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T FOREWORD

A paramount problem in fisheries science is understanding the
causes of natural variability in fish production and resultant stock
size. This variability is thought to be fixed by the time fishes are
recruited to the fishery and is believed to be determined by factors
influencing survival and growth in the early 1ife stages (egg, larval
and juvenile). These determining factors are both biological and
physical. Predator-prey relationships are the important biological
mechanisms with early 1life stage success linked to capture of prey
(food) and avoidance of predators. Physical factors directly affect
physiological mechanism and developmental rates as well as the transport
and distribution of the early 1ife stages and their predators and prey.

The Marine Ecosystems Division of the National Marine Fisheries
‘Service, Northeast Fisheries Center, has been especially cognizant of
the need to understand recruitment variability for potential use in
management strategies. As a result, the Division has focused on
research designed to understand the possible controlling factors
mentioned above. The Larval Dynamics Investigation within the Division
has concentrated its research on the role of food sources and successful
feeding in the 1arval stage. The three papers of this NOAA Technical
Memorandum (two of which have been presented elsewhere) present a
detailed description of this research. The first paper on nutrition and
trophodynamics explores the present state of knowledge of larval feeding
as it relates to success (growth and survival) or failure (starvation
and death) with special emphasis on experimental research. The second
paper describes the at-sea sampling strategy of process-oriented, multi-
discipline studies of fine and micro-scale distributions of cod and
haddock larvae and prey on Georges Bank in relation to physical
factors. The operational plan, sampling gear & instrumentation, and
special techniques employed are discussed in terms of results and
usefulness of the parameters measured. The third paper documents the
evolution and development of stochastic models simulating processes
associated with feeding, growth, and survival of larval cod and haddock
as individuals and populations. This model1ing synthesizes much of the
laboratory experimental and field empirical data bases collected by the
Division.

Interim conclusions from this compendium of continuing research
indicate that starvation mortality in the larval stage is one of the
largest components of total mortality and is most prominent in the first
weeks after hatching. However, its magnitude is such that it does not
appear to be population 1imiting under most conditions observed in the
field thus far. There is normally enough food in the sea to allow an
ecologically significant portion of larval populations to grow and
survive. Thus, the implication is that predation and/or factors
affecting the juvenile stage may be keys to variable recruitment.

Geoffrey C. Laurence
Narragansett, Rhode Island
January 1985
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NUTRITION AND TROPHODYNAMICS OF LARVAL FISH--REVI%yg
- CONCEPTS, STRATEGIC RECOMMENDATIONS AND OPINIONSL:>

Geoffrey C. Laurence
National Marine Fisheries Service
Northeast Fisheries Center
Narragansett, RI 02882 1199

I INTRODUCTION

A significant proportion of the natural variability in fish production and
resultant stock size is believed to be the result of changing recruitment to a
fishery. Recruitment is, in turn, thought to be directly related to the
survival success of the early life stages. The ability to understand the
causative factors and predict early life survival and relate it to recruitment
would be a paramount step toward effective fishery management schemes.

In a consideration of the early stages, particularly the larval, it has
almost become axiomatic that the trophic (feeding) relationships of predation
and starvation with their inherent biological components modified by
environmental physical factors are the basic controlling principles of
survival. It is the purpose of this document to explore the state of knowledge
of larval feeding as it relates to success (growth and survival) or failure
(starvation and death) under the general heading of larval fish nutrition.

IT STATE OF KNOWLEDGE AND REVIEW

Because of the length restriction of this paper and the desire to use a
good portion of it for concepts, opinions, and recommendations, I will highlight
our present state of knowledge concerning larval feeding with reference to a
number of recent review or workshop contributions for more detail. A workshop
on approaches to larval fish feeding studies (G. Laurence and E. Houde,
convenors) was held at this year's 6th Annual Larval Fish Conference, CBL,
Solomons, MD. The appended outline (Appendix) used to prepare the program for
that workshop gives a reasonably detailed presentation of factors involved in
larval feeding. Additionally, 2 recent review publications (Hunter, 1981, and
Theilacker and Dorsey, 1980) as well as the original larval fish review by
Blaxter (1969) serve as a compendium from which much of the review part of this
paper is drawn.

1A contribution to: Fish Ecology III, Cooperative Institute of Marine and
Atmospheric Studies, University of Miami; September 6-10, 1982; Brian J.
Rothschild, University of Maryland, and Claes G. H. Rooth, University of Miami,

Convenors.
2This is MARMAP Contribution No. MED/NEFC 82-50.

3This is a University of Miami Technical Report No. 82008.



There are a number of factors related to food and feeding which directly
affect larval survival. .They are: 1) duration of development from the embryo
stage to the time when the first feeding responses occur, 2) the preferred food
species and its abundance and distribution, 3) the behavioral relation between
the larva and its prey, 4) the success of feeding responses, 5) the swimming
ability of larvae in search of food, and 6) the required food ration for growth
and metabolic expenditure. C

Maternal inheritance and temperature control the initial amount of endogenous
yolk reserves and the developmental rate, respectively, prior to external feeding.
The efficiency with which yolk is utilized probably is an important determinent
of early survival since size and condition of larvae will affect their ability
to begin feeding. Presumably, larger larvae produced by more efficient use of
endogenous reserves will have an advantage over smaller larvae in foraging
ability. Blaxter (1969) noted for a number of species that development at
different temperatures can produce larvae with morphological differences as well
as different percentages of yolk and larval tissue at hatching and the initiation
of feeding. Furthermore, a number of authors (Gray, 1926; Smith, 1947; Lasker,
1962; Toetz, 1966; Laurence, 1969, 1973) reported potential energy deficits with
not enough yolk to provide for normal requirements before the ability to feed on
external prey organisms. Another aspect is the ability to withstand starvation
during the per10d when feeding commences if food is initially unavailable. This
has been termed "point of no return" or delayed feeding. Table 1 from Theilacker
and Dorsey (1980) presents an extensive summary of the known information about
these early developmental factors.

Preference for certain food organisms by larvae has been indicated in
numerous field studies (Ogilvie, 1938; Marak, 1960; Last, 1978a,b). This
selective feeding is influenced by the size of the larva and its mouth in relation
to prey size (Hempel, 1965; Sherman et al., 1981). Figure 1 from Last (1978b)
and Figure 2 from Hunter (1981) illustrate these points. Hunter (1981) summarizes
by stating that marine larvae select foods of increasingly larger size as they
grow, but that the average and range of sizes selected differ greatly among
species and may be d1agnost1c of specific ecological roles.

Prey concentration or abundance has been directly correlated with larval
growth (Laurence, 1974; Houde, 1975). Many larval fish researchers feel that
the contagious distribution of larvae and their prey in patches and the chance
meeting of these patches is a prime determinent of larval feeding success (Jones,
1973; Lasker, 1975; Laurence, 1977). This has been demonstrated experimentally
in the laboratory by Houde and Schekter (1978) who showed that larval sea bream
subjected ‘to simulated patches of copepods for short periods of time could equal
results from constant exposure to similar concentrations. Summary Tables 2 and 3
from Theilacker and Dorsey (1980) and Table 4 from Houde (19780 present re]evant
aspects of prey concentration.

Behavioral relat1onsh1ps between larvae and prey determine the effect1veness
of prey capture. <larval behavior usually consists of perception, recognition
and directed, definite responses to a food organism. Hunter (1972, 1977, 1981)
has d1scussed and described the ethological basis of these activities in detail.
Most larvae are daylight feeders and perceptive distances generally increase



with increasing body length. There is some indication that older larvae may feed
in reduced light (Blaxter, 1969).

The swimming ability of larvae directly determines the amount of water
searched for prey as well as metabolic expenditures of energy. When food is
scarce, weaker-swimming larvae would be subject to starvation because of the
lowered frequency of contact with prey organisms. Swimming capability as
measured in speed tests are summarized in Table 5 from Theilacker and Dorsey
(1980) showing species specific results for burst and cruising measurements.

The combination of swimming ability as measured by linear speed and
perception as measured by visual field produce a functional measure of the
actual volume of water a larva is capable of searching. The volumes are small
in the range of 0.1's to 10.0's of liters per hour as indicated by the compilation
in Table 6.

Success or failure of feeding responses has been observed by some researchers
to influence larval mortality. Blaxter (1962) reported a failure of some herring
larvae to feed at all. Schulmann (1965) attributed failure of Pacific sardine
larvae to feed to a "non-feeding behavior" in which the larvae would "give up" if
initially unsuccessful. First feeding success is typically lower than for success
of older, larger larvae within a given species, although there can be a significant
difference between species that are approximately the same age. As examples:
larval anchovy captured food successfully 10% of the time at first feeding
increasing to 905 in 3 weeks (Hunter, 1972); initial feeding success of herring
larvae was 2-6% and 32-62% for plaice (Blaxter and Staines, 1971). These differ-
ences are attributed to swimming abilities by the researchers.

The required food ration of larvae for growth is of prime importance in
survival and successful development. A1l physiological and developmental processes
require energy in the form of food. The processes involved ‘include growth,
metabolism, digestion, assimilation, excretion and osmoregulation. The biocener-
getic relationships of these processes for early life stages have only recently
been studied and quantitated in a holistic way (Vlymen, 1974; Laurence, 1977,

Beyer and Laurence, 1980; Houde and Schekter, 1982). The review by Theilacker

and Dorsey (1980) presents summaries of research results for many of the

individual factors involved in larval energetics. Clearly, most of the processes
are species specific and/or temperature dependent and generalizations are difficult
with the present state of knowledge. Table 7 from Theilacker and Dorsey for

growth efficiencies and associated parameters gives, perhaps, the most valid
general comparison of known information between larval marine species.

Absolute nutritional requirements for fish larvae, especially non-salmonids,
are virtually unknown. For fishes in general, proteins are the largest single
class of natural dietary component. Twenty-three amino acids occur in natural
fish foods, 10 of which are incapable of being synthesized by fish and are
therefore essential. Tests in feeding young salmonids and freshwater species
show that gross protein requirements as a percent of diet are highest in initial
feeding stages and decrease as size increases (National Research Council, Subcom-
mittee on Cold Water Fish Nutrition, 1981). For maximum growth, young fish must
ingest a diet nearly half of which is digestable protein containing at least the



10 required amino acids. Lipid requirements for fishes are not adeqguately
described- (NRC, 1981). Polyunsaturated -lipids are. found in.the natural diets

",of fishes including essential fatty acids. These are used for energy, for

cellular structure, and for maintenance of the integrity of biomembranes.

Little carbohydrate is found in the natural diet or body of fishes, and they

can grow on diets devoid of carbohydrates. However, hexoses are of natural.
nutritional significance to fishes, and all fishes studied have the ability

to utilize carbohydrate as an energy source (NRC, 1981). Nutritional constituent
composition of-Tarval fish food organisms is .virtually unknown, although gross
energetic equivalents have been measured for some crustacean prey.(Table 8).

II1 - CONCEPTS, STRATEGIES AND RECOMMENDATIONS

‘It is clear from the review that we have a great deal of specific knowledge
regarding component parts of larval feeding relationships and associated processes.
Nevertheless, we have thus far been unable to relate this knowledge to conditions
in the sea that pinpoint functional causal mechanisms controlling survival in
a reliable, quantitative way for predictive management purposes. The following
discussion presents a conceptualization of larval trophodynamics as well as
recommendations for sampling schemes and rationale, integration into appropriate
management -systems, and some personal opinions about persistent problems.

A Concept

My conception of larval trophodynamics and related survival is that
it is most likely a probabilistic process. Given the fact that fish have evolved
over millions of years to respond reproductively (spawn) to environmental cues,
primarily temperature and photoperiod, within a certain finite range (temperatures
usually have a range .of 1-3°C), they are not likely to be affected by productivity
(primary-secondary).disynchrony for the entire spawning period. Match-mismatch
is not apt to occur on a large scale. HMore plausible is the situation where
larval survival is controlled stochastically within a range of population Tevels
affected by chance encounter with "patchy" food and fine tuned by predation.
Catastrophic events such as major meteorological occurrences, advective currents,
anoxias, or man's fishing could also cause fortuitous major negative impact.

The basic functional aspect of this in terms of trophic encounter-interactions
can be explained within the framework of Hutchinson's (1961) "paradox of the
plankton."- Plankton systems support a diversity of organisms in similar niches
unlike most systems where competitive exclusion sets up. Physical mixing in the
planktonic environment prevents dominance and contagion caused by gradations
of:this mixing causes- a probabilistic environment. Chance trophic' encounter
resu1t1ng in success or fa11ure could easily happen in th1s type system

Progress1ng from the more genera] picture of Hutch1nson s "paradox" to the
specifics of predator prey interactions, it can be argued that it doesn't really
matter if you're a proponent of the so-called Cushing (predation) or Jones
‘ (starvat1on) hypotheses regarding larval survival because they are both the same
thing. They can be expressed together in a triotrophic relationship (Laurence,



1981; Figure 3). A key point in this triotrophus is a redefinition of or
clarified interpretation of density independence/dependence. If larvae function
as predators, they are essentially density independent of each other because

the order of magnitude of their own spatial density distribution in nature is

so much greater than that of the density of the food they feed and grow on that
they are unlikely to directly compete with each other but are more affected by
the density of their food as it affects starvation. Conversely, if a larva
functions as a prey organism, its mortality is most 1ikely density dependent
because its spatial distribution is much denser than its predators and the

more larvae there are, the more chances for predation mortality.

The overall interpretation of this is that at normal adult stock and larval
population levels, larval survival and growth is mainly density independent and
controlled by the varying encounter with patchy prey. This is a probabilistic
process and results in varying recruitment. At extremely abundant Tevels of
larvae, density dependent predation on larvae may operate to prevent abnormally
large populations in most instances or to reduce Tevels produced from large
adult stock size. This is mainly a correlative process associated with abundances.
At very low adult stock levels, egg production and subsequent Tarval survival may
be inherently so low as not to produce any recruitment. All this is affected
by adult stock size and physical oceanographic process. The physical processes
have, in general, a random influence and the adult stock level has a more direct
or abundance-cause and effect at lTow population levels and can be influenced
greatly by fishing effort.

Strateqy Relating Larval Trophodynamics
to Applied Fishery Management

As previously stated, the ability to understand larval fish trophodynamics
and resultant survival and relate this to fishery production would be a major
advancement in resource management capabilities. Three main components are
needed: 1) abundance estimates or indices of egg and larval stages, 2) quantita-
tive estimates of larval growth and feeding parameters, and 3) predictive models.
Two of these three requirements are currently available as well as portions of
the third. Ichthyoplankton surveys conducted routinely as in the MARMAP mode,
for example, provide abundance estimates. A variety of larval fish growth and
survival models exist (Laurence, 1977; Beyer and Laurence, 1980, 1981; Beyer,
1980). some of which have population predictive capabilities. Larval tropho-
dynamics, physiology and behavior have been studied extensively in the laboratory
and field, as indicated in the review portion of this paper. The only area of
incomplete knowledge is in the physical-mathematical description of the spatial-
temporal bounds of larval predator-prey organisms from the natural environment
and associated production factors. Several laboratories have or are attempting
multidiscipline process-oriented field programs to study these problems
(Lasker, 1975, 1981; Tilseth and Ellertsen, 1981; Lough and Laurence, 1981).

Once these are known, prey encounter rate functions in the existing models can
be used to predict larval individual and population growth and survival based on |
the abundance estimates of the eggs or early larvae from ichthyoplankton surveys
as an jnitial starting point. Predicted estimates of larval survival can then



be correlated with data from subsequent fall juvenile survey estimates conducted
for a number of species ‘as a validation test. The final step is to integrate
the results into the recruitment functions of appropriate ecosystem or manage-
ment models.

Sampling Rationale and Strategy for Field Vefification-—
~ Georges Bank Haddock as an Example

The above cited experimental and descriptive field results of larval
trophodynamics from the first half of this paper, the proposed conceptualization
of functional mechanisms of larval trophodynamics, and the proposed strategy
relating to fishery management needs provide the basis for formulating sampling
rationale and strategy for appropriate field research. Particular emphasis
should be given to the "arena of predation” within which larvae succeed or fail
including: 1) a description of spatial and temporal variability of larval prey
and predators, 2) confirmation of linkages and factors affecting production of
the 3 trophic levels, 3) identification and understanding of the operating
function of physical processes causing or mediating biological consequences.
Since fish larvae are small, and short time and small space scales need to be
considered, the proposed sampling presents unique and challenging problems for
a field program and the technology currently available to support it.

Quantitative Rationale

The prey field of a larval fish is defined by the larva's physical abilities
of locomotion, behavior, and physiological limitations. Actual quantification of
these aspects can provide discrete dimensions relative to a feasible ship board
sampling scheme. The following presentation defines the problem in quantified
terms for Georges Bank haddock based on empirical observations from experimental
research similar to that reviewed in the first part of this paper and model
application extended to the current field program operated by the Larval Fish
Dynamics Investigation of the Northeast Fisheries Center.

Constant, Variable and Parameter Definitions

aG =-change in growth day-1. Lab experiments (Laurence, 1974, 1978) ahd
' field data have shown a maximum rate of approximately 6% day-1 on a
weight basis and about 2% day-1 as a minimum, viable rate.

R = food ihgested'déy-j. Where: R = # ingested and w = food wefght>
whic¢h is a variable function of larval size (Beyer, 1980; Beyer and
‘Laurence, 1981). ' , : .

. B = Cogfficieht of‘djgestion,~a variable changing with larval size
~_ _based on nitrogen budget data (Buckley and Dillman, 1982) and from
. Beyer and Laurence (1981). :



So:
B8Rw = Ingested food that is digested
and
(1-8)Rw = Defecated portion of ingested food
a = Fraction of digested food Tost in chemical and physiological
processing; a constant 0.40.

