems, MUST use a
 mechanism that ensures correct synchronization with UTC. Some
 suitable mechanisms are:

 o Use Network Time Protocol [NTP] to obtain the time in UTC.

 o Use another host in the same local time zone as a gateway to the
 Internet. This host MUST correct unqualified local times they are
 transmitted to other hosts.

 o Prompt the user for the local time zone and daylight saving rule
 settings.

5. Date and Time format

 This section discusses desirable qualities of date and time formats
 and defines a profile of ISO 8601 for use in Internet protocols.

5.1. Ordering

 If date and time components are ordered from least precise to most
 precise, then a useful property is achieved. Assuming that the time
 zones of the dates and times are the same (e.g. all in UTC),
 expressed using the same string (e.g. all "Z" or all "+00:00"), and
 all times have the same number of fractional second digits, then the
 date and time strings may be sorted as strings (e.g. using the
 strcmp() function in C) and a time-ordered sequence will result. The
 presence of optional punctuation would violate this characteristic.

5.2. Human Readability

 Human readability has proved to be a valuable feature of Internet
 protocols. Human readable protocols greatly reduce the costs of
 debugging since telnet often suffices as a test client and network
 analyzers need not be modified with knowledge of the protocol. On
 the other hand, human readability sometimes results in

Newman & Klyne [Page 6]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 interoperability problems. For example, the date format "10/11/1996"
 is completely unsuitable for global interchange because it is
 interpreted differently in different countries. In addition, the
 date format in [IMAIL] has resulted in interoperability problems when
 people assumed any text string was permitted and translated the three
 letter abbreviations to other languages or substituted date formats
 which were easier to generate (e.g. the format used by the C function
 ctime). For this reason, a balance must be struck between human
 readability and interoperability.

 Because no date and time format is readable according to the
 conventions of all countries, Internet clients SHOULD be prepared to
 transform dates into a display format suitable for the locality.
 This may include translating UTC to local time.

5.3. Rarely Used Options

 A format which includes rarely used options is likely to cause
 interoperability problems. This is because rarely used options are
 less likely to be used in alpha or beta testing, so bugs in parsing
 are less likely to be discovered. Rarely used options should be made
 mandatory or omitted for the sake of interoperability whenever
 possible.

 The format defined below includes only one rarely used option:
 fractions of a second. It is expected that this will be used only by
 applications which require strict ordering of date/time stamps or
 which have an unusual precision requirement.

5.4. Redundant Information

 If a date/time format includes redundant information, that introduces
 the possibility that the redundant information will not correlate.
 For example, including the day of the week in a date/time format
 introduces the possibility that the day of week is incorrect but the
 date is correct, or vice versa. Since it is not difficult to compute
 the day of week from a date (see Appendix B), the day of week should
 not be included in a date/time format.

5.5. Simplicity

 The complete set of date and time formats specified in ISO 8601
 [ISO8601] is quite complex in an attempt to provide multiple
 representations and partial representations. Appendix A contains an
 attempt to translate the complete syntax of ISO 8601 into ABNF.
 Internet protocols have somewhat different requirements and
 simplicity has proved to be an important characteristic. In
 addition, Internet protocols usually need complete specification of

Newman & Klyne [Page 7]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 data in order to achieve true interoperability. Therefore, the
 complete grammar for ISO 8601 is deemed too complex for most Internet
 protocols.

 The following section defines a profile of ISO 8601 for use on the
 Internet. It is a conformant subset of the ISO 8601 extended format.
 Simplicity is achieved by making most fields and punctuation
 mandatory.

5.6. Internet Date/Time Format

 The following profile of ISO 8601 [ISO8601] dates SHOULD be used in
 new protocols on the Internet. This is specified using the syntax
 description notation defined in [ABNF].

 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap second rules
 time-secfrac = "." 1*DIGIT
 time-numoffset = ("+" / "-") time-hour ":" time-minute
 time-offset = "Z" / time-numoffset

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday
 full-time = partial-time time-offset

 date-time = full-date "T" full-time

 NOTE: Per [ABNF] and ISO8601, the "T" and "Z" characters in
 this syntax may alternatively be lower case "t" or "z"
 respectively.

 NOTE: ISO 8601 defines date and time separated by "T".
 Applications using this syntax may choose, for the sake of
 readability, to specify a full-date and full-time separated by
 (say) a space character.

Newman & Klyne [Page 8]
ˇ

Internet Draft Date and Time - Timestamps July 2001

5.7. Restrictions

 The grammar element date-mday represents the day number within the
 current month. The maximum value varies based on the month and year
 as follows:

 Month Number Month/Year Maximum value of date-mday
 ------------ ---------- --------------------------
 01 January 31
 02 February, normal 28
 02 February, leap year 29
 03 March 31
 04 April 30
 05 May 31
 06 June 30
 07 July 31
 08 August 31
 09 September 30
 10 October 31
 11 November 30
 12 December 31

 Appendix C contains sample C code to determine if a year is a leap
 year.

