Editorial Note

National Center for Education Statistics

The National Center for Education Statistics (NCES) fulfills a congressional mandate to collect and report "statistics and information showing the condition and progress of education in the United States and other nations in order to promote and accelerate the improvement of American education."

Education Statistics Quarterly

 Purpose and goalsAt NCES, we are convinced that good data lead to good decisions about education. The Education Statistics Quarterly is part of an overall effort to make reliable data more accessible. Goals include providing a quick way to

- identify information of interest;
- review key facts, figures, and summary information; and
- obtain references to detailed data and analyses.

Content

The Quarterly gives a comprehensive overview of work done across all parts of NCES. Each issue includes short publications, summaries, and descriptions that cover all NCES publications and data products released during a 3-month period. To further stimulate ideas and discussion, each issue also incorporates

- a message from NCES on an important and timely subject in education statistics; and
- a featured topic of enduring importance with invited commentary.

A complete annual index of NCES publications appears in the Winter issue (published each January). Publications in the Quarterly have been technically reviewed for content and statistical accuracy.

General note about the data and interpretations

Many NCES publications present data that are based on representative samples and thus are subject to sampling variability. In these cases, tests for statistical significance take both the study design and the number of comparisons into account. NCES publications only discuss differences that are significant at the 95 percent confidence level or higher. Because of variations in study design, differences of roughly the same magnitude can be statistically significant in some cases but not in others. In addition, results from surveys are subject to
nonsampling errors. In the design, conduct, and data processing of NCES surveys, efforts are made to minimize the effects of nonsampling errors, such as item nonresponse, measurement error, data processing error, and other systematic error.

For complete technical details about data and methodology, including sample sizes, response rates, and other indicators of survey quality, we encourage readers to examine the detailed reports referenced in each article.

Table of Contents

Note From NCES

Jeffrey Owings, Associate Commissioner, Elementary/Secondary and Libraries Studies Division \qquad
Provides an overview of the role of NCES in longitudinal studies, focusing on the National Education Longitudinal Study of 1988 (NELS:88).

Featured Topic: National Education Longitudinal Study of 1988 (NELS:88)

Coming of Age in the 1990s: The Eighth-Grade Class of 198812 Years Later
Steven J. Ingels, Thomas R. Curtin, Phillip Kaufman, Martha Naomi Alt, and Xianglei Chen .
7

Presents findings from the fourth follow-up survey of the National Education Longitudinal Study of 1988 (NELS:88), conducted in 2000, including postsecondary attainment, labor market experiences, and family formation.

Invited Commentary: Tracing Educational Trajectories Through Longitudinal Studies
Aaron M. Pallas, Professor of Sociology and Education, Teachers
College, Columbia University
Invited Commentary: Transitioning to Adulthood in a Turbulent Time

Samuel R. Lucas, Associate Professor of Sociology, University of California-Berkeley17

Elementary and Secondary Education

The Nation's Report Card: U.S. History 2001
Michael S. Lapp, Wendy S. Grigg, and Brenda S.-H. Tay-Lim21

Presents major findings from the National Assessment of Educational Progress (NAEP) 2001 U.S. History Assessment, analyzed by student subgroup and teacher and student factors, and compares them to 1994 results.

Beyond School-Level Internet Access: Support for Instructional Use of Technology

Lawrence Lanahan . 35

Discusses the correlation of instructional use of the Internet with availability of classroom-level access to the Internet and teacher training and support for use of the Internet.

Arts Education in Public Elementary and Secondary Schools: 1999-2000

$$
\text { Nancy Carey, Brian Kleiner, Rebecca Porch, and Elizabeth Farris } 39
$$

Provides a national profile of the status of arts education in U.S. public schools, including data on the availability of arts instruction, staffing, funding, supplemental programs and activities, and administrative support.

Early Estimates of Public Elementary and Secondary Education Statistics: School Year 2001-02

Lena M. McDowell and Frank Johnson 44
Provides current-year estimates of key statistics for public elementary and secondary schools during the 2001-02 school year.

Public High School Dropouts and Completers From the Common Core of Data: School Years 1991-92 Through 1997-98

Beth Aronstamm Young and Lee Hoffman
Presents major findings from the analysis of public high school dropout and 4 -year completion rate data.

Public School Student, Staff, and Graduate Counts by State: School Year 2000-01

Beth Aronstamm Young .
Provides national and state data for public elementary and secondary schools in 2000-01.

Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1999-2000

Frank Johnson
Presents national and state information on public education finances, including revenues by source, expenditures per student, and expenditures for instruction.

Financing Elementary and Secondary Education in the States: 1997-98
Joel D. Sherman, Elizabeth Rowe, and Lauri Peternick 85
Presents state-level analyses of revenues and expenditures for the 1997-98 school year, using both unadjusted and costadjusted dollars.

Postsecondary Education

Persistence and Attainment of Beginning Students With Pell Grants
Christina Chang Wei and Laura Horn
Examines the academic and enrollment characteristics and persistence rates of first-time beginning students in 1995-96 who received a Pell Grant and compares them with beginning students who did not receive a Pell Grant.

Part-Time Instructional Faculty and Staff: Who They Are, What They Do, and What They Think Valerie Martin Conley and David W. Leslie \qquad
Presents characteristics of part-time faculty, compares parttime faculty and full-time faculty, and examines some of the common perceptions about part-time faculty.

Methodology

National Postsecondary Student Aid Study 1999-2000 (NPSAS:2000) Methodology Report
John A. Riccobono, Melissa B. Cominole, Peter H. Siegel,
Tim J. Gabel, Michael W. Link, and Lutz K. Berkner
Describes the methods and procedures used for the NPSAS:2000, which provides information on trends in financial aid and on the ways in which families pay for postsecondary education.

Classification of Instructional Programs: 2000 Edition National Center for Education Statistics109

Describes the methods, processes, and procedures used to develop the CIP:2000, the NCES taxonomy of instructional programs, and provides information on the CIP's structure, contents, and organization.

Data Products, Other Publications, and Funding Opportunities
 Data Products
 ECLS-K Longitudinal Kindergarten-First Grade Public-Use Data Files and Electronic Codebook
 115

Data File: CCD State Nonfiscal Survey of Public Elementary/Secondary Education: School Year 2000-01 116
Data File: Common Core of Data (CCD):
School Years 1996-97 Through 1999-2000 116
Data File: Public Libraries Survey: Fiscal Year 1999 116
National Household Education Surveys of 1991, 1993, 1995, 1996, and 1999: Data Files and Electronic Codebook 117
Other Publications
The Nation's Report Card: U.S. History
Highlights 2001
National Center for Education Statistics 117
Directory of Public Elementary and Secondary EducationAgencies: 1999-2000
Lena M. McDowell and John Sietsema 117
Findings From the Condition of Education 2001: Students Whose Parents Did Not Go to College
Susan P. Choy 118
Pocket Projections: Projections of Education
Statistics to 2011 William J. Hussar 118
Mini-Digest of Education Statistics 2001 Charlene Hoffman 118
Funding Opportunities
The AERA Grants Program 119
The NAEP Secondary Analysis Grant Program 120

Note From NCES

Jeffrey Owings, Associate Commissioner,
Elementary/Secondary and Libraries Studies Division

Longitudinal Studies at NCES

My career in the federal government began on a high note-I was offered a position that enabled me to work on the Longitudinal Studies Program at the National Center for Education Statistics (NCES). I was being given the opportunity to take an active role in helping to design studies that collected data from nationally representative samples of students over selected periods of time. This is where the action was at NCES-this is where I wanted to be.

Although my job description at NCES has changed several times in the past 22 yearsfrom education statistician to program officer to program director and, most recently, to associate commissioner-I am still closely associated with longitudinal studies. On a daily basis, I review questionnaires, examine participation rates, and make decisions that I hope will help NCES to produce user-friendly data sets that provide researchers with data that can be used to tell the stories of both those students who thrive in the education system and those who fail. There are also the stories of students who, judging by their home and academic background, are projected to fail, but instead choose a path that leads to success.

During my 22 years at NCES, I have been associated with four major longitudinal studies that follow students through high school into postsecondary education and/or the world of work. These are the

- National Longitudinal Study of the High School Class of 1972 (NLS:72)—a cohort of 12th-graders that was followed for 14 years;

■ High School and Beyond Longitudinal Study (HS\&B) —a cohort of 1980 high school sophomores and a cohort of 1980 high school seniors that were followed through the 1980s;

- National Education Longitudinal Study of 1988 (NELS:88)—a cohort of eighthgraders in 1988 that was followed through the year 2000; and
- Education Longitudinal Study of 2002 (ELS:2002)—a cohort of 10th-graders that will be followed between the years 2002 and 2014.

As can be seen from the above, NCES has been in the business of collecting longitudinal data from 1972 to the present. During this time period, data have been collected from students as well as from their parents, teachers, and school principals. Depending on the cohort, data have also been collected from extant records such as high school and postsecondary transcripts.

Unlike most cross-sectional studies, which have a limited life due to the age of the data collected, the usefulness of longitudinal studies for research is extended over time. In fact, longitudinal data can be used to conduct cross-sectional (single point in time), longitudinal (across time with the same individuals), or trend (between different cohorts) analyses. The story told in the featured article of this issue of the Education Statistics Quarterly-an excerpt from the NCES report Coming of Age in the 1990s: The Eighth-Grade Class of 1988 12 Years Later-is longitudinal-a cohort of eighth-graders from NELS:88 is examined in 1988 and then again in the year 2000. Because NELS:88 followed a group of eighth-graders for 12 years, it is possible to associate past events with later educational and occupational outcomes.

The members of this eighth-grade cohort were born at the end of the Vietnam War (1974), when handheld calculators were not used with great frequency and personal computers had just been invented. They grew up, though, in an era that experienced numerous changes in the fields of communication, technology, medicine, and transportation that influenced their day-to-day lives. They experienced explosive growth in the computer industry and participated in secondary and postsecondary education on the threshold of a new millennium dominated by personal computers. Given the rapidly paced society in which this cohort matured, some questions naturally arise: Have these individuals been prepared for the 21st century? How much education do they have? What occupations are they entering? Are they starting families? Coming of Age in the 1990s provides insight into these kinds of questions.

Over 12,000 eighth-graders were surveyed both in the base year (1988) and in the fourth follow-up (2000) of NELS:88. Their responses were coded and then analyzed. Using the findings of these analyses, a story has been told about their lives-both the successes and the failures. In telling such stories, longitudinal studies have an advantage over crosssectional studies because they provide both background and outcome variables. The background variables (e.g., family characteristics, eighth-grade courses) can be used to predict later outcomes such as college or career success. Background variables do not always work well as predictors, however. For example, there are always groups of students who succeed when background variables suggest a higher risk of failure. There are also groups of students who fail (e.g., drop out of high school) when advantaged backgrounds suggest more favorable outcomes. These kinds of stories (both predictable and nonpredictable) can be used by researchers, policymakers, schools, and parents to better inform decisions regarding the education experiences that are selected for our nation's youth. The featured article takes a first look at the year 2000 outcomes experienced by the eighth-grade class of 1988.

Featured Topic: National Education Longitudinal Study of 1988 (NELS:88)

```
Coming of Age in the 1990s: The Eighth-Grade Class of 1988 12 Years Later
    Steven J. Ingels, Thomas R. Curtin, Phillip Kaufman, Martha Naomi Alt,
    and Xianglei Chen7
Invited Commentary: Tracing Educational Trajectories Through Longitudinal
Studies
    Aaron M. Pallas, Professor of Sociology and Education,Teachers College,
    Columbia University14
Invited Commentary: Transitioning to Adulthood in a Turbulent Time
Samuel R. Lucas, Associate Professor of Sociology, University of CaliforniaBerkeley17
```

Steven J. Ingels, Thomas R. Curtin, Phillip Kaufman, Martha Naomi Alt, and Xianglei Chen

This article was originally published as the Executive Summary of the Statistical Analysis Report of the same name. The sample survey data are from the National Education Longitudinal Study of 1988 (NELS:88).

This report examines the eighth-grade cohort of 1988 in the year 2000. It presents findings from the fourth followup survey of the National Education Longitudinal Study of 1988 (NELS:88). This follow-up was conducted in 2000, the year when most eighth-grade cohort members turned 26 .

First surveyed in the spring term of the 1987-88 school year, the eighth-grade cohort provided information about its school experiences, as well as educational and occupational aspirations, and completed achievement tests in mathematics, reading, science, and social studies. The eighth-grade class of 1988 reported high educational aspirations. Some 66 percent planned to complete a bachelor's degree or
higher (Hafner et al. 1990). Parental expectations for their eighth-graders' higher education were also quite high. More than three-quarters of all parents (78 percent) expected their eighth-graders to attend college, and 58 percent expected them to finish (38 percent expected college graduation to be their eighth-graders' highest educational attainment while 20 percent expected their eighth-graders to earn a postbaccalaureate academic or professional degree) (Horn and West 1992). The 1988 eighth-grade class was surveyed again in four follow-ups: in 1990, 1992, 1994, and 2000. Data from the follow-up interview in 2000 permit us to see what this cohort had accomplished 12 years after the eighth-grade baseline survey.

In trying to understand the later outcomes of the eighthgrade class of 1988, it may be helpful to review some of the educational, societal, and economic trends and developments that helped to form the context in which members of this cohort developed and made choices. The period during which this cohort attended elementary, middle, and secondary school saw major initiatives of the American school reform movement, including raising of graduation requirements and mandating of student testing standards (Medrich, Brown, and Henke 1992). With the reauthorization of the Higher Education Act in 1992, the period after this cohort's graduation from high school benefited from high levels of support for students in postsecondary education (Berkner 1998), with increases in both grants and loans, but particularly the latter. Student loan volume more than doubled between 1990 and 2000, and the number of loans made annually doubled as well; the largest increases were in the period 1993-98 (American Council on Education 2001).

In addition to educational influences, various social and economic forces may have affected the cohort as well. Within the strong American economy of the 1990s, the rate of economic return to college degrees outpaced the return to high school diplomas (Boesel and Fredland 1999). New technologies, particularly developments in computing, also marked the American economy in the 12 years (19882000) between the first and the final interviews of this cohort.

The 2000 data were collected at a key stage of life transitions for the eighth-grade class of 1988-most had been out of high school for nearly 8 years. Many had already completed postsecondary education, started or even changed careers, and started to form families.

The report begins with a look at the cohort's high school completion status in 2000. It next examines its postsecondary attainment and experiences. It also reports on the cohort's labor market experiences as of 2000, including employment, occupational fields, job satisfaction, use of computers, job training, income, and receipt of public aid. Next, the report looks at the current activities of cohort members with varying degrees of educational attainmentthose with no postsecondary education, those with some postsecondary education, and those with a bachelor's or higher degree. Finally, the report examines the cohort's family formation (marital and parental status) and other activities (e.g., citizenship and community service activities, computer use, reading patterns).

High School Completion

By 2000, most members of the 1988 eighth-grade cohort (83 percent) had earned a high school diploma. An additional 9 percent had earned an alternative credential by passing the General Educational Development (GED) tests, and 8 percent had dropped out of high school and failed to complete by either method.

Among eighth-grade cohort members who had not completed high school by 2000, 14 percent reported that they were currently enrolled in school and working toward a high school diploma, GED, or attendance certificate. ${ }^{1}$ Earning a GED can open educational opportunities that dropouts largely lack, since most colleges and universities accept the GED as a basis for admission (National Center for Education Statistics 2000).

Cohort members from advantaged backgrounds (having high-socioeconomic status [SES] families, parents with bachelor's or higher degrees, mothers who expected them to graduate from college, and no dropout risk factors) were more likely than those from disadvantaged backgrounds (having low-SES families, parents who did not attend college, mothers who did not expect them to graduate from college, or one or more dropout risk factors ${ }^{2}$) to graduate from high school with a diploma, and less likely to complete high school with a GED or to drop out of high school.

High school completion rates at the time of the interview (early in 2000) were related to educational experiences before high school, in addition to personal and background characteristics. Cohort members who, in eighth grade, exhibited high mathematics achievement (i.e., scored in the highest quartile of the NELS:88 mathematics test), studied algebra, attended a private school, or participated in extracurricular activities were more likely to graduate from high school with a diploma and generally less likely to complete high school with a GED or to drop out than were their counterparts with different academic characteristics in eighth grade. Mathematics achievement in particular, as measured in eighth grade, was associated with the

[^0]likelihood both of earning a diploma and of not dropping out of high school.

Postsecondary Attainment and Experiences

By 2000, 8 years after most had graduated from high school, 29 percent of the 1988 eighth-grade cohort reported that they had attained a bachelor's degree or higher. Nearly 47 percent of the cohort reported that they had gained some postsecondary credits but had earned either no credential or one below a bachelor's degree (an associate's degree or certificate ${ }^{3}$). The remaining 24 percent of cohort members had not enrolled in any postsecondary education after high school.

This report examines the relationship between postsecondary attainment by 2000 and both background factors (specifically, sex, familial advantage or disadvantage, and race/ethnicity) and factors related to schooling at eighth grade. Consistent with sex differences noted in recent work (Clune, Nuñez, and Choy 2001), females in the 1988 eighth-grade cohort were more likely than males to report that they had earned a bachelor's or higher degree by 2000 and were less likely to report that they had not enrolled in postsecondary education. In addition, disadvantaged cohort members-those from low-SES families, whose parents did not have a college education, whose mothers did not expect them to complete college, or who had risk factors for dropping out of high school-were less likely than those without such characteristics to report that they had earned a bachelor's or higher degree and more likely to report that they had not enrolled in postsecondary education.

Among cohort members, Asians/Pacific Islanders had a higher postsecondary enrollment rate (95 percent) than Whites (77 percent), Blacks (77 percent), Hispanics (70 percent), American Indians/Alaska Natives (66 percent), and those with multiracial backgrounds (76 percent). ${ }^{4}$ Moreover, Asians/Pacific Islanders were more likely than any other racial/ethnic group in the cohort to indicate earning a bachelor's degree by 2000.

In addition to examining the relationship between postsecondary attainment by 2000 and 1988 eighth-grade background factors, this report also examines the relation-

[^1]ship between school experience at eighth grade and later postsecondary attainment. Cohort members who attended a private school, demonstrated high mathematics achievement, took an algebra course, or participated in extracurricular activities as eighth-graders reported higher postsecondary enrollment rates and bachelor's/higher degree attainment rates than did their counterparts who lacked these school experiences in eighth grade.

Labor Market Experiences

Employment

In spring 2000—a time of historically high employment rates in a rapidly growing economy-about 86 percent of the cohort were employed for pay in a full- or part-time job. High school graduates were more likely than their peers who had not obtained a high school diploma to be employed: 88 percent of high school graduates were employed for pay, whereas 78 percent of GED recipients and 79 percent of school dropouts were employed. In 2000, although the vast majority of cohort members of both sexes were employed, a larger proportion of males than of females were working- 92 percent versus 81 percent.

Occupational fields

Of 1988 eighth-grade cohort members working full- or parttime for pay in 2000, many were mechanics or laborers (22 percent); business and management workers (21 percent); or administrative, legal, or clerical support employees (17 percent). Females were more likely than males to be educators and to work in business/management; medical professions; administrative, legal, or clerical support; and service industries. Males were more likely than females to work as engineers, architects, or software professionals; computer scientists; researchers or scientists; and mechanics or laborers.

Educational attainment and skills were linked to the occupational sectors in which these young adults worked. For example, dropouts were more likely than high school graduates to be employed in low-skill jobs, such as laborers or mechanics. In addition, eighth-grade students exhibiting low mathematics achievement (those who scored in the lowest quartile of the NELS:88 mathematics test) were about three times more likely than high-achieving 1988 eighth-graders (those who scored in the highest quartile) to work as laborers or mechanics 12 years later. Conversely, high mathematics achievers were more likely than low achievers to be working in the following occupational fields in 2000: education; business and management; engineering, architecture, and software; computer science; editing,
writing, reporting, or performance art; and research, science, and technical fields.