Thus:

(1-a)BRuw (1)

is available for growth and metabolism

where
KW' = Metabolism day~1 with
K = Coefficient of metabolism (a variable changing with Tarval
activity level (Beyer and Laurence, 1980, 1981)
n = 0.671 (a constant exponent, Laurence, 1978), and W is larval
weight.
Thus:
(1-a)BRw = AG + KWN (2)

is the mass balance equation

and

AG + KW
R=——— 3
(1-a)Bw (3)

is the solution for the number of food organisms required day=!.

Miscellaneous

The above relationships need to be converted into a standard unit of
measurement for calculation purposes. The calorie is that unit and conversion

factors are as follows:




Larval haddock tissue = 0.0046 ca]ug'1 (Unpublished Narragansett Lab data)

Copepods (larval prey) = 0.0052 calug-] (Laurence, 1976)

Metabolism (u207) = 0.005 cal (standard oxycaloric equivalent)
The larval haddock weight-Tength equation is:

W = 0.04424-476  (Laurence, 1979)

Larval Haddock Feeding Requirements

Table 9 presents upper and lower 1imit values of feeding related parameters
for haddock larvae of three different sizes. The most 1m?ortant parameter from
this Table is R the required number of ingested prey day-!. The absolute value
of the range decreases with larval size because the preferred prey size increases.

Larval Haddock Swimming Abilities and Searching Behavior

The visual ‘field and perception distance for larval haddock is important in
the calculation of prey encounter rates.

Visual Field = 2/3 © &2

where & is the perception distance which is approximately 0.5-1.0 times the
body length (BL) of the larva (Beyer and Laurence, 1981).

Larval swiming speed is also a determinent of prey encounter rate.
Larval linear sustained swim speed = 1.0-2.0 BL sec-! (Laurence, 1972).
The total volume of water searched day-! by a larval haddock then becomes

the product of the visual field times the linear distance swam = 2/3 = §2.Dis-
tance swam unit time-1.

Larval Haddock Food Encounter

A11 the above parameters and relationships have been used to calculate the
important factors in larval food encounter and searching capabilities. These
are presented in Table 10 for three larval haddock sizes. ‘ - '

The linear distance swam, if a larva decided to swim in a straight line,
at the sustainéd swim speed is in the order of hundreds of meters day-1. This
assumes @ 12'h swimming day because larvae are visual feeders and become
relatively inactive at night. ' ‘



The swimming speed transformed to cm sec~! is for a comparison to current
velocities. Most larvae would be actively transported by prevailing tidal or
other currents.

The volumes of water searched day'] are relatively small because of the
short perception distances. However, they can be over Tong vertical or horizontal
distances (hundreds of meters).

The number of required prey captures per linear swimming distance shows
that larvae need to be successful in the order of meters to tens of meters.

The required number of prey liter-1 for larval feeding at a 10% capture rate

is in the order of 1000-100,000 m-3 which has often been observed in zooplankton
surveys.

Sampling Strategy

If we relate the above calculations to a potential sampling strategy for
process-oriented field cruises we can assess feasibility, compatibility and
appropriateness. The core of the sampling scheme is to conduct on station
vertical profiling of T, S, chlorophyll, and zooplankton organisms with plankton
pumps and electronic sensors (CTD, fluorometer and HIAC particle counter) at
selected stations within a mesoscale survey (25 km2 grid) of larval distribution
and abundance (Appendix II). This will provide the capability of continuous,
instantaneous (real time) measurements in the vertical. Since we know that even
the smallest fish larva is capable of swimming up and down the vertical extent
of the water column in the Georges Bank study area (40-100 m), the instrument
measurement capabilities are more than adequate in this dimension.

The horizontal mensuration aspects present some problems. Unlike the
vertical (bounded by the water surface and the bottom), the horizontal boundaries
of critical factors may far exceed the_larva's ability to encounter them. A
larva can swim hundreds of meters day-) in the horizontal plane, while prey
encounter related to patch or inter-patch distance could conceivably be on the
order of kilometers. Also, larvae and their food are transported by horizontal
currents, thus compounding the picture. From a sampling strategy, the horizontal
current speed and the vertical sheer can be measured with profiling current
meters strung at depths, or a cyclosonde. This gives transport. Temperature
and salinity changes most likely will not differ significantly enough in the
horizontal to affect larvae and/or their food except, perhaps, in frontal zones.
Discrete measurements to the hundreds of meters in the horizontal can be made
for T, S, chlorophyll and zooplanktors with instruments such as U.0.R., other
fluorometers and particle counters. This does not approach the ability to make
these measurements in meters as in the vertical; but, nevertheless, it approaches
the scale (hundreds of meters) that fish larvae are able to travel and encounter
prey in a day's time.

The above estimates of feeding parameters are apt to be conservative, and
haddock larvae are likely to have powers of locomotion and/or transport and
‘encounter rates of prey greater than discussed. Three factors contribute to
this: 1) Delayed feeding ("point of no return") or the ability to withstand
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starvation, keep actively searching for food, and be able to still feed success-
fully is in the order of 4-7 days for haddock larvae (Laurence 1974, 1978). So
searching parameters could be expanded by a factor of 4-7. 2) Larval fishes have
the behavioral ability to remain in concentrations of prey once located. This
strategy might allow successful existence in a contagious prey environment with
~small scale patches or considerable distances between patches. 3) Since larvae and
their prey are transported by currents of greater velocity than their own swimming
power and since the prey swim with a certain velocity relative to the larvae,
larval searching parameters could be expanded if prey were moving in a direction
opposed to the larvae or if the larvae swam against the prevailing current direction
for any length of time. This expansion would be by a factor of the prey or current
velocity. These factors have been or are quantifiable.

This sampling strategy and the measurement capabilities of available sensors
exceed requirements necessary to relate to fish larvae on the vertical and approach
those necessary for horizontal determinations. The discrete and continuous measure-
ments of the aforementioned physical and biological factors will allow a physical
and statistical description of the heterogeneity (or lack of) of the prey environ-
ment of larval haddock as well as describe and understand functional trophic
Tinkages and production aspects.

Results to date (Lough and Laurence, 1981, and unpublished) indicate that
larval food is contagiously distributed on a small scale (Table 11), that the
absolute abundance of food organisms can approach the calculated requirements
based on experimental results (Fig. 4 and Table 11), that larvae and prey do co-
occur vertically in the water column and that these distributions and occurrences
can be both maintained and disrupted by meteorological and physical forces (Figs.
4 and 5), and that conditions can be quite variable from year to year (Figs. 4-7)
and in different areas of bottom depth on the bank (Figs. 6 and 7).

IV OPINIONS--TWO PERSISTENT PROBLEMS

Without a doubt the single most significant drawback to understanding larval
trophodynamics in the natural environment is a lack of available technological
means for making fine scale measurements of small organisms. There is a particular
need to be able to count and size planktonic organisms "in situ" in real time
without disturbing their behavior or distribution. There have been some small
advances in particle counting technology as spin-off from other applications,
however, it has been minimal. There is 1ittle doubt that the acoustic, optical
and laser technologies currently available to the defense, space and 0il industries
could be applied to fishery problems. But, until society places living resource
problems above defense, space and 0il, there is little chance that engineers, etc.
associated with developmental technological systems will cooperate with 1iving
resource programs in other than a trickle down manner, or that living resource
programs will receive enough money to devote to specific developmental engineering
research.
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Another significant problem is a general failure of physical oceanographers
and biologists to communicate and interact in the area of early Tife survival and
recruitment studies. Most biologists feel that physical factors are extremely
important in influencing biological events. Circulation patterns on the
macroscale level and such processes as boundary or frontal exchange, thermal
inversion and double diffusion on meso and microscales could be prime factors
affecting broad scale distribution of fish larvae as well as the small scale
heterogeneity involved in individual larvae meeting contagiously distributed prey.

Differences in training and background may cause some of the dichotomy.
Nevertheless, with few exceptions that I can see, biologists dealing with early
life stage research have apparently failed to convey the essence of their
problems and importance of physical factors to oceanographers even when they
work in the same organization; while, at the same time, oceanographers generally
have treated these particular biological problems as Tower priority, especially
those dealing with small scale phenomena. The best solution for this communica-
tion problem is for astute program managers to use a big club.

A second aspect to the problem is available instrumentation and technology.
Current means to measure and record physical parameters are more advanced than
those used for biological. It's basically nets vs. electronics. This gap is
narrowing, however, as biologists become more sophisticated in their needs. It
should become a non-problem provided funds are allocated to the necessary
technological development.
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APPENDIX
Approaches to Laboratory Studies of Feeding

of Fish Larvae

I. Logistics

A. Food Collection or Propagation
1. Techniques
2. Systems
3. Cost-Effort

B. Rearing System Design and Development
1. Open vs. Closed
2. Freshwater vs. Marine
3. Tank or Wall Effects

C. System Hygiene
1. Physical (vacuum, scraping, filtering, etc.)
2. Chemical (antibiotics, etc.)

II. General Food Requirements

A. Preferred Foods
1. Natural (trophic level) foods
2. Atypical Natural Foods (i.e. brine shrimp, rotifers, etc.)
3. Artificial Foods

a. Microencapsulation

B. Food Densities
1. Naturally Occurring
2. Critical
3. Optimal
4. Fluctuating

5. Measurement (#'s, calories)
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C.
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Timing
1. Critical
2. Diurnal

General Experimental Studies

A.

Endogenous Nourishment

1.
2.

Chemical Constituents

Sequence of Utilization

First Exogenous Feeding

1.
2.

Timing

Food Size Preference and Absolute Requirements

Delayed Feeding

1.
2.
3.
4.

Delayed First Feeding

Delayed Feeding of Older Larvae

Temperature Effects on Timing

Comparisons Between Species

Growth and Mortality vs. Food Density and/or Physical Factors

1.
2.
3.

T, Sal, Pollutants, etc.

Age and Growth (otoliths, chemical indicators)

Competition

a.

interspecific, intraspecific, cannabalism

Starvation

1.
2.

Initial Post Hatch Starvation

Condition of Older Larvae and Starvation

Size and Condition @ Starvation

Sequence of Events During Starvation Process (behaviora1,

physiological, chemical)

Bioassays

1.

Feeding levels in Assays Interpreted in Relation to Toxic
Insult Effects and Interactions
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Energetics
A. Gross Metabolic Requirements
1. Techniques for Measurement
2. Reconciliation of Standard, Routine and Active Metabolic Levels
and Activity
B. Digestion Rate
1. Techniques
2. Mathematical Formulations
3. Digestion vs. Feeding activity, Prey Level, Prey Type
C. Assimilation
1. Definitions
2. Measurements and Techniques
D. Consumption Estimates
1. Direct and Indirect Determinations
E. Budgets
1. Theory
2. Types (Caloric, Nitrogen, Carbon)
3. Current Models
Biochemistry
A. Condition Indices (organo-cpds, nucleic)
1. Comparisons with Morphological and Histological Indices
2. Relation to Feeding Level and Diet
B. Digestive Enzyme Kinetics
1. Identification, Inervation and Sequence
2. Relations to Food Type and/or Level

3. Temperature Kinetics




VI.

VII.

VIII.

IX.
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Morphology, Histology and Development

A. Developmental Sequence, Inhibitors, Enhancers of: .
1. !Mouthparts
2. tye
3. Digestive Organs
4, Musculature and Locomotor Skeletal Components
Behavior
A. Ethological Reactions and Interactions
1. Predator-prey Responses
.a; ‘détecfion, reaction, attack, flight
B. Swimming Abilities
1. Activity Levels
2. Sustained and Short Term "burst" levels
3. Changes with Age/Size
4. Changes with Prey Level
C. Visual Fields
1. Phototaxis
2. Perception
Nutrition
A. Palatability - Acceptabf]ity
B. Nutritional Values
C. Orgénié (Energy) Components
D.L }norgaﬁic (Essehtial) Components
E. Non Essential Fillers, Binders, Matrices, Encapsulators, etc.

Aquaculture

A.

Differences in Concepts and Goals of Laboratory Experimental

Research and Culture Optimization
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GENERAL SCHEDULE

HADDOCK PROCESS-ORIENTED LARVAL SURVIVAL STUDIES

1,

REMOTE SENSING -- BROAD SCALE MARMAP SURVEY

IDENTIFY AND LOCATE

TEMPERATURE PROFILING FOR THERMOCLINE LOCATION

2. STANDARD ZOCPLANKTON AND LARVAL SAMPLING
3. CHLOROPHYLL SAMPLING AND ENUMERATION
v
PORT CALL - DISEMBARK/EMBARK
v

ALTERNATING PROCESS ORIENTED STUDIES (3 WEEKS)

INTENSIVE 3-D GRID SAMPLING
(25x25 MILE, 5 MILE/STATION)

ESTABLISH PHYTOPLANKTON PRESENCE USING TOWED FLUOROMETRY,
IDENTIFICATION AND ENUMERATION

ZOOPLANKTON SAMPLING - TOWED PARTICLE COUNTERS (LHPR, BATFISH,
UOR) AND FINE MESH NETS

LARVAL PATCH DELINEATION WITH BONGOS, MOCNESS, MILLER, OPENING
AND CLOSING DEVICES
PHYSICAL OBSERVATIONS

SELECTED STATION STUDIES

VERTICAL PROFILING OF PHYTOPLANKTON WITH "IN SITU" FLUOROMETER.
SPECIES IDENTIFICATION AND ENUMERATION FROM BATCH SAMPLING.

FINE-SCALE COPEPOD DISTRIBUTION SAMPLING (NISKIN, PUMPING
SYSTEMS, PARTICLE COUNTERS) FOR PATCH VERIFICATION

MICROSCALE PHYSICAL OCEANOGRAPHIC STUDIES WITH FINE-SCALE
TEMPERATURE SENSORS TO CORRELATE WITH BIOLOGICAL PATCHES

CONTINUATION OF LARVAL HADDOCK SAMPLING FOR DENSITY AND
DISTRIBUTION

SHIPBOARD BIOASSAY GRAZING STUDIES OF COPEPODS ON PHYTOPLANKTON
AND LARVAL HADDOCK ON COPEPODS TO ESTABLISH AND CONFIRM TROPHIC
L INKAGES

=4

l PORT CALL - DISEMBARK/EMBARK AJ

———————— [EEPEAT ABOVE SCHEDULE 2 MORE TIME%J

IMMEDIATE OQUTPUTS

RELATE TO: a) FALL JUVENILE SURVEY RESULTS, b) "IN SITU"
ENVIRONMENTAL CHAMBER RESULTS, c) LABORATORY STUDIES

FORMULATE NEW TESTABLE HYPOTHESES AND STUDY MORE COMPLICATED
RELATIONSHIPS OR CRITICALLY IDENTIFIED MECHANISMS IN ENSUING
YEARS
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Table 1. Species specific early life history parameters. (Table 1 from Theilacker and Dersey, 1980.)
E
Spawning season diameter (mm) Incubation Hatching
Species Range (peak) Type range days °C Size mm  dry wt ug
Limanda Gulf of St.  March-Aug. “pelagic 0.88 5.7 10 2.0-3.5 16
ferruginea Lawrence to 0.79-1.01
Yellowtai Virginia
flounder) 1.
Limanda North Sea March-June Pelagic 2.6
Timanda . English {Feb.-April) 0.65-0.95
Maby 2. Channel
Pleuronectes North Sea NDec.-April Pelagic 2.0 18 7-11 5.0-6.7 151
atessa English Channel 1.7-2.2
Plaice 3. to Norwegian
Rinne Skagarrate
Pseudo- Northern Nec.-May Nemersal 0,80 17-25 3 2.3-3.5 10-30
pleuronectes Labrador to 0.71-0.96
americanus Georgia
Winter
flounder) 4.
Paralichthys Maine to Oct,-April Pelagic 1.04 3 - 17 2.4-2.8
dentatus Florida ' 0.90-1.13
Summer )
flounder) 5.7
Solea solea North Sea April-dune Pelagic 8 10-12 3.2-3.7
Sole 6. English Channel 1.0-1.5
Achirus Florida and Pelagic 1 28 21.8
ineatus Gulf of Mexico
(Lined sole) 7. to Uruguay
Stenotomus Nova Scotia May-July Pelagic 0.94 1.5 22 2.0
chrysops - to Eastern 0.85-1.15
{Scup) 8. Florida
Archosérgus New Jersey Sept.-May Pelagic 1 26 1.8-3.2 27.8
rhomboidalis to Rio de
{Seabream) 9, Janeiro
Gadus morhua North Nec.-April Pelagic 1.52 12 5.5 3.3-5.7
od} . - Atlantic 1.10-1.72
10, Coastal
Waters
Melanogrammus North Atlantic Feb.-June Pelagic 1.46 17 5.5 2.0-4.1
aeglefinus - Biscay to - 1.10-1.67
Haddock ‘Barents Sea
Newfoundland
. 11. to Cape Cod
Clupea’ Green]and-éape July-Nov,; May Nemersal 1.0-1.4 15 (Maine, 8 4.0-10.0 90
harengus Hatteras - (Sept. & May) 0.36-3.0 Downs) (50-220)
AEtTantic Tceland-
herring) 12, Gibraltar
Sardinégs Southern Feb.-July Pelagic 1.7 2.8 15 3.75 36
sagax Alaska to (May-June)
[Pacific Gulf of
sardine) 13. California
Engraulis Northern Baja Jan.-July Pelagic 0.66-1.35 2-3 16 2.9-3.2 21
mordax California to (March-May)
Northern Arctic Alaska
anchovy) 14, and Japan
Engraulis Coasts of July-March Pelagic 0.71-1.42 2-2.25 14-16 2.19-2.72
ringens "~ - Peru -and (Sept.- & Feb.) . - -
[Anchoveta) 15. Chile
Scomber Southeast April-August Pelagic . 3.6 16 3.1 40
japonicus Alaska to (May-July):- .. e . 1.06-1.14 . -
Pacific Banderas Bay,
mackerel) 16. Mexico - -
Trachurus Magdalena Bay, Feb.-August Pelagic 1.0 .. 2-3 15 2.1; 7349 B
symmetricus Baja Cali- (May-June) 0.90-1.02 2.8
ack - .. - - fornia to . . .
mackerel) 17, Southeast

Alaska




25

Table 1. {continued)

Metamorphosis
Nays from Length
{mmSL)

Yolk absorption Onset of feeding Irreversible starvation
Nays from Nays from {a) Nays from hatching
hatching °C hatching °C (b) Nays from Yolk Abs. °C hatching °C
4-5 10 4-5 10 14
Yolk ahsorption
6-10  7-11 46 7-10 6-8(h) 8-11 40-75 7-11 9-13
9 8 5 R 5.7(b) 8 58 8 6.5-9
3-4 16 4 16 6-7 16 47-56 16 15
7 42-56 10-12 9-10
3 28 2 28 3-3.5 28 16 28 4-5
3 22 3 10
2 28 1.5 28 2.5 28 9-11 23-29 7-9
6 7.2 ~5 7 5(b) 7 52 7 10
7 7 -5 7 5(b) 7 42-49 7 10
6 (Firth B8 2-6 (Firth a 6(0) (Firth of 8-12 112-168 8-12  30-40
of Clyde) of Clyde) of C ds)
15-20° (W, 15-20 (Baltic) 122213 8
Raltic)
a5 15 45-50 31-35
4 16 4 15-16 2.5(b) 16.5 50-60 34-40
a,5(b) 15
3 18 .5 18 4,5 18 32
(3.5-6.8)
3 19 2-2.5 19 2(b) 19 25 15
4 16 3.5 16
15 2.5(b) 15 40 11-16
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(Table 4 from Theilacker and Dorsey, 1980).