 The grammar element time-second may have the value "60" at the end of
 months in which a leap second occurs -- to date: June
 (XXXX-06-30T23:59:60Z) or December (XXXX-12-31T23:59:60Z); see
 Appendix D for a table of leap seconds. It is also possible for a
 leap second to be subtracted, at which times the maximum value of
 time-second is "58". At all other times the maximum value of
 time-second is "59". Further, in time zones other than "Z", the leap
 second point is shifted by the zone offset (so it happens at the same
 instant around the globe).

 Leap seconds cannot be predicted far into the future. The
 International Earth Rotation Service publishes bulletins [IERS] that
 announce leap seconds with a few weeks' warning. Applications should
 not generate timestamps involving inserted leap seconds until after
 the leap seconds are announced.

 Although ISO 8601 permits the hour to be "24", this profile of ISO
 8601 only allows values between "00" and "23" for the hour in order
 to reduce confusion.

Newman & Klyne [Page 9]
ˇ

Internet Draft Date and Time - Timestamps July 2001

5.8. Examples

 Here are some examples of Internet date/time format.

 1985-04-12T23:20:50.52Z

 This represents 20 minutes and 50.52 seconds after the 23rd hour of
 April 12th, 1985 in UTC.

 1996-12-19T16:39:57-08:00

 This represents 39 minutes and 57 seconds after the 16th hour of
 December 19th, 1996 with an offset of -08:00 from UTC (Pacific
 Standard Time). Note that this is equivalent to 1996-12-20T00:39:57Z
 in UTC.

 1990-12-31T23:59:60Z

 This represents the leap second inserted at the end of 1990.

 1990-12-31T15:59:60-08:00

 This represents the same leap second in Pacific Standard Time, 8
 hours behind UTC.

 1937-01-01T12:00:27.87+00:20

 This represents the same instant of time as noon, January 1, 1937,
 Netherlands time. Standard time in the Netherlands was exactly 19
 minutes and 32.13 seconds ahead of UTC by law from 1909-05-01 through
 1937-06-30. This time zone cannot be represented exactly using the
 HH:MM format, and this timestamp uses the closest representable UTC
 offset.

6. Acknowledgements

 The following people provided helpful advice for an earlier
 incarnation of this document: Ned Freed, Neal McBurnett, David
 Keegel, Markus Kuhn, Paul Eggert and Robert Elz. Thanks are also due
 to participants of the IETF Calendaring/Scheduling working group
 mailing list, and participants of the time zone mailing list.

 The following reviewers contributed helpful suggestions for the
 present revision: Tom Harsch, Markus Kuhn, Pete Resnick, Dan Kohn.
 Paul Eggert provided many careful observations regarding the
 subtleties of leap seconds and time zone offsets.

Newman & Klyne [Page 10]
ˇ

Internet Draft Date and Time - Timestamps July 2001

7. References

 [Zeller] Chr. Zeller, "Kalender-Formeln", Acta Mathematica, Vol.
 9, Nov 1886.

 [IMAIL] Crocker, D., "Standard for the Format of Arpa Internet
 Text Messages", RFC 822, August 1982.

 [IMAIL-UPDATE]
 Resnick, P., "Internet Message Format", RFC 2822, April
 2001.

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [ISO8601] "Data elements and interchange formats -- Information
 interchange -- Representation of dates and times", ISO
 8601:1988(E), International Organization for
 Standardization, June, 1988.

 [ISO8601:2000]
 "Data elements and interchange formats -- Information
 interchange -- Representation of dates and times", ISO
 8601:2000, International Organization for
 Standardization, December, 2000.

 [HOST-REQ] Braden, R., "Requirements for Internet Hosts --
 Application and Support", RFC 1123, Internet Engineering
 Task Force, October 1989.

 [IERS] International Earth Rotation Service Bulletins,
 <http://hpiers.obspm.fr/eop-pc/products/bulletins.html>.

 [NTP] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation and Analysis", RFC 1305,
 University of Delaware, March 1992.

 [ITU-R-TF] International Telecommunication Union Recommendations for
 Time Signals and Frequency Standards Emissions.
 <http://www.itu.ch/publications/itu-r/iturtf.htm>

8. Security Considerations

 Since the local time zone of a site may be useful for determining a
 time when systems are less likely to be monitored and might be more
 susceptible to a security probe, some sites may wish to emit times in

Newman & Klyne [Page 11]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 UTC only. Others might consider this to be loss of useful
 functionality at the hands of paranoia.