Job satisfaction

Eighth-grade cohort members who were employed in 2000 were generally satisfied with most aspects of their jobs. While job satisfaction ${ }^{5}$ did not vary widely with cohort members' characteristics, it did vary with educational attainment. Job satisfaction increased as educational attainment increased. Moreover, satisfaction rates for several specific job aspects also generally increased with selfreported educational attainment: opportunities for further training, fringe benefits, job security, and promotion opportunities.

Use of computers on the job

The widespread adoption of computers in the workplace over the last decade or two has influenced work in many ways (Barton 2000; Mare 1995). In 2000, about 66 percent of employed 1988 eighth-grade cohort members reported using computers on the job "a lot." About half of employed cohort members reported using computers frequently in their jobs for e-mail (53 percent) and almost 50 percent for technical, spreadsheet, or data work. Some 46 percent reported using computers frequently for word processing. Women were more likely than men to frequently use computers at work at all, but men were more likely to frequently write software.

Computer use varied according to the worker's level of education. Cohort members with higher self-reported educational attainment were more likely to use a computer on the job for any task and to search the Internet, send e-mail, and use word processing software. Also, 1988 eighth-graders who reported earning a high school diploma by 2000 were about three times more likely than dropouts to frequently use a computer (72 percent vs. 23 percent) in their jobs; diploma earners were about twice as likely as their high school dropout counterparts to use computers frequently for most specific tasks.

Job training

An important measure of job quality is the training and opportunities for skill building that the employer supports. Some 61 percent of the 1988 eighth-grade cohort who were employed for pay in 2000 had received job training in the previous 12 months. Cohort members with more education were more likely to participate in such training. Cohort

[^2]members who had dropped out of high school were much less likely than those who reported having earned a high school diploma to have received job training in the last year (23 percent vs. 64 percent).

Income; receipt of public aid

The 1999 median income of cohort members working for pay was $\$ 24,500$. Consistent with research that shows high premiums for college completion in the 1980s and 1990s (Boesel and Fredland 1999, p. ix), income did vary by level of education for the cohort. Indeed, the income premium for having a bachelor's degree over having no postsecondary education was about 33 percent, a notable difference in median income even at this early stage of cohort members' careers.

Welfare payments and other forms of public aid provide support for people living in poverty, particularly for poor families with young children. A total of 3.4 percent of the 1988 eighth-grade cohort received some type of public aid in 1999, with most recipients (2.8 percent of the cohort) receiving food stamps. Cohort members who had earned high school diplomas were much less likely to be aid recipients (2 percent received any aid) than either GED completers or high school dropouts (about 11 percent for each group).

Current Work and Education Activities

Cohort members were engaged in a range of activities in 2000, notably working and continuing their education. About 70 percent were employed exclusively, another 16 percent were working while going to school, and 4 percent were enrolled exclusively (figure A). Thus, about 86 percent of cohort members were employed and 20 percent were enrolled in some type of postsecondary education. Others were keeping house full time, and some were between jobs.

Among the whole cohort, men were more likely than women to be working (regardless of their school enrollment status) and to be working and not enrolled in postsecondary education. Comparable proportions of both sexes (about 16-17 percent) were simultaneously enrolled and employed, while women were more likely to be engaged in neither activity.

The choices that people make in high school and young adulthood shape, and in some cases limit, the choices they make and options they have later in life. One of the most important decisions is whether to participate in further schooling after completing high school. This report

Figure A.-Percentage of 1988 eighth-graders involved in various work and schooling activities: 2000

NOTE: Detail may not add to totals due to rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education Longitudinal Study of 1988 (NELS:88/2000), Data Analysis System.
therefore examines the cohort's current activities by their postsecondary education status in 2000.

No postsecondary education

The primary activities occupying 1988 eighth-grade cohort members in 2000 depended to a large extent on their educational attainment. Among the 24 percent of cohort members who had not pursued any postsecondary education, most (82 percent) were employed: 75 percent had fulltime jobs and 13 percent had part-time jobs. ${ }^{6}$

Some postsecondary education

Almost half of the 1988 eighth-grade cohort members (46 percent) had some postsecondary education experience but had not earned a bachelor's degree by 2000 (the group includes completers of postsecondary certificates and associate's degrees). Of these cohort members, about 86 percent had jobs in 2000-64 percent were employed exclusively, and another 23 percent were combining work and school.

[^3]Whether cohort members started postsecondary schooling immediately after high school or after a delay, approximately the same percentages were working, going to school, or combining the two activities in 2000. Many cohort members with some education beyond high school expected (in 2000) to complete a bachelor's or higher degree by age 30 . While many in this group may be on track to achieve their educational ambitions, 60 percent of those who planned to earn a bachelor's degree by age 30, as well as 43 percent of those who expected to complete an advanced degree, were not enrolled in school in 2000, the year that most cohort members turned 26.

Bachelor's or higher degree

Of those members of the cohort who reported that they had finished at least a bachelor's degree (29 percent), 72 percent were employed but not enrolled in 2000, with males more likely than females to be in this category (74 percent vs. 69 percent). Among those with at least a bachelor's degree by 2000,53 percent planned to earn an advanced degree by the time they were 30 years old. Of those with only a bachelor's degree who expected to earn an advanced degree by age 30,37 percent were enrolled in a 2 - or 4 -year academic program.

Even among those who did not expect to earn a higher degree in the near term, some (8 percent of bachelor's degree holders and 16 percent of master's degree holders) were continuing their formal education-some studying a subject of interest, learning skills demanded in the labor market, or working on a doctorate or other degree that they did not expect to finish within approximately the next 4 years. The vast majority of those who had met their educational goals for age 30 were exclusively employed in 2000: 88 percent of those with a bachelor's degree and no further educational expectations were working but not enrolled.

All postsecondary education levels

In sum, those cohort members who had completed at least a bachelor's degree and those who had not enrolled in postsecondary education at all were the most apt to be working exclusively. Cohort members who had some postsecondary education but no bachelor's degree were more likely than their counterparts with a bachelor's or higher degree to be combining work and study.

Family Formation Activities

Marital status

Overall, 53 percent of 1988 eighth-grade cohort members were single (had never married) in 2000, and another 39 percent were currently married. (Some 5 percent were divorced, 2 percent separated, and about 1 percent living in a marriage-like relationship.) Approximately 60 percent of male cohort members were single, compared with 46 percent of females. Not surprising, then, is the finding that women were more likely to be married in 2000: 45 percent of the women and 34 percent of the men were currently married.

Cohort members from advantaged backgrounds (those having high-SES families, parents with bachelor's or higher degrees, and mothers who expected them to complete college) were in general more likely to be single in their mid-twenties than those who were less advantaged, probably as a result of pursuing postsecondary education at higher rates. Roughly two-thirds of 1988 eighth-grade cohort members with a bachelor's or higher degree were single in 2000 (66 percent of those with a bachelor's degree and 67 percent of those with a master's degree or higher), compared with one-half (52 percent) of those with some postsecondary education (but no bachelor's or higher degree) and 39 percent of those who had not gone to college.

Parental status

With the increase of postsecondary educational aspirations (Green, Dugoni, and Ingels 1995) and attainment (National Center for Education Statistics 2001) in recent years, especially among women, many women have postponed childbearing (Kalb 2001). While 59 percent of the 1988 eighth-grade cohort had no children in 2000, among those who did, 31 percent were not married- 41 percent of mothers and 17 percent of fathers were raising their offspring without a spouse. Women were more likely than men to have one or two children and less likely to have no children in 2000

Whether and how cohort members finished high school was associated with whether they had any children by 2000. While 22 percent of high school dropouts and 34 percent of GED holders had no children, 66 percent of high school graduates had no children in 2000. Moreover, among the parents in the cohort, 48 percent of GED holders, 37 percent of high school dropouts, and 27 percent of high school graduates were single parents. ${ }^{7}$ Those who had no risk factors ${ }^{8}$ at eighth grade for later dropping out of high school were more likely to be childless than those with one or more risk factors. For example, 68 percent of those with no risk factors were not parents in 2000, compared with 32 percent of those with three or more risk factors.

Civic and Leisure Activities

Among the public goals of education are fostering good citizenship skills and developing civic values and participation. In turn, educational attainment is associated with more active and effective citizenship (Nie, Junn, and Stehlik-Barry 1996). Thus, one benefit of formal education is developing citizens who are more fully integrated and active in their communities.

Among the 1988 eighth-grade cohort as a whole, participating in political campaigns was much less common (4 percent) than volunteer work for youth organizations or civic/ community organizations (19 percent and 22 percent, respectively). The likelihood of volunteering for either youth or civic/community organizations increased with the level of postsecondary education attained.

[^4]The NELS:88 interview in 2000 also elicited information about reading habits, home use of computers, and informational uses of the Internet. Members of the eighth-grade cohort who were high school dropouts were less likely than those who graduated from high school to read books at home at least 3 days a week in 2000. Furthermore, the likelihood of, first, using computers at home, and second, searching the Internet for information, increased with cohort members' level of postsecondary attainment.

Further Research

This report examines the status of the 1988 eighth-grade cohort 12 years later, enabling us to see what cohort members had accomplished and done with their lives by 2000. The analyses here touch on the major areas of information collected in 2000. While these analyses describe the current status of the cohort and map some of the paths cohort members have followed, they do not utilize data from the intermediate points in time (data collected in 1990, 1992, and 1994) that would help identify the factors that acted as obstacles or sources of assistance to members of the 1988 eighth-grade class in realizing their goals. This report therefore also presents suggestions for further research using the NELS:88 data, now that information from the 2000 interview has become available.

References

American Council on Education. (2001). Issue Brief: Student Borrowing in the 1990s. Center for Policy Analysis, American Council on Education. Washington, DC: Author.
Barton, P.E. (2000). What Jobs Require: Literacy, Education, and Training, 1940-2006. Princeton, NJ: Educational Testing Service.
Berkner, L. (1998). Student Financing of Undergraduate Education: 1995-96 (NCES 98-076). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
Boesel, D., and Fredland, E. (1999). College for All?: Is There Too Much Emphasis on Getting a 4-Year College Degree? (NLE 19992024). U.S. Department of Education, National Library of Education. Washington, DC: U.S. Government Printing Office.
Clune, M.S., Nunez, A.M., and Choy, S.P. (2001). Competing Choices: Men's and Women's Paths After Earning a Bachelor's Degree (NCES 2001-154). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Green, P.J., Dugoni, B.L., and Ingels, S.J. (1995). Trends Among High School Seniors, 1972-1992 (NCES 95-380). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
Hafner, A., Ingels, S.J., Schneider, B., and Stevenson, D.L. (1990). A Profile of the American Eighth Grader (NCES 90-456). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Horn, L., and West, J. (1992). A Profile of Parents of Eighth Graders (NCES 92-488). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
Kalb, C. (2001, August 13). Should You Have Your Baby Now? Newsweek.
Mare, R.D. (1995). Changes in Educational Attainment and School Enrollment. In R. Farley (Ed.), State of the Union: America in the 1990s (Vol. 1: Economic Trends). New York: Russell Sage Foundation.

Medrich, E.A., Brown, C.L., and Henke, R. (1992). Overview and Inventory of State Requirements for School Coursework and Attendance (NCES 92-663). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
National Center for Education Statistics. (2000). The Condition of Education 2000 (NCES 2000-062). Washington, DC: U.S. Government Printing Office.
National Center for Education Statistics. (2001). The Condition of Education 2001 (NCES 2001-072). Washington, DC: U.S. Government Printing Office.
Nie, N.H., Junn, J., and Stehlik-Barry, K. (1996). Education and Democratic Citizenship in America. Chicago: University of Chicago Press.

[^5]
Invited Commentary: Tracing Educational Trajectories Through Longitudinal Studies

Aaron M. Pallas, Professor of Sociology and Education, Teachers College, Columbia University

This commentary represents the opinions of the author and does not necessarily reflect the views of the National Center for Education Statistics.

The release of the fourth follow-up to the National Education Longitudinal Study of 1988 (NELS:88) serves as a vivid reminder of the importance of the Longitudinal Studies Program of the National Center for Education Statistics (NCES). Over the past four decades, this series of studies has done more to chart the educational and social trajectories of America's youth than any other federal resource. The Education Longitudinal Study of 2002 (ELS:2002), which surveyed 10th-graders in the spring of 2002, promises to continue this trend, informing researchers, policymakers, and the public about the shifting landscape of the American education system and the implications of this landscape for individual lives and careers.

Coming of Age in the 1990s: The Eighth-Grade Class of 1988 12 Years Later examines the findings of the fourth follow-up to NELS:88. The primary message of this statistical analysis report is that "the rich get richer." There are many varieties of riches, but here I refer specifically to the socioeconomic status of eighth-graders' families and to eighth-grade mathematics achievement. The social advantages enjoyed by some eighth-graders translate into higher rates of high school completion, postsecondary attendance, and educational attainment. In turn, the higher postsecondary attainments of advantaged eighth-graders lead to careers in which computers are used frequently and that offer more job training.

Similarly, those youth with higher mathematics achievement in eighth grade are more likely to complete high school and go on to obtain a bachelor's or higher degree. They too are much more likely to use computers frequently on the job-particularly for technical, spreadsheet, or data work, for word-processing, or to send e-mail-and to receive on-the job training. And by age 25 , students who had been in the highest quartile in mathematics achievement in the eighth grade in 1988 were earning 23 percent more per year in 1999 than students who had been in the lowest quartile. Over time this gap may widen, and of course the cumulative gap in earnings rises sharply over the years.

Whether this pattern of cumulating advantages and disadvantages is good public policy is a very complex question, and individuals' judgments about this question often depend on whether they see themselves as advantaged or disadvantaged. In many cases there are competing explanations of how these patterns of academic and social advantage and disadvantage emerge. One of the great strengths of the fourth follow-up to NELS:88 is that it provides a new vantage point for exploring these explanations. Much has happened in the lives of these eighth-graders since they were initially surveyed in 1988, and many of the events that we associate with the transition to adulthood-completing full-time schooling, beginning a regular job, and forming a family-occurred between 1994, the timing of the third follow-up to NELS:88, and 2000, the date of this most recent (and possibly final) snapshot of the accomplishments of this cohort. Our ability to comprehend this transition, and what it says about the process that guides educational and occupational success, would have been severely compromised if our last contact had been in 1994, when many of the youth in this cohort were but 20 years old.

If we are likely to learn so much from studying the young adult years of ages 20 to 26 , why stop there? Might we not learn as much from further follow-ups? Long-term followups of the 8th-, 10th- and 12th-grade cohorts surveyed in the NCES Longitudinal Studies Program have always seemed to be afterthoughts-luxuries rather than necessities. I can posit several reasons why this might be so. First, the Longitudinal Studies Program has not had adequate financial or political support nor has it captured the policy interests of other NCES periodic surveys. Second, there always seems to be more public and political interest in this year's crop of students than in the ongoing accomplishments of some older group of students. Third, in the early years of the Longitudinal Studies Program, there was a consensus that much of the action took place in high school, with the subsequent experiences and accomplishments of youth simply a straightforward extrapolation of the sorting and selecting that took place in the secondary school years.

The design of NELS:88 reflected a growing interest in the middle grades. But the sampling of eighth-graders in the base year of the study produced logistical nightmares, as many more students changed schools between the base year and first follow-up than could have been anticipated on the basis of the National Longitudinal Study of the High School Class of 1972 or the High School and Beyond studies. The return of ELS:2002 to a cohort of 10th-graders reflects the high cost of tracing and resurveying highly mobile students. It is, I trust, a decision driven more by budgetary realities than by a dismissal of the importance of the middle years of $\mathrm{K}-12$ education.

Policymakers remain focused on elementary and secondary schooling. It is at these levels that the United States has what can best be described as a system of public (and private) education, and age-graded compulsory schooling laws make clear that the state's commitment to educating the young does not yet extend beyond high school. One would be hard-pressed to characterize postsecondary education as a system, given the tremendous variety of postsecondary institutions and the limited oversight offered by the federal government and the states. There is much more consensus on what all students should learn in elementary and secondary school than there is regarding the curricular content of postsecondary schooling. Consequently, policymakers gravitate toward issues that seem amenable to government intervention, and K-12 schooling seems much more tractable than the jumbled world of higher education. It seems only natural that NCES would respond in kind.

The results from the fourth follow-up to NELS:88 tell a different story, however. They point to an important shift in the careers of America's youth. Three-quarters of the members of the eighth-grade cohort of 1988 had participated in postsecondary education by the year 2000 (roughly by age 26), and nearly one-half of the cohort reported some postsecondary schooling, but no bachelor's degree. Some fraction of these youth are likely en route to a bachelor's degree, but many of them have histories of intermittent, part-time enrollment that may not culminate in any postsecondary credential at all. Nearly two-thirds of the 1988 eighth-graders who participated in postsecondary education transferred credits, and one in nine attended more than one institution at the same time. In the year 2000, 80 percent of those still enrolled in postsecondary education were working for pay at the same time.

What these data suggest is greater complexity in the individual trajectories, or careers, that characterize the movement from adolescence to adulthood. We know rather little about the lives and careers of this emerging group of postsecondary enrollees. They are schooled, but are they skilled? The social and economic drawbacks associated with dropping out of high school are well known, and the advantages of completing a bachelor's degree are equally clear. It is the expanding group in the middle that remains a mystery; some fly under the radar of statistical surveys such as the Baccalaureate and Beyond Longitudinal Study, while those in the Beginning Postsecondary Students Longitudinal Study lack some of the information about prior educational experiences needed to place their postsecondary schooling in appropriate context.

Education has become a recurring activity in the lives of American adults. Data from the Adult Education Survey of the National Household Education Surveys Program show that nearly one-half of all adults participated in some form of adult education in 1999. This represents a substantial increase from 1991, when approximately one in three adults participated in adult education. The rates are particularly high for 25- to 34 -year-olds, 60 percent of whom reported participation in adult education. But they are not much lower for 35- to 54-year-olds, of whom roughly 50 percent participated in some form of adult education (Creighton and Hudson 2002).

Understanding the role that schooling now plays in the lives of American adults may require a more expansive view than previous follow-ups in the Longitudinal Studies Program have provided. It is a truism in social research that the timing of the observations of a phenomenon of interest should be synchronized with changes in that phenomenon. Things that change quickly must be observed more frequently; things that do not change over long stretches of time need not be observed so often. Whereas it was once safe to assume that leaving school had a sense of finality about it, nowadays movement in and out of the education system—both formal and informal—occurs frequently, and over long stretches of time. If so many young adults are participating in adult education, our understanding of the antecedents and consequences of such participation might benefit from continuing follow-ups of the NELS:88 cohort and of future cohorts such as the high school sophomores sampled in ELS:2002.

Coming of Age in the 1990s also points to the importance of interinstitutional linkages-the linkages between secondary education and postsecondary education, education and work, and education and the family. These linkages have always been a bit of a blind spot for NCES. The Longitudinal Studies Program has devised a series of studies of individuals, not of social institutions. With the exception of the secondary school as a context, most of the available data on institutional contexts for learning and human development stem from respondents' self-reports. Such self-reports are necessarily incomplete representations of complex institutions such as work and family.

We learn from the report, for example, that NELS:88 cohort members who had received no postsecondary education by the year 2000 are substantially less likely than their peers with some postsecondary education or a bachelor's degree to have received job training in the previous 12 months. But we have few tools for explaining this variant of the "rich get richer" story. Do those with less education choose to pursue job training less often than those with more education, or do firms systematically cultivate the talents of their more educated employees? Absent heroic efforts to gather independent information on employers (e.g., firm personnel policies) and link the data to the individual NELS:88 respondents, the study design does not allow us to adjudicate between these two possibilities.

Recent theorizing in studies of education and the life course has placed the opportunity structure in the foreground and individual decisionmaking in the background. Considering both individual agency and social structure, however, provides a more complete accounting of coming of age than focusing on one to the exclusion of the other. Longitudinal studies such as NELS:88 have been quite successful at documenting the choices that individuals make; they have been less so at illuminating the structural constraints on choice that are represented in interinstitutional linkages. This can best be remedied by gathering more data on the institutional contexts in which individuals act.