-Survival at various

Container Stock food densities
volume Nuration density
Species and . NDensity Percent
common name (1iters) (days) Food type No. /L No. /L survival Reference
PLAICE
Pleuronectes platessa 5 14 Artemia 50 1,000 771 Wyatt 1972
nauplii (larvae) 500 7?
5 200 54
100 32
NORTHERN ANCHOVY i - :
Engraulis mordax 10.8 12 Wild zoo- 1n “4,0n0 51 0‘Connell £ Raymond
plankton (eqgs) 900 12 1970
5 (nauplii) gn 0.5
9 0
BAY ANCHOVY
Anchoa mitchilli 76 16 Wild zoo- 0.5-2 5,000 64 Houde 1978
plankton (eggs) 1,000 48
5 {naupTii- 100 5
copepodites) 50 0-12
SEA RREAM
Archosaurgqus rhomboidalis 76 1A " 0.5-2 500 72 " "
(eggs) 100 37
5 S0 13
25 7
1n 4
LINED SOLE
Achirus lineatus 38 16 ‘ 0.5-2 1,000 54 " ¢
{eggs) 100 13
5 50 1
HADNDCK
Melanogrammus aeglefinus 37.8 42 Wild zoo- 94 3,0n0 39 Laurence 1974
plankton (larvae) 1,000 22
5 (nauplii) 50N 3
100 o
10 0
HERRING
Clupea harenqus 20 21-63 Artemia 8 3,000 4-8 Werner & Blaxter
5R-84 1,000 3-12 1980
300 n-8
100 0-12
30 0-1
WINTER FLOUNDER
Pseudopleurontectes americanus 64 49 Witd zoo- g4 3,000 34 Laurence 1977
plankton (Tarvae) 1,000 4
{naup1ii) 50N 3
100 1
10 0

Ysurvival was 100% at 50/t for first 7 days without a decrement in length; see also Riley (1966).

2Estimated food density for indicated survival Tevels.

3P1ankton hlooms of Chlorella sp., and Anacystis sp. maintained in rearing tanks.

destimated by adjusting for hatching success.

5Hunter, in press.
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Table 3. Average densities of microcopepods in the sea. (Table 5 from Theilacker and Dorsey, 1980).

Average density of
microcopepods
(number per liter)

nauplii copepodites  total Location Reference
13 2 15 ~ Southeast Coast of Kyoshu Yokota et al. 1961
22 36 582 California Current Beers and Stewart 1967
§§ 40 5 252 Southern California near shore Beers and Steward 1970
63 27 7 343 Eastern Topical Pacific Beers and Steward 1971
S 36 1 37 California Current Arthur 1977
"""""" 76 19 95 Azovsea  oukalse |
—— - - 2234 Gulf of Taganrog Mikhman 1969
E% %% 40 - 40 North Sea (0-10 m) Ellertsen et al. 1980
a- < 20-30 - 25 North Sea (10-20 m) " "

IMean for all stations and years given in publication listed in table (Hunter, in press).
ZIncludes all copepods passing 202 um mesh net.
3Includes all copepods passing 202 ym mesh net and caught on 35 um mesh.

)4Defined as food of Clupeonella delicatula; microcopepods account for over 90% of items eaten (Mikhman
1969).
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Table 4. Field concentrations of larval fish food organisms.

(Table 10 from Houde, 1978).

Reference

Place

Organisms

Concentration

Rurdick (1969, cited in May,

1974

Duka (1969)

Mikhman (1969)

Hargrave and Green (1970)
Reeve and Cosper (1973)
Heinle and Flemer (1975)

Houde (unpublished data)

Kaneohe Ray, Hawaii

Sea of Azov

Gulf of Taganrog,
Sea of Azov

Two eastern Canada
estuaries

Card Sound, South Florida

Patuxent River estuary

Riscayne Bay, South Florida

copepod nauplii

Acartia clausi
nauplii-

Other copepod nauplii
and copepodites
Total

Early stages of
copepoda

Copepod nauplii and
copepodites

Copepod stages
20-200 um in breadth

-Tintinnids

Eurytemora affinis
nauplii and copepodites

Copepod nauplii and
copepodids <100 um
in breadth

Tintinnids

59-100/1 common
200/1 sometimes present

62-65/1

>30/1
>90/1

39-54611

>60/1

range 23-209/1 mean
for 28 collections 72/1
range 40-369/1

>100/1 frequently
>2,000/1 occasionally

usually 50-100/1
frequently >100/1
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Table §. Swimming performance of larval fishes. (Table 2 from Theilacker and Porsey, 1980}).

Duration of burst

Age Cruising] - Burst or distance
Species °C {d; mm; 19) cm/s~ BL/s cm/s  BL/s traveled per burst Reference
Sardine 15-18 yolk; 3-5 mm 0.2 Blaxter ! Staines
Sardina pilchardus v 3 wks. 0.3 1971
Herring 8-1? yolk; 6-11 mm 0.4 Rlaxter & Staines
Clupea harengus " 8 wks. 1.4 1971
2.3 BR-10 Rlaxter 1969
Northern anchovy 13 3 m 0.1 .2 Hunter 1972
Engraulis mardax 19 3 m 0.2 .6 Hinter (in press)
13 5 mm n,3 5
19 5 m 0.5 .9 )
17 15 mm 1.5 1.0
. . 17 35 m? 3.5 1.0
17 80 mm 12.0 1.5 Theilacker (unpubl.)
17 150 gm 50.0 3.3
17 8 mm 3 R-16 ms Bunter 1972
17 13 m3 8 8-16 ms :
" " 17 3m 7.3 24 . 1.3 cm/176 ms Webb & Carolla (MS)
17 8 mm 11.44 14 3.1 cm/272 ms
17 13 m 15.54 12 5.0 cm/323 ms
Whitefishd 7-15 15 m 1.5 1.0 Hoagman 1978
Coregonus clupeaformis
Jack mackerel 16 6.0-6.5 mm .36- .8 4-6 2-B cm; 2 s Devonald (pers.comm.,)
Trachurus symmetricus 72 (0.6-1.2)
Pacific mackerel 19 3.6 mm 0,46 1.3 Hunter & Kimbrell
Scomber japonicus " 15.0 mm? 5.6 3.8 1980
Large mouth bass 19 2-7 d; 6-7 mm 3-4f 4-5 Laurence 1971
Micropterus salmoides
Plaice’ . 10-12 yolk; 5-7 mm 0.2 Blaxter & Staines
Pleuronectes platessa " 9-10 mm l.OR 1971
" 5-7 mm 1.5 4.9l ~10 9-15 ¢m Ryland 1963
" 9-10 mm 2.8 9-15! ~13 12-36 cm
" 25 m 6.5P
So]e7 10-12 yolk; 3-5 mm 0.1 Blaxter & Staines
Solea solea 9-10 mMm 0.7 1971
Walleye perchg 13 7.5 mm 0.5 0.6 Houde 1969
Stizostedion vitreum vitreum 13 11.0 mm 3.5 3.0
Yellow perch? 13 7.5 mm 1.5 1.8 Houde 1969
Perca flavescens " 11.0 mm 3.5 3.0

1vo]untary swimming,

2metamorphosis.

3attacking prey.

dmean burst speed = B,18 L + 4,89; maximum distance traveled = 3.79 + 0.08,
5no effect of temp. or age.

5forced swimming: speed sustained for 3N m,
790m decrease in activity at metamorphosis.
Bforced swimming; speed sustained 4-20 s.

gforced swimming; speed sustained for | h,
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Table 6. Searching ability of larval fishes. (Table XIII from Blaxter, 1969).

Volume Searched during Feeding

. Volume
o _ " Size  searched
. Species (mm) - (liter/hr) Author
Coregonus wartmanni  (?)10 14.6 Braum (1964)
_ (whitefish)
Clupea harengus 8-16 0.3-2.0 Blaxter (1966), Blaxter and Staines
(herring) (1969a)
Clupea harengus 10 1.5-2 Rosenthal and Hempel (1968)
(herring) 13-14 6-8
Sardina pilchardus 5-7 0.1-0.2 Blaxter and Staines (1969a)
(pilchard)
Pleuronectes platessa 6-10 0.1-1.8 Blaxter and Staines (1969a)
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Table 7. Growth efficiencies of larval fishes. (Table 9 from Theilacker and Norsey, 1980),

Naily ration

Prey Container Gross
Age density volume % body efficiency
°C d; vg) (#/L) (Titers) ug wt (%) Reference
Bay anchov_y1 26 17 d; 200 ug 50 10 19 a1 57 Houde P Schekter 1980
Anchoa mitchilli " 15 d; 200 ug 100 37 51 32
" 11 d; 200 ug 1000 115 140 14
nauplii
wild
plankton)
Herring - 12-22 d; 14,000 3] 71 Eldridge et al. 1977
Clupea harengus pallasi 100-150 ug 20,000
rotifers
Sea bream! 26 17 d; 200 ug 50 10 12 - 83 Houde & Schekter 1980
Archosarqus rhomboidalis " 15 d; 200 uq 100 31 42 38
" 10 d; 200 ug 500 45 - 38
nauplii
(wild)
" " 23-26 2-3 d 1000 75 14 £8-147 33 Stepien 1976
29 2-3d 1000 32 199 16
23 10d 1000 - 69 3]
Pacific mackerel? 19 3 d; 38 ug 157,000 200 27 0 20 Hunter & Kimbrel]
Scomber japonicus " 4 d; 42 uq 47,000 38 a9 37 1980
" 5 d; RS g 198,000 86 102 L1
rotifers
Striped bass 18 15 d; 400 10 13 Eldridge (unpubl.)
Marona saxatilis " 100 15
" 500 2n
" 1000 21
5000 50
Artemia
18 29 d 10 20
" 100 14
" 500 17
" 1000 19
" 5000 3z
Artemia
Lined sole 26 21 d; 200 uq 50 10 14 - 63 Houde & Schekter
Achirus lineatus " 17 d; 200 uq 100 20 29 52 1980
“ 12 d; 200 uq 1000 74 ~90 20
nauplii
(wild)
Winter ﬂounder3-4 8 2 wks. 500 10 Laurence 1977
Pseudopleuronectes americanus 8 7 wks. 20
nauplii-
8 2 wks. copepods ano 15
8 7 wks, 3000 3n 33

1naily ration estimated from grazing experiments; dry weights determined with preserved larvae; wild plankton nauplii 0.15 ug, fresh dry wt.
2pation from stomach contents and evacuation rate (discontinuous feeding).
3Ration from stomach contents and evacuation rate (active feeding).

INet growth efficiencies.
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Table 8. Caloric and ash values for some North Atlantic copepods. Species
are recorded in order from largest to smallest mean value under each
category. Those species side-scored have similar means (Duncan's
New Multiple Range Test, P=0.05). (Table 1 from Laurence, 1976)

Standard

Species ‘ Hean Deviation

cal/g dry weight

[:Ealanus finmarchicus 64251 £187.0
Tortanus discaudatus 5398.3 + 14.6
Centropages typicus 5244 .7 +183.3
Acartia tonsa 5160.0 + 78.8
Pseudocalanus minutus 5070.9 +181.7
Centropages hamatus 49g8.6 +246.3

[:f?mofa longicornis 4466.3 +92.8

_ cal/g ash-free dry weight

[:?alanus finmarchicus 6835.2 +191.2

[ Acartia tonsa G664 .1 + 86.6
Tortanus discaudatus 5642.0 + 15.3
Pseudocalanus minutus 5541.9 +198.6

L_Eentropages typicus 5503.4 +192.3

-_EentrOpaqes hamatus 5212.3 +256.9
Temora longicornis 4984, 7 +103.6

%2 ash

Temora longicornis 10.40 + 0.16

= :

[Acartia tonsa 8.90 + 0.16
Pseudocalanus minutus 8.50 + 0.l

[ Calanus finmarchicus 6.00 + 1.82

[ Centropages typicus 4,70 + 0.28
Tortanus discaudatus 4.32 + 0.07
Centrropaaes hamatus Lo + 0.13




33

Table 9. Larval haddock daily feeding requirements and calculation parameters.

Larval Haddock

Std. Length {mm)

Parameter 5 10 15

Dry Wgt {ng) 59.2 1316.0 8084.2

A G 6% day-1 (ug) 3.6 79.0 ~ 485.0
A G 2% day=1 (ug) 1.2 26.3 161.7
Daily Metabolism - Upper

Limit (u202) 41.4 347.6 1203.3
Daily Metabolism - Lower :

Limit (ue0p) 18.3 152.8 | 529.4

B 0.290 0.769 0.800
w - Preferred Prey

Size (ug) ' 1.0 7.9 23.0
Range of R, #_of Prey

Ingested day-1, Calculated

from Eq. 3 with Upper and

Lower Values of above

Parameters 107-248 47-111 57-143




Table 10. Larval haddock swimming, searching and food encounter.
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‘Larval Haddock Size, Std. Length (mm)

Parameter_ . .. ... . bl 10 o ~15..
. Daiiy Linear Distance
Swam @ 1.5 BL sec-1 and
.12 h Activity (meters) 324 648 972
CM Sec-1 0.75 1.5 2.25
Volume Water Searched
in 12 h Day (1iters); 9.5 76.2 257.2
Range of Required
Prey Captures (R) day-! 107-248 47-111 59-143
Range of Required
Linear Swimming Distance
Capture-1 (meters) 3.0-1.3 13.7-5.8 16.5-6.8
“Range Required #'Prey
Liter-1 if 100% Capture A
Rate B 11.2-26.1 0.6-1.5 0.2-0.6
Range 10% Capture Rate 112-261 6.2-15.0 2.0-6.0
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Width of predators mouth (mm)
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Figure 1. Re1dtionship of larval and prey sizes. (Figure 3 from Last,
1978b).



Figure 2.

PREY SIZE, WIDTH OR LENGTH (mm)

Relationship between prey size and larval size.
from Hunter, 1981).
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Figure 3. Relation between prev size and larval length for 12 species of marine fishes:
label on ordinate indicates whether prey width or prey length were measured: vertical
hars and shaded areas represent range of prey sizes; and straight lines connecting
dots indicate average prey sizes. Plots were redrawn from Arthur (1976) for Sardi-
nops sagar, Engraulis mordar, and Trachurus symmetricus; from Rojas de Mendiola
(1974) for Engraulis ringens; from Detwyler and Houde (1970) for Harengula pensa-
colae and Anchoa mitchilli; from Stepien (1976) for Archosargus rhomboidalis; from
Ciechomiki and Weiss (1974) for Engraulis anchoita and Merluccius merluccius; and
from Yokota et al. (1961) for Engraulis japonica, Trachurus japonicus, and Scomber
spp- Data were for sea-caught larvae excepi panel D, which were laboratory reared.

(Figure 3
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TRIOTROPHIC RELATIONSHIP AFFECTING LARVAL FISHES

‘ ULT STO
PREDATOR : AD ,E_I_S_l cK PREY

(INDIVIDUAL ) LARVAE ( POPULATIONS)

DENSITY DEPENDANT

ABUNDANCE B TROPHODYNAMICS GRO;NTH TROPHODYNAMICS DENSITY 8
BIOENERGETIC ﬁ SURVIVAL e— STRUCTURAL

DEMANDS

CORRELATIVE PROBABILISTIC DISTRIBUTION

r

MEDIATED BY PHYSICAL (ABIOTIC) PROCESSES

Figure 3. Triotrophic relatioﬁship affecting larval fishes.
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Figure 4. Vertical distribution of gadid (haddock and cod) larvae and

dominant copepods (Calanus finmarchicus, Pseudocalanus sp.)
in relation to thermocline on the Southeast Part of Georges
Bank before storm. (MOCNESS-1m, 0.333-mm mesh, 21 May 1981,
2303-2358 D.S.T. 40°55'N, 67°16'W. Bottom depth: 78-80 m).
Note different log-scales used for copepods and gadid larvae.
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~'1m;.0.333-mu mesh.

dominént copepods (Calanus finmarchicus, Pseudocalanus sp.)