9. Authors' Addresses

 Chris Newman
 Sun Microsystems
 1050 Lakes Drive, Suite 250
 West Covina, CA 91790 USA

 Email: cnewman@iplanet.com

 Graham Klyne (editor, this revision)
 Baltimore Technologies - Content Security Group
 1310 Waterside
 Arlington Business Park
 Theale
 Reading, RG7 4SA
 United Kingdom.
 Telephone: +44 118 903 8000
 Facsimile: +44 118 903 9000
 E-mail: GK@ACM.ORG

Appendix A. ISO 8601 Collected ABNF

 This information is based on the 1988 version of ISO 8601. There may
 be some changes in the 2000 revision.

 ISO 8601 does not specify a formal grammar for the date and time
 formats it defines. The following is an attempt to create a formal
 grammar from ISO 8601. This is informational only and may contain
 errors. ISO 8601 remains the authoritative reference.

 Note that due to ambiguities in ISO 8601, some interpretations had to
 be made. First, ISO 8601 is not clear if mixtures of basic and
 extended format are permissible. This grammar permits mixtures. ISO
 8601 is not clear on whether an hour of 24 is permissible only if
 minutes and seconds are 0. This assumes that an hour of 24 is
 permissible in any context. Restrictions on date-mday in section 5.7
 apply. ISO 8601 states that the "T" may be omitted under some
 circumstances. This grammar requires the "T" to avoid ambiguity.

 ISO 8601 also requires (in section 5.3.1.3) that a decimal fraction
 be proceeded by a "0" if less than unity. Annex B.2 of ISO 8601
 gives examples where the decimal fractions are not preceded by a "0".
 This grammar assumes section 5.3.1.3 is correct and that Annex B.2 is

Newman & Klyne [Page 12]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 in error.

 date-century = 2DIGIT ; 00-99
 date-decade = DIGIT ; 0-9
 date-subdecade = DIGIT ; 0-9
 date-year = date-decade date-subdecade
 date-fullyear = date-century date-year
 date-month = 2DIGIT ; 01-12
 date-wday = DIGIT ; 1-7 ; 1 is Monday, 7 is Sunday
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year
 date-yday = 3DIGIT ; 001-365, 001-366 based on year
 date-week = 2DIGIT ; 01-52, 01-53 based on year

 datepart-fullyear = [date-century] date-year ["-"]
 datepart-ptyear = "-" [date-subdecade ["-"]]
 datepart-wkyear = datepart-ptyear / datepart-fullyear

 dateopt-century = "-" / date-century
 dateopt-fullyear = "-" / datepart-fullyear
 dateopt-year = "-" / (date-year ["-"])
 dateopt-month = "-" / (date-month ["-"])
 dateopt-week = "-" / (date-week ["-"])

 datespec-full = datepart-fullyear date-month ["-"] date-mday
 datespec-year = date-century / dateopt-century date-year
 datespec-month = "-" dateopt-year date-month [["-"] date-mday]
 datespec-mday = "--" dateopt-month date-mday
 datespec-week = datepart-wkyear "W"
 (date-week / dateopt-week date-wday)
 datespec-wday = "---" date-wday
 datespec-yday = dateopt-fullyear date-yday

 date = datespec-full / datespec-year / datespec-month /
 datespec-mday / datespec-week / datespec-wday / datespec-yday

Newman & Klyne [Page 13]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 Time:

 time-hour = 2DIGIT ; 00-24
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60 based on leap-second rules
 time-fraction = ("," / ".") 1*DIGIT
 time-numoffset = ("+" / "-") time-hour [[":"] time-minute]
 time-zone = "Z" / time-numoffset

 timeopt-hour = "-" / (time-hour [":"])
 timeopt-minute = "-" / (time-minute [":"])

 timespec-hour = time-hour [[":"] time-minute [[":"] time-second]]
 timespec-minute = timeopt-hour time-minute [[":"] time-second]
 timespec-second = "-" timeopt-minute time-second
 timespec-base = timespec-hour / timespec-minute / timespec-second

 time = timespec-base [time-fraction] [time-zone]

 iso-date-time = date "T" time

 Durations:

 dur-second = 1*DIGIT "S"
 dur-minute = 1*DIGIT "M" [dur-second]
 dur-hour = 1*DIGIT "H" [dur-minute]
 dur-time = "T" (dur-hour / dur-minute / dur-second)
 dur-day = 1*DIGIT "D"
 dur-week = 1*DIGIT "W"
 dur-month = 1*DIGIT "M" [dur-day]
 dur-year = 1*DIGIT "Y" [dur-month]
 dur-date = (dur-day / dur-month / dur-year) [dur-time]

 duration = "P" (dur-date / dur-time / dur-week)