It's easy to sit on the sidelines and take potshots at complex studies; it's a wonder that it doesn't happen more often. But I would not want my suggestions for enhancing the utility of the follow-ups of NELS:88 and the new ELS:2002 study to detract from my overall assessment that these studies are a sound investment in understanding contemporary American life. By illuminating the important role of secondary and postsecondary schooling in creating productive adult members of society, the Longitudinal Studies Program of NCES continues to inform public debate about quality and inequality in American education.

Reference

Creighton, S., and Hudson, L. (2002). Participation Trends and Patterns in Adult Education: 1991 to 1999 (NCES 2002-119). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Invited Commentary: Transitioning to Adulthood in a Turbulent Time
 Samuel R. Lucas, Associate Professor of Sociology, University of CaliforniaBerkeley

This commentary represents the opinions of the author and does not necessarily reflect the views of the National Center for Education Statistics.

Coming of Age in the 1990s: The Eighth-Grade Class of 1988 12 Years Later provides a comprehensive snapshot of the educational, socioeconomic, familial, and communal experiences of a cohort of 1988 eighth-graders during a period of great national and international economic transformation. To do so, the authors of the report use base-year data from the National Education Longitudinal Study of 1988 (NELS:88) and data from its fourth follow-up, conducted in 2000. The authors use the base-year data to allocate students to different categories and to describe how students who occupied different categories earlier in their educational careers fared in the transition to adulthood. With the 2000 data, they show the overall proportion of students who have followed different paths, reached particular milestones, and more. In short, this snapshot provides important information that policymakers, researchers, educational practitioners, employers, and others need to know.

Were that all, the volume would be a must-read for key actors in society. Yet, at the same time, the authors, with the assistance of Jeffrey Owings and others at NCES, adroitly place this cohort in the context of the changes that have occurred during the cohort's transition from childhood to adulthood. It is easy to forget just how much has changed in the last quarter century. Throughout the volume, the authors remind the reader of the changing context the cohort encountered as it reached key points of transition. Indeed, figure 1 from the report concisely and effectively conveys the diverse and dramatic changes that have occurred since cohort members were born.

Findings of Change and Stability

Amidst such change we should not be surprised to find changes in cohort members' experiences as well, but the question, of course, is in what ways did their experiences become affected. For example, one of the most far-ranging transformations of the period was the diffusion of computing technology through virtually all sectors of the economy. This diffusion is reflected by the high proportion of cohort members (over two-thirds) who used a computer at work in 2000. Although use of a computer at work varied by socioeconomic background, nearly half of those from the lowest socioeconomic status (SES) quartile, two-thirds of those from the middle-SES quartiles, and nearly four-fifths
of those from the highest-SES quartile used a computer at work. Although this socioeconomic gradient is noteworthy, interestingly, some high-level uses (e.g., writing software) showed no differences by socioeconomic background. Hence, by any measure, computers have transformed the workplaces this cohort occupies. The spread of computer technology is just one example of the dramatic changes that have rolled through society since the mid-1970s. Coming of Age in the 1990s does an excellent job of keeping the reader aware of how such changes may make a difference.

Amidst such change, however, there are some notable stabilities. Socioeconomic gaps remain substantial in many respects. For example, we learn that nearly 60 percent of students from the highest-SES quartile obtained a bachelor's or higher degree in 2000. In contrast, only 24 percent of students in the middle quartiles obtained a bachelor's or higher degree. Note that these students in the middle quartiles arguably come from middle-class backgrounds. What they are not is the upper middle class, a colloquial term used often in the United States, perhaps to avoid acknowledging that if some are in the middle, then some must be on top. But it is clear that the highest-SES students have markedly better degree attainment prospects than do the middle-SES students. In the same way, the students in the middle-SES quartiles fare far better than those in the lowest-SES quartile; only 7 percent of students from the lowest-SES quartile obtained bachelor's or higher degrees in 2000. In other words, and put crudely, the middle-SES students did about three times better than the lowest-SES students in attaining degrees, and the highest-SES students did about 2.5 times better than the middle-SES students in attaining degrees. In sum, socioeconomic differentials are extremely large.

This is an important set of findings to put before the public, and Coming of Age in the 1990s accomplishes that important task. Further research will be needed to ascertain what these socioeconomic-linked differences mean. If these and other socioeconomic differences are large enough, consistent enough, and robust enough, they may support the theory of effectively maintained inequality (EMI) (Lucas 2001). EMI contends that when there are quantitative differences in a good, the socioeconomically advantaged will use their resources to obtain more of the good. An example of a

AVERAGE SAMPLE MEMBER AGE

quantitative difference might be years of schooling; under EMI, we would expect those of advantaged socioeconomic backgrounds to obtain more schooling. And EMI contends that when there are qualitative differences in the good, the socioeconomically advantaged will use their resources to obtain what is qualitatively better. An example of a qualitative difference is provided by tracking: empirical research indicates that students in different educational locations will be exposed to qualitatively different instruction (e.g., Gamoran 1993). We would expect the socioeconomically advantaged to use their resources to obtain the qualitatively better locations, in this case, college preparatory placements in secondary school. Ethnographic evidence is consistent with this expectation (e.g., Useem 1992).

Owing to the ability to trade qualitatively better goods for quantitatively more goods down the road, these processes serve to effectively maintain inequality, perhaps even when access to a good is equalized. Once access to a good is equalized (e.g., access to high school), the socioeconomically advantaged seek out and obtain qualitatively better goods at that level. And those qualitative advantages can be "cashed in" for more of other goods later. In studying the role of socioeconomic background on educational attainment, EMI helped to interpret changes in the effect of socioeconomic background in making several transitions through secondary school on through college entry. This work was done using the High School and Beyond cohort (Lucas 2001). The same kind of process may also be operating in the more recent cohort of 1988 eighth-graders. Whether EMI or some other explanation makes sense of the astounding gross socioeconomic differentials remains for future analysis to discover, but it is clear that the socioeconomic differentials shown in Coming of Age in the 1990s cry out for both continuing analysis and, more important, a policy response.

Regrettable Limitations of Coming of Age in the 1990s

The foregoing should make clear that Coming of Age in the 1990s is an indispensable volume, and nothing below alters that assessment. Yet it is not all that it could be, nor all that the wider public might need it to be, because of several factors. The analysis is very effective at showing how the changing context must be considered in interpreting the attainments of the cohort. In the same way, the youth-toadult transition has several key moments, which are, in principle, available, due to the longitudinal design of NELS:88. It would have been helpful to see whether a key interim moment, picked up in earlier waves of data collec-
tion, played a big role in the attainments observed in 2000. But this might have been very difficult to do, in part because of the very complexity of the NELS:88 data set. Not only were there several waves of data, with some unavoidable attrition owing to the longitudinal design, but earlier waves were subsampled (to contain cost) and freshened, to make the sample nationally representative at different grades. This subsampling and freshening greatly complicates efforts to use more than two waves in any analysis. The complications arise because the set of cases common across more than two waves may not generalize to any easily identifiable population. Perhaps one reason the snapshot contains only two waves of data is that analyzing more than two waves is just too difficult and too complicated, even for those most closely connected to the data collection. If so, it will be important for future data collection to be designed so that future cohorts to be studied will allow analysts to combine the waves so as to sketch the unfolding experiences of the cohorts in a straightforward way.

A second reason Coming of Age in the 1990s cannot be all the wider public needs it to be is that a wave of data collection would need to be conducted in 2004 or 2005 to answer many questions posed in the base year. In earlier waves, students and young adults often were asked about their plans and expectations. Students were asked to think about a time far into the future-age 30 . For 14 -year-olds, such a far-off time - a time further away from them than their own infancy-may be difficult to concretely assess. Yet it was the time frame for which expectations and aspirations were ascertained, and it is a reasonable age to select. The 2000 wave, however, assessed the accomplishments and life-course transitions of young adults at a modal age of 26. If we learn anything from Coming of Age in the 1990s, it is that the transitions between ages 14 and 26 were a complex affair for many members of the cohort. The fact that we see that complexity with only two waves of data collection is testimony to the strength of the report. Had the authors analyzed additional intermediate waves, their analysis would only reveal even more complexity.

However, the analytic implication of the complexity is that it is unlikely that one can ascertain whether members of the cohort met the aspirations they set for themselves when in middle school by considering their achievements 4 years before the "deadline" for the realization of those aspirations. Instead, another wave of data collection, measuring accomplishments and attitudes at a modal age of 30, is essential. Absent such a data collection effort, Coming of Age in
the 1990s will be our last look at this pivotal cohort. Unfortunately, with that last look, many of the questions that motivated the original investment will remain unanswered. That is not the fault of the authors of the report, but it remains a regrettable circumstance nevertheless.

Concluding Remarks

Coming of Age in the 1990s is an essential volume. It draws on data akin to the Census Bureau's decadal effort to provide a snapshot of the geographic, familial, and socioeconomic location of the nation's inhabitants, with the added complication of connecting observed respondents to "prior" locations. The report is on a par with State of the Union: America in the 1990s—a two-volume analysis of 1990 Census data, a work prepared by more than a dozen analysts across the country-in its scope and depth (Farley 1995). Coming of Age in the 1990s is an illuminating efforta success. Clearly, before proposing any policy or engaging in any analysis, it will be necessary to check this report to
determine what the general tendency has been; whether that tendency varies by important factors such as prior achievement, geographic location, or socioeconomic status; and to locate the experience of youth in the dramatically changing national and international context.

References

Farley, R (Ed.). (1995). State of the Union: America in the 1990s: Vol. 1: Economic Trends. New York: Russell Sage Foundation.
Farley, R. (Ed.). (1995). State of the Union: America in the 1990s: Vol. 2: Social Trends. New York: Russell Sage Foundation.
Gamoran, A. (1993). Alternative Uses of Ability-Grouping in Secondary Schools: Can We Bring High-Quality Instruction to Low-Ability Classes? American Journal of Education, 102: 1-22.
Lucas, S.R. (2001). Effectively Maintained Inequality: Education Transitions, Track Mobility, and Social Background Effects. American Journal of Sociology, 106: 1642-1690.
Useem, E. (1992). Middle Schools and Math Groups: Parents' Involvement in Children's Placement. Sociology of Education, 65: 263-279.

Elementary and Secondary Education

The Nation's Report Card: U.S. History 2001
Michael S. Lapp, Wendy S. Grigg, and Brenda S.-H. Tay-Lim 21
Beyond School-Level Internet Access: Support for Instructional Use of Technology
Lawrence Lanahan 35
Arts Education in Public Elementary and Secondary Schools: 1999-2000
Nancy Carey, Brian Kleiner, Rebecca Porch, and Elizabeth Farris 39
Early Estimates of Public Elementary and Secondary Education Statistics:
School Year 2001-02
Lena M. McDowell and Frank Johnson 44
Public High School Dropouts and Completers From the Common Core of Data: School Years 1991-92 Through 1997-98 Beth Aronstamm Young and Lee Hoffman 53
Public School Student, Staff, and Graduate Counts by State:School Year 2000-01
Beth Aronstamm Young 58
Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1999-2000
Frank Johnson 75
Financing Elementary and Secondary Education in the States: 1997-98
Joel D. Sherman, Elizabeth Rowe, and Lauri Peternick 85

This article was excerpted from The Nation's Report Card: U.S. History Highlights 2001, a tabloid-style publication that summarizes the complete report. The sample survey data are from the National Assessment of Educational Progress (NAEP) 1994 and 2001 U.S. History Assessments.

Introduction

The National Assessment of Educational Progress (NAEP) is the nation's only ongoing representative sample survey of student achievement in core subject areas. Authorized by Congress, administered by the National Center for Education Statistics (NCES) in the U.S. Department of Education, and overseen by the National Assessment Governing Board
(NAGB), NAEP regularly reports to the public on the educational progress of students in grades 4, 8, and 12 .

In 2001, NAEP conducted a national U.S. history assessment of fourth-, eighth-, and twelfth-grade students. The report summarized in this article presents the results of the NAEP 2001 U.S. History Assessment for the nation, along
with several sample questions and student responses from the assessment. Results in 2001 are compared to results in 1994, the next most recent year in which NAEP conducted a U.S. history assessment and the only other assessment year in which the test questions were based on the current framework.

NAEP U.S. history framework

The NAEP U.S. history framework that describes the content for both the 1994 and 2001 assessments was developed through a national consensus process and adopted by NAGB. The framework identifies eight historical periods and four central themes that were the basis for developing the test questions. The four central themes are

1. Change and Continuity in American Democracy: Ideas, Institutions, Practices, and Controversies;
2. The Gathering and Interactions of Peoples, Cultures, and Ideas;
3. Economic and Technological Changes and Their Relation to Society, Ideas, and the Environment; and
4. The Changing Role of America in the World.

The complete framework is available at the NAGB Web Site at http://www.nagb.org.

Scale scores and achievement levels

Students' performance on the assessment is described in terms of average scores on a $0-500$ scale and in terms of the percentage of students attaining three achievement levels: Basic, Proficient, and Advanced. The achievement levels are performance standards adopted by NAGB as part of its statutory responsibilities. They are collective judgments of what students should know and be able to do.

- Basic denotes partial mastery of prerequisite knowledge and skills that are fundamental for proficient work at each grade.
- Proficient represents solid academic performance for each grade assessed. Students reaching this level have demonstrated competency over challenging subject matter, including subject-matter knowledge, application of such knowledge to real-world situations, and analytical skills appropriate to the subject matter.
- Advanced signifies superior performance.

As provided by law, the Deputy Commissioner of Education Statistics, upon review of a congressionally mandated evaluation of NAEP, has determined that the achievement levels are to be used on a trial basis and should be interpreted and used with caution. However, both the Deputy

Commissioner and NAGB believe these performance standards are useful for understanding trends in student achievement. They have been widely used by national and state officials, including the National Education Goals Panel, as a common yardstick of academic performance.

In addition to providing average scores and achievementlevel performance in U.S. history for the nation's fourth-, eighth-, and twelfth-graders, the report provides results for subgroups of students at those grade levels defined by various background and contextual characteristics.

Accommodations and samples

The results in this article are based on a national sample that included special-needs students; however, no testing accommodations were offered to these students. As a consequence, a small percentage of sampled students were excluded from the assessment because they could not be tested meaningfully without accommodations. No testing accommodations were offered in 1994 or 2001 so that results from the two assessment years could be compared. However, a second set of 2001 results is available that is based on a sample for which accommodations were provided. This second set of results is presented in the full report and on the NAEP Web Site at http://nces.ed.gov/nationsreportcard. In addition, the percentage of students excluded from both samples is provided.

Major Findings

Improvements seen in NAEP 2001 U.S. history results at grades 4 and 8
Results for the NAEP 2001 U.S. History Assessment show that the average scores of fourth- and eighth-grade students have improved since 1994 (figure A). The average score of twelfth-grade students, however, has not changed significantly.

Gains seen in fourth- and eighth-graders' 2001 achievement-level performance

The 2001 U.S. history assessment results show some changes since 1994 in the percentages of students at or above the NAEP achievement levels (figure B). At grade 4, the percentage of students performing at or above Basic increased between 1994 and 2001, although there were no changes in the percentages of students performing at or above Proficient and at Advanced. At grade 8, there were increases in the percentages of students at or above Basic and Proficient, as well as at Advanced. At grade 12, however, the percentages performing at or above each level in 2001 were not statistically different from 1994.

Figure A.-Average U.S.history scale scores, grades 4, 8, and 12: 1994 and 2001

*Significantly different from 1994.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1994 and 2001 U.S. History Assessments. (Previously published on p. 1 of The Nation's Report Card: U.S. History Highlights 2001.)

Gains made by lower-performing fourth-graders and lower- and higher-performing eighth-graders

Looking at how scores changed across the performance distribution clarifies the source of the improvement in the average national score at grades 4 and 8 . An examination of scores at different percentiles on the 0-500 U.S. history scale at each grade indicates whether or not the changes seen in the national average score results are reflected in the performance of lower-, middle-, and higher-performing students. The percentile indicates the percentage of students whose scores fell below a particular average score. In 2001, for example, 25 percent of fourth-graders scored at or below 186 .

As shown in figure C, there were some changes between 1994 and 2001 at various points in the score distribution for fourth- and eighth-graders, but no significant changes for twelfth-graders. At grade 4, score increases between 1994 and 2001 at the 10th and 25th percentiles indicate an improvement for lower-performing students. At grade 8, increases were seen across a wider distribution, with improvements from 1994 to 2001 seen for both lower-
performing students (25th percentile) and higher-performing students (75th and 90th percentiles). At grade 12, performance across the score distribution in 2001 was not statistically different from 1994-a finding that reflects the results seen in the overall national average score at this grade.

Results for Student Subgroups

In addition to reporting information on all students' performance on its assessments, NAEP also studies the performance of various subgroups of students. The U.S. history achievement of subgroups of students in 2001 reveals whether they have progressed since 1994, as well as how they performed in comparison to other subgroups in 2001.

When reading these subgroup results, it is important to keep in mind that there is no simple, cause-and-effect relationship between membership in a subgroup and achievement on NAEP. A complex mix of educational and socioeconomic factors may interact to affect student performance.

Figure B.-Percentage of students within and at or above achievement levels, grades 4, 8, and 12: 1994 and 2001

*Significantly different from 1994.
NOTE: Percentages within each U.S. history achievement-level range may not add to 100 , or to the exact percentages at or above achievement levels, due to rounding.
HOW TO READ THIS FIGURE:

- The italicized percentages to the right of the shaded bars represent the percentages of students at or above Basic and Proficient.
- The percentages in the shaded bars represent the percentages of students within each achievement level.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1994 and 2001 U.S. History Assessments. (Previously published on p. 2 of The Nation's Report Card: U.S. History Highlights 2001.)

Figure C.-Scale score percentiles, grades 4,8, and 12: 1994 and 2001

*Significantly different from 1994.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1994 and 2001 U.S. History Assessments. (Previously published on p. 3 of The Nation's Report Card: U.S. History Highlights 2001.)

Average U.S. history scores by gender

At grade 4, both male and female students had higher average scores in 2001 than in 1994, while at grade 8 only males showed a statistically significant gain in 2001 over 1994. At grade 12, neither male nor female students showed a significant change from 1994 to 2001. At all three grades in 2001, there was no statistically significant difference between the performance of males and females.

Achievement-level results by gender

Comparing the 1994 and 2001 achievement-level results for males and females shows that at grades 4 and 12 there have been no statistically significant increases or decreases since 1994. At grade 8, however, the percentages of male students at or above Basic and at or above Proficient were higher in 2001 than in 1994.

A comparison of the differences in the percentages of male and female students at or above the Basic and Proficient levels in 2001 shows no significant differences at grade 4, a higher percentage of males than females at or above

Proficient at grade 8, and a higher percentage of males than females at or above Basic at grade 12.

Average U.S. history scores by race/ethnicity

Students who took the NAEP U.S. history assessment were asked to indicate which of the following racial/ethnic subgroups best described them: White, Black, Hispanic, Asian/Pacific Islander, or American Indian (including Alaska Native). Average U.S. history scores were reported for students in these subgroups at grades 4,8 , and 12 in 1994 and 2001.

At grade 4, both White and Black students had higher average scores in 2001 than in 1994, while apparent gains for other groups of students were not statistically significant. At grade 8, White students scored higher in 2001 than in 1994, and at grade 12, Hispanic students had higher average scores than in 1994.

The 2001 results show a continuing pattern of average score differences between the racial/ethnic subgroups. At all three
grades, White students had higher average scores than their Black, Hispanic, and American Indian peers; and Asian/ Pacific Islander students had higher average scores than Black and Hispanic students. White fourth-grade students also had higher average scores than Asian/Pacific Islander fourth-graders.