“on “the Southeast Part of Georges Bank after storm.
24 May 1981, 1835-1920 D.S.T. 40°55'N,

(MOCNESS-

:’67°13'w{‘Bottom depth: 80 m). Note different log-scales used
for copepods and gadid larvae. ‘
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Figure 6. Vertical distribution of dominant copepods on Georges Bank.

(Albatross 82-05, May 17, 1982, 1830-1920 D.S.T. MOCNESS-1 m,
0.333 mm mesh, 40°55" N, 67°17'W. Bottom depth: 75.9 m). No

gadoid larvae present. Temperature Ca. 5-6° C isothermal.
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Figure 7. Vertical distribution of dominant copepods on Georges Bank.-
. “(Albatross 82-05, May 15, 1982, 1831-1844 D.S.T. MOCNESS-1
'm, 0.333 mesh, 41°14'N, 67°37'W. Bottom depth: 36 m). No

gadoid larvae present. Temperature 6.7°C isothermal.



43

Flgdevigen rapportser., 1, 1984. TISSN 0333-2594
- The Propagation of Cod Gadus morhua L.

LARVAL FISH TROPHODYNAMIC STUDIES ON GEORGES BANK: “SAMPLING -
STRATEGY AND INITIAL RESULTS

R. G. Lough

National Marine Fisheries Service
Northeast Fisheries Center

Woods Hole Laboratory

Woods Hole, Massachusetts 02543 Usa

ABSTRACT

Lough, R. G., 1984. Larval fish trophodynamic studies on
Georges. Bank: Sampling strategy and initial results.
In: E. Dahl, D.S. Danielssen, E. Moksness and P. Solem-
dal (Editors), The Propagation of Cod Gadus morhua L.,
Flgdevigen rapportser., 1, 1984:

A sampling strategy is outlined to serve as a framework
for determining the fine- to micro-scale vertical distri-
bution or fish larvae and their prey on Gecrges Bank in a
single vessel, interdisciplinary mode of operation. A major
objective of this sampling program is to characterize the
development and temporal-spatial variability of these dis-
tributions to evaluate growth and survival of larval popu-
lations. The operational plan, sampling gear and instru-
mentation, as well as special technigues employed are dis-
cussed in terms of the usefulness of the parameters measured.
Initial results are presented from a two-part study conducted
in April-May 1981, focused on haddock (Melanogrammus aegle-~
finus L.) and Cod (Gadus morhua L.) larvae.

In April, a gadid egg patch with recently-hatched larvae
(c. 91% haddock) was located on the southeastern part of
Georges Bank, between the tidally-well-mixed front (c. 60-m
isobath) and the shelf/slope-water front (c. 100 m). The
water column along the southern flank was still well-mixed
in April and the larvae were broadly distributed with a
weighted mean depth between 30 and 40 m. Density of their
dominant copepod prey was relatively low near the surface
(<3 prey/l) but increased with depth (5-10 prey/1l).
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When the same larval population was surveyed again in May
it had moved to the southwest at a rate consistent with the
residual currents. By May the water column was stratified
along the southern flank. A seasonal thermocline was ob-
served between 10.and 20 m and fish larvae and their prey
(50 prey/l) were concentrated in this zone. A storm swept
the region and dispersed the larvae and prey (5-10 prey/l)
throughout the water column. On the crest of the bank in
the well-mixed waters (<60 m), larvae and their prey (10-25
prey/l) were broadly distributed vertically, but the mean
depth of the larvae coincided with the highest density of
prey at middepth. The implication of these observations to
haddock and cod survival are discussed.

INTRODUCTION

Other than catastrophic losses, trophic (feeding) inter-
relationships involving both growth and predation are con-
sidered to be the basic factors controlling larval mortality.
The mortality process at the individual level is thought to
be a functlon of, chance encaunters by larvae with their pred-
ators and zooplankton prey which (like the larvae themselves)
are distributed contagiocusly or in patches (Lasker, 1975;
Vliymen, 1977; Beyer, 1980). It is believed that the degree
to which larvae are able to grow rapidly through a succession
of deqréasingfp}edatory fields, thereby reducing mortality,
determines their potential population size. However, this
processtis.é‘cdmélex function af the density distribution
(patchiness) of ‘the larvae, their prey and predators, and
possible competitors or other forms which may be alternative
prey of Iarval predators. Since prey abundance below some
1evel wlll be a.critical factor influencing: larval survxval,.
it is necessary to know how feeding of larvae in the field
is affected by the fine~-scale (patchy) distribution of plank-~
ton communltles_and to understand the biclogical and physical
processes‘whiqh‘ieadvto the formation and dissipation of such
patches. - ; '
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At the Northeast Fisheries Center (NEFC), the Marine
Ecosystems Division is conducting a broad-based research
progfam (MARMAP) on the Continental Shelf, involving both
monitoring and process-oriented studies, directed towards
a better understanding of the recruitment process (Gross-—
lein et al., 1979; Sherman, 1980). In the last decade,
process-oriénted studies have been carried out by.the NEFC
in the Georges Bank area addressing the recruitment problem.
The first major study is represented by the autumn 1978
Larval Herring Patch Study which was conducted as an inter-
national, multi-ship, multi-disciplinary experiment (Lough,
1979). The primary objective was to define and follow a
patch (homologous cohort) of herring larvae as a dissipative
feature to gain a better understanding of the physical pro-
cesses affecting its dispersal. The sampling strategy was
designed to provide short—-term estimates of larval growth
and mortality in relation to the prey-predator field as the
patch advected. More recent studies have been conducted on
haddock and cod larvae since spring 1980 in a single vessel,
inter-disciplinary mode of operation. Most of ‘the sampling
effort in this mode is to determine the fine- to micro-scale
vertical distribution of larvae and their prey (copepcds) in
well-mixed and stratified waters. A major objective in 'this
case is to characterize the deVelOpment‘and temporal vari-
ability of these distributions for use in simulation models.
These studies require different sampling strategies within
the constraints of available resources to meet the desired
objectives.

Each sampling strategy must be unigquely designed for the
specific objectives and hypotheses investigated, taking into
account the peculiarities of the target species and its bio-
logical and physical environment. However, as an investi-
gation of larval fish growth and mortality is inherently .
complex, involving the intimate interaction of three trophic
levels simultaneously (Shepherd and Cushing, 1980; Laurence,
1981) , a multi-faceted sampling strategy is required to
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resolve patterns and interactions occurring on the over-
lapping time-space’scales (Haury et al., 1978). In this
paper -our sampling strategy is presented on the haddock-
cod studquhich;hes evolved . in part from the results of the
Larval. Herring:Patch Study. The experimental objectives,‘
sampling gear and instrumentation employed are discussed
in terms of. the usefulness of the parameters- measured and
hlghlxghted with. data analyzed to- date.

Target Species

Haddockv(Melanogrammus aeglefinus L.) was chosen as the
main target species, followed by cod (Gadus morhua L.), be-
cause of its commercial and ecological importance and the
best averall base of life history data. This data base
includes extensive laboratory experimental data, an index
of year-class strength at the '0-group' stage, and fecundity
and spawning population biomass data. The northeastern part
of Georges:Bank.is a principal spawning ground for haddock
and ccd:and their early life histories are similar in many
respects. . Their spawning seasons overlap, but for cod it
is considerably longer and alsc its spawning distribution
appears to:.extend further south than the haddock's (Colton
et al., 1979). <Cod spawn from late autumn into April-May,
whereas haddock spawn from February to June. Peak spawning
for both cod and haddock occurs in the spring with cod
spawning about a month earlier than haddock. The onset and
duration of. haddock spawning appears to be associated with
increasing water temperature (Marak aﬁd Livingstone, 1970).

Fertilized cod and haddock eggs hatch in about 2-3 weeks
at average spring temperatures (Marak and Colton, 1961;
Laurence and Rogers, 1976), and the larvae are planktonic
for several months thereafter. The larvae hatch at c.

4 mm SL (Colton and Marak, 1969) and yolksac resorptlon is
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completed 6-7 days post-hatch at 7°9C (Laurence, 1974).
Lab-reared larvae were considered metamorphosed (c.

10 mm, 1000 ug dry wt) in 30 days at 9°9C and 40-50 days

at 79C. Fig. 1 depicts the principal haddock spawning
time and area on Georges Bank, the generalized egg and
larval drift, and areas where demersal O-group fish are
most abundant 6-8 months later (Grosslein and Hennemuth,
1973) . The distribution of late stage eggs and recently-
hatched larvae indicate that dispersion from the spawning
center on northeast Georges follows the general pattern
of drift, predominantly to the southwest at 1-4 miles/d
(2=-7 km/d) (Walford, 1938; Marak and Colton, 1961; Colton,
1965; Smith et al., 1979). During April-May, high concen-
trations of larvae (>O.l/m3) can be fcocund along the southern
flank of Georges between the 60 and 100 m isobaths. Some

Fig. 1. Principal haddock spawning area on Georges Bank and
generalized larval drift (indicated by arrows) and areas
where demersal 0-group haddock are most abundant 6-8 months
later.



48

portion of the Larvae apparently are transported north

on the western-side of’'Georges Bank, but little is known
about possible Iosses df‘larvae,off the bank. The 0-group
fish tend to be concentrated on the northern part of the
bank indicating a favorable environment for their survival.

Hydrography of Georges Bank

The residual drift of Georges Bank is described as a semi-
enclosed clockwise circulation with a mean speed of approxi-
mately 10 cm/s 6r 5 km/d (Fig. 2). A counter-clockwise cir-
culation develops in the Gulf of Maine and both gyres inten-

sify in the summer (Bumpus and Lauzier, 1965). In winter the

in . | GEORGES BANK Mo, TNpaNgS
| _\l’@ = AL

\ ” 22

O\ -

l,
S. CHANNEL

h ) .
hﬁib ‘

‘GREAT .

Fig. 2. Schematic representation of the well-mixed and

stratified waters on Georges Bank and mean circulation flow
(arrows) during.spring and summer.
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near surface flow is generally driven by the winds; the mean
transport is offshore. Recent studies summarized by Butman
et al. (1982) concluded that the observed mean flow at 10 m
has a permanent clockwise circulatiom around Gecrges Bank
with a mean circuit time of c. 2 momths for a parcel moving
along the 60 m isobath. Despite the considerable variability
that could occur in the trajectory of such a parcel, they
inferred that the clockwise circulation around the crest of
the bank may provide a mechanism for partial retention of
plankton. ' '

The water on Georges Bank shoaler than 60 m is vertically
well-mixed throughout the year by the semi-diurnal, rotéry
tidal currents that have speeds up to >2 knots (103 cnm/s)
(Bumpus, 1976). Progressive vector diagrams of the tidal
elipses are oriented NW-SE on the crest with their long
axes ranging 4-8 miles (7-15 km) in length. Summing the
hourly speeds over a 12 h period, an approximation of the
distance travelled by a parcel of water ranged 10-20 miles
(19-37 km) over the shoals and 5-6 miles (9-11 km) over the
deeper parts.

Besides the dominant tidal energy on the shelf, storms at
4-5 d intervals have an important role in shelf water dynam-
ics (Beardsley et al., 1976). | '

In winter the well-mixed water is separated from adjacent
water masses by two fronts. On the southern flank, the shelf/
slope-water front intersects the bottom at about 80 m and
separates the cocler, fresher shelf water from the warmer,
more saline slope water. On the northern side, a subsurface
front separates the George; Bank water from the Gulf of Maine
water. In late spring-summer a seasonal thermocline (20-30 m)
develops in waters greater than 60 m. A subsurface band of
cool winter water is found along the southern flank between
the 60 and 100 m isobaths.
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Gulf Stream.warm—core eddles movxng near the southern
edge of the bank ‘may play an. meortant role ln.the movement
of’shelf/slope-water, both on andvoff the shelf and ‘the

entralnment of organlsms resxdlnq there (Lough, 1982 Joyce B

and‘WLebe, 1983). o
Objectives. and Sampling Strateqy

The main focus of the haddock-cod study to-date is to
describe the spatial-temporal variability of larvae and
their'prey (copepods) during their first month of life on
Georges Bank. Ohservations alsoc. are made to better under-
stand factors governlng their production and to survey
post-larvae and.potentlal predators of larval fish by
sampllng the macro-plankton and micro-nekton components
on the same crulse. Our sampling program is presently
desxgned‘to,;nvestlgate the following hypotheses which we
feel arei;nportant‘in order to understand the feeding
dynamicsﬁand»surﬁival of larvae tetained on Georges Bank:

l.._Growth of larvae is related to the density of micro-

d ‘_zooplankton prey.

2. ‘MLcro-zooplankton are concentrated in areas of re-

- latively high phytoplankton biomass.
'3, Micro;zooéiankton are contagicusly distributed
'v(clumped).4 7 S
4. 'Stratlflcatlon cf the water column along the
<_vsouthern flank of Georges Bank im late spring
”: serves. to concentrate _zooplankton and fish larvae
' vertlcally. ‘ .

5, 'Feedlng success is a stochastlc process of random

encoqnte:s)ylth‘ﬂpatchy prey.
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Supportive evidence for the first four hypotheses can be made ‘
by field observations; the fifth hypothesis must be investi-
gated through probabilistic food encounter models or quasi-
realistic laboratory experiments. The thermocline is poten-
tially important because biological productivity appears con-
centrated near this layer and larval and juvenile haddock
appear to be uniquely associated with it (Miller et al.,
1963; Colton, 1965, 1972; Houghton and Marra, 1983). During
spring when recently-hatched larvae are present, the seasonal
thermocline is beginning to form, vertically stratifying the
water column (>60 m bottom depth). The presence of a dis-
continuity layer resulting in a greater degree of structure
and patchiness Qf the plankton may be critical to the sur-
vival of larvae in this region. There is a need to measure
prey availability prior to, during, and after thermocline
formation in order to evaluate the importance of this phe-
nomenon.

A field program addressing these hypotheses requires
sampling on spatial scales ranging from centimeters to kilo-
meters and temporal scales from minutes to weeks. Consideré
able emphasis is given to the smaller scales of pattern as
individual larvae encounter their prey on the micro-scale
level (1 cm to 1 m); however, a larva's swimming capabilities
soon develop to where it can migrate vertically 10's of
meters in a matter of hours. Sampling larvae at the popu-
lation level requires discrete samples at the fine-scale
level (1 m to 1 km), for example, to resclve vertical migra-
tion patterns. To define a coherent patch of larvae, or to
sample post¥1arvae or larger predators, requires sampling
on a coarse scale (1 to 100 km). Synoptic, three-dimensional
sampling of the variable fields is needed, but our present
technology and sampling technigues usually only permit quasi=-
synoptic sampling of the parameters or organisms of interest
(Kelley, 1976) . The sampling gear used should be directed
towards collecting discrete samples of the target organism
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as synoptlcally as poss;ble at the populatlon level. However,
since populatlons of larvae, their prey and predators usually
occur at dlfferent scales, an array of. sampllng gear is re- :
qulred whlch tends to negate SLmultaneous sampllng, unless
more than one.research vessel lS used | Nevertheless, we can
appreoach near-synopt;cmty for some elements of the sampllng
program ut;llzlng 1ust one vessel. , '

The fotary tides (12:4 h period) are the'dom.inant forcing
function on the bank so that experiments should be nested
within its space—tzme domain. According to the Nygquist
theorem, which states that a function can be detected if its
period'is:at Ieast'twice the sampling frequency, station
sampllng on a grld would have to be taken at least once every
6 h at a sampling distance between 5 and 20 miles (9 and
37 km) depending on botteom depth. And in order to encon- ‘
pass a before and after storm event, observations should be
repeated every 2 d over at least an 8-10 4 period. Sameoto
(1975, 1978) found that zooplankton varlablllty was similar
over ‘a broad 'area of the Scotian Shelf sa that an accurate
and efficient estimate of population means could be made by
taklng 2 net samples & h apart at a fixed station.

our Basic field strategy is to locate and characterize a
populationfof larﬁae and their prey} and then to compare and
contrast their fife- to micro-scale distribution within stra-
tified and well-mixed waters on Georges Bank. Previous ex-
perience from the 1978 Larval Herring Patch Study indicated
that felativelyiooherent and stable patches of larvae and ’
zooplankton'oould be defined with conventional;sampliﬁé”techt-
nigues (bongo-net samples) and:followed'for a number of days
to weeks at.a spatlal scale somewhat greater than the tldal ‘
excursion (>5 miles or >10 km). It was assumed for sampllng
purposes that varlablllty w1th1n the tidal reglme was s;mllar
as mixing processes dominate on thls scale. Also, by fol-
lowing a drogue for ‘station tame-serles observatlons, one
assumed the same parcel of water was being sampled with the
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same larvae=-prey population. Thus, by reducing horizontal -
variability, aliasing of observations vertically would be
reduced in order to conduct time-series observations over
a minimum of two tidal cycles. The limitations of time-
series analyses in marine ecosystems are discussed by
Denman and Platt (1978).

The deployment of moored current meter arrays can pro-—
vide a truly synoptic three-dimensional picture:of the
horizontal current field within the study area. Coarse
to meso-scale MARMAP plankton-hydrography surveys con-
ducted on Georges Bank and contigucus waters during the
same time provide a broader background in which to com-
pare our more intensive fine-scale studies. Remote sen-
sing offers the potential of regional synopticity for a
number of near-surface parameters such as ocean tempera-
ture and color (Chamberlin, 1982; Gower, 1982).

METHCDS
Gear, Instrumentation, and Special Techniques
Bongo-net sampler

Standard MARMAP bongo-type samplers are used to make inte- .
grated water-column hauls from 5 m above the bottom to the sur-
face to collect zooplankton (Posgay and Marak, 1580). A
6l-cm bongo sampler (505 and 333 um mesh nets) and 20 cm
bongo sampler (253 and 165 um nets) array are towed obli-
quely at 1 1/2 knots (78 cm/s) and lowered at a wire speed
of 50 m/min and retrieved at 20 m/min. Water filtered
through each net is measured by a flowmeter and the tow -
depth profile is measured with a time-depth recorder.
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MOCNESS . ;" . .