 Periods:

 period-explicit = date-time "/" date-time
 period-start = date-time "/" duration
 period-end = duration "/" date-time

 period = period-explicit / period-start / period-end

Newman & Klyne [Page 14]
ˇ

Internet Draft Date and Time - Timestamps July 2001

Appendix B. Day of the Week

 The following is a sample C subroutine loosely based on Zeller's
 Congruence [Zeller] which may be used to obtain the day of the week
 for dates on or after 0000-02-01:

 char *day_of_week(int day, int month, int year)
 {
 int cent;
 char *dayofweek[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };

 /* adjust months so February is the last one */
 month -= 2;
 if (month < 1) {
 month += 12;
 --year;
 }
 /* split by century */
 cent = year / 100;
 year %= 100;
 return (dayofweek[((26 * month - 2) / 10 + day + year
 + year / 4 + cent / 4 - 2 * cent) % 7]);
 }

Appendix C. Leap Years

 Here is a sample C subroutine to calculate if a year is a leap year:

 /* This returns non-zero if year is a leap year. Must use 4 digit year.
 */
 int leap_year(int year)
 {
 return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
 }

Newman & Klyne [Page 15]
ˇ

Internet Draft Date and Time - Timestamps July 2001

Appendix D. Leap Seconds

 Information about leap seconds can be found at:
 <http://tycho.usno.navy.mil/leapsec.html>. In particular, it notes
 that:

 The decision to introduce a leap second in UTC is the
 responsibility of the International Earth Rotation Service (IERS).
 According to the CCIR Recommendation, first preference is given to
 the opportunities at the end of December and June, and second
 preference to those at the end of March and September.

 When required, insertion of a leap second occurs as an extra second
 at the end of a day in UTC, represented by a timestamp of the form
 YYYY-MM-DDT23:59:60Z. A leap second occurs simultaneously in all
 time zones, so that time zone relationships are not affected. See
 section 5.8 for some examples of leap second times.

 The following table is an excerpt from the table maintained by the
 United States Naval Observatory. The source data is located at:

 <ftp://maia.usno.navy.mil/ser7/tai-utc.dat>

Newman & Klyne [Page 16]
ˇ

Internet Draft Date and Time - Timestamps July 2001

 This table shows the date of the leap second, and the difference
 between the time standard TAI (which isn't adjusted by leap seconds)
 and UTC after that leap second.

 UTC Date TAI - UTC After Leap Second
 -------- ---------------------------
 1972-06-30 11
 1972-12-31 12
 1973-12-31 13
 1974-12-31 14
 1975-12-31 15
 1976-12-31 16
 1977-12-31 17
 1978-12-31 18
 1979-12-31 19
 1981-06-30 20
 1982-06-30 21
 1983-06-30 22
 1985-06-30 23
 1987-12-31 24
 1989-12-31 25
 1990-12-31 26
 1992-06-30 27
 1993-06-30 28
 1994-06-30 29
 1995-12-31 30
 1997-06-30 31
 1998-12-31 32

Appendix E. Amendment history

00a 30-Mar-2001 This document version created from Chris Newman's
 original 'draft-ietf-impp-datetime-00.txt'. Material
 relating to future times (schedule events) and time zone
 names has been removed. Added introductory text setting
 the scope for this document. Various small editorial
 changes.

00b 03-Apr-2001 Added reference [ABNF], and updated citations. Added
 comment about possible use of space-separated date/time
 fields. Added comment about possible use of lower case
 "t" and "z" in syntax. Corrected leap-second examples
 and noted that leap second point is offset by time zone.

Newman & Klyne [Page 17]
ˇ

Internet Draft Date and Time - Timestamps July 2001

01a 06-Apr-2001 Updated author affiliation and contact details. Udated
 leap-second table.

01b 10-May-2001 Clarified provenance of (non-normative) information in
 appendix A.

02a 11-May-2001 Reference updated email specification (RFC2822).

02b 14-May-2001 Fix up some detailed information concerning leap
 seconds. Include text describing timestamps for times
 before introduction of UTC. Caution against the use of
 future timestamps using leap seconds. Correction to
 day-of-week sample code, and note restriction on
 applicability. Various editorial corrections.

03a 23-May-2001 Editorial fixes. Minor clarification of leap seconds.

03b 24-May-2001 More clarification of leap seconds and time zones.

03c 25-May-2001 More minor editorial fixes.

04a 03-Jul-2001 Fix off-by-one error in Netherlands example.

Newman & Klyne [Page 18]
ˇ

Internet Draft Date and Time - Timestamps July 2001

Full copyright statement

 Copyright (C) The Internet Society 2001. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Newman & Klyne [Page 19]