Average U.S. history score gaps between selected racial/ ethnic subgroups

Average score differences in 1994 and 2001 between White students and Black students and between White students and Hispanic students are presented in figure D. Results from the 2001 U.S. history assessment reflect a narrowing of the score gap between White students and Black students at grade 4, and between White students and Hispanic students at grade 12 .

Achievement-level results by race/ethnicity

While there have been some gains in U.S. history achievement levels since 1994 at grades 4 and 8, not all racial/ ethnic subgroups have improved their achievement-level results. At grade 4, both White students and Black students had higher percentages at or above Basic in 2001 compared to 1994. At grade 8, White students were the only group to
show any improvement, with an increase in the percentage at or above Proficient. At grade 12, none of the apparent changes in the percentages of students at or above any of the U.S. history achievement levels from 1994 to 2001 were statistically significant.

Comparing the subgroups' performance in 2001 shows higher percentages of White and Asian/Pacific Islander students than of Black and Hispanic students at or above the Basic and Proficient levels at all three grades.

Average U.S. history scale scores by type of school

Schools that participate in NAEP assessments are classified as either public or nonpublic. Looking at students' performance within school type indicates that fourth- and eighthgrade public school students' average scores were higher in 2001 than in 1994.

In 2001, as in 1994, fourth-, eighth-, and twelfth-graders attending nonpublic schools had higher scores, on average, than their peers attending public schools. Readers should, however, avoid making assumptions about the comparative quality of instruction in public and nonpublic schools when reading this information. Socioeconomic and sociological

Figure D.-Score differences by race/ethnicity, grades 4, 8, and 12: 1994 and 2001

[^6]factors that may affect student performance should be considered before interpreting these results. Additional information about the performance of students by type of school can be found in the full report, as well as on the NAEP Web Site at http://nces.ed.gov/nationsreportcard.

Achievement-level results by type of school

Achievement-level results for students attending public and nonpublic schools indicate that a higher percentage of eighth-grade public school students reached the Proficient level in 2001 than in 1994. Comparing student performance by school type in 2001 shows that higher percentages of nonpublic school students than of public school students were at or above the Basic and Proficient achievement levels. At grade 8, there was also a higher percentage of students at the Advanced achievement level in nonpublic schools than in public schools.

Teacher and Student Factors

Students who participated in the NAEP 2001 U.S. History Assessment and their teachers answered questions related to their background and their experiences at school. The responses were used to investigate whether relationships exist between these factors and students' performance on the U.S. history assessment. While some of the findings may suggest positive or negative relationships between performance and particular factors, it is important to note that these relationships are not necessarily causal: there are many factors that may play a role in students' U.S. history performance.

Computer use

Using computers to enhance learning has been an important challenge for educators in all content areas. Students who participated in the NAEP 2001 U.S. History Assessment were asked various questions about the ways in which they used computers at school in their history and social studies classes.

About one-quarter of fourth-graders who participated in the 2001 U.S. history assessment said that they use computers at school for social studies at least once every few weeks. This proportion increased to about one-third at grades 8 and 12 .

General computer use. How does the way in which students use computers relate to performance on NAEP? Figure E presents average U.S. history scores for students at grades 4, 8 , and 12 by their reports on how frequently they used
computers. This question asked students about their use of computers in general for history or social studies, not about any particular type of computer use. The results indicate a negative relationship between more frequent general use of computers in a social studies or history class and students' performance on the U.S. history assessment. At all three grades, students who reported daily general use had lower average scores than did those who reported less frequent general use.

Specific computer use. It should be noted that relatively few students reported using a computer at school for history or social studies: 74 percent of fourth-graders, 64 percent of eighth-graders, and 42 percent of twelfth-graders said that they never or hardly ever used a computer in school to study these subjects. An additional 27 percent of twelfth-graders reported not having studied history during the twelfth grade. As shown on the following page, frequent users also tended to score lowest; however, the results presented below suggest that how the technology is used may matter.

While figure E presents results that suggest a negative relationship between frequent general use of computers in history or social studies classes and students' performance, figures F and G indicate a positive relationship at grades 8 and 12 when computers are used for specific activities in such classes. Figure F shows that both eighth- and twelfthgraders who used computers to a great extent for research projects by using CDs or the Internet scored higher, on average, than those who did so to a lesser extent. Figure G indicates a similar positive relationship: eighth- and twelfthgraders who used computers to write reports had higher average scores than their peers who did not.

It should be noted that a relationship between computer use and average U.S. history scores cannot, without further investigation, be interpreted causally. Certain types of computer use may support student learning; however, the relationship may also be due to the background and other characteristics of students who are asked to use computers in these ways.

Instructional activities

Are certain instructional activities associated with performance on the NAEP 2001 U.S. History Assessment? To explore this question, the report presents the average scores of fourth-, eighth-, and twelfth-graders by the frequency of certain instructional activities.

Figure E.-Average scores by frequency of computer use in social studies or history class, grades 4,8, and 12:2001

*Only relevant to twelfth-graders who had already completed their history requirements and were not taking a history class.
SOURCE: U.S.Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2001 U.S. History Assessment. (Previously published on p. 9 of The Nation's Report Card: U.S. History Highlights 2001.)

At grade 4, a large majority of students had teachers who reported having them read from a textbook on a daily or weekly basis. Reading from a textbook daily was associated with higher scores on the assessment than was doing so weekly or monthly.

At grade 8, students whose teachers reported using primary historical documents-such as letters, diaries, or essays written by historical figures-once or twice per week had higher scores than those whose teachers reported doing so less frequently or never.

At grade 12, students who reported never reading extra material—such as biographies or historical stories—scored lower than their peers who reported doing so a few times per year or more often.

Sample U.S. History Questions and Student Responses

A better understanding of students' performance on the NAEP 2001 U.S. History Assessment can be gained by examining sample test questions and students' responses to them. The questions shown here-one multiple-choice and one constructed-response question for each grade-were used in the 2001 U.S. history assessment. (Additional sample questions can be viewed on the NAEP Web Site at http://nces.ed.gov/nationsreportcard.) The historical theme and historical period being assessed are identified for each sample question.

The tables that accompany the sample questions show two types of percentages: the overall percentage of students who

Figure F.-Average scores by time spent using a CD or the Internet for research projects, grades 8 and 12:2001

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2001 U.S. History Assessment. (Previously published on p. 10 of The Nation's Report Card: U.S. History Highlights 2001.)

Figure G.-Average scores by time spent using the computer to write reports, grades 8 and 12:2001

SOURCE:U.S. Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2001 U.S. History Assessment. (Previously published on p. 10 of The Nation's Report Card: U.S. History Highlights 2001.)
answered the question successfully and the percentage of students in each achievement-level interval who answered successfully.* For the multiple-choice questions shown, the

[^7]oval corresponding to the correct multiple-choice response is filled in. For the constructed-response questions, sample student responses are presented along with a brief description of how the response was scored. Because it was a timed test of history knowledge and skills, scoring was based solely on content-students may have made minor spelling and grammatical errors that would not have affected their score.

Grade 4 sample questions and responses

The following multiple-choice question asked fourth-grade students about the purpose of an artifact widely used in everyday life during the 19th century.

Historical theme assessed in this question: Economic and Technological Changes and Their Relation to Society, Ideas, and the Environment

Historical period assessed in this question: Expansion and Reform (1801 to 1861)

Sample multiple-choice question for grade 4

Overall	Percentage of students giving correct response Within achievement-level intervals			
	Below Basic (194 and below*)	$\begin{gathered} \text { Basic } \\ \left(195-242^{*}\right) \end{gathered}$	Proficient (243-275*)	Advanced (276 and above*)
93	84	96	99	-
*NAEP U.S. history scale range.				

In pioneer schools, feathers like this were most often used for
(A) measuring
(B) sewing

- writing
(D) playing a game

The following extended constructed-response question asked the student to demonstrate an understanding of how American Indians met basic needs before contact with Europeans and, in addition, to compare the way of life of an American Indian group hundreds of years ago and that of the student's family today. Responses to the question were scored according to a four-level guide as "Complete," "Essential," "Partial," or "Inappropriate."

Historical theme assessed in this question: The Gathering and Interactions of Peoples, Cultures, and Ideas

Historical period assessed in this question: Three Worlds and Their Meeting in the Americas (Beginnings to 1607)

Sample extended constructed-response question for grade 4

Percentage of students giving "Essential" or better response Within achievement-level intervals				
Overall	Below Basic (194 and below*)	$\begin{gathered} \text { Basic } \\ \left(195-242^{*}\right) \end{gathered}$	Proficient $\left(243-275^{*}\right)$	Advanced (276 and above*)
42	13	48	76	-
*NAEP U.S. history scale range. -Sample size insufficient to permit a reliable estimate.				

Choose an American Indian group from the map (see next page), and circle its name directly on the map.

On the chart (see next page), list one way this American Indian group got food, shelter, and clothing in the period before Europeans came to the Americas. Then list one way your family gets food, shelter, and clothing.

Sample "Complete" response

This "Complete" response correctly listed one way that an American Indian group (circled on map) got food, shelter, and clothing, and one way that the student's own family gets food, shelter, and clothing. It then gave one appropriate reason for differences between the way the American Indian group obtained those necessities and the way in which modern families obtain them.

American Indians in the Period

Before Europeans Came

Your Family

Give one reason why the American Indian group long ago and your family today differ in the ways they get their food, shelter, or clothing.

```
    We differ because a long time
ago there weren't any stores or real
estate people as we have today.
```


Sample"Essential" response

This "Essential" response correctly listed means by which the Kwakiutl (the American Indian group circled on the map) obtained food and clothing, two of the necessities listed. The means listed for shelter, "buffalo hide," is not accurate for the Kwakiutl. The response also listed one way in which the student's own family obtained food, shelter, and clothing. The reason given for the difference between the way the American Indian group met such basic needs and the way in which modern families meet them was considered too vague to be acceptable.

American Indians in the Period
Before Europeans Came
Your Family

1. Food: They Hunted 1. Food: Grocery Store
2. Shelter: They used 2 Shelter: Houses
3. Clothing: Animal furs 3. Clothing: Department Stores

Give one reason why the American Indian group long ago and your family today differ in the ways they get their food, shelter, or clothing.

Grade 8 sample questions and responses

The following multiple-choice question asked students about the major reason for the colonial American discontent with Great Britain that sparked the formation of the Continental Congress and the consequent Revolution.

Historical theme assessed in this question: Change and Continuity in American Democracy: Ideas, Institutions, Practices, and Controversies

Historical period assessed in this question: The Revolution and the New Nation (1763 to 1815)

Sample multiple-choice question for grade 8

What was the most significant factor that led the American colonists to form the First Continental Congress in 1774 ?
(A) Religious conflict inside the colonies
(B) The desire of the colonists to write a Constitution to replace the Articles of Confederation

- Colonial frustration with laws passed by the British Parliament
(D) The desire of the colonists to stop the war between Britain and the colonies

The following short constructed-response question asked students about one of the most important technological developments affecting 19th-century agriculture. Responses to the question were scored according to a three-level guide as "Appropriate," "Partial," or "Inappropriate."

Historical theme assessed in this question: Economic and Technological Changes and Their Relation to Society, Ideas, and the Environment

Historical period assessed in this question: The Development of Modern America (1865 to 1920)

Sample short constructed-response question for grade 8

Why was the invention of the steel plow important in United States history?

Sample "Appropriate" response

This "Appropriate" response indicated that the steel plow increased efficiency in agricultural production.

The steel plow was stronger, lasted longer, worked faster, and could farm harder ground.

Grade 12 sample questions and responses

The following multiple-choice question asked students to demonstrate an understanding of the goals of one of the most important reform eras in U.S. history.

Historical theme assessed in this question: Change and Continuity in American Democracy: Ideas, Institutions, Practices, and Controversies

Historical period assessed in this question: The Development of Modern America (1865 to 1920)

Sample multiple-choice question for grade 12

The Progressive movement of 1890-1920 is best described as

- a broad-based reform movement that tried to reduce the abuses that had come with modernization and industrialization
a loose coalition of groups primarily dedicated to passing a constitutional amendment prohibiting the consumption of alcohol
(C) an anti-tariff movement led by a federation of business owners and manufacturers who wanted to promote trade abroad
(D) a grass-roots movement that attempted to gather support for the establishment of an international organization such as the League of Nations

The following extended constructed-response question asked students to both identify advantages held by the South during the Civil War and explain how those advantages aided the Southern war effort. Students had to provide not only factual information, but also a reasonable argument relating that information to the course of the Civil War. Responses to the question were scored according to a four-level guide as "Complete," "Essential," "Partial," or "Unsatisfactory."

Historical theme assessed in this question: Change and Continuity in American Democracy: Ideas, Institutions, Practices, and Controversies

Historical period assessed in this question: Crisis of the Union: Civil War and Reconstruction (1850 to 1877)

Sample extended constructed-response question for grade 12

"In spite of the obvious advantages held by the North, the South was able to fight for four years and to achieve some real military successes. So while the North held most of the cards, the South had one or two aces up its sleeves."

Identify two of the "aces" (significant advantages) that the South had in the Civil War. Explain how these advantages helped the South.

Sample"Complete" response

This "Complete" response identified two significant Southern advantages and, in addition, explained how those advantages helped the South.

The south did have a couple aces up the ir sleeves for one they were fighting the war in their home. they were familiar to the territory as well as having a shorter distance to reach supplies the other advantage they had a as better military leaders. Robert E. Lee was asked to be the general
of the North but he declined
and became the Goth's general

Sample "Essential" response

This "Essential" response identified one significant Southern advantage and explained how that advantage helped the South. Both of the reasons listed-that Southern soldiers were more familiar with the terrain and that they were more familiar with the weatherhelp to explain one advantage: fighting on one's home front.

> Most of the civil war was fought on southern Land. therefore the first of the two aces was that the southern soldiers knew the terrain better than the northern soldiers Jhescond of the two aces was that the southerners were used to the weather and the northerners were not.

Data source: The National Assessment of Educational Progress (NAEP) 1994 and 2001 U.S. History Assessments.
For technical information, see the complete report:
Lapp, M.S., Grigg, W.S., and Tay-Lim, B. S.-H. (2002). The Nation's Report Card: U.S. History 2001 (NCES 2002-483).
Author affiliations: M.S. Lapp, W.S. Grigg, and B. S.-H.Tay-Lim, Educational Testing Service.

For questions about content, contact Janis Brown (janis.brown@ed.gov).
To obtain the complete report (NCES 2002-483), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).
To obtain the Highlights publication from which this article is excerpted (NCES 2002-482), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).

Beyond School-Level Internet Access: Support for Instructional Use of Technology

Lawrence Lanahan

This article was originally published as an Issue Brief. The sample survey data are from the NCES Fast Response Survey System (FRSS).

According to the National Center for Education Statistics (NCES) report Teachers' Tools for the 21st Century: A Report on Teachers' Use of Technology, teachers in schools with high poverty and schools with high minority enrollment were generally less likely to use computers or the Internet for instruction during class time than teachers in schools with low poverty and schools with low minority enrollment in 1999 (Smerdon et al. 2000). This gap existed despite the fact that nearly all public schools had access to the Internet, regardless of poverty level (Williams 2000). Two factors that may be related to teachers' use of computers and the Internet are whether they have access to the Internet in their classrooms and the level of support they receive for the use of the Internet (Ronnkvist, Dexter, and Anderson 2000). This Issue Brief presents data from two surveys conducted through the NCES Fast Response Survey System (FRSS)—a 1999 survey of public school Internet access and a 1999 survey of public school teachers' use of computers and the Internet-to examine whether teachers who report having classroom access and support (as measured by both training and assistance for Internet use) are more likely to report using computers and the Internet for instruction during class time. This Issue Brief also examines teacherreported school-level differences in support for Internet use and classroom access to the Internet.

Does Universal School-Level Internet Access Mean Universal Instructional Use of the Internet?

In 1999, 95 percent of all public schools had Internet access (Williams 2000). This percentage did not vary by the concentration of poor students in the school. Despite similar school-level access, 63 percent of academic teachers in schools with the lowest enrollment of poor students (less than 11 percent of students eligible for free or reduced-price lunch) reported that they used computers or the Internet for instruction during class time, while 47 percent of teachers in schools with 50 to 70 percent of students eligible reported this use (Smerdon et al. 2000, p. 23). ${ }^{1}$ Furthermore, 56 percent of teachers in schools with less than 6 percent minority enrollment used computers or the Internet

[^8]for instruction, while 45 percent of teachers in schools with minority enrollment of 50 percent or more reported this use. ${ }^{2}$

What Resources Encourage Increased Use?

Overall, 53 percent of teachers reported classroom-level access to the Internet, 80 percent of teachers reported that training in the use of the Internet was available to them, 75 percent of teachers reported that assistance in the use of the Internet was available to them, and 43 percent of teachers reported having all three resources (table 2). Each of these resources was related to the likelihood that teachers also reported using the Internet for instruction. Sixty-five percent of teachers reporting classroom access to the Internet reported using computers or the Internet for instruction during class time, compared with 38 percent of teachers reporting no classroom access (table 1). Similarly, 56 percent of teachers who reported that training was available to them from their state, district, or school in the use of the Internet reported using computers or the Internet for instruction during class time, compared with 43 percent of teachers who said training was not available and 34 percent of those who did not know. Fifty-six percent of teachers reporting availability of technical assistance for using the Internet reported using computers or the Internet for instruction during class time, compared with 42 percent of teachers who said assistance was not available.

Teachers were most likely to use the Internet for instruction during class time when they reported that both classroomlevel access and support in the form of training and assistance were available to them. Sixty-eight percent of teachers reporting classroom access to the Internet and the availability of training and assistance for using the Internet reported using computers or the Internet for instruction during class time, compared with 52 percent of teachers who reported classroom access but not training and assistance, 40 percent of those who reported training and assistance but no classroom access, and 37 percent of those who reported neither classroom access nor training and assistance (figure 1).

[^9]Table 1.-Percent of public school teachers reporting use of computers or the Internet for instruction during class time, by the availability of resources: 1999

	Teachers reporting instructional use of computers or the Internet during class time
Availability of resources	52
All public schools	
Classroom-level access to the Internet	65
Access	38
No access	56
Training in use of the Internet	43
Training available	34
Training not available	56
Don't know if training is available	42
Assistance in use of the Internet	
Assistance available	

NOTE:Teachers who reported that the Internet was not available to them anywhere in the school were excluded from the analyses presented in this table. SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System,"Public School Teachers Use of Computers and the Internet," FRSS 70, 1999.

Figure 1.-Percent of public school teachers reporting use of computers or the Internet for instruction during class time, by the availability of resources: 1999

NOTE: For this figure, the training and assistance variables were combined into one dichotomous variable that indicated whether or not both training and assistance were available. Teachers who reported that the Internet was not available to them anywhere in the school were excluded from the analyses presented in this figure.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System,"Public School Teachers Use of Computers and the Internet," FRSS 70, 1999.

Are Some Teachers More Likely Than Others to Use the Internet When They Have Classroom Access and Support?

Among teachers who reported classroom Internet access and the availability of training and assistance for the Internet, the school-level disparities in reported use discussed earlier no longer appear. Of teachers reporting classroom Internet access and the availability of training and assistance for the Internet, 68 percent reported the use of computers or the Internet for instruction during class time (figure 1). No statistically significant differences based on school poverty concentration or school minority enrollment were found (data not shown).

What School Characteristics Are Related to the Presence of Classroom Internet Access and Support?

Generally, teachers in schools with high enrollment of poor students were less likely to report classroom Internet access and the availability of training and assistance in the use of the Internet. Teachers in schools with 50 percent or more of students eligible for free or reduced-price lunch were less likely than teachers in schools with 11 to 30 percent of students eligible to report that the Internet was available in their classroom, and they were less likely than teachers in schools with less than 50 percent of students eligible to report that training in the use of the Internet was available (table 2). Teachers in schools with more than 70 percent of students eligible for free or reduced-price lunch were less likely than teachers in schools with less than 50 percent of students eligible to report that assistance in the use of the Internet was available.