A Multiple Opening/Closing Net and Environmental Sensing . -

System (MOCNESS;. Wiebe et al., 1976; 1982) with three separate
underwater -sampling units (1/4 m, 1 m, 10 m) provides us with-

wide spectrum capabilities of sampling discrete.vertical stra-

ta encompassing three trophic levels from micro-plankton,

fish larvae-zooplankton, :to micro-nektonic organisms.. MOCNESS

is a rectangular .sampler whose nine serially linked nets can
be opened -and closed sequentially by commands through a con-
ducting -cable from the surface vessel, thus permitting sam-

pling of up to nine discrete depth levels or horizontal series

in a single haul. The three underwater samplers are designed’
to be hauled at 1 1/2 knots (78 cm/s), 45° net angle, for an
effective :mouth area of 1/4 m2, 1 mZ, and 10 m2. ‘Standard
net mesh size for ‘the underwater units are 64 um, 333 um,
and 3 mm, respectively. On-deck, real-time monitoring in-
cludes depth (pressure), net angle, number of the net pre-
sently filtering water, volume of water filtered, temperature
and chlorophyll fluorescence (Aiken, 198l). Parameter data
are stored on an HP=85 computer system for real-time X=Y
plots of temperature and fluorescence vs. depth, which are
useful in selecting sampling depths (see Fig. 3). A North-
star Loran C unit with plotter also is integrated with the
MOCNESS -for recording the position at each net release.
Other sensors.such as salinity, light, and oxygen will be
integrated with MOCNESS.

Plankton.pump:~

In 1981 a-l~hp submersible well pump was used to sample
micro-zooplankton at- depth.  The pump is typically deployed
attached to 1/4™ (6.4 mm) wire with a 45 kg lead ball. De-
livery of water from depth to a deck manifold fitted with
fine-mesh nets (20 and 53 um mesh) is by a 7.5 cm diameter
PVC discharge hose. Water is typically pumped from five
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Fig. 3. Real-time temperature-depth plot of 1. m MOCNESS
haul 191. A solid temperature line is drawn as net is set
to maximum depth and dotted after first net is opened and
sampling sequence begins.

depth levels in the upper 50 m of water for 10 min each

depth to filter 1 m3 of water. Since the 1982 season, a
larger submersible pump has been used to filter 1 m3 of

water in 1 min.

CTD~fluorometer

A Neil Brown CTD micro-profiling system with a General
Oceanics Niskin bottle rosette is used for rapid continuous
profiling of temperature and salinity with depth. The water



56

bottle collections also are used to make discrete observa-
tions. of micro-zocplankton,:nutrieﬁts; and'phytoplankton
biomass measures by conventional methods. Continuous in-
situ fluorescence is measured at the same time by deploying
an ENDECQ submersible flucrometer (Turner Designs Model) '
with on-deck recording of depth, fluocrescence, and tempera-
ture wvia conducting cable. A recently acquired Variosens

in-situ fluorometer will be interfaced with the CTD.
Real-time zooplankton praocessing

In process-oriented studies there is need for real-time
results so that decisions can be made to coptimize the ex-
perimental operations. A methcd we employ at sea: to make
routine, quantitative analyses of plankton-net samples
using silhouette photography techniques coupled with a
microfiche reader, an. electronic digitizer, and a small
personal computer is described by Lough and Potter (1983).
More than 90% of the organisms can be identified to species
level and life stage, and a subsample enumerated within
20 min after collecting by this method.

A HIAC Criterion PC320 l2-channel particle counting and
sizing system (Pugh, 1978; Tungate and Reynolds, 1980) has
been acqurred for development as a real-time tool for the
quantlflcatlon of marine plankton. Three sensors (CMH-150,
CMH-600, E-=2500) are used to count particles in thé.range
of 5-2500 um. However, at present we process Niskin bottle
water samples only ln a batch mode. -The HIAC unit has been
Lnterfaced wrth a, Canberra Multl-Channel Analyzer and an
HP-85 computer system to control all settings and. functions. .
The instrument is belng modlfled for in-situ particle pro- .

filing along the lines reported by Tilseth and Ellertsen
(1984).
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Larval condition and growth indices

Special collections of larvae, preserved throughout the.
cruise, are analyzed in the laboratory for biochemical con-
tent, histological and morphological assessment, and otolith
increment deposition. Laboratory studies by Buckley (1979,
1981l) have demonstrated relations between food availability
and larval RNA/DNA ratios and growth rate. A regression
model has been develcped recently (Buckley, 1982) between
temperature, RNA-DNA ratic, and mean daily protein growth
rate which accounts for short-term growth over the previous
2-4 days. This sensitive technique is now being used to
study the relations between environmental conditions. and
larval growth and survival in the field. From the same
samples larvae are being analyzed histoclogically (O'Connell,
1976) and morphometrically (Theilacker, 1981) to evaluate
their condition and develop criteria for detecting starved
and weakened larvae. Population mean age and long-term
average growth of larvae can be estimated by relating otolith
growth increments to larval size (Bolz and Lough, 1983). Aan
individual larva's past environmental growth history also may
be revealed with proper laboratory verification of their
otoliths (Radtke, 1984).

Prey selection

Larvae from selected MOCNESS hauls are processed for gut
contents by the methods described in Cohen and Lough (1983)
and Kane (in press).

Field Operational Plan

A concentration of larvae (or eggs) on Georges Bank is
located from a previous MARMAP broad-scale survey, or at
the time of the cruise by exploratory transects using
standard bnngo-net gear in likely areas. Then a grid of
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40-50 stations, 5 miles apart, is occupied within a 2 &
period to characterize the larval f£ish, plankton, and
temperature-salinity field in an area sufficiently large

(c. 30 x 50 miles '[56 x 93 km]) to encompass the antici-"
pated dispersal of plankton having a residual drift of

¢ miles/d& (-7 km/d) in which the fine-scale station studies
will be carried out over 4-6 d. The -survey grid usually

is situated so that stations overlap the shoal front of the
well-mixed waters (<60 m) and the southern shelf/slope-water
front (¢. ‘100 m) bounding the stratified waters on the bank.
A bongo haul and XBT drop are made on each grid station, and
surface temperature, salinity and fluorescence are monitored
continuocusly.

Based upon real-time sample analyses made during the grid
survey, & station is selected for the fine-scale time-series
ocbservations and a drogue is deployed at the depth corres-
ponding, ideally, ta the weighted center of gravity of the
larval population. 'On one occasion, a drogue was deploved
with an array of vector-averaging current meters (VACM)
positioned to measure current velocity and temperature at
selected depths to determine shear in the water column.

On station, the sampling scheme used is a combination of
fine~ to micro-scale observations in order to Saﬁple fish
larvae and their prey, and other environmental parameters.
This scheme allows 2-4 cbservations of each kind during a
tidal period (12.4 h). On each drogue-follower station,
time~series observations are made for a minimum of 30 h and
sometimes -as long as 50 h encompassing 2-4 tidal periods.

A complete series of observations is made every 6 -h in the
following sequence: CTD-fluorometer cast, MOCNESS 1l 'm haul,
plankton pump cast, CTD-fluocrometer cast, and MOCNESS 1/4 m-
haul.
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CTD-fluorometer cast

The objective of this operation. is to obtain a vertical
profile (and variability) of temperature, salinity, and
chlorophyll a fluorescence on a micro-scale level. Casts
may be repeated for short-term variability. Niskin water
bottle samples are collected at selected depths for cali-
bration purposes and particle size analysis using the HIAC
PC320 system. Ancillary observations include a light-meter
cast to define the light extinction curve, and a bottom-trip
Niskin bottle cast to collect a phytoplankton sample within
a meter of bottom.

MOCNESS 1 m haul

The objective of this haul is to determine the vertical
distribution and abundance of fish larvae and larger zoo-
plankton from near bottom (<5 m) to surface with 10 or 5 m
resolution. An adequate sample of larvae (30-100 individuals)
is usually cbtained by filtering 250 m3 of water which takes
about 5 min for each net. During this 5 min the net travels
a horizontal distance of c. 235 m..

Plankton pump cast

Micro-zooplankton samples are collected at 4-6 discrete
depth levels based upon the vertical distribution of the fish
larvae and environmental conditions. At each depth level,

1 m3 of water is punped on deck and filtered through 20 and
53 um mesh nets. Sampling resolution is 1-2 m vertically
and 10's of meters horzzontallj, depending on the rate of
pumping and ship's drift.
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MOCNESS 1/4 m haul

The objectlve oﬁ thlS haul is to determlne the vertical
distribution and abundance of micro—-zooplankton. retained by .
64-um mesh nets over the vertical distribution range of fish
'larvae._ About 20~36 m; of water is f;ltered,by each net
(1-3 mln) within an integrated strata of 10, 5, or 2-m
resolutlon (94 170 m horizontal distance traveled).

Follow1ng the fine-scale statlon observatlons, the grid
of stations may’be resurveyed and new transects added in the
direction of the residual current, or MOCNESS 10-m hauls may
be made on a transect Qf stations in the study area. The
10 m MOCNESS is used to determine the vertical distribution
and abundance of potential micro-nektonic predators and
post-larvae with 15 ar 235 m resolution, each net filtering
7000-14000 m3 of water in 15-30 min (705-1410 horizontal
dlstance traveled)- A l.m.MOCNESS haul usually is made
meedlately‘befo:e or after to collect larval fish or other
food prey. |

RESULTS AND DISCUSSION

Some of the initial results are presented here from a two-—
part study conducted aboard R/V ALBATROSS IV, 15-30 April
1981 and 18-30 May 198l. On the April cruise a well-defined
concentratlon of gadld eggs was located on the southeast part
of Gecrges Bank between the 60 and 100 m isobaths by the
bongo sampllnq grid of statlons (Flgs. 4-8).,_Recently—hatched
haddock and cpd larvae‘(B-s mm SL) were found most abundantly
towards the eputheastern part of the grid and a ratio of their
abundance indicated that about 91% of the gadid eggs were had-
dock, the other 9% cod. The majority of eggs were at a late
stage of development (Colton and Marak, 1962) and were esti-
mated to have been spawned 8-10 d previously in the 6°C water.

Early stage eqggs were more abundant to the northeast near the
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historical spawning grounds. Cod larvae were more widespread
than haddock and their greater size range was indicative of
their earlier spawning in February-March.

By May, a concentration of larval haddock and cod was
located along the southern £f£lank of Georges to the scuthwest
of the April distribution, situated between the shoal tidal
front and the deeper shelf/slope-water front. The mean
length of both larval populations sampled on the grid was
6 mm and is consistent witﬁ laboratory grbwth rates over the
period of time between hatching in April and the May survey
(Laurence, 1978; Bolz and Lough, 1983). Also,an estimated
transpdrtlqﬁmljz_mi;es/d, which is consistent with the long-
term residualﬁqﬁrrents reported for this area, would account
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for the displacement between the highest concentration of
eggs in April and larvae in May. Coupled with the fact that
no other egg or larval concentrations were found in the area,
these observations support the view that the egg and larval
concentrations defined belonged to the same spawning popula-
tion.

An important feature of these egg and larval concentrations
is their coherence and stability which provide continuity in
the sampling program. The grid station densities have been
contoured by a factor of 4 as the coefficient of variation of
a siﬁgle plankton haul typically is in the range of 22-44%
(Cassie, 1963). Note the internal consictency of the station
values within the contoured areas. Resampling a grid tran-
sect once on the April survey and again in May 4-7 4 later
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produced egg and larval concentrations nearly identical to
the previocus station values (within a factor of 4). -Using
all available informaﬁioﬁ, the haddock and cod egg and larval
concentrations have been generalized in Fig. 6 to show their
size, shape, and dispersal between surveys. The highest con- ’
centrations of eggs and larvae contoured were elliptical in
shape with major and minor axes of about 30 x 15 miles

(56 x 28 km). The smallest patch resolved is about 10 x 5
miles (19 x 9 km), which is on the scale of the tidal excur-
sions and the sampled grid of stations. The lowest concen-
tration of larvae defined and contoured as a patch was about
60 miles (lll km) long between the shelf/slope-water front
and the tidal front. If one assumes that the patch dimen-
sions are reasonably accurate, an estimate of mortality can

be made between the eggs in April and the larvae in May.
Using methods similar to those described in Lough et al.
(1980) , mortality of haddock and cod from their hatching
midpoint through the 6-mm size class (18-24 d post-hatch)

was estimated to be 6-8%/d. These loss rates are consis-
tent with the range of rates (5-15%/d) reported by Saville
(1956) for Farce haddeck larvae.

It also is of interest to note that the largest and pre-
sumably oldest larvde collected on the grid survey were found
to the extreme southwest and on the sheoals (<60 m). This
past May 1983;*uéing‘the’lQ‘m.MOCNESS, relatively high den-
sities (70-450/10 000 m3) of cod post-larvae (15=-50 mm) and
sand eel, Ammodytes sp. (45-80 mm), were collected through-
out the shoaler parts of western Georges Bank, both of which
have been observed ‘to prey upon young fish larvae. o

In April, winter conditions still prevailed; the water
column was well-mixed throughout the study area, isothermal
(69C) from surface to bottom. Only during the final days of
the cruise was a slight warming of surfaée waters observed,
indicating ‘the onset of spring thermal stratification on the
flank of the bégk. ?NetQphytoplaﬁktOn (>20 um) biomass in-
creééédfﬁith"depth‘fEQm‘142 mg chl a/m3 near the surface to 5-
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10 mg chl a/m3 near the bottom, apparently due to sinking of
larger diatoms and dinoflagellates (Busch and Mountain,
1982) . Nanna-phytoplankton (<20 um) biomass was evenly dis-
tributed throughout the water column at 1-2 mg chl a/m3.

The vertical distribution of gadid eggs was low at the sur-
face and alsc generally increased in density with depth to

a maximum at the bottom (Fig. 9). The cod larvae were sepa-
rated into two size groups for analysis (3-8 mm,and‘>8 mm)
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Fig. 9. Vertical distribution of cod larvae and gadid eggs
collected by 1 m MOCNESS (333 um mesh) on the southeast part
of Georges Bank (41020'N 66©953'W), 25-29 April 1981.
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because of reported dlfferences in behavior of the larger
larvae (Wiborg, 19607 Miller et al., 1963). 'Their mean

day and night abundances within 10 m sampling strata over
as4h perzod are shown in Fig. 9. The size range of larvae
collected by ‘the 1 m.MOCNESS are essentlally the same as .
that ccllected.by the Gl cm bongo net shown.;n Flgs. 7 and 3
8. Both size groups.of cod larvae are broadly dlstrlbuted
throughcut the water column w1th welghted mean population
depths between 30 and 40 m in water 66-70 m bottom depth.
More cod larvae are usually caught by night than day, es-
pecially in the upper 20 m. A significant vertical displace-
ment between day and night is shown by the larger size group.
Night mean. abundance of‘thesé larvae in the upper 20 m of

the water column (mean length of 1l mm) was greater by a
factor of 14-26 than that of the mean day abundance.

By mid-May, the watéfﬂédiumn was well—stratifiéd at
bottom depths greater'thinfso m. At the first time-series
station (80 m), 21 May, the surface temperaturéfapproached
10°C, a strong thermal gradient (0.75°C/m) waéjgvident be-
tween 15 and 20 m, and below the thermocline théfwater was
5.99C to bottom (refer Pig. 3). Both net- and nénno-phyto-
Plankton biomass were reduced to <l mg chl a/m3, but showed
a slight increase in the nannc-phytoplankton bicmass above
20 m. Both haddock and cod larvae were almost exclusively
confined to the upper 20 m of the water column with maximum
abundance within the thermocline (Figs. 10 and 1l1A, MOC 191).
An intense storm swept the area with high northeasterly winds,
35-40 knots (18-21 m/s), and upon resuming operations at.the
same site several days later on 24 May, it was evident that
the water column was well-mixed, c. 7°C isothermal. Phyto-
plankton biomass was uﬂiformly dispersed from top to bottom.
Haddock and cod larvae now were broadly distribuﬁed'through-
out the water column with a weighted mean depth between 30 and
42 m, although there was a suggesticn of an upper shift in
the vertical distribution of laiﬁae during the night (Figs.
10 and 1lA, MOC 193-207). On 28 May, a single MOCNESS haul
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Fig. 10. Vertical distribution of haddock larvae on (A)
stratified station (40°55'N 67°16'W) before and after storm,
22-24 May 1981, and on (B) shoal, well-mixed station
(41°07'N 67°935'W), 27-29 May 1981.

(220) showed that a shallow thermocline had formed and the
larvae were reaggregating in the upper 20 m associated with
the restratification. By plotting water column density
(sigma=-t) values during this period in Fig. 12, one can see
the process of restratification between the time the storm
abated Sufficiently to resume sampling on 24 Mayr(MdC 193)
and the 1last haul on 28 May (MOC 220). At this rate it
would take a total of about 7-10 d for the water column and
fish larvae to restructure to the same degree'obserVed prior
to the storm. Miller et al. (1963), in a mid-May 1958 ver-
tical distribution study of larval haddock around the flank
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Fig. 1ll. Vertlcal distribution of cod larvae on (A) strati-
fied station (40°55'N 67°16'W) before and after storm, 22-
24 May 1981, and on (B) shoal, well-mixed station (41°07'N
67°35'W) , 27-29 May 1981. _

of Georges Bank, found that 84% of the larval population
occurred. w1th1n the discontinuity layer, the confines of a
thermocllne, which occupied about 25% of the water column.
A shoal—water station (50 m bottom depth) was occupled
for 25 h, 27-29 May, where the water column was well-mixed,
8—9°C. Haddock and cod larvae were broadly distributed
through the water column with weighted mean depths between
20 and 30.m (Figs. 10 and 11B). There was no significant
diffetenceAbetween their day and night vertical distribution. .
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FPig. 1l2. Water-column density (sigma-t) profiles on strati-
fied station (40955'N 67916'W) before and after storm, 22-
24 May 1981. Corresponding MOCNESS haul numbers shown.