Overall, half or less of all teachers reported the availability of all three resources-classroom Internet access, and training and assistance in the use of the Internet (table 2, last column). Differences in classroom access, training, and assistance existed by the level of minority enrollment in a teacher's school. Teachers in schools with minority enrollment of 50 percent or more were less likely than those in schools with less than 50 percent minority enrollment to report having a combination of all three resources-classroom Internet access, training in the use of the Internet, and assistance in the use of the Internet-as well as having each resource individually.

Conclusion

Classroom-level access to the Internet and support in the form of training and assistance appear to be important factors in instructional use of the Internet during class time. Depending on school characteristics, half or less of teachers reported that all three resources were available, and of these teachers, about two-thirds indicated that they used computers or the Internet for instruction during class time. Furthermore, among teachers who reported having all of these resources, the percentage reporting instructional use of computers or the Internet during class time did not vary by the proportion of poor and minority students at these teachers' schools. However, teachers in schools with high enrollments of poor and minority students were generally less likely to report the availability of these resources.

The rapid pace of change in the world of education technology necessitates the further collection of data. In the year after these data were collected alone, the proportion of instructional rooms with Internet access in U.S. public schools rose, from 64 percent in 1999 to 77 percent in 2000 (Cattagni and Farris 2001). In addition, there is much more to be learned about teachers' instructional use of technology. Data on digital content used in classrooms, online assessments, the quality and duration of instances of instructional use of technology, and other areas would further our ability to understand how technology is changing the nation's classrooms. Other NCES survey programs, such as the Schools and Staffing Survey and the National Assessment of Educational Progress, will be publishing more data on teachers' use of technology in the next few years.

References

Cattagni, A., and Farris, E. (2001). Internet Access in U.S. Public Schools and Classrooms: 1994-2000 (NCES 2001-071). U.S. Department of Education. National Center for Education Statistics. Washington, DC.
Ronnkvist, A., Dexter, S.L., and Anderson, R.E. (2000). Technology Support: Its Depth, Breadth and Impact in America's Schools. Irvine, CA: Center for Research on Information Technology and Organizations, University of California, Irvine, and University of Minnesota.

Table 2.-Percent of public school teachers reporting the availability of various Internet-related resources, by selected school characteristics: 1999

School characteristics	Teachers reporting the availability of resources			
	Classroom-level access to the Internet	Training in use of the Internet	Assistance in use of the Internet	Training and assistance in use of the Internet, and classroomlevel access to the Internet
All public schools	53	80	75	43
Percent of students eligible for free or reduced-price school lunch				
Less than 11 percent	57	90	82	48
11-30 percent	60	85	79	49
31-49 percent	56	86	79	44
50-70 percent	44	72	72	33
71 percent or more	44	67	62	36
Percent minority enrollment				
Less than 6 percent	58	82	76	46
6-20 percent	61	87	79	50
21-49 percent	55	83	81	44
50 percent or more	40	70	65	31

NOTE:Teachers who reported that the Internet was not available to them anywhere in the school were excluded from the analyses presented in this table.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System,"Public School Teachers Use of Computers and the Internet," FRSS 70, 1999.

Smerdon, B., Cronen, S., Lanahan, L., Anderson, J., Iannotti, N., and Angeles, J. (2000). Teachers' Tools for the 21st Century: A Report on Teachers' Use of Technology (NCES 2000-102). U.S. Department of Education. National Center for Education Statistics. Washington, DC: U.S. Government Printing Office. Williams, C. (2000). Internet Access in U.S. Public Schools and Classrooms: 1994-99 (NCES 2000-086). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Data sources: The NCES Fast Response Survey System: "Public School Teachers Use of Computers and the Internet," FRSS 70, 1999; and "Survey on Internet Access in U.S. Public Schools, Fall 1999," FRSS 75, 1999.

Author affiliation: L. Lanahan, Education Statistics Services Institute (ESSI).

For questions about content, contact Edith McArthur (edith.mcarthur@ed.gov).
To obtain this Issue Brief (NCES 2002-029), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Arts Education in Public Elementary and Secondary Schools: 1999-2000

\author{

- Nancy Carey, Brian Kleiner, Rebecca Porch, and Elizabeth Farris
}

Abstract

This article was originally published as the Executive Summary of the Statistical Analysis Report of the same name. The sample survey data are from the NCES Fast Response Survey System (FRSS) surveys listed at the end of this article.

Background

During the last decade, arts instruction has received increasing attention as an important aspect of education. The passage of the Improving America's Schools Act of 1994 (U.S. Public Law 103-382) and the release of the voluntary National Standards for Arts Education (Consortium of National Arts Education Associations 1994) demonstrated this increase in attention. By 1998, there were no national data sources that specifically addressed the condition of arts education in the nation's public schools. To fill this data gap, the National Endowment for the Arts, the U.S. Department of Education's Office of Educational Research and Improvement (OERI), and the Office of Reform Assistance and Dissemination (ORAD) of OERI requested that surveys be conducted under the Fast Response Survey System (FRSS) of the Department of Education's National Center for Education Statistics (NCES). The purpose of this report is to provide a national profile of the status of arts education in the nation's regular* public schools during the 19992000 school year. Specifically, this report presents information on the characteristics of public elementary and secondary school arts education programs, including data on the availability of instruction in the arts, staffing, funding, supplemental programs and activities, and administrative support of arts education.

This report is based on data that were collected from elementary and secondary school principals and from elementary school arts specialists and classroom teachers during the 1999-2000 school year. The teacher-level component provides data on the educational backgrounds and experience of arts teachers, and the curricula and learning environments that characterize arts education. The school-level results presented in this report are based on survey data from 640 public elementary school principals and 686 public secondary school principals (or their designated respondents). The elementary school teacher findings are based on data collected from 453 music specialists, 331 visual arts specialists, and 497 regular

[^10]classroom teachers. The responses to the school surveys were weighted to produce national estimates that represent all regular public elementary and secondary schools in the United States; those for the teacher surveys were weighted to produce national estimates that represent all regular elementary school classroom teachers, music specialists, and visual arts specialists.

Key Findings

Arts education in public elementary schools

The elementary school survey addressed a variety of topics regarding characteristics of arts education programs in public elementary schools during the 1999-2000 school year. In 1999-2000, music instruction and visual arts instruction were available in most of the nation's public elementary schools (94 and 87 percent, respectively) (figure 1). Dance and drama/theatre instruction were available in less than one-third of elementary schools (20 and 19 percent, respectively). Results of the elementary school survey also indicate that

- Overall, 72 percent of elementary schools that offered music instruction and 55 percent of elementary schools that offered visual arts instruction employed full-time specialists to teach these subjects. Full-time specialists in dance were employed by 24 percent of elementary schools that offered this subject, and fulltime specialists in drama/theatre were employed by 16 percent of elementary schools that offered this subject.
- Sixty-seven percent of elementary schools that offered music had dedicated rooms with special equipment for instruction in this subject. Of the schools that offered visual arts, 56 percent had dedicated rooms with special equipment for visual arts instruction. Fourteen percent of elementary schools that offered dance and 13 percent of schools offering drama/theatre had dedicated rooms with special equipment for teaching these subjects.
- During the 1998-99 school year, 77 percent of regular public elementary schools sponsored field trips to arts performances and 65 percent sponsored field trips to art galleries or museums (table 1).

Figure 1.-Percent of public elementary schools offering instruction designated specifically for music, visual arts, dance, and drama/ theatre: Academic year 1999-2000

SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System (FRSS),"Elementary School Arts Education Survey, Fall 1999," FRSS 67, 1999. (Originally published as figure 1 on p. 6 of the complete report from which this article is excerpted.)

Table 1.-Percent of public elementary schools that sponsored various supplemental arts education programs, by school characteristics: Academic year 1998-99

SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System (FRSS),"Elementary School Arts Education Survey, Fall 1999," FRSS 67, 1999. (Originally published as table 19 on p. 29 of the complete report from which this article is excerpted.)

Thirty-eight percent of public elementary schools sponsored visiting artists, 22 percent sponsored artists-in-residence, and 51 percent sponsored afterschool activities that included the arts.

Arts education in public secondary schools

Music and visual arts instruction were offered in most of the nation's public secondary schools (90 and 93 percent, respectively) in 1999-2000 (figure 2). Dance and drama/ theatre instruction were less commonly offered in secondary schools (14 and 48 percent, respectively). Further, the secondary school survey indicates that

- Most public secondary schools that offered music, visual arts, dance, and drama/theatre instruction employed full-time specialists to teach these subjects, with 91 percent reporting one or more full-time music specialists, 94 percent reporting one or more full-time visual arts specialists, 77 percent reporting one or more full-time dance specialists, and 84 percent reporting one or more full-time drama/theatre specialists.
- Ninety-one percent of public secondary schools that offered music instruction had dedicated music rooms
with special equipment for teaching the subject, and 87 percent of those with visual arts instruction had dedicated art rooms with special equipment. Of the schools that offered dance, 41 percent provided dedicated dance spaces with special equipment, and of those that offered drama/theatre, 53 percent provided dedicated theatre spaces with special equipment.
- During the 1998-99 school year, 69 percent of regular public secondary schools sponsored field trips to arts performances and 68 percent sponsored field trips to art galleries or museums (table 2). Thirty-four percent of secondary schools sponsored visiting artists, 18 percent sponsored artists-inresidence, and 73 percent sponsored after-school activities in the arts.

Elementary school music specialists, visual arts specialists, and self-contained classroom teachers

The teacher surveys gathered information related to the preparation, working environments, and instructional practices of public elementary school music and visual arts specialists and non-arts classroom teachers. Results from the three 1999-2000 teacher surveys indicate that

Figure 2.-Percent of public secondary schools offering music, visual arts, dance, and drama/theatre instruction: Academic year 1999-2000

SOURCE:U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System (FRSS),"Secondary School Arts Education Survey, Fall 1999," FRSS 67, 1999. (Originally published as figure 12 on p. 38 of the complete report from which this article is excerpted.)

Table 2.-Percent of public secondary schools that sponsored various supplemental arts education programs, by school characteristics: Academic year 1998-99

SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System (FRSS),"Secondary School Arts Education Survey, Fall 1999," FRSS 67, 1999. (Originally published as table 29 on p. 56 of the complete report from which this article is excerpted.)

In 1999-2000, 45 percent of music specialists and 39 percent of visual arts specialists had a master's degree in their respective field of study or in a related field (table 3). Forty-three percent of regular classroom teachers had a master's degree.

- Arts specialists participated in a variety of professional development activities. For instance, 72 percent of music specialists and 79 percent of visual arts specialists reported being involved in professional development activities focusing on the integration of
music or visual arts into other subject areas within the last 12 months.

A sizable majority of music and visual arts specialists felt that their participation in various professional development activities focusing on arts instruction improved their teaching skills to a moderate or great extent (69 to 75 percent).

On a typical school day, music specialists taught an average of six different classes of students. Visual arts specialists taught an average of five classes on a typical school day.

Table 3.-Percent of public elementary school music specialists, visual arts specialists, and classroom teachers, by degrees held: Academic year 1999-2000

Type of teacher	Bachelor's degree	Master's degree	Doctor's degree	Other degree
Music specialists	100^{*}	45	1	2
Visual arts specialists	100^{*}	39	0	5
Classroom teachers	100^{*}	43	$(\#)$	3

\#Estimate less than 0.5 percent.
*Rounds to 100 percent for presentation in the table.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Fast Response Survey System (FRSS), "Survey of Elementary School Music Specialists,""Survey of Elementary School Visual Arts Specialists," and "Arts Survey of Elementary School Classroom Teachers," FRSS 77, 2000. (Originally published as table 38 on p. 66 of the complete report from which this article is excerpted.)

- Visual arts specialists had more time set aside each week for planning or preparation during the regular school day than music specialists and classroom teachers (4.2 hours vs. 3.6 and 3.4 hours, respectively).
- Forty-six percent of music specialists and 44 percent of visual arts specialists strongly agreed with the statement that parents support them in their efforts to educate their children. Fifty-eight percent of music specialists and 53 percent of visual arts specialists strongly agreed that they were supported by the administration at their schools.

Reference

Consortium of National Arts Education Associations. (1994). National Standards for Arts Education. Reston, VA: Music Educators National Conference.

Data sources: The NCES Fast Response Survey System:"Elementary School Arts Education Survey, Fall 1999," and "Secondary School Arts Education Survey, Fall 1999" (FRSS 67, 1999); and "Survey of Elementary School Music Specialists,""Survey of Elementary School Visual Arts Specialists," and "Arts Survey of Elementary School Classroom Teachers" (FRSS 77, 2000).

For technical information, see the complete report:
Carey, N., Kleiner, B., Porch, R., and Farris, E. (2002). Arts Education in Public Elementary and Secondary Schools: 1999-2000 (NCES 2002-131).
Author affiliations: N. Carey, Mathematica Policy Research, Inc.; B. Kleiner, R. Porch, and E. Farris, Westat, Inc.

For questions about content, contact Shelley Burns (shelley.burns@ed.gov).
To obtain the complete report (NCES 2002-131), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Early Estimates of Public Elementary and Secondary Education Statistics: School Year 2001-02

Lena M. McDowell and Frank Johnson

This article was originally published as an Early Estimates report. The universe data are from the NCES Common Core of Data (CCD). Technical notes and definitions from the original report have been omitted.

The Early Estimates System

The early estimates system is designed to allow the National Center for Education Statistics (NCES) to publish selected key statistics during the school year in which they are reported. Early estimates are part of the Common Core of Data (CCD) survey system, which annually collects statistical information from state education agencies about the public schools and local education agencies. For CCD surveys other than the early estimates, data collection begins in the spring, and data are not published until the spring of the following school year. In contrast, the estimates in this report were reported by December 2001.

2001-02 early estimates

In mid-October 2001, survey forms were sent to each state education agency. States were asked to complete the form and return it by e-mail or facsimile (fax). States that had not responded by mid-November were contacted by telephone. All data were checked for reasonableness against prior years' reports, and follow-up calls were made to resolve any questions. When states did not supply a data item, NCES imputed a value. These values are footnoted in the tables. If one or more states required an imputed number, then the national total for that item is marked as imputed. Any state early estimate that indicated a change of greater than 10 percentage points more or less than the national growth rate was replaced with an adjusted early estimate. That is, the estimate was calculated using the same method as that employed to impute missing data.

Forty-eight states, the District of Columbia, and two outlying areas participated in the 2001-02 "Early Estimates of Public Elementary/Secondary Education Survey." The estimates reported here were provided by state education agencies and represent the best information on public elementary and secondary schools available to states at this stage of the school year. They are, however, subject to revision. All estimates for the two nonreporting states and the three outlying areas were calculated by NCES. (Arizona, California, Guam, Northern Marianas, and Puerto Rico did not return the completed survey form.) NCES also estimated missing data items for a number of reporting states.

The tables in this publication include three kinds of data: reported, preliminary, and estimated. Reported data are previously published figures. Preliminary data have not been published previously by NCES; for these, data collection is complete, and processing and data adjustments are through all but the final stage of review. For example, fiscal year (FY) 1999 data in this report have been revised since their initial publication, but the revised file has not yet been published. Estimated data are those for the current school year (2001-02).

Estimated data for the current school year are of three types: estimates derived by the states for NCES (most of the data are of this type); early actual counts reported by individual states; and imputed or adjusted estimates developed by NCES using a combination of state-specific and national data.

Highlights

The estimates in this report are key statistics for public elementary and secondary schools reported during the 2001-02 school year.* They include the number of students in membership, teachers, high school graduates, and total revenues and expenditures. Highlights of statistics for school years 2000-01 through 2001-02 include the following:

- There were approximately 47.6 million prekindergarten through grade 12 students in the nation's public elementary and secondary schools in fall 2001, compared with 47.2 million in fall 2000. Student membership has increased by 1.45 million since fall 1997 (table 1).
- Public school students were taught by an estimated 3.0 million teachers in school year 2001-02 (table 2).
- The student membership and teacher count data show a pupil/teacher ratio of 15.9 for grades prekindergarten through 12 for public schools in school year 2001-02 (table 7).

[^11]- Just under 2.6 million public school students graduated from high school in the 2000-01 school year. In the 2001-02 school year, more than 2.6 million students are expected to graduate from high school, about 41,000 more than in the previous year (table 3).
- Revenues for public elementary and secondary education in FY 2001 are estimated to be $\$ 386.5$ billion, and they are expected to rise to approximately $\$ 405.8$ billion in FY 2002 (table 4).
- Current expenditures for public elementary and secondary education for FY 2002 are estimated to be $\$ 358.0$ billion, an increase of 5.9 percent over the FY 2001 estimate of $\$ 338.0$ billion (table 5). The per pupil expenditure is anticipated to be $\$ 7,524$ per student in membership for the 2001-02 school year (table 7).

Data sources: The NCES Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02; "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through 2000-01; and "National Public Education Financial Survey," 1997-98 through 1999-2000.
For technical information, see the complete report:
McDowell, L., and Johnson, F. (2002). Early Estimates of Public Elementary and Secondary Education Statistics: School Year 2001-02 (NCES 2002-311).
Author affiliations: L. McDowell and F. Johnson, NCES.
For questions about content, contact Lena McDowell (lena.mcdowell@ed.gov) or Frank Johnson (frank.johnson@ed.gov).
To obtain the complete report (NCES 2002-311), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Table 1.-Student membership in public elementary and secondary schools, by state, for grades prekindergarten through 12: Fall 1997 to fall 2001

State	Reported fall 1997	Reported fall 1998	Reported fall 1999	Reported fall 2000	Estimated fall 2001
United States	${ }^{1} 46,126,897$	${ }^{1} 46,538,585$	146,857,149	${ }^{1} 47,222,778$	247,575,862
Alabama	1749,207	1747,980	1740,732	1740,176	3726,367
Alaska	132,123	135,373	134,391	133,356	134,023
Arizona	814,113	848,262	852,612	877,696	2903,518
Arkansas	456,497	452,256	451,034	449,959	${ }^{3} 448,246$
California	15,803,887	15,926,037	16,038,590	${ }^{1} 6,142,348$	26,247,889
Colorado	687,167	699,135	708,109	724,508	${ }^{3} 742,065$
Connecticut	535,164	544,698	553,993	562,179	${ }^{3} 570,145$
Delaware	111,960	113,262	112,836	114,676	${ }^{3} 115,486$
District of Columbia	77,111	71,889	77,194	68,925	${ }^{3} 68,449$
Florida	2,294,077	2,337,633	2,381,396	2,434,821	${ }^{3} 2,500,161$
Georgia	1,375,980	1,401,291	1,422,762	1,444,937	${ }^{3} 1,470,634$
Hawaii	189,887	188,069	185,860	184,360	${ }^{3} 184,546$
Idaho	244,403	244,722	245,136	245,117	246,000
Illinois	1,998,289	2,011,530	2,027,600	2,048,792	2,068,182
Indiana	986,836	989,001	988,702	989,225	994,545
lowa	501,054	498,214	497,301	495,080	491,169
Kansas	468,687	472,353	472,188	470,610	${ }^{3} 468,140$
Kentucky	669,322	655,687	648,180	665,850	630,461
Louisiana	776,813	768,734	756,579	743,089	${ }^{3} 731,474$
Maine	212,579	211,051	209,253	207,037	${ }^{3} 211,461$
Maryland	830,744	841,671	846,582	852,920	${ }^{3} 860,890$
Massachusetts	949,006	962,317	971,425	975,150	979,593
Michigan	1,702,717	${ }^{1} 1,720,287$	${ }^{1} 1,725,639$	11,743,337	1,733,900
Minnesota	853,621	856,455	854,034	854,340	845,700
Mississippi	504,792	502,379	500,716	497,871	491,686
Missouri	910,613	913,494	914,110	912,744	892,582
Montana	162,335	159,988	157,556	154,875	${ }^{3} 151,970$
Nebraska	292,681	291,140	288,261	286,199	${ }^{3} 285,022$
Nevada	296,621	311,061	325,610	340,706	356,038
New Hampshire	201,629	204,713	206,783	208,461	211,429
New Jersey	1,250,276	1,268,996	1,289,256	1,307,828	1,380,502
New Mexico	331,673	328,753	324,495	320,306	316,143
New York	2,861,823	2,877,143	2,887,776	2,882,188	2,920,000
North Carolina	1,236,083	1,254,821	1,275,925	1,293,638	${ }^{3} 1,303,928$
North Dakota	118,572	114,927	112,751	109,201	${ }^{3} 106,047$
Ohio	1,847,114	1,842,163	1,836,554	1,835,049	1,808,000
Oklahoma	623,681	628,492	627,032	623,110	620,404
Oregon	541,346	542,809	545,033	546,231	3552,144
Pennsylvania	1,815,151	1,816,414	1,816,716	1,814,311	1,810,390
Rhode Island	153,321	154,785	156,454	157,347	${ }^{3} 157,599$
South Carolina	${ }^{1} 659,273$	${ }^{1} 664,600$	666,780	677,411	648,000
South Dakota	142,443	132,495	131,037	128,603	${ }^{3} 126,560$
Tennessee	${ }^{1} 893,044$	${ }^{1} 905,454$	1916,202	1909,388	938,162
Texas	3,891,877	3,945,367	3,991,783	4,059,619	4,128,429
Utah	482,957	481,176	480,255	481,687	${ }^{3} 477,801$
Vermont	105,984	105,120	104,559	102,049	299,599
Virginia	1,110,815	1,124,022	1,133,994	1,144,915	${ }^{3} 1,162,780$
Washington	991,235	998,053	1,003,714	1,004,770	${ }^{3} 1,009,626$
West Virginia	301,419	297,530	291,811	286,367	${ }^{3} 281,400$
Wisconsin	881,780	879,542	877,753	879,476	${ }^{3} 878,809$
Wyoming	97,115	95,241	92,105	89,940	${ }^{3} 87,768$
Outlying areas					
American Samoa	15,214	15,372	15,477	15,702	${ }^{3} 15,897$
Guam	32,444	32,222	32,951	32,473	232,002
Northern Marianas	9,246	9,498	9,732	10,004	${ }^{2} 10,284$
Puerto Rico	617,157	613,862	613,019	612,725	${ }^{2} 612,431$
Virgin Islands	22,136	20,976	20,866	19,459	18,148

${ }^{1}$ Prekindergarten students were imputed by NCES, thereby increasing total student count.
${ }^{2}$ Data imputed by NCES based on previous year's data.
${ }^{3}$ Actual count reported by state.
NOTE: All fall 2001 data are state estimates, except where noted. Estimates were reported by December 2001. Some data may have been revised from previously published figures.