Phytoplankton biomass was uniformly low throughout the water
column with a noticeable increase in the bottom few meters,
but slightly higher (1-2 mg chl a/m3) than the deeper station
(80 m). | |

The dominant copepods on Georges Bank in late-winter and
spring are Pseudocalanus Sp., Calanus finmarchicus, and
Oithona similis. Pséudocalanus tends to be more abundant on
the shoal area of Georges while Calanus develops high abun-
dance in the near-surface waters of the stratified zone
along the south®@rn flank. Oithona, a small copepoed, is wide-
spread in its distribution. Prey selection studies of larval
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haddock and cod show that the naupliar and copepodite
stages of Pseudocalanus and Calanus are their most important
prey (Sherman et al., 1981; Kane, in press). Eggs of these
two species can sometimes édmprise a significant.number of
prey items for the smallest larvae (<6 mm), especially for
the more passively feeding haddock larvae. The preferred
prey size of four length groups of larvae is depicted in |
Fig. 1l3. Note that cod feed upon larger prey at a smaller
size than haddock. '‘Both species of larvae (<10 mm) select
50-80% of their prey in the 0.10-0.19 mm width class. Re-
cently-hatched larvae, 3.5-5.9 mm, are particularly depen-
dent on this size class of prey which encompasses the nau-
plius IIT through copepodite II stages of Pseudocalanus and
the nauplius II-V stages of Calanus.

HADDOCK CcoD
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 Fig. 13. Preferréd prey size of larval haddock .and cod S
length groups. . from May 1980 Georges Bank study (Kane, in press).
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A ceonservative estimate of prey density in the field has
been made by summing the appropriate life stages of Pseudo-
calanus and Calanus in the same prey size classes used above
in Fig. 13 from the 1/4 m MOCNESS hauls made during the April
and May station time-series. A comparison of warious sampling
gear and net mesh sizes indicated that tﬁe naupliar and cope-
podite stages of these two species were quantitatively sampled
by the 1/4 m MOCNESS. In well-mixed waters, a coefficient of
variation of 26% was estimated for the total copepod nauplii
count from net samples within a selected stratum. In Figs.

14 and 15 the mean number of prey per liter within each depth
stratum is plotted by width class. In April (Fig. 14), the
vertical distribution of prey was low near the surface and in-
creased with depth. The dominant and most important size
class of prey, <0.1% mm, had <3 prey/l above 20 m depth and
5-10 prey/l at greater depths. The weighted mean depth of the
small cod larvae in this same series of hauls was between 30
and 40 m. In May (Fig. 15A), the single 1/4 m MOCNESS haul
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Fig. 1l4. Vertical distribution of larwval prey field collec-
ted by 1/4 m MOCNESS (64 um mesh) on the 3cutheast part of
Georges Bank, 28 April 198l.
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(192) , 21 May, made in the well-stratified waters showed a
peak concentration ef <. 50 prey/l for the <0.19 mm prey
size class at 10-20 m depth where the thermocline layer
resided, as well as the péak concentration of both haddock
and cod larvae. A range of 5-25 prey/l was observed at
other strata sampled. During 22-24 May, the storm

which mixed the water column, also throughly redistributed
the zooplankton. The important size class of prey now wére
uniformly distributed from top to bottom with a range of
5-10 prey/L. On the shoal, well-mixed station, 27 May
(Fig. 15B), the <0.19 mm size class of prey ranged from 12-
25 prey/l with peak densities between 15 and 30 m depth.
The weighted mean depth of larvae at this station was
between 20 and 30 m.

Probabilistic larval prey encounter models, similar to
that developed by Beyer and Laurence (1980, 1981), are being
used to assess the degree of foocd limitation on Georges Bank.
The most recent empirical results from laboratory experiments
and field studies have been incorporated into the model and
preliminary simulation runs provide some interesting contrasts
in the survival capabilities of larval haddock and cod. One
model run (Laurence, 1983) shows that haddeck larvae need
20 prey/l for minimal survival, and about 50 prey/l for 50%
survival through 42 days. On the other hand, cod larvae only
require about S prey/l for minimal survival, and 20 prey/l
for 50% survival. These kinds of relatively high prey den-
sities for larval survival have been observed in the Georges
Bank area for the first time. Our field methods and modeling
technigques now appear sufficiently sophisticated to produce‘ |
an accurate picture of the environment in which the larvae
grow and survive. Although haddock larvae hatch at a some-
what larger size than cod and remain larger, cod are more |
efficient behaviorally and metabolically and consequently,
require lower prey densities for the same percentage survival.
Cod larvae appear to be more adapted as a winter species when
prey densities are generally lower. Haddock larvae, more



76

adapted to eprinchonditions; require higher prey densities
which appear ta be concentrated by'sprlng stratification.
Prey'densltles tend.to be unlformly hlgher in the shaal,
well—mlxed.waters, but stratrfrcatlon along'the southern
flank of Georges_offers.a greater potential for higher than
average prey densities on which an,opportunistic'species
like haddock can caprtallze. The recruitment pattern of
haddock alsc tends to be a 'boom or bust"type with 3-4 good
years out of 20, whereas cod recruitment tends to be rela-
tlvely lOW’but with less variation (Hennemuth et al., 1980).

Further evaluatlon of.populatlon growth and survival in
the sea may best be made through a comparison of biochemical
condition indicesdderived‘from larvae reared in iaboratory
experiments. The RNA/DNA ratios of haddock and cod larvae
collected in spring 1981 are plotted against size ln Fig. l6.
A mlnlmum laboratory-determlned RNA/DNA ratio of 3.2 has been
establrshed for’cod, below which starvation and death occur
(Buckley, 1979) . However, very few (<2%) of the larvae ana-
lyzed from the field had ratios <4, indicating recent high
population growth rates. Nevertheless, differences in station
mean ratios occur Which‘may be related to short-term varia-
tions in prey densrty, and may in turn be related to predatlon
of the slower growrng'rndLVLduals. Perhaps in future simu-
lation studles, populatlon growth rates can be associated
with discrete predation proabilities.

In conclosion, our sampling scheme is similar in many as-
spects to other multidisciplinary studies of larval growth
and survival (Report of the Working Group on Larval Fish
Ecoloqy, 1982), but specrflcally designed to be carried out
within the spawnlng season of haddock-cod and the physical
regime of the Georges Bank region. Our sampling strategy
is unique for a srngle vessel operation in its attempt to
allocate a sultable balance of sampling effort among the
various spataal and temporal scales needed to estlmate the
abundance and drstrlbutlon of fish larvae, their prey, and

predators in order to achieve the proper lntegration of
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observations for evaluating the causes of mortality. Special
effort is made to make our program truly interdisciplinary by
linking laboratory studies and model simulations with field

observations.
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INTRODUCTION

This report documents the evolution and development of stochastic
models simulating the processes associated with feeding, growth and
survival of larval cod and haddock both as individuals and
populations. The predecessors to this research were an initial
deterministic energetic model approach by Laurence (1977) and subsequent
stochastic models by Beyer and Laurence (1980, 1981). This exercise is
an extension of the Beyer and Laurence model (1981) with the addition of
more stochastic elements- because of -new empirical information now
available for both species. Data sources used are principally from
published and unpublished studies conducted in the Marine Ecosystems
Division of the National Marine Fisheries Service, Northeast Fisheries
Center, although all- available sources from the pub1ished literature
were used when applicable. The ultimate goal of the modelling is to
assess aspects of food-1imited Tarval starvation and predation pressure
of the larvae on their food sources in the Georges Bank spawning and
nursery areas.

BASIC DETERMINISTIC ELEMENTS

Interconversion between length and weight are g1ven from the
research of Laurence (1978a) as:

L = 1.935 ¥0-247 (1) for cod
and
L = 2.026u0-222 | (1a) for haddock

where L = standard length in mm and W = dry weight in ug.

Metabolism was derived from empirical laboratory respirometer
measurements (Laurence, 1978b). Coefficients from that research were
adjusted for active periods in daylight and resting periods in darkness
and prorated over 24 hours with 13 1light - 11 dark for cod and 14
light - 10 dark for haddock corresponding to the amount of ambient light
at the peak of larval abundance for each species. Equations for daily
metabolism (Fig. 1) are:. ‘ -

M = 24 (0.010 W0-775) (2) for cod
and
M = 24 (0.038 w0-684) (2a) for haddock

where M = metabolism in ug day'1 (1 ut0y = 1 ug larval tissue by caloric
conversion), W = we1ght in ug.
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Preferred prey size for given size larvae was calculated from the
data and relationships reported by Kane (1984). Regressions (Fig. 2)
are:

P =-0.073 + 0.043 L (3) for cod
and
P =-0.046 + 0.032 L ‘ (3a) for haddock

where P = prey width in mm and L = larval standard length in mm.

Conversions of prey width to prey wet weight were done accord1ng to
the generalized equation from Pearre (1980):

Pl = 1000 (1.557 p2-878) (4)
where Pl = prey wet weight in ug and P = prey wfdth in mm.

Conversion of prey wet weight to prey dry weight is:

P2 = 0.277 P1 (5)
where P2 = prey dry weight in ug.

The fraction of food ingested that is actually digested by larvae
has been measured in nitrogen budget studies by Buckley and Dillmann
(1982). Beyer and Laurence (1981) reworked these data (Fig. 3) as:

= 0.8 (1-0.625 e-0-002(W - Wyin)y ' - (6)

where g = fraction of ingested food digested W = larval dry weight
in ug and Wy, = minimum larval dry weight in ug.

The cost of processing and utilization of the d1gested food is put
to a = 0.4 (Andersen and Ursin, 1977).

Daily growth increment is expressed as:
Gl =G+ W (7)

where Gl = daily growth increment in ug, G = % growth day~ -1 and W 1arvat
dry weight in ng.

Daily ration is calculated from:

GL + M
R1 = (8)
(1 -a) «B P2

where Rl = daily ration as # prey, and Gl, M, a, 8 and P2 are as
previously defined.
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.Tables 1 and 2 present examples of the deterministic parameters and
output variables at.a constant growth rate for both species.

STOCHASTIC EXTENSION

Two major steps were taken in stochastizing the basic deterministic
model. These were adding additional model variables based on empirical
data and generating probability distributions about a number of these
variables to form stochastic elements. ,

One of the additional .variables is larval searching capacity.
Searching capacity equals the swimming speed multiplied by the cross-
sectional area of the perception field (Blaxter and Staines, 1971).
Swimming speed and perceptive field defined in terms of larval body
length are converted to terms of larval dry weight by the weight length
equations yielding searching capacity as a function of weight (Fig. 4)
as:

s = 0.737 W0-741 ~(9) for cod
and _
S = 0.846 w0-666 (9a) for haddock

where Sg%hsearch{ng'capacity'in Titers day‘1 and W = dry weight‘in ug.

The probability of a larva capturing and swallowing an encountered
and perceived prey organism was determined from unpublished behavioral
observation at the Narragansett Laboratory for haddock and from
observations by Ellertsen et al. (1980) for cod.  The probab111ty
increased asymptotically with larval size (Figq. 5) and is described by
the f0110w1ng emp1r1ca1 equations:

Sl = 0.9 (1 - 0.667 e-0-004 (W - wmm)) (10) for cod
and
S1 = 0.9 (1 - 0.778 ¢-9-0045 (W - Wyin)y (10a) for haddock

where .S1 2'swa11ow1ng probab111ty, W = larval dry weight in ug and
Wpin = minimum larval -dry weight in pg.

- At a given prey density, D, in number of organisms 1iter41, the
mean daily ration for a larva would be: .

R=S-Sl+Ds Ll (11)
where R = mean daily ration in number of organisms, S, Sl1, and D are

defined as 1mmed1ate1y above and L1 is the percentage of day11ght hours
in 24 h. - -
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Larval growth can then be defined as:
G= (1 -qa)«Be<R«<P2-M (12)
where G = larval daily growth increment in ug dry weight
and a, B8 (Equation 6), R (Equation 11), P2 (Equation 5), and M (Equation
2) are previously defined.

Maximum and minimum_ rations which produce growth rates of +15% and
-10% of body weight day™" respectively are calculated as:

R2 (+15%) = -0 "W M (13)
(1 - a) « B8 « P2
and
M- 0.1W
RO (-10%) = (14)

(1 - a) «B P2

where R2 and RO are the rations in ug dry weight and all other
parameters are previously defined. The maximum and minimum figures are
based on empirical results of field estimated growth rates from daily
growth increments of otoliths (Bolz and Lough, 1983) and results of
laboratory starvation studies (Beyer and Laurence, 1980).

A "minimum barrier" or death size has been calculated for both
species. This barrier corresponds to the smallest sizes of live larvae
of known age ever recorded in all the various laboratory studies
conducted at Narragansett over the years. The rationale is that any
fish smaller than these were dead and thus, the minimum live size.

Regression relationships describing the barriers for each species
(Fig. 6) are: ‘

Wy = Wnin e0-0282T (15) for cod
and
Wp = Wi e0-0226T | (16) for haddock

where Wy = larval barrier dry weight in ng, Wnin = larval initial, _
minimal hatching weight in ug, and T = age in aays; During model runs,
larvae of given size and age are compared with the minimum barrier at
each time step (day) and judged to be alive and growing or dead and
eliminated from the simulation. Examples of this process are depicted
in Figure 7 which shows the weight trajectory (size) on a daily basis
for 3 haddock larvae feeding on variable daily rations. Larva #1 did
not grow well and reached the minimum barrier and died on day 12.
Larvae #2 barely maintained its weight for the first 4 1/2 weeks at
which time it increased its growth rate. Larvae #3 is an example of a
fast growing individual.
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METHOD FOR TRANSFERRING A NORMAL PROBABILITY DISTRIBUTION
TO A DISTRIBUTION WITH KNOWN MEAN AND VARIANCE

A number of variables in this model development were transformed
into stochastic elements from empirically derived laboratory and field
data. Basically, the process was to use the known _mean and variance or
the relationship of mean and variance of the empirical data and transfer
these to-a known normalized probability distribution from statistical
tables.

The steps in the method are:
1. Generate 21 random numbers between 0 and 20.

2. Calculate the mean (=10) and variance of the random number
sample or assign the variance of the required distribution (i.e. poisson
where mean = variance).

3. Normalize the random number distribution to a distribution with
mean = 0 and variance = 1 and with known probability distribution by
ca]cu]at1ng the Z- stat1st1c as Z = x - 10/s (Steele and Torrie, 1960).

4. Mu1t1p1y calculated Z-statistic by the known standard deviation
of the empirical population and add or subtract (depending on sign of Z-
stat1st1c? to known mean from empirical population to get a normalized
stochast1c parameter.

STOCHASTIC MODEL EVOLUTION

.....

i]]ustrates basic routines, stochastic elements, chrono]ogy of operation
and flow. The model was developed by adding one stochastic element at a
time and noting parameter responses. The first stochastic element
incorporated was prey encounter which was a random process. At this
point the model was essentially like the one of Beyer and Laurence
(1980). In this version (#1) all larvae started out the same initial
size, the prey density was constant, and the prey size was the preferred
size according to equations (3) and (3a). Random prey encounter was
chosen because ana]yses of reélevant prey organisms from field studies
(Laurénce et”al., 1984) showed the prey to be randomly distributed at .
small” sca]es ‘on Georges Bank. This was approximated by estimating a
poisson distribution about the mean daily ration R from equation (11)
and - transferr1ng it to a normalized probability distribution with.+2
standard errors. Examp]es of two of these derived distributions about .
the mean number of prey. consumed day™" for. newly hatched cod and haddock .
are shown in Figures 9 and 10. Results from this version (#1) of the
model proved ‘to be somewhat deterministic with the larvae either all
1iving, or dying in a narrow range of prey densities (45 to 50 prey
liter~l for haddock and 5 to 10 for cod). A population of cod that
survived 100% until day 42 after hatching and attained large body
weights is shown in the frequency histogram of larval weight in
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Figure 11. This type of population simulation is derived by making
repetitive runs for individual larvae like the ones illustrated in
Figure 7 and simply noting sizes and numbers alive at given times.

Version #2 of the model included a second stochastic element which
was varying the size of prey about the preferred prey size. The
procedure was to compute the preferred size from equations (3) and (3a)
through (5) and (5a) and compute a normalized probability distribution
based on a poisson (random) distribution about the preferred size. The
computed distribution was arbitrarily truncated on both ends based on
biological considerations. The upper prey size was truncated at +2
standard errors. If a larvae encountered a prey larger than this it did
not eat the prey since it was too big to handle. The lower end of the
prey size distribution was at a prey size of 0.1 pg. Any encounters of
prey smaller than this were considered to be 0.1 ug and were calculated
to be consumed rather than truncated and not consumed. The rationale
behind this was that there are many more smaller and available prey in
the natural environment than larger so the encounter of numbers of
smaller prey should be greater. Figures 12 through 17 show the
frequency histograms of prey size about the preferred size encountered
by cod and haddock larvae at 3 different body weights.

This model version (#2) with its addition of stochastic prey size
to stochastic prey encounter was more robust and somewhat less
deterministic than model 1. A simulation of survival and size (growth)
for cod similar to Figure 11 is shown in Figure 18. It can be easily
seen that survival and growth has been reduced to more realistic levels
with the addition of stochastic prey size.