SOURCE: U.S.Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02; and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through 2000-01.

Table 2.-Number of teachers in public elementary and secondary schools, by state, for grades prekindergarten through 12: School years 1997-98 to 2001-02

State	Reported SY 1997-98	Reported SY 1998-99	Reported SY 1999-2000	Reported SY 2000-01	Estimated SY 2001-02
United States	12,746,157	12,830,286	12,910,633	12,952,991	22,988,379
Alabama	145,967	147,766	${ }^{148,624}$	148,199	${ }^{3} 47,201$
Alaska	7,625	8,118	7,838	7,880	8,025
Arizona	41,129	42,352	43,892	44,438	${ }^{2} 45,959$
Arkansas	${ }^{126,931}$	27,953	31,362	31,947	331,097
California	${ }^{1} 268,535$	${ }^{1} 281,784$	1287,433	1298,064	${ }^{2} 304,598$
Colorado	37,840	39,434	40,772	41,983	43,282
Connecticut	37,658	38,772	39,907	41,044	${ }^{3} 41,263$
Delaware	6,850	7,074	7,318	7,471	37,511
District of Columbia	4,388	5,187	${ }^{1} 4,812$	4,949	${ }^{3} 5,235$
Florida	124,473	126,796	130,336	132,030	${ }^{3} 135,866$
Georgia	86,244	88,658	90,638	91,044	${ }^{3} 97,563$
Hawaii	10,653	10,639	10,866	10,927	10,943
Idaho	13,207	13,426	13,641	13,714	13,800
Illinois	118,734	121,758	124,815	127,620	${ }^{3} 125,130$
Indiana	57,371	58,084	58,864	59,226	59,832
lowa	32,700	32,822	33,480	34,636	34,702
Kansas	31,527	32,003	32,969	32,742	${ }^{3} 32,519$
Kentucky	40,488	40,803	41,954	39,589	40,374
Louisiana	48,599	49,124	50,031	49,916	49,915
Maine	15,700	15,890	16,349	16,559	17,040
Maryland	48,318	49,840	50,995	52,433	354,360
Massachusetts	67,170	69,752	77,596	67,432	69,000
Michigan	90,529	93,220	96,094	97,031	96,900
Minnesota	51,998	54,449	56,010	53,457	53,450
Mississippi	29,441	31,140	30,722	31,006	32,757
Missouri	60,889	62,449	63,890	64,739	64,000
Montana	10,228	10,221	10,353	10,411	10,212
Nebraska	20,065	20,310	20,766	20,983	${ }^{3} 21,004$
Nevada	16,053	16,415	17,380	18,294	19,255
New Hampshire	12,931	13,290	14,037	14,341	13,990
New Jersey	89,671	92,264	95,883	99,718	${ }^{2} 105,750$
New Mexico	19,647	19,981	19,797	21,043	20,000
New York	190,874	197,253	202,078	206,961	215,500
North Carolina	77,785	79,531	81,914	83,680	83,526
North Dakota	8,070	7,974	8,150	8,141	${ }^{3} 8,503$
Ohio	110,761	113,984	116,200	118,361	118,000
Oklahoma	40,215	40,876	41,498	41,318	41,452
Oregon	26,935	27,152	27,803	28,094	${ }^{3} 30,895$
Pennsylvania	108,014	111,065	114,525	116,963	116,900
Rhode Island	10,598	11,124	11,041	10,646	${ }^{3} 10,455$
South Carolina	42,336	43,689	45,468	45,380	${ }^{3} 46,000$
South Dakota	9,282	9,273	9,384	9,397	9,089
Tennessee	54,142	59,258	60,702	61,233	58,059
Texas	254,557	259,739	267,935	274,826	281,427
Utah	21,115	21,501	21,832	22,008	21,900
Vermont	7,909	8,221	8,474	8,414	²8,250
Virginia	177,575	179,323	185,037	191,560	87,823
Washington	49,074	49,671	50,368	51,098	251,584
West Virginia	20,947	20,989	21,082	20,930	${ }^{3} 19,970$
Wisconsin	55,732	61,176	60,778	62,332	59,783
Wyoming	6,677	6,713	6,940	6,783	6,730
Outlying areas					
American Samoa	762	764	801	820	${ }^{4} 834$
Guam	1,363	1,052	1,809	1,975	21,955
Northern Marianas	483	496	488	526	${ }^{2} 543$
Puerto Rico	38,953	39,849	41,349	37,620	237,777
Virgin Islands	1,559	1,567	1,528	1,511	1,418

${ }^{1}$ Prekindergarten teachers were imputed by NCES, thereby increasing total teacher count.
${ }^{2}$ Data imputed by NCES based on previous year's data.
${ }^{3}$ Actual count reported by state.
${ }^{4}$ Early estimate number reported by state, adjusted by NCES
NOTE: All school year (SY) 2001-02 data are state estimates, except where noted. Estimates were reported by December 2001. Some data may have been revised from previously published figures.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02; and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through 2000-01.

Table 3.-Number of public high school graduates, by state: School years 1997-98 to 2001-02

State	$\begin{aligned} & \text { Reported } \\ & \text { SY 1997-98 } \end{aligned}$	Reported SY 1998-99	Reported SY 1999-2000	$\begin{aligned} & \text { Estimated } \\ & \text { SY 2000-01 } \end{aligned}$	$\begin{aligned} & \text { Estimated } \\ & \text { SY 2001-02 } \end{aligned}$
United States	2,440,048	2,485,630	2,546,102	12,567,991	12,608,736
Alabama	38,089	36,244	37,819	237,942	38,213
Alaska	6,462	6,810	6,615	${ }^{2} 6,812$	6,835
Arizona	36,361	35,728	38,304	139,468	${ }^{1} 40,974$
Arkansas	26,855	26,896	27,335	27,100	27,031
California	282,897	299,221	309,866	1315,488	1323,631
Colorado	35,794	36,958	38,924	239,275	36,113
Connecticut	27,885	28,284	31,562	30,474	32,067
Delaware	6,439	6,484	6,108	${ }^{3} 6,213$	6,478
District of Columbia	2,777	2,675	2,695	22,808	2,730
Florida	98,498	102,386	106,708	${ }^{2} 106,407$	112,850
Georgia	58,525	59,227	62,563	69,215	70,599
Hawaii	9,670	9,714	10,437	${ }^{2} 10,102$	10,360
Idaho	15,523	15,716	16,170	15,941	16,000
Illinois	114,611	112,556	111,835	${ }^{2} 110,624$	108,968
Indiana	58,899	58,964	57,023	56,000	55,823
lowa	34,189	34,378	33,926	233,774	33,592
Kansas	27,856	28,685	29,102	229,360	29,899
Kentucky	37,270	37,048	36,830	236,957	35,573
Louisiana	38,030	37,802	38,430	38,184	37,987
Maine	12,171	11,988	12,148	${ }^{3} 12,031$	${ }^{3} 12,392$
Maryland	44,555	46,214	47,849	${ }^{2} 49,569$	51,250
Massachusetts	50,452	51,465	52,950	253,558	56,000
Michigan	92,732	94,125	89,986	96,800	101,300
Minnesota	54,628	56,964	57,372	256,605	56,100
Mississippi	24,502	24,198	24,232	23,740	${ }^{3} 23,644$
Missouri	52,095	52,531	52,848	254,014	53,670
Montana	10,656	10,925	10,903	${ }^{2} 10,628$	10,592
Nebraska	19,719	20,550	20,149	${ }^{2} 19,187$	20,128
Nevada	13,052	13,892	14,551	215,127	15,840
New Hampshire	10,843	11,251	11,829	12,188	12,762
New Jersey	65,106	67,410	74,423	74,420	76,653
New Mexico	16,529	17,317	18,031	218,245	18,233
New York	139,529	139,426	141,731	142,000	142,750
North Carolina	59,292	60,081	62,140	${ }^{2} 63,014$	65,574
North Dakota	8,170	8,388	8,606	28,445	8,062
Ohio	111,211	111,112	111,668	${ }^{2} 110,200$	114,800
Oklahoma	35,213	36,556	37,646	37,044	137,196
Oregon	27,754	28,245	30,151	229,939	30,400
Pennsylvania	110,919	112,632	113,959	114,850	114,350
Rhode Island	8,074	8,179	8,477	28,617	38,704
South Carolina	31,373	31,495	31,617	231,617	32,488
South Dakota	9,140	8,757	9,278	${ }^{2} 8,859$	8,772
Tennessee	39,866	40,823	41,568	241,568	42,151
Texas	197,186	203,393	212,925	217,242	219,848
Utah	31,567	31,574	32,501	231,042	30,576
Vermont	6,469	6,521	6,675	${ }^{2} 6,658$	16,553
Virginia	62,738	63,875	65,596	266,067	67,208
Washington	53,679	55,418	57,597	257,965	58,289
West Virginia	20,164	19,889	19,437	${ }^{2} 18,386$	17,392
Wisconsin	57,607	58,312	58,545	60,158	63,366
Wyoming	6,427	6,348	6,462	${ }^{2} 6,063$	5,970
Outlying areas					
American Samoa	665	725	698	${ }^{2} 724$	${ }^{3} 739$
Guam	923	1,326	1,406	${ }^{1} 1,387$	11,378
Northern Marianas	374	341	360	1370	1384
Puerto Rico	29,881	30,479	30,856	130,870	131,117
Virgin Islands	1,069	951	1,060	${ }^{2} 1,060$	${ }^{1} 997$

1'Data imputed by NCES based on previous year's data.
${ }^{2}$ Actual count reported by state.
${ }^{3}$ Early estimate number reported by state, adjusted by NCES.
NOTE: All school year (SY) 2000-01 and SY 2001-02 data are state estimates, except where noted. Estimates were reported by December 2001. Some data may have been revised from previously published figures.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/ Secondary Education Survey," 2001-02; and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through 2000-01.

Table 4.-Revenues for public elementary and secondary education, by state, for grades prekindergarten through 12: Fiscal years 1998 to 2002 (school years 1997-98 to 2001-02)
(In thousands of dollars)

State	Reported FY 1998	Preliminary FY 1999	Preliminary FY 2000	Estimated FY 2001	Estimated FY 2002
United States	1 \$325,925,708	1\$347,377,993	1 \$372,864,603	${ }^{2}$ \$386,492,548	${ }^{2}$ \$405,796,406
Alabama	4,146,629	4,469,278	4,832,135	${ }^{3} 4,967,462$	35,079,632
Alaska	1,218,425	1,290,358	1,359,764	1,372,015	1,413,175
Arizona	4,731,675	5,079,075	5,503,272	25,828,211	${ }^{2} 6,251,791$
Arkansas	2,600,655	2,610,267	2,730,722	32,802,611	2,758,954
California	38,142,613	40,002,760	45,058,305	${ }^{2} 47,151,481$	249,977,065
Colorado	4,327,326	4,714,756	5,044,275	45,078,133	5,281,259
Connecticut	15,159,304	15,607,013	16,065,481	6,354,000	6,740,000
Delaware	913,616	959,482	1,072,494	1,112,730	1,133,698
District of Columbia	706,935	760,592	875,619	${ }^{3} 804,322$	2832,333
Florida	14,988,118	16,460,206	16,946,014	17,930,915	18,712,703
Georgia	9,041,434	10,263,338	11,076,955	${ }^{4} 11,363,565$	12,731,021
Hawaii	1,282,702	1,328,572	1,404,897	1,425,970	1,447,360
Idaho	1,320,647	1,420,902	1,472,070	1,569,700	1,663,600
Illinois	14,149,155	15,338,740	16,590,948	15,860,257	${ }^{2} 16,683,134$
Indiana	7,513,407	7,980,582	8,427,757	8,605,000	9,038,000
lowa	3,346,481	3,516,165	3,714,861	3,856,000	3,905,200
Kansas	3,122,238	3,282,779	3,408,634	3,555,205	3,679,413
Kentucky	3,932,068	4,210,793	4,330,619	34,576,699	${ }^{3} 4,515,550$
Louisiana	14,493,189	14,697,638	14,907,761	5,053,319	5,179,651
Maine	1,600,635	1,703,252	1,811,965	1,930,724	2,057,379
Maryland	6,454,696	6,806,086	7,242,344	37,506,544	27,895,069
Massachusetts	7,893,657	8,590,351	9,260,130	9,159,732	10,243,798
Michigan	14,329,715	14,678,359	15,385,152	15,891,323	16,414,148
Minnesota	6,529,420	6,785,487	7,188,407	27,397,923	27,630,833
Mississippi	2,407,954	2,544,561	2,778,506	2,681,802	2,779,365
Missouri	6,005,256	6,265,697	6,665,304	6,895,000	7,170,800
Montana	1,029,939	1,047,338	1,101,615	1,138,000	1,160,000
Nebraska	1,964,205	2,168,308	2,216,656	2,343,892	2,474,915
Nevada	1,910,794	2,094,467	2,262,002	2,442,962	2,638,399
New Hampshire	1,364,943	1,441,115	1,559,653	1,731,038	1,833,827
New Jersey	13,189,983	14,184,605	14,882,015	${ }^{4} 16,296,157$	16,785,042
New Mexico	1,952,452	2,098,648	2,240,777	2,242,468	2,445,050
New York	27,782,468	29,874,220	32,403,066	33,873,400	35,504,200
North Carolina	7,188,615	8,137,116	8,797,269	8,314,459	8,730,181
North Dakota	682,419	709,427	749,936	${ }^{4} 815,806$	839,420
Ohio	13,458,095	14,399,472	15,231,086	${ }^{3} 15,656,563$	${ }^{3} 16,073,991$
Oklahoma	3,416,296	3,652,130	3,705,393	43,880,168	²4,025,659
Oregon	3,883,939	4,047,900	4,333,956	4,485,000	4,775,000
Pennsylvania	14,837,945	15,525,301	16,224,853	17,111,000	18,045,000
Rhode Island	1,264,156	1,319,597	1,448,205	1,589,405	${ }^{2} 1,658,847$
South Carolina	4,055,072	4,398,145	4,917,485	4,609,016	4,825,639
South Dakota	794,256	829,028	865,041	906,620	2929,709
Tennessee	4,815,833	5,089,341	5,378,527	45,415,517	${ }^{2} 5,821,637$
Texas	24,179,060	25,647,339	28,657,019	30,860,057	32,335,661
Utah	2,305,397	2,449,890	2,579,092	${ }^{3} 2,661,224$	${ }^{3} 2,750,680$
Vermont	861,643	908,146	966,128	1,017,872	1,102,457
Virginia	17,755,814	${ }^{1} 8,358,035$	8,749,757	${ }^{2} 9,088,246$	${ }^{2} 9,617,914$
Washington	6,895,693	7,212,175	7,573,768	${ }^{3} 7,799,922$	${ }^{3} 8,166,964$
West Virginia	2,216,984	2,229,692	2,294,744	2,359,887	2,496,000
Wisconsin	7,059,759	7,409,485	7,785,586	8,323,126	8,739,282
Wyoming	702,001	779,985	786,582	800,100	806,000
Outlying areas					
American Samoa	49,677	57,667	${ }^{2} 58,640$	57,680	61,357
Guam	2173,339	${ }^{2} 177,963$	${ }^{2} 189,033$	${ }^{2} 191,652$	${ }^{2} 196,808$
Northern Marianas	58,239	53,720	53,895	256,995	${ }^{2} 61,050$
Puerto Rico	2,094,025	2,121,183	22,222,824	22,285,696	22,380,601
Virgin Islands	152,499	160,253	150,060	${ }^{2} 143,968$	${ }^{2} 139,911$

${ }^{1}$ Revenues from student activities were imputed by NCES, thereby increasing the total revenue amount
${ }^{2}$ Data imputed by NCES based on previous year's data.
${ }^{3}$ Early estimate number reported by state, adjusted by NCES.
${ }^{4}$ Actual amount reported by state.
NOTE: All fiscal year (FY) 2001 and FY 2002 data are state estimates, except where noted. Data not adjusted for inflation (i.e., current dollars). Estimates were reported by December 2001. Detail may not add to totals because of rounding. Some data may have been revised from previously published figures.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02; and "National Public Education Financial Survey," FY 1998 through 2000.

Table 5.-Current expenditures for public elementary and secondary education, by state, for grades prekindergarten through 12: Fiscal years 1998 to 2002 (school years 1997-98 to 2001-02)
(In thousands of dollars)

State	Reported FY 1998	Preliminary FY 1999	Preliminary FY 2000	Estimated FY 2001	Estimated FY 2002
United States	1 \$285,485,370	1 \$302,876,294	1 \$323,808,909	${ }^{2}$ \$337,905,996	${ }^{2}$ \$357,955,487
Alabama	3,633,159	3,880,188	4,176,082	4,324,701	4,312,295
Alaska	1,092,750	1,137,610	1,183,499	1,226,966	1,263,775
Arizona	3,740,889	3,963,455	14,262,182	${ }^{2} 4,545,678$	${ }^{2} 4,919,844$
Arkansas	2,149,237	2,241,244	2,380,331	${ }^{3} 2,456,316$	2,583,877
California	32,759,492	34,379,878	38,129,479	${ }^{2} 40,182,200$	${ }^{2} 42,972,693$
Colorado	3,886,872	4,140,699	4,400,888	${ }^{3} 4,455,519$	4,633,739
Connecticut	14,763,653	15,075,580	15,402,867	5,653,000	5,996,000
Delaware	830,731	872,786	937,630	${ }^{4} 987,257$	1,110,044
District of Columbia	647,202	1693,712	780,192	2721,720	2753,562
Florida	12,737,325	13,534,374	13,885,988	14,778,013	15,581,937
Georgia	7,770,241	8,537,177	9,158,624	${ }^{3} 9,879,601$	11,225,320
Hawaii	1,112,351	1,143,713	1,213,695	1,231,901	1,250,379
Idaho	1,153,778	1,239,755	1,302,817	${ }^{4} 1,349,658$	${ }^{4} 1,424,116$
Illinois	12,473,064	13,602,965	14,462,773	${ }^{4} 14,805,221$	215,713,240
Indiana	6,234,563	6,697,468	7,110,930	7,538,000	7,990,000
Iowa	3,005,421	3,110,585	3,264,336	3,388,200	3,500,200
Kansas	2,684,244	2,841,147	2,971,814	3,108,511	3,232,852
Kentucky	3,489,205	3,696,331	3,837,794	${ }^{4} 4,084,477$	44,066,102
Louisiana	14,029,139	14,264,981	14,391,214	4,474,378	4,586,237
Maine	1,433,175	1,510,024	1,604,438	1,619,250	1,725,472
Maryland	5,843,685	6,165,934	6,545,135	6,365,470	${ }^{2} 6,755,070$
Massachusetts	7,381,784	7,948,502	8,511,065	48,851,564	9,681,713
Michigan	12,003,818	12,785,480	13,994,294	14,454,706	14,930,266
Minnesota	5,452,571	5,836,186	6,140,442	${ }^{2} 6,363,986$	${ }^{2} 6,623,305$
Mississippi	2,164,592	2,293,188	2,510,376	2,512,289	2,573,778
Missouri	5,067,720	5,348,366	5,655,531	5,642,000	5,867,680
Montana	929,197	955,695	994,770	1,055,000	1,076,000
Nebraska	1,743,775	1,821,310	1,926,500	2,037,081	2,150,954
Nevada	1,570,576	1,738,009	1,875,467	2,023,816	2,183,900
New Hampshire	1,241,255	1,316,946	1,418,503	1,585,994	1,675,871
New Jersey	12,056,560	12,874,579	13,327,645	${ }^{3} 12,861,908$	13,247,765
New Mexico	1,659,891	1,788,382	1,890,274	2,045,976	2,242,287
New York	25,332,735	26,885,444	28,433,240	${ }^{4} 29,400,799$	431,316,964
North Carolina	6,497,648	7,097,882	7,713,293	8,168,635	8,577,066
North Dakota	599,443	625,428	638,946	${ }^{4} 641,127$	${ }^{4} 654,600$
Ohio	11,448,722	12,138,937	12,974,575	13,695,000	15,020,000
Oklahoma	3,138,690	3,332,697	3,382,581	33,665,134	23,836,716
Oregon	3,474,714	3,706,044	3,896,287	4,324,000	4,572,000
Pennsylvania	13,084,859	13,532,211	14,120,112	14,890,000	15,701,000
Rhode Island	1,215,595	1,283,859	1,393,143	1,528,974	${ }^{2} 1,610,108$
South Carolina	3,507,017	3,759,042	4,087,355	4,442,955	4,651,774
South Dakota	665,082	696,785	737,998	3787,920	2815,244
Tennessee	4,409,338	4,638,924	4,931,734	${ }^{3} 4,731,075$	25,131,548
Texas	21,188,676	22,430,153	25,098,703	26,793,070	28,208,002
Utah	1,916,688	2,025,714	2,102,655	${ }^{4} 2,184,917$	${ }^{4} 2,278,647$
Vermont	749,786	792,664	870,198	915,674	975,884
Virginia	16,736,863	17,137,419	17,757,598	${ }^{2} 8,114,537$	${ }^{2} 8,664,590$
Washington	5,987,060	6,098,008	16,399,883	${ }^{3} 6,736,687$	7,305,880
West Virginia	1,905,940	1,986,562	2,086,937	${ }^{3} 2,323,099$	2,460,000
Wisconsin	6,280,696	6,620,653	6,852,178	37,243,038	7,605,190
Wyoming	603,901	651,622	683,918	709,000	720,000
Outlying areas					
American Samoa	33,088	35,092	42,395	${ }^{4} 44,561$	247,432
Guam	${ }^{2} 168,716$	${ }^{2} 181,815$	2194,156	${ }^{2} 198,234$	2205,396
Northern Marianas	56,514	50,450	49,832	253,071	257,357
Puerto Rico	1,981,603	2,024,499	2,086,414	22,160,559	22,270,481
Virgin Islands	131,315	146,474	135,174	${ }^{2} 130,601$	${ }^{2} 128,061$

${ }^{1}$ Expenditures for enterprise operations were imputed by NCES, thereby increasing the total current expenditure amount.
${ }^{2}$ Data imputed by NCES based on previous year's data.
${ }^{3}$ Actual amount reported by state.
${ }^{4}$ Early estimate number reported by state, adjusted by NCES.
NOTE: All fiscal year (FY) 2001 and FY 2002 data are state estimates, except where noted. Data not adjusted for inflation (i.e., current dollars). Estimates were reported by December 2001. Detail may not add to totals because of rounding. Some data may have been revised from previously published figures.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/ Secondary Education Survey," 2001-02; and "National Public Education Financial Survey," FY 1998 through 2000.

Table 6.-Reported student membership and number of teachers, and estimates of revenues, expenditures, and pupil/teacher ratio, for public elementary and secondary schools, by state, for grades prekindergarten through 12: School year 2000-01/fiscal year 2001

State	Reported		Estimates				
	Student membership	Number of teachers	Revenues (in thousands)	Expenditures (in thousands)	Pupil/teacher ratio	Per pupil revenue	Per pupil expenditure
United States	247,222,778	22,952,991	1\$386,492,548	${ }^{1}$ \$337,905,996	16.0	\$8,184	\$7,156
Alabama	${ }^{2} 740,176$	${ }^{2} 48,199$	${ }^{3} 4,967,462$	4,324,701	15.4	6,711	5,843
Alaska	133,356	7,880	1,372,015	1,226,966	16.9	10,288	9,201
Arizona	877,696	44,438	15,828,211	14,545,678	19.8	6,640	5,179
Arkansas	449,959	31,947	42,802,611	${ }^{4} 2,456,316$	14.1	6,229	5,459
California	${ }^{2} 6,142,348$	${ }^{2} 298,064$	147,151,481	${ }^{1} 40,182,200$	20.6	7,676	6,542
Colorado	724,508	41,983	45,078,133	${ }^{4} 4,455,519$	17.3	7,009	6,150
Connecticut	562,179	41,044	6,354,000	5,653,000	13.7	11,302	10,056
Delaware	114,676	7,471	1,112,730	${ }^{3} 987,257$	15.3	9,703	8,609
District of Columbia	68,925	4,949	804,322	1721,720	13.9	11,670	10,471
Florida	2,434,821	132,030	17,930,915	14,778,013	18.4	7,364	6,069
Georgia	1,444,937	91,044	${ }^{4} 11,363,565$	${ }^{4} 9,879,601$	15.9	7,864	6,837
Hawaii	184,360	10,927	1,425,970	1,231,901	16.9	7,735	6,682
Idaho	245,117	13,714	1,569,700	${ }^{3} 1,349,658$	17.9	6,404	5,506
Illinois	2,048,792	127,620	15,860,257	${ }^{3} 14,805,221$	16.1	7,741	7,226
Indiana	989,225	59,226	8,605,000	7,538,000	16.7	8,699	7,620
lowa	495,080	34,636	3,856,000	3,388,200	14.3	7,789	6,844
Kansas	470,610	32,742	3,555,205	3,108,511	14.4	7,554	6,605
Kentucky	665,850	39,589	³,576,699	${ }^{3} 4,084,477$	16.8	6,873	6,134
Louisiana	743,089	49,916	5,053,319	4,474,378	14.9	6,800	6,021
Maine	207,037	16,559	1,930,724	1,619,250	12.5	9,325	7,821
Maryland	852,920	52,433	37,506,544	6,365,470	16.3	8,801	7,463
Massachusetts	975,150	67,432	9,159,732	8,851,564	14.5	9,393	9,077
Michigan	21,743,337	97,031	15,891,323	14,454,706	18.0	9,115	8,291
Minnesota	854,340	53,457	17,397,923	16,363,986	16.0	8,659	7,449
Mississippi	497,871	31,006	2,681,802	2,512,289	16.1	5,387	5,046
Missouri	912,744	64,739	6,895,000	5,642,000	14.1	7,554	6,181
Montana	154,875	10,411	1,138,000	1,055,000	14.9	7,348	6,812
Nebraska	286,199	20,983	2,343,892	2,037,081	13.6	8,190	7,118
Nevada	340,706	18,294	2,442,962	2,023,816	18.6	7,170	5,940
New Hampshire	208,461	14,341	1,731,038	1,585,994	14.5	8,304	7,608
New Jersey	1,307,828	99,718	${ }^{4} 16,296,157$	${ }^{4} 12,861,908$	13.1	12,460	9,835
New Mexico	320,306	21,043	2,242,468	2,045,976	15.2	7,001	6,388
New York	2,882,188	206,961	33,873,400	${ }^{3} 29,400,799$	13.9	11,753	10,201
North Carolina	1,293,638	83,680	8,314,459	8,168,635	15.5	6,427	6,314
North Dakota	109,201	8,141	${ }^{4815,806}$	${ }^{3} 641,127$	13.4	7,471	5,871
Ohio	1,835,049	118,361	${ }^{3} 15,656,563$	13,695,000	15.5	8,532	7,463
Oklahoma	623,110	41,318	43,880,168	43,665,134	15.1	6,227	5,882
Oregon	546,231	28,094	4,485,000	4,324,000	19.4	8,211	7,916
Pennsylvania	1,814,311	116,963	17,111,000	14,890,000	15.5	9,431	8,207
Rhode Island	157,347	10,646	1,589,405	1,528,974	14.8	10,101	9,717
South Carolina	677,411	45,380	4,609,016	4,442,955	14.9	6,804	6,559
South Dakota	128,603	9,397	906,620	4787,920	13.7	7,050	6,127
Tennessee	${ }^{2} 909,388$	61,233	45,415,517	${ }^{4} 4,731,075$	14.9	5,955	5,202
Texas	4,059,619	274,826	30,860,057	26,793,070	14.8	7,602	6,600
Utah	481,687	22,008	${ }^{3} 2,661,224$	${ }^{3} 2,184,917$	21.9	5,525	4,536
Vermont	102,049	8,414	1,017,872	915,674	12.1	9,974	8,973
Virginia	1,144,915	291,560	19,088,246	18,114,537	12.5	7,938	7,087
Washington	1,004,770	51,098	37,799,922	${ }^{4} 6,736,687$	19.7	7,763	6,705
West Virginia	286,367	20,930	2,359,887	${ }^{4} 2,323,099$	13.7	8,241	8,112
Wisconsin	879,476	62,332	8,323,126	47,243,038	14.1	9,464	8,236
Wyoming	89,940	6,783	800,100	709,000	13.3	8,896	7,883
Outlying areas							
American Samoa	15,702	820	57,680	${ }^{4} 44,561$	19.1	3,673	2,838
Guam	32,473	1,975	${ }^{1} 191,652$	${ }^{1} 198,234$	16.4	5,902	6,105
Northern Marianas	10,004	526	156,995	153,071	19.0	5,697	5,305
Puerto Rico	612,725	37,620	12,285,696	12,160,559	16.3	3,730	3,526
Virgin Islands	19,459	1,511	${ }^{1} 143,968$	${ }^{1} 130,601$	12.9	7,399	6,712

${ }^{1}$ Data imputed by NCES based on previous year's data.
${ }^{2}$ Prekindergarten data imputed by NCES affecting state total.
${ }^{3}$ Early estimate number reported by state, adjusted by NCES.
${ }^{4}$ Actual count/amount reported by state.
NOTE: All estimated data are state estimates, except where noted. Estimates were reported by December 2001. Detail may not add to totals because of rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02;"National Public Education Financial Survey" and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through $2000-01$.

Table 7.-Estimated student membership, number of teachers, revenues, expenditures, and pupil/teacher ratio, for public elementary and secondary schools, by state, for grades prekindergarten through 12: School year 2001-02/fiscal year 2002

State	Student membership	Number of teachers	$\begin{aligned} & \text { Revenues } \\ & \text { (in thousands) } \end{aligned}$	Expenditures (in thousands)	Pupil/teacher ratio	Per pupil revenue	Per pupil expenditure
United States	147,575,862	12,988,379	${ }^{1} \$ 405,796,406$	1 \$357,955,487	15.9	\$8,529	\$7,524
Alabama	${ }^{3} 726,367$	347,201	35,079,632	4,312,295	15.4	6,993	5,937
Alaska	134,023	8,025	1,413,175	1,263,775	16.7	10,544	9,430
Arizona	'903,518	145,959	'6,251,791	14,919,844	19.7	6,919	5,445
Arkansas	${ }^{3} 448,246$	${ }^{3} 31,097$	2,758,954	2,583,877	14.4	6,155	5,764
California	16,247,889	'304,598	149,977,065	142,972,693	20.5	7,999	6,878
Colorado	${ }^{3742,065}$	43,282	5,281,259	4,633,739	17.1	7,117	6,244
Connecticut	${ }^{3} 570,145$	341,263	6,740,000	5,996,000	13.8	11,822	10,517
Delaware	${ }^{3} 115,486$	37,511	1,133,698	1,110,044	15.4	9,817	9,612
District of Columbia	${ }^{3} 68,449$	35,235	1832,333	1753,562	13.1	12,160	11,009
Florida	${ }^{3} 2,500,161$	${ }^{3} 135,866$	18,712,703	15,581,937	18.4	7,485	6,232
Georgia	${ }^{3} 1,470,634$	397,563	12,731,021	11,225,320	15.1	8,657	7,633
Hawaii	${ }^{3} 184,546$	10,943	1,447,360	1,250,379	16.9	7,843	6,775
Idaho	246,000	13,800	1,663,600	${ }^{21,424,116}$	17.8	6,763	5,789
Illinois	2,068,182	${ }^{3} 125,130$	'16,683,134	115,713,240	16.5	8,067	7,598
Indiana	994,545	59,832	9,038,000	7,990,000	16.6	9,088	8,034
lowa	491,169	34,702	3,905,200	3,500,200	14.2	7,951	7,126
Kansas	${ }^{3} 468,140$	332,519	3,679,413	3,232,852	14.4	7,860	6,906
Kentucky	630,461	40,374	${ }^{3} 4,515,550$	24,066,102	15.6	7,162	6,449
Louisiana	${ }^{3} 731,474$	49,915	5,179,651	4,586,237	14.7	7,081	6,270
Maine	${ }^{3} 211,461$	17,040	2,057,379	1,725,472	12.4	9,729	8,160
Maryland	${ }^{3} 860,890$	${ }^{3} 54,360$	17,895,069	'6,755,070	15.8	9,171	7,847
Massachusetts	979,593	69,000	10,243,798	9,681,713	14.2	10,457	9,883
Michigan	1,733,900	96,900	16,414,148	14,930,266	17.9	9,467	8,611
Minnesota	845,700	53,450	17,630,833	'6,623,305	15.8	9,023	7,832
Mississippi	491,686	32,757	2,779,365	2,573,778	15.0	5,653	5,235
Missouri	892,582	64,000	7,170,800	5,867,680	13.9	8,034	6,574
Montana	${ }^{3} 151,970$	10,212	1,160,000	1,076,000	14.9	7,633	7,080
Nebraska	${ }^{3} 285,022$	${ }^{3} 21,004$	2,474,915	2,150,954	13.6	8,683	7,547
Nevada	356,038	19,255	2,638,399	2,183,900	18.5	7,410	6,134
New Hampshire	211,429	13,990	1,833,827	1,675,871	15.1	8,673	7,926
New Jersey	1,380,502	${ }^{1} 105,750$	16,785,042	13,247,765	13.1	12,159	9,596
New Mexico	316,143	20,000	2,445,050	2,242,287	15.8	7,734	7,093
New York	2,920,000	215,500	35,504,200	231,316,964	13.5	12,159	10,725
North Carolina	${ }^{3} 1,303,928$	83,526	8,730,181	8,577,066	15.6	6,695	6,578
North Dakota	${ }^{3} 106,047$	38,503	839,420	${ }^{2654,600}$	12.5	7,916	6,173
Ohio	1,808,000	118,000	16,073,991	15,020,000	15.3	8,890	8,308
Oklahoma	620,404	41,452	14,025,659	13,836,716	15.0	6,489	6,184
Oregon	3552,144	${ }^{3} 30,895$	4,775,000	4,572,000	17.9	8,648	8,280
Pennsylvania	1,810,390	116,900	18,045,000	15,701,000	15.5	9,967	8,673
Rhode Island	${ }^{3} 157,599$	${ }^{3} 10,455$	${ }^{1} 1,658,847$	${ }^{1} 1,610,108$	15.1	10,526	10,216
South Carolina	648,000	${ }^{3} 46,000$	4,825,639	4,651,774	14.1	7,447	7,179
South Dakota	${ }^{3} 126,560$	9,089	1929,709	1815,244	13.9	7,346	6,442
Tennessee	938,162	58,059	15,821,637	15,131,548	16.2	6,205	5,470
Texas	4,128,429	281,427	32,335,661	28,208,002	14.7	7,832	6,833
Utah	${ }^{3} 477,801$	21,900	3,750,680	22,278,647	21.8	5,757	4,769
Vermont	199,599	18,250	1,102,457	975,884	12.1	11,069	9,798
Virginia	${ }^{3} 1,162,780$	87,823	19,617,914	18,664,590	13.2	8,271	7,452
Washington	${ }^{3} 1,009,626$	151,584	38,166,964	7,305,880	19.6	8,089	7,236
West Virginia	281,400	${ }^{3} 19,970$	2,496,000	2,460,000	14.1	8,870	8,742
Wisconsin	${ }^{3} 878,809$	59,783	8,739,282	7,605,190	14.7	9,944	8,654
Wyoming	${ }^{3} 87,768$	6,730	806,000	720,000	13.0	9,183	8,203
Outlying areas							
American Samoa	${ }^{3} 15,897$	${ }^{2} 834$	61,357	247,432	19.1	3,860	2,984
Guam	132,002	11,955	${ }^{1} 196,808$	1205,396	16.4	6,150	6,418
Northern Marianas	'10,284	1543	'61,050	157,357	18.9	5,937	5,578
Puerto Rico	'612,431	137,777	'2,380,601	'2,270,481	16.2	3,887	3,707
Virgin Islands	18,148	1,418	${ }^{1} 139,911$	${ }^{1} 128,061$	12.8	7,709	7,056

[^12]
Public High School Dropouts and Completers From the Common Core of Data: School Years 1991-92 Through 1997-98

Beth Aronstamm Young and Lee Hoffman

This article was originally published as the Executive Summary of the Statistical Analysis Report of the same name. The universe data are from the NCES Common Core of Data (CCD).

Introduction

The National Center for Education Statistics (NCES) began collecting the counts of public school dropouts through the Common Core of Data (CCD) with the 1991-92 school year. A dropout was defined, in simplified terms, as an individual who had been enrolled at any time during the previous school year, was not enrolled at the beginning of the current school year, and had not graduated or transferred to another public or private school.

The CCD is a voluntary collection, and dropout statistics are published for only those states whose dropout counts conform to the CCD definition. Dropout data were reported for 12 states for 1991-92. By 1997-98, this number had increased to 37 .