The third stochastic element added to the model (version #3) was a
distribution of different initial larval weights at hatching. Until
this version, all larvae started out at the same size. Empirical data
from laboratory studies of known age larvae from known hatching times
and known date spawnings showed the distribution of hatching sizes to be
essentially normal about the mean size. A normal probability
distribution of initial larval sizes +2 standard errors about the mean
size was calculated based on the known empirical mean and standard
errors. Examples of generated frequency distributions for cod and
haddock initial sizes are presented in Figures 19 and 20.

An additional element of model version #3 was a calculated delay of
any weight loss due to unsuccessful food encounter for 3 days after
hatching. This was to compensate for energy available from yolk still
present, and was based on empirical laboratory observations and
experiments.

This model version (#3) proved to be even more robust and
intuitively as well as actually more realistic. Simulations at
different constant prey densities with this #3 stochastic element
version pinpointed the ranges of population survival as a function of
prey density for each species. This relationship is shown in Figure 21
where it can be seen that cod survive a lower prey density than haddock.
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This model version also proved useful in simulating a variety of
different situations. Population growth and survival can be
simultaneously followed for any time frame at a given prey density.
Growth (distribution of sizes at time) and survival percentages for
populations of cod and haddock Tlarvae at constant prey densities of 6
and 30 liter™, respectively, every 7 days after hatching until day 42
are presented in Figures 22 to 35. One can follow the population
progress up the weight axis and down the survival axis noting the
intermittent mean size and distribution about this mean. These figures
graphically show that most of the morta11ty takes place in the first 2-3
weeks after hatch1ng

Another type ‘exercise is to make runs of relatively large
populations of individuals (= 10,000) at the lower prey densities
supporting population survival (as indicated in Figure 21) to try and
simulate and elucidate conditions approach1ng the empirically observed
Tow survival measurements from field survey estimation. Figures 36 and
37, respectively, depict the sizes of the 0.37% cod and 0.61% hfddo
that survived at the marginal densities of 3 and 15 prey liter~” The
initial size distribution of these very same surviving larvae are given
in Figures 38 and 39.

The fourth and final stochastic element added -to derive model
version 4 was varying the prey density encountered on a daily basis.
This tends to create a somewhat patchy food environment in terms of time
and may not be far from the real situation. The day can be considered a
discrete feeding state for larvae which can change from state to
state. Larvae are known to be visual feeders that cease feeding and
become passive in darkness. During the dark, non-feeding time the
larvae could be transported by physical factors to a new and different
feeding regime where the density of prey is different. The 1ikelihood
of this seems quite high at the small spatial scales in which larvae
interact with their physical and biological environment.

Empirical data on small scale spatial variability and absolute
densities of prey are available from process-oriented cruises on Georges
Bank (Laurence et al., 1984; Lough, 1984). These data give mean-
variance'parameters with which to generate probability distributions for
daily varying prey density. They showed that prey were d1str1buted in a
uniform manner and likely to be in a range of 1 to 50 prey liter™ on a
small scale (30 liters or less) relative to larvae. A uniform
distribution for daily varying prey density was used as the stochastic
element; that is, larvae would have an equal probab1\1ty of encounter1ng
any ‘one of the prey densities within the range. A

Frequency ‘histograms of survivors at 42 days show the d1fferences
between cod and 'haddock in this #4 stochastic element simulation with
?6% of the cod surviving (Fig. 40) and 15% of the haddock surviving

Fig. 41).

A further 1ook at the surviving haddock revealed some insight as to
why they might have survived. The initial we1ght frequency distribution
of the actual individual survivors at time O is shown in Figure 42. If
this is matched up with the initial weight distribution of the whole
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population (Fig. 43), it can be seen that the survivors definitely come
from the upper range of weights of the whole population. The
implication is that larger initial larvae have a higher probability of
initial growth and subsequent or consequential survival.

ASPECTS OF FOOD LIMITATION OF LARVAE AND PREDATION
PRESSURE BY LARVAE ON THEIR FOOD RESOURCE

A primary goal of this modelling effort was to assess food-1imited
growth and survival of cod and haddock larvae on Georges Bank. A
combination of model simulations and empirical field data from Georges
Bank research cruises allowed this to be done. The method was to use
MARMAP field data on seasonal abundances and production of cod and
haddock larvae (Table 3) (Smith et al., 1979, 1981), fine-scale
estimates of relevant larval fish prey abundance from process-oriented
research cruises (Table 4) (Lough, 1984; Laurence et al., 1984), and
model simulations to calculate the required food intake of the indicated
amount of larvae from the individual amount of prey organisms.

The following results of this approach are based on the use of
conservative parameters from the field data. The total volume of water
on Georges Bank within the 180 g contour (where cod and haddock larvae
mainly reside) is 2.96 x 10*¢ m° (Green, J. R. pers. comm.) (Fig. 44).
The highest abundance of cod or haddock larvae from the MARMAP data base
{Table 3) was for haddock in 1980 at 743.8 X 107. This would give a
peak haddock abundance of 0.25 larvae per m” (Fig. 44). The mean
relevant larval prey density from the process-oriented_research bogt]e
sgmp]es (Table 4) is approximately 14 organisms liter~! or 14 x 10 per
m This gives an overwhelming ratio of instgntaneous abundances of
55,000 to 1 prey organisms over larvae in a m° within the 100 m contour
(Fig. 44). A model simulation was used to assess the more dynamic
aspects of larvae grazing the prey. The model subroutine dealing with
feeding and growth parameters {equations 1-14) was used to
deterministically calculate the prey consumption of preferred prey s{ze
for an average of cod and haddock larvae at a growth rate of 8% day™ -,
at 7° C, and from hatching - yolk absorption until a dry weight of
1000 ug. The calculated consumption was = 1700 prey (Fig. 44). This
was conservatively matched wit? total annual larval production for the
entire peak season of 110 x 10 2 Jarvae (Table 3) t? derive a seasonal
(not instantaneous) grazing requirement of 188 x 10 5 organisms (Fig.
44) for the entire larval population produced. A comparison of the
larval population's seasonal requirement with the instantaneous estimate
of prey abundance shows a ratio of 1 to 4.5. This means that the
instantaneous (not even considering any food production aspects)
estimate of prey should be enough to allow 22% of the entire annual
production of larvae to survive and grow at 8% day™".

Of course the larvae must encounter the food and capture it after
encounter, and this is what the modelling is all about. But, in
general, it would appear that food is not the single limiting,
catastrophically critical factor.
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The following points serve as interim conclusions in this
cont1nu1ng research

1. Starvation morta]ity is undoubtedly one of the largest, if not
the largest, components of total mortality in the early life stages.

2. Starvation mortality is. most significant in the first 2-3 weeks
after hatching.

3. Haddock are considerably more food 1imited than cod.
4. However, starvation mortality does not appear to be population

1imiting or the single controlling morta11ty factor under the normal
range of prey densities. '
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Table 1. Deterministic parameters and output variables at three constant daily growth rates for cod
Jarvae. Each iteration represents a specific weight in the range from the initial weight at hatching-yolk
absorption until 10,000 ug.

4% Growth Rate

Dry Daily Growth Preferred Digestion-

Length Weight Increment Prey Size Metabolism Utilization # Prey
{mm) {ng) (ug) (1) {ug) Coefficient Required
5.1 5v 2.0 1.69 5.0 .32 20.8
5.6 75 3.0 2.57 6.8 .34 17.9
6.0 100 4.0 3.43 8.5 .36 16.0
6.7 150 6.0 5.09 11.7 .40 13.7
7.2 200 8.0 6.68 14.6 . A4 ‘12,2
7.6 250 10.0 8.20 17.3 .48 11.1
7.9 300 12.0 9.69 20.0 .51 10.4
8.2 350 14,0 11.13 22.5 .53 9.7
8.5 400 16.0 12.54 24.9 .56 9.3
8.8 450 18.0 13.91 27.3 .58 8.9
9.0 500 20.0 15.26 29.6 .60 8.6
9.4 600 24,0 17.90 34.1 .64 8.1
9.8 700 28.0 20.44 38.5 .67 7.7
10.1 800 32.0 22.93 42.7 .69 7.5
10.4 900 36.0 25.35 46.7 .71 7.3
10.7 1000 40.0 27.71 50.7 .73 7.1
10.9 1100 44.0 30.03 54.6 .74 7.0
11.1 1200 48.0 32.31 58.4 .75 7.0
11.4 1300 52.0 34.55 62.2 .76 6.9
11.6 1400 56.0 36.76 65.8 77 6.9
11.8 1500 60.0 38.93 69.5 .17 6.8
12.0 1600 64.0 41.07 73.0 .78 6.8
12.2 1700 68.0 43,18 76.5 .78 6.8
12.3 1800 72.0 45,26 80.0 .79 6.8
12.5 1900 76.0 47.33 83.4 .79 6.8
12.6 2000 80.0 49.36 86.8 .79 6.8
12.8 2100 84,0 51.38 90.1 .79 6.8
12.9 2200 88.0 53.37 93.5 .79 6.8
13.1 2300 92.0 55.35 96.7 .79 6.8
13.2 2400 96.0 57.31 100.0 .80 6.8
13.4 2500 100.0 59.24 103.2 .80 6.8
13.5 2600 104.0 61.17 106.4 .80 6.8
13.6 2700 108.0 63.07 109.5 .80 6.9
13.7 2800 112.0 64.96 112.7 .80 6.9
13.9 2900 116.0 66.83 115.8 .80 6.9
14.0 3000 120.0 68.69 118.8 .80 6.9
14.1 3100 124.0 70.54 121.9 .80 6.9
14.2 3200 128.0 72.37 124.9 .80 6.9
14.3 3300 132.0 74.19 128.0 .80 7.0
14.4 3400 136.0 76.00 131.0 .80 7.0
14.5 3500 140.0 77.79 133.9 .80 7.0
14.6 3600 144.0 79.58 136.9 .80 7.0
14.7 3700 148.0 81.35 139.8 .80 7.0
14.8 3800 152.0 83.11 142.7 .80 7.0
14.9 3900 156.0 84.86 145.6 .80 7.0
15.0 4000 160.0 86.60 148.5 .80 7.1
15.1 4100 164.0 88.33 151.4 .80 7.1
15.2 4200 168.0 90.05 154.3 .80 7.1
15.3 4300 172.0 91.76 157.1 .80 7.1
15.4 4400 176.0 93.47 159.9 .80 7.1
15.5 4500 180.0 95.16 162.7 .80 7.1
15.5 4600 184.0 96.84 165.5 .80 7.2
15.6 4700 188.0 98.52 168.3 .80 7.2
15.7 4800 192.0 100.19 171.1 .80 7.2
15.8 4900 196.0 101.85 173.8 .80 7.2
15.9 5000 200.0 103.50 176.6 .80 7.2
15.9 5100 204.0 105.14 179.3 .80 7.2
16.0 5200 208.0 106.78 182.0 .80 7.2
16.1 5300 212.0 108.41 184.7 .80 7.3
16.2 5400 216.0 110.03 187.4 .80 7.3
16.2 5500 220.0 111.64 190.1 .80 7.3
16.3 5600 224.0 113.25 192.8 .80 7.3
16.4 5700 228.0 114.55 195.¢ .80 7.3
16.5 5800 232.0 116.45 198.1 .80 7.3
16.5 5900 236.0 118.04 200.7 .80 7.3
16.6 6000 240.0 119.62 203.4 .80 7.3
16.7 6100 244.0 121.19 206.0 .80 7.4
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6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000

50
75
100
150
200
250
300
350
400
450
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900

248.
252.
256.
260.
264.
268.
272.
276.
280.
284.
288.
292.
296.
300.
304.
308.
312.
316.
320.
324.
3z8.
33z.
336.
340.
344,
348.
352.
356.
360.
364.
368.
372.
376.
380.
384.
388.
392.
396.
400.

12.
16.
20.
24.
28.
32.
36.
40.
48.
56.
64.
72.
80.
88.

104.
112.
120.
128.
136.
144,
152.
160.
168.
176.
184,
192.
200.
208.
216.
224.
232.

. R « v .
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122.76 208.6 .80 7.4
124.33 211.2 .80 7.4
125.89 213.8 .80 7.4
127.44 216.4 .80 7.4
128.98 219.0 .80 7.4
130.52 221.5 .80 7.4
132.06 224.1 .80 7.4
133.59 226.6 .80 7.5
135.11 229.2 .80 7.5
136.63 231.7 .80 7.5
138.15 234.2 .80 7.5
139.66 236.7 .80 7.5
141.16 239.3 .80 7.5
142.66 241.8 .80 7.5
144,16 244.3 .80 7.5
145,65 246.7 .80 7.5
147.13 249.2 .80 7.6
148.61 251.7 .80 7.6
150.09 254.2 .80 7.6
151.56 256.6 .80 7.6
153.03 259.1 .80 7.6
154.49 261.5 .80 7.6
155,95 264.0 .80 7.6
157.41 266.4 .80 7.6
158.86 268.8 .80 7.6
160.30 271.2 .80 7.7
161.75 273.6 .80 7.7
163.18 276.1 .80 7.7
164.62 278.5 .80 7.7
166.05 280.8 .80 7.7
167.48 283.2 .80 7.7
168.90 285.6 .80 1.7
170.32 288.0 .80 7.7
171,74 290.4 .80 7.7
173.15 292.7 .80 7.7
174.56 295.1 .80 7.8
175.96 297.4 .80 7.8
177.36 299.8 .80 7.8
178.76 302.1 .80 7.8
8% Growth
1.69 5.0 .32 26.7
2.57 6.8 .34 23.2
3.43 8.5 .36 21.0
5.09 11.7 .40 18.2
6.68 14.6 .44 16.4
8.20 17,3 .48 15.1
9.69 20.0 .51 14,2
11.13 22.5 .53 13.4
12.54 24.9 .56 12.9
13,91 27.3 .58 12.4
15.26 29.6 .60 12.0
17.90 34,1 .64 11.4
20.44 38.5 .67 10.9
22.93 42.7 .69 10.6
25.35 46.7 71 10.4
27.71 50.7 .73 10.3
30.03 54.6 .74 10.1
32.31 58.4 .75 10.1
34,55 62.2 .76 10.0
36.76 65.8 7 10.0
38.93 69.5 77 10.0°
41.07 73.0 .78 10.0
43.18 76.5 .78 10.0
45.26 80.0 .79 10.0
47.33 83.4 .79 10.0
49.36 86.8 .79 10.0
51.38 90.1 .79 10.0
53.37 93.5 .75 10.1
55.35 96.7 .79 10.1
57.31 100.0 80 10.1
59.24 103.2 80 10,2
61.17 106.4 80 10.2
63,07 109.5 80 10.2
64.96 112.7 80 10.3
66.83 115.8 80 10.3
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17.0
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17.2
17.3
17.4
17.4
17.5
17.5
17.6
17.6
17.7
17.8
17.8
17.9
17.9
18.0
18.0
18.1
18.1
18.2
18.2
18.3
18.3
18.4
18.4
18.5
18.5
18.6
18.6
18.7
18.7
18.8
18.8
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3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
4800
53900
6000
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
1600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
93800
5200
10000

50
100

240.0
248.0
256.0
264.0
272.0
280.0
288.0
296.0
304.0
312.0
320.0
328.0
336.0
344.0
352.0
360.0
368.0
376.0
384.0
392.0
400.0
408.0
416.0
424.0
432.0
440.0
448.0
456.0
464.0
472.0
480.0
488.0
496.0
504.0
512.0
520.0
528.0
536.0
544.0
552.0
560.0
568.0
576.0
584.0
592.0
600.0
608.0
616.0
624.0
632.0
640.0
648.0
656.0
664.0
672.0
680.0
683.0
696.0
704.0
712.0
720.0
728.0
736.0
744.0
752.0
760.0
768.0
776.0
784.0
792.0
800.0

N Oy
a s .
LS LN N )

68.69 118.8 .80 10.3
70.54 121.9 .80 10.4
72.37 124.9 .80 10.4
74.19 128.0 .80 10.4
76.00 131.0 .80 10.5
77.79 133.9 .80 10.5
79.58 136.9 .80 10.6
81.35 139.8 .80 10.6
83.11 142.7 .80 10.6
84.86 145.6 .80 10.7
86.60 148.5 .80 10.7
88.33 151.4 .80 10.7
90.05 154.3 .80 10.8
91.76 157.1 .80 10.8
93.47 159.9 .80 10.8
95.16 162.7 .80 10.9
96.84 165.5 .80 10.9
98.52 168.3 .80 10.9
100.19 171.1 .80 10.9
101.85 173.8 .80 11.0
103.50 176.6 .80 11.0
105.14 179.3 .80 11.0
106.78 182.0 .80 11.1
108.41 184.7 .80 11.1
110.03 187.4 .80 11.1
111.64 190.1 .80 11.1
113.25 192.8 .80 11.2
114.85 195.4 .80 11.2
116.45 198.1 .80 11.2
118.04 200.7 .80 11.3
119.62 203.4 .80 11.3
121.19 206.0 .80 11.3
122.76 208.6 .80 11.3
124.33 211.2 .80 11.4
125.89 213.8 .80 11.4
127.44 216.4 .80 11.4
128.98 219.0 .80 11.4
130.52 221.5 .80 11.5
132.06 224.1 .80 11.5
133.59 226.6 .80 11.5
135.11 229.2 .80 11.5
136.63 231.7 .80 11.6
138,15 234.2 .80 11.6
139.66 236.7 .80 11.6
141.16 239.3 .80 11.6
142.66 241.8 .80 11.7
144.16 244.3 .80 11.7
145.65 246.7 .80 11.7
147,13 249.2 .80 11.7
148.61 251.7 .80 11.7
150.09 254.2 .80 11.8
151.56 256.6 .80 11.8
153.03 259.1 .80 11.8
154.49 261.5 .80 11.8
155.95 264.0 .80 11.8
157.41 266.4 .80 11.9
158.86 268.8 .80 11.9
160.30 271.2 .80 11.9
161.75 273.6 .80 11.9
163.18 276.1 .80 12.0
164.62 278.5 .80 12.0
166.05 280.8 .80 12.0
167.48 283.2 .80 12.0
168.90 285.6 .80 12.0
170.32 288.0 .80 12.1
171.74 290.4 .80 12.1
173.15 292.7 .80 12.1
174.56 295.1 .80 12.1
175.96 297 .4 .80 12.1
177.36 299.8 .80 12.2
178.76 302.1 .80 12.2
12.5% Growth

1.69 5.0 .32 33.3
2.57 6.8 .34 29.3
3.43 8.5 .36 26.7
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200

250

300

350

400

450

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800
5900
6000
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500

18.

25.

3l.
37.
. 43.
50.

56.

62.

75.

87.
100.
112.
125.
137.
150.
162.
175.
187.
200,
212.
225.
237.
250.
262.
275.
287.
300.
312.
325.
337.
350.
362,
1375,
387.
400,
a12.
425,
437.
450,
462,
475,
487,
500.
512.
525.
537.
550.
562.
575.
587.
600.
612.
625.
637.
650.
662.
675.
687.
700.
712.
725.
737.
750.
762.
775.
787.
800.
812.
825.
837.
850.
862,
875.
887.
900.
912.
925,
937.
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5.09
6.68
8.20
9.69
11.13
12.54
13.91
15.26

- 17.90

20.44
22.93
25,35
27.71
30.03
32.31
34,55
36.76
38.93
41.07
43.18
45.26
47.33
49.36
51.38
53,37
55.35
57.31
59.24

61,17
63.07
64.96
66.83
68.69
70.54
72.37
74.19
76.00
77.79
79.58
81.35
83.11
84.86
86.60
88.33
90.05
91.76
93,47
95,16
96.84
98,52

100.19

101.85

103,50

105.14

106.78

108.41

110.03

111.64

113.25

114.85

116.45

118,04

119.62

121.19

122.76

124.33

125.89

127.44

128.98

130.52

132.06

133.59

135.11

136.63

138.15

139.66

141.16

142,66

11.7
"14.6
17.3
- 20.0
22.5
24,9
27.3
29.6
34.1
38,5
42.7
46.7
50,7
54,6
58.4
62.2
65.8
69.5
73.0
76.5
80.0
83.4
86.8
90.1
93,5
96.7
100.0
103.2
106.4
109.5
112.7
115.8
118.8
121.9
124.9
128.0
131.0
133.9
136.9
139.8
142.7
145.6
148.5
151.4
154.3
157.1
159.9
162.7
165.5
168.3
171.1
173.8
176.6
179.3
182.0
184.7
187.4
190.1
192.8
195.4
198.1
200.7
203.4
206.0
208.6
211.2
213.8
216.4
219.0
221.5
224.1
226.6
229.2
231.7
234.2
236.7
239.3
241.8

.40
.44
.48
.51
.53
.55
.58
.60
.64
.67
.69

W71

.73
g4
.75
.76
7
vy
.78
.78
.79
.79
.79
.79
.79
.79
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80

.80

.80
.80
.80
.80
.80
.80

.80°

.80
.80
.80
.80
.80
.80
.80
.80
180
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80

23.4
21.2
19.7
18.5

"17.6

16.9
16.3
15.8
15.1

‘14.6

14.2
13.9
13.8
13.6

‘13.6

13.5
13.5
13.5
13.5
13.5
13.5
13.6
13.6
13.7
13.7
13.8
13.8
13.9
14.0
14.0
14.1
14.1
14.2
14.3
14.3
14.4
14.4
14.5
14.6
14.6
14.7
14.7
14.8
14.8
14.9
14.9
15.0
15.0
15.1
15.1
15,2
15,2
15.3
15.3
15.4
15.4
15.5

. 15.5

15.5
15.6
15.6
15.7
15.7
15.8
15.8
15.8
15.9
15.9
16.0
16.0
16.0
16.1
16.1
16.1
16.2
16.2
16.3
16.3



17.6
17.6
17.7
17.8
17.8
17.9
17.9
18.0
18.0
18.1
18.1
18.2
18.2
18.3
18.3
18.4
18.4
18.5
18.5
18.6
18.6
18.7
18.7
18.8
18.8

7600
7700
7800
7900
8G00
8100
8200
8300
8400
8500
8600
8700
8800
8900
3000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000

950.0

962.5

975.0

987.5
1000.0
1012.5
1025.0
1037.5
1050.0
1062.5
1075.0
1087.5
1100.0
1112.5
1125.0
1137.5
1150.0
1162.5
1175.0
1187.5
1200.0
1212.5
1225.0
1237.5
1250.0

144,16
145,65

147.13

148.61
150.09
151.56
153.03
154.49
155.95
157.41
158.86
160.30
161.75
163.18
164.62
166.05
167.48
168.90
170.32
171.74
173.15
174.56
175.96
177.36
178.76

99

244.3
246.7
249.2
251.7
254.2
256.6
259.1
261.5
264.0
266.4
268.8
271.2
273.6
276.1
278.5
280.8
283.2
285.6
288.0
290.4
292.7
295.1
297.4
299.8
302.1

.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80
.80

16.3
16.4
16.4
16.4
16.5
16.5
16.5
16.6
16.6
16.6
16.7 -
16.7
16.7
16.8
16.8
16.8
16.9
16.9
16.9
17.0
17.0
17.0
17.1
17.1
17.1
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Table 2. Deterministic parameters and output variables at three constant daily growth rates for haddock
larvae. Each iteration represents a specific weight in the range from the initial weight at hatching-yolk
absorption until 10,000 .g. ’

12.5% Growth Rate

Dry" Daily Growth Preferred Digestion-

Length Weight Increment Prey Size Metabolism . Utilization # Prey
(mm) (u9) (ug}) . (ug) (vg) - Coefficient Required
4.8 50 6.3 . .72 ‘ 13.2 .30 140.4
5.3 75 9.4 1.04 . 17.5 .32 124.3
5.6 100 12.5 1.33 ’ 21.3 .35 113.5
6.2 150 18.8 1.88 : 28.1 .39 99.1 -
6.6 200 25.0 2.38 34.2 .43 : 89.6
6.9 250 31.3 2.85 39.8 .46. 82.9°
7.2 300 37.5. 3.30 - 45.1 .50 77.8
7.4 350 43.8 3.73 50.1 .53 73.8
7.7 400- 50.0 . 4.15 54.9 .55 70.7
7.9 450 56.3 4.55 59.5 .58 68.1
8.1 500 62.5 4.94 : 64.0 .60 . 66.1
8.4 600 . 75.0 5.69 : 72.5 .63 62.9
8.7 700 87.5. 6.40 80.5 .66 60.7
8.9 800 100.0 7.09 88.2 .69 59.2
9.2 900 112.5° 7.75 95.7 71 . 58.1
9.4 1000 125.0 8.40 102.8 .73 ’ 57.3
9.6 1100 137.5° 9.02 109.7 - .74 56.8
9.8 1200 150.0. 9.63 116.5 .75 56.5
10.0 1300 162.5 10.23 123.0 .76 56.3
10.1 - 1400 - 175.0 10.81 129.4 77 56.2
10.3 1500 187.5 11.38 135.7 .77 56.2
10.4 1600 200.0 11.93 141.8 .78 56.3
10.6 1700 212.5 12.48 147.8 .78 56.4
10.7 1800 225.0 13.02 153.7 .78 56.6
10.8 1900 237.5 13.55 159.5 .79 56.8
11.0 2000 250.0 14.07 165.2 .79 57.0
1.1 2100 262.5 14.58 170.8 .79 57.2
11.2 2200 275.0 15.09 176.3 .79 57.5
11.3 2300 287.5 15.59 181.7 .79 57.7
11.4 2400 300.0 16.08 187.1 .80 58.0
1.5 2500 312.5 16.57 192.4 .80 58.3
11.6 2600 325.0 17.05 197.6 .80 58.6
11.7 2700 337.5 17.53 202.8 .80 58.9
11.8 2800 350.0 18.00 207.9 .80 59.1
11.9 2900 362.5 18.46 212.9 .80 59.4
12.0 3000 375.0 18.92 217.9 .80 59.7
12.1 3100 387.5 19.38 222.9 .80 60.0
12.2 3200 400.0 19.83 227.8 .80 60.3
12.2 3300 412.5 20.28 232.6 .80 60.5
12.3 3400 425.0 20.72 237.4 .80 60.8
12.4 3500 437.5 21.16 242.2 .80 61.1
12.5 3600 450.0 21.59 246.9 .80 61.3
12.6 3700 462.5 22.02 251.6 .80 61.6
12.6 3800 475.0 22.45 256.2 .80 61.9
12.7 3900 487.5 22.88 260.8 .80 62.1
12.8 4000 500.0 23.30 265.3 .80 62.4
12.8 4100 512.5 23.71 269.9 .80 62.6
12.9 4200 525.0 24.13 274.3 .80 62.9
13.0 4300 537.5 24.54 278.8 .80 63.1
13.0 4400 550.0 24.95 283.2 .80 63.4
13.1 4500 562.5 25.35 287.6 .80 63.6
13.2 4600 575.0 25.76 292.0 .80 63.9
13.2 4700 587.5 26.16 296.3 .80 64.1
13.3 4800 600.0 26.55 300.6 .80 64.3
13.4 4900 612.5 26.95 304.9 .80 64.5
13.4 5000 625.0 27.34 309.1 .80 64.8
13.5 5100 637.5 27.73 313.3 .80 65.0
13.5 5200 650.0 28.12 317.5 .80 65.2
13.6 5300 662.5 28.51 321.7 .80 65.4
13.7 5400 675.0 28.89 325.8 .80 65.7
13.7 5500 687.5 29.27 329.9 .80 65.9
13.8 5600 700.0 29.65 334.0 .80 66.1
13.8 5700 712.5 30.03 338.1 .80 66.3
13.9 5800 725.0 30.40 342.1 .80 66.5
13.9 5900 737.5 30.77 346.1 .80 66.7
14.0 6000 750.0 31.14 350.1 .80 66.9
14.0 6100 762.5 31.51 354.1 .80 67.1
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6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
9800
9900
10000
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450
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700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
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31.88 358.1 .80 67.
32.24 362.0 .80 67.
32.61 366.0 .80 67.
32.97 369.9 .80 67.
33.33 373.7 .80 68.
33.69 377.6 .80 68.
34.04 381.4 .80 68,
34.40 385.3 .80 68.
34.75 389.1 .80 68.
35.10 392.9 .80 69.
35.45 396.7 .80 69.
35.80 400.4 .80 69.
36.15 404.2 .80 69,
36.49 407.9 .80 69.
36.83 411.6 .80 69.
37.18 415.3 .80 70.
37.52 419.0 .80 70.
37.86 422.6 .80 70.
38.20 426.3 .80 70.
38.53 429.9 .80 70.
38.87 433.6 .80 70.
39.20 437.2 .80 71.
39,54 440.8 .80 71.
39.87 444.3 .80 71,
40.20 447.9 .80 71.
40.53 541.5 .80 71.
40.86 455.0 .80 71.
41.18 458.5 .80 72.
41.51 462.1 .80 72.
41.83 465.6 .80 72.
42.16 469.1 . .80 72.
42.48 472.5 .80 72.
42.80 476.0 .80 72.
43.12 479.5 .80 73.
43.44 482.9 .80 73.
43.76 486.3 .80 73.
44.08 489.8 .80 73.
44.39 493.2 .80 73.
44.71 496.6 .80 73.
4% Growth

.72 13.2 .30 111.
1.04 17.5 .32 9.
1.33 21.3 .35 86.
1.88 28.1 .39 73.
2.38 34.2 .43 65.
2.85 39.8 - .46 59.
3.30 45.1 .50 54,
3.73 50.1 .53 51.
4.15 54.9 .55 48.
4.55 59.5 .58 46.
4.94 64.0 .60 44,
5.69 72.5 .63 42.
6.40 80.5 .66 40.
7.09 88.2 .69 38.
7.75 95.7 .71 37.
8.40 102.8 .73 36.
9.02 109.7 .74 36.
9.63 116.5 .75 35.
10.23 123.0 .76 35.
10.81 129.4 .77 5.
11.38 135.7 .77 34.
11.93 141.8 .78 34,
12.48 147.8 .78 34.
13.02 153.7 .78 34,
13.55 159.5 .19 34,
14.07 165.2 .79 34,
14.58 170.8 .79 34,
15.09 176.3 79 34,
15.59 181.7 .79 3.
16.08 187.1 .80 34.
16.57 192.4 .80 4.
17.05 197.6 .80 34.
17.53 202.8 .80 34,
18.00 207.9 .80 3.
18.46 212.9 .80 4.
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18.92 217.9 .80 34.8
19.38 222.9 .80 34.9
19.83 227.8 .80 34.9
20.28 232.6 .80 35.0
20.72 237.4 .80 35.1
21.16 242.2 .80 35.1
21.59 246.9 .80 35.2
22.02 251.6 .80 35.3
22.45 256.2 .80 35.3
22.88 260.8 .80 35.4
23.30 265.3 .80 35.5
23.71 269.9 .80 35.5
24.13 274.3 .80 35.86
24.54 278.8 .80 35.7
24.95 283.2 .80 35.7
25.35 287.6 .80 35.8
25.76 292.0 .80 35.9
26.16 296.3 .80 35.9
26.55 300.6 .80 36.0
26.95 304.9 .80 36.1
27.34 309.1 .80 36.1
27.73 313.3 .80 36.2
28.12 317.5 .80 36.3
28.51 321.7 .80 36.3
28.89 325.8 .80 36.4
29.27 329.9 .80 36.4
29.65 334.0 .80 36.5
30.03 338.1 .80 36.6
30.40 342.1 .80 36.6
30.77 346.1 .80 36.7
31.14 350.1 .80 36.7
31.51 354.1 .80 36.8
31.88 358.1 .80 36.8
32.24 362.0 .80 36.9
32.61 366.0 .80 37.0
32.97 369.9 .80 37.0
33.33 373.7 .80 37.1
33.69 377.6 .80 37.1
34.04 381.4 .80 37.2
34.40 385.3 .80 37.2
34.75 389.1 .80 37.3;
35.10 392.9 .80 37.3
35.45 396.7 .80 37.4
35.80 400.4 .80 37.4
36.15 404.2 .80 37.5
36.49 407.9 .80 37.5
36.83 . 411.6 .80 37.6
37.18 415.3 .80 37.6
37.52 419.0 .80 37.7
37.86 422.6 .80 37.7
38.20 426.3 .80 37.8
38.53 429.9 .80 37.8
38.87 433.6 .80 37.9
39.20 437.2 .80 37.9
39.54 440.8 .80 38.0
39.87 444 .3 .80 38.0
40.20 447 .9 .80 38.1
40.53 451.5 .80 8.1
40.86 455.0 .80 38.2
41.18 - 458.5 .80 38.2
41.51 462.1 .80 38.3
41.83 465.6 .80 38.3
42.16 469.1 .80 38.4
42.48 472.5 .80 38.4
42.80 476.0 .80 38.5
43.12 479.5 .80 38.5
43.44 482.9 .80 38.6
43.76 486.3 .80 38.6
44.08 489.8 .80 33.7
44.39 493.2 .80 38.7
44.71 496.6 .80 38.7
8% Growth

.72 13.2 .30 125.1
1.04 17.5 .32 109.5
1.33 21.3 .35 99.1
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Table 3. Relevant larval gadid parameters for Georges Bank (from Smith
et al. 1979, 1981 and Sherman et al. 1983). :

Maximum Larval Annual
Year Species Agu:d?gge #/m3 Proguigian
1974 Cod 157.5 0.05
Haddock 54,1 0.02
1975 Cod 121.8 0.04
Haddock 138.9 0.05
1976 Cod 16.1 0.01
Haddock 76.5 0.03
1977 Cod 459.,6 0.15
Haddock 431.6 0.15
1978 Cod 71.1 0.02
Haddock 313.2 0.11
1979 Cod 122.1 0.04 39.1
Haddock 408.3 0.14 64.3
1980 Cod 227.8 0.08 102.8
Haddock : 743.8 0.25 110.4
1981 Cod 311.2 0.11
Haddock 405.8 0.14
1982 Cod 10.4 0.003

Haddock 6.5 0.002
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Table 4.  Summary of bottle samples (all sampler sizes, depths,.
stations) -- EVRIKA-80-02 relevant larval cod and haddock prey

organisms.

o No. Per Liter
Prey Category Mean Range %
Lamellibranch Larvae 1.21 0.30 - 3.34 8.8
Copepod Eggs
(0.1 - 0.2 mm diam) 2.14 0.23 - 5.29 15.6
Copepod Nauplii 7.55 4,10 - 14.28 55.0
Older Stage Copepods 2.82 1.08 - 8.66 20.6

X for all sampler sizes,
Range 8.63 - 24.17.

depths and stations = 13.72 + 4.04,
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PROBABILITY
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Figure 5. Relationship of the probability of capturing an encountered
prey organism and larval size of cod and haddock.
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time for cod and haddock larvae in laboratory experiments.
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ABBREVIATED FLOW CHART OF STOCHASTIC MODEL
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Figure 8.

An abbreviated flow chart -of the basic 4 element stochastic

computer model.
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Figure 15. Frequency histogram of the distribution of prey size about
the preferred prey size for a 68.1 ug haddock larva.
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Figure 31. Frequency histogram of the weight distribution from a 3
stochastic element model run at a prey density of 30 liter”

for haddock larvae at 14 days after hatching.
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Figure 35. Frequency histogram of the weight distribution from a 3
stochastic element model run at a prey density of 30 liter”
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