Since 1993, the CCD dropout statistics have been reported in the NCES annual publication Dropout Rates in the United States in conjunction with statistics from the Current Population Survey (CPS). The current report focuses solely on CCD data and introduces a high school 4-year completion rate based upon dropout and completion statistics. The 4 -year completion rate is the proportion of students who leave school from the 9th through 12th grades who do so as completers. It is relatively unaffected by net enrollment loss or gain due to population changes or by double-counting students who are retained in a grade during the high school years. Unlike the high school completion rate reported from
the CPS, which is based on all 18- to 24-year-olds, the CCD 4 -year completion rate is limited to public school data from grades 9 through 12 over 4 years (figure A). The CCD rate thus excludes some persons reported through the CPS who completed high school or who received a GED-based equivalency credential in their twenties, as well as those who graduated from nonpublic schools. It should be stressed that this report does not include all states; the statistics are valid for those states reporting but may not be nationally representative.

Major Findings

Some of the major findings from the analysis of public high school dropout and 4-year completion rate data are the following:

- Between 1993-94 and 1997-98 (years in which the numbers of reporting states were similar), the high school dropout rates were between 4 percent and 7 percent in almost two-thirds of the reporting states (table A).
- White and Asian/Pacific Islander students were less likely to drop out than were American Indian/Alaska Native, Black, or Hispanic students. Approximately one-third of all reporting states reported dropout rates of 10 percent or higher for Black students in each year from 1993-94 through 1997-98. Slightly less than one-half of the states had similar dropout rates for Hispanic students in this time period.

Figure A.-Example of how the CCD public high school 4-year completion rate is calculated

> Calculation for the 4-year completion rate in 1997-98 | high school completers in 1997-98 |
| :--- |
| grade 9 dropouts in 1994-95 + grade 10 dropouts in 1995-96 + grade 11 dropouts in 1996-97 |
| + grade 12 dropouts in 1997-98 + high school completers in 1997-98 |

SOURCE: Based on the completion-rate equation shown on p .2 of the complete report from which this article is excerpted.

Table A.—Dropout rates for grades 9-12, by state: School years 1991-92 through 1997-98

State	1997-98	1996-97	1995-96	1994-95	1993-94	1992-93	1991-92
Alabama ${ }^{1}$	4.8	5.3	5.6	6.2	5.8	-	-
Alaska ${ }^{2}$	4.6	4.9	5.6	-	-	-	-
Arizona ${ }^{1}$	9.4	10.0	10.2	9.6	13.7	10.3	11.0
Arkansas	5.4	5.0	4.1	4.9	5.3	4.8	4.1
California	-	-	-	-	-	-	-
Colorado	-	-	-	-	-	-	-
Connecticut	3.5	3.9	4.8	4.9	4.8	4.6	-
Delaware	4.7	4.5	4.5	4.6	4.6	4.2	-
District of Columbia	12.8	-	-	10.6	9.5	10.1	11.5
Florida	-	-	-	-	-	-	-
Georgia	7.3	8.2	8.5	9.0	8.7	-	-
Hawaii	-	-	-	-	-	-	-
Idaho ${ }^{1}$	6.7	7.2	8.0	9.2	8.5	-	-
Illinois ${ }^{1}$	6.9	6.6	6.4	6.6	6.8	-	-
Indiana	-	-	-	-	-	-	-
lowa	2.9	2.9	3.1	3.5	3.2	-	-
Kansas	-	-	-	-	-	-	-
Kentucky	5.2	-	-	-	-	-	-
Louisiana ${ }^{3}$	11.4	11.6	11.6	3.5	4.7	-	-
Maine	3.2	3.2	3.1	3.4	3.1	-	-
Maryland ${ }^{1}$	4.3	4.9	4.8	5.2	5.2	-	-
Massachusetts	3.2	3.4	3.4	3.6	3.7	3.5	3.2
Michigan	-	-	-	-	-	-	-
Minnesota	4.9	5.5	5.2	5.2	5.1	-	-
Mississippi	5.8	6.0	6.2	6.4	6.1	5.6	5.3
Missouri	5.2	5.8	6.5	7.0	7.0	6.2	6.2
Montana	4.4	5.1	5.6	-	-	-	-
Nebraska	4.4	4.3	4.5	4.5	4.6	3.8	3.6
Nevada	10.1	10.2	9.6	10.3	9.8	8.3	7.8
New Hampshire	-	-	-	-	-	-	-
New Jersey ${ }^{1}$	3.5	3.7	4.1	4.0	4.3	-	-
New Mexico	7.1	7.5	8.3	8.5	8.1	7.8	7.5
New York	-	-	-	-	-	-	-
North Carolina	-	-	-	-	-	-	-
North Dakota	2.8	2.7	2.5	2.5	2.7	2.3	-
Ohio ${ }^{2}$	5.1	5.2	5.4	5.3	4.7	-	-
Oklahoma ${ }^{1}$	5.8	5.9	5.7	5.8	4.6	-	-
Oregon	-	-	7.0	7.1	7.3	5.8	5.9
Pennsylvania	3.9	3.9	4.0	4.1	3.8	3.7	3.7
Rhode Island	4.9	4.7	4.6	4.6	4.9	4.6	4.8
South Carolina	-	-	-	-	-	-	-
South Dakota ${ }^{1}$	3.1	4.5	5.7	5.3	5.3	-	-
Tennessee ${ }^{1}$	5.0	5.1	4.9	5.0	4.8	-	-
Texas	-	,	-	-	-	-	-
Utah	5.2	4.5	4.4	3.5	3.1	-	-
Vermont ${ }^{1}$	5.2	5.0	5.3	4.7	4.8	-	-
Virginia ${ }^{1}$	4.8	4.6	4.7	5.2	4.8	-	-
Washington	-	-	-	-	-	-	-
West Virginia	4.1	4.1	3.8	4.2	3.8	-	-
Wisconsin ${ }^{1}$	2.8	2.7	2.4	2.7	3.1	-	-
Wyoming ${ }^{2}$	6.4	6.2	5.7	6.7	6.5	-	-
Outlying areas and DoD Dependents Schools							
DoD Dependents Schools	-	-	-	-	-	-	-
American Samoa	2.0	1.1	0.2	1.4	1.4	0.9	1.8
Guam	16.2	16.7	13.9	13.1	11.3	8.7	6.6
Northern Marianas	13.2	8.6	5.0	5.4	-	3.2	-
Puerto Rico ${ }^{2}$	1.3	1.6	1.5	2.2	2.2	2.5	-
Virgin Islands	6.8	3.5	2.3	6.0	3.1	6.4	3.7

-Data missing.
${ }^{1}$ This state reported on an alternative July-June cycle rather than the specified October-September cycle.
${ }^{2}$ The following states reported data using an alternative calendar in the years indicated: Alaska (1995-96), Ohio (1993-94), Wyoming (1993-94), and Puerto Rico (all years except 1997-98).
${ }^{3}$ Effective with the 1995-96 school year, Louisiana changed its dropout data collection from school-level aggregate counts reported by districts to an individual, student-record system. The increase in the dropout rate is due in part to the increased ability to track students.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD): Data File: Local Education Agency (School District) Universe Dropout and Completion Data: School Years 1991-92 Through 1996-97 and Data File: Local Education Agency (School District) Universe Dropout Data: School Year 1997-98. (Originally published as table 2 on p .22 of the complete report from which this article is excerpted.)

- Students were more likely to drop out of high school in districts that served large or midsize cities than in rural districts for those states reporting. When relatively low dropout rates are examined, 1997-98 data highlight this difference. In that year, the average high school dropout rate was less than 4 percent in rural districts in 16 of 37 reporting states. In contrast, none of the 21 reporting states with large city districts reported a dropout rate of less than 4 percent in large city districts.
- High school 4-year completion rates were 80 percent or higher in 20 of 33 reporting states in 1997-98 (table B). (This rate does not reflect those receiving a GED-based equivalency credential.)
- The average 4-year completion rate was less than 60 percent for American Indian/Alaska Native students in nine reporting states, Hispanic students in six reporting states, and Black students in six reporting states in 1997-98 (table C).

In every reporting state except Alabama, Maine, and West Virginia, the 4-year completion rate was higher for Asian/Pacific Islander students than for the other minority groups in 1997-98.

[^13]Author affiliations: B.A.Young and L. Hoffman, NCES.
For questions about content, contact Beth A. Young (beth.young@ed.gov).
To obtain the complete report (NCES 2002-317), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Table B.—High school completion rates, by state: School years 1994-95 through 1997-98

State	Four-year completion rate ${ }^{1}$			
	1997-98	1996-97	1995-96	1994-95
Alabama	78.3	76.8	-	-
Alaska	-	-	-	-
Arizona	65.3	62.5	61.4	62.0
Arkansas	81.2	80.0	80.7	80.4
California	-	-	-	-
Colorado		-	-	-
Connecticut	83.2	81.8	81.4	-
Delaware	81.9	80.4	81.3	-
District of Columbia	-	-	-	60.9
Florida	-	-	-	-
Georgia	68.3	67.6	-	-
Hawaii	-	-	-	-
Idaho	73.2	72.4	-	-
Illinois	76.9	76.1	-	-
Indiana	-	-	-	-
lowa	88.0	87.1	-	-
Kansas	-	-	-	-
Kentucky	-	-	-	-
Louisiana ${ }^{2}$	60.4	60.7	-	-
Maine	86.5	86.4	-	-
Maryland	80.6	80.4	-	-
Massachusetts	85.6	85.8	84.6	85.3
Michigan	-	-	-	-
Minnesota	80.3	-	-	-
Mississippi	76.0	75.5	75.5	77.9
Missouri	76.9	74.8	74.7	75.3
Montana	-	-	-	-
Nebraska	83.2	83.0	84.6	84.5
Nevada	64.5	64.4	64.1	64.1
New Hampshire	-	-	-	-
New Jersey	84.6	85.2	-	-
New Mexico	69.0	68.6	68.8	70.0
New York	-	-	-	-
North Carolina	-	-	-	-
North Dakota	89.5	89.9	90.6	-
Ohio	79.5	79.4	-	-
Oklahoma	78.3	78.6	-	-
Oregon	-	-	74.2	75.6
Pennsylvania	83.8	84.2	84.2	84.2
Rhode Island	80.9	80.7	81.6	80.8
South Carolina	-	-	-	-
South Dakota	81.3	81.9	-	-
Tennessee	83.5	78.3	-	-
Texas	-	-	-	-
Utah	81.3	83.7	-	-
Vermont	81.8	82.0	-	-
Virginia	81.1	81.6	-	-
Washington	-	-	-	-
West Virginia	83.9	83.3	-	-
Wisconsin	89.8	89.0	-	-
Wyoming	77.3	76.8	-	-
Outlying areas and DoD Dependents Schools				
DoD Dependents Schools	5	.	,	,
American Samoa	95.9	96.4	94.8	94.4
Guam	54.5	46.5	45.8	64.3
Northern Marianas	71.1	-	-	-
Puerto Rico	91.5	93.4	92.3	-
Virgin Islands	78.3	78.8	76.6	85.9

[^14]Table C.-High school 4-year completion rates, ${ }^{1}$ by race/ethnicity and state: School year 1997-98

State	Race/ethnicity				
	American Indian/ Alaska Native	Asian/Pacific Islander	Hispanic	Black, non-Hispanic	White, non-Hispanic
Alabama	94.3	92.3	71.1	74.8	79.7
Alaska	-	-	-	-	-
Arizona	-	-	-	-	-
Arkansas	70.8	81.6	66.9	74.7	82.1
California	-	-	-	-	-
Colorado	-	-	-	-	-
Connecticut	84.0	89.3	60.6	71.1	88.5
Delaware	-	95.7	72.3	77.6	85.0
District of Columbia	-			,	.
Florida	-	-	-	-	-
Georgia	68.6	82.2	60.7	63.3	71.4
Hawaii	-	-	-	-	-
Idaho	54.0	79.0	51.6	65.3	75.1
Illinois	76.3	89.8	61.5	57.8	84.9
Indiana	-	-	-	-	-
lowa	62.2	88.5	72.2	67.6	89.5
Kansas	-	-	-	-	-
Kentucky	-	-	-	-	-
Louisiana ${ }^{2}$	53.0	61.9	52.9	53.7	66.5
Maine	79.6	84.6	89.0	83.3	86.8
Maryland	74.5	94.2	79.7	70.5	85.9
Massachusetts	74.3	89.6	65.1	75.6	88.9
Michigan				-	-
Minnesota	-	-	-	-	-
Mississippi	34.1	82.9	63.5	73.7	78.2
Missouri	76.3	85.3	71.1	60.1	80.0
Montana	-	-	-	-	-
Nebraska	45.0	80.6	58.7	56.3	86.8
Nevada	54.0	70.7	49.4	56.8	69.4
New Hampshire	-	-		-	-
New Jersey	-	-	-	-	-
New Mexico	64.3	78.7	62.8	62.4	77.9
New York	-	-	-	-	-
North Carolina	-	-	-	-	-
North Dakota	53.7	87.3	76.3	73.6	92.1
Ohio	61.4	87.0	63.1	60.0	83.7
Oklahoma	79.4	84.5	63.2	68.9	80.2
Oregon	-	-	-	-	-
Pennsylvania	74.1	87.5	58.3	60.8	88.6
Rhode Island	55.6	84.9	64.2	70.0	83.8
South Carolina	-	-	-	-	-
South Dakota	30.6	83.3	72.8	67.1	88.1
Tennessee	-	-	-	-	-
Texas	-	-	-	-	-
Utah	60.3	72.5	53.8	50.4	83.6
Vermont	-	-	-	-	-
Virginia	72.9	87.8	69.2	73.9	84.0
Washington	-	-	-	-	-
West Virginia	82.1	95.1	95.9	77.8	84.1
Wisconsin	75.6	89.5	70.9	54.8	93.6
Wyoming	51.0	88.5	64.2	68.1	79.0
Outlying areas and DoD Dependents Schools					
DoD Dependents Schools	-	-	-	-	-
American Samoa	-	95.9	-	-	-
Guam	100.0	50.8	37.5	26.3	39.4
Northern Marianas		71.1	-		,
Puerto Rico	-	-	91.5	-	-
Virgin Islands	-	-	72.6	78.8	70.0

-Data missing.
${ }^{1}$ Includes regular and other diplomas, as well as other completion credentials (e.g., certificates of attendance or other certificates of completion), but does not include high school equivalency credentials (e.g., GEDs).
${ }^{2}$ Effective with the 1995-96 school year, Louisiana changed its dropout data collection, which increased the number of its dropouts. In calculating the completion rates, 1995-96 data were used in place of older data.
NOTE:Total completers by race/ethnicity are obtained from the"State Nonfiscal Survey of Public Elementary/Secondary Education."The completion rate by race/ethnicity is calculated by dividing the number of high school completers by the number of high school completers and dropouts in a specific racial/ ethnic group. A state that reported completers, but not by race/ethnicity, would not have a high school completion rate by race/ethnicity. Data for other completers are missing in the following states: Kentucky, New Hampshire, New Jersey, Washington, and Wisconsin. Caution should be used when interpreting results by race/ethnicity as some of the racial/ethnic group populations are quite small in some states.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"State Nonfiscal Survey of Public Elementary/ Secondary Education," 1998-99; and Data File:Local Education Agency (School District) Universe Dropout Data: School Year 1997-98. (Originally published as table 12a on p. 51 of the complete report from which this article is excerpted.)

 Public School Student, Staff, and Graduate Counts by State: School Year 2000-01

Beth Aronstamm Young

This article was originally published as an E.D. Tabs report. The universe data are from the NCES Common Core of Data (CCD), "State Nonfiscal Survey of Public Elementary/Secondary Education." Technical notes and definitions from the original report have been omitted.

Introduction

This annual report presents findings from the Common Core of Data (CCD) "State Nonfiscal Survey of Public Elementary/Secondary Education: School Year 2000-01." Data for this annual National Center for Education Statistics (NCES) survey are collected directly from state education agencies and include the total number of students, teachers, and graduates.

Data from the 2000-01 CCD survey can answer many questions about public elementary and secondary education, including the following:

- How many students were enrolled in public elementary and secondary schools?
- How many teachers worked in public elementary and secondary schools?
- What kinds of staff worked in public elementary and secondary schools?
- What was the racial/ethnic background of students enrolled in public schools?
- How many students graduated from high school during the previous school year (1999-2000)?
- How many students were educated in Department of Defense, Bureau of Indian Affairs, and outlying area schools? (Data on the Department of Defense, Bureau of Indian Affairs, and outlying area schools are discussed separately. These data are not included in national totals.)

Selected Findings

How many students were enrolled in public elementary and secondary schools?
In the 2000-01 school year, there were 47.2 million students enrolled in public elementary and secondary schools in the 50 states and the District of Columbia (table 1). ${ }^{1}$ Of these students, 26.2 million (55.5 percent) were in prekindergarten through grade 6 , an additional 20.5 million (43.4 percent) were in grades 7 through 12, and the

[^15]remaining 0.6 million (1.2 percent) were ungraded students. ${ }^{2}$ Not including prekindergarten or ungraded classes, grade 9 had the most students while grade 12 had the fewest (figure 1).

California had the most public elementary and secondary school students (6.1 million), followed by Texas (4.1 million) and New York (2.9 million). Thirteen states had over 1 million public elementary and secondary students in the 2000-01 school year. The District of Columbia $(68,925)$, Wyoming $(89,940)$, and Vermont $(102,049)$ had the fewest students. Nine states and the District of Columbia had fewer than 200,000 public elementary and secondary students in the 2000-01 school year.

The 47.2 million students enrolled in the 2000-01 school year represents a 14.6 percent increase in the number of students being served in the public elementary and secondary school system since the 1990-91 school year (table 10). Between the 1990-91 and 2000-01 school years, Nevada had the largest percentage increase (69.2 percent) in the number of students. Seven states (Louisiana, Maine, Mississippi, North Dakota, South Dakota, West Virginia, and Wyoming) and the District of Columbia had a decrease in the number of students between these years. The District of Columbia had the largest percentage decrease in students, with a 14.6 percent drop.

How many teachers worked in public elementary and secondary schools?

About 3.0 million full-time-equivalent teachers provided instruction in public elementary and secondary schools in the 2000-01 school year (table 2). Among this group, 56.7 percent (1.7 million) were elementary school teachers (including prekindergarten and kindergarten teachers), 35.8 percent (1.1 million) were secondary school teachers, and 7.5 percent $(222,921)$ were teachers who taught ungraded classes or were not assigned a specific grade. Only seven states had over 100,000 teachers. Two of these, California and Texas, had over one-quarter of a million teachers each.

[^16]Figure 1.-Percentage of public elementary and secondary students, by grades kindergarten through 12: School year 2000-01

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

While there was a 14.6 percent increase in students between the 1990-91 and 2000-01 school years, there was a 23.1 percent increase in the number of teachers (table 10). As with the number of students, Nevada also had the largest percentage increase in the number of teachers (76.4 percent). Only the District of Columbia (-16.8 percent) and West Virginia (-2.5 percent) had a decrease in the number of teachers between these 2 school years.

The ratio of total students to total teachers for the nation was 16.0 students per teacher in the 2000-01 school year (table 2). Student/teacher ratios ranged from a low of 12.1 students per teacher in Vermont to a high of 21.9 in Utah. The median student/teacher ratio was 15.1 ; that is, half the states had a student/teacher ratio greater than 15.1 and half had a lower ratio. Student/teacher ratios should not be interpreted as average class size, since not all teachers are assigned to a class (e.g., music and art teachers in elementary schools).

What kinds of staff worked in public elementary and secondary schools?

In addition to the teachers enumerated previously, an additional 2.8 million staff were employed in public schools. In the 2000-01 school year, 642,294 instructional
aides directly assisted teachers in providing instruction, and an additional 40,664 instructional coordinators and supervisors assisted teachers (e.g., with curriculum development and inservice training) (table 3). Teachers made up 51.6 percent of all staff in the 2000-01 school year, and instructional aides and coordinators made up an additional 11.9 percent of staff (figure 2). The percentage of all staff who were teachers ranged from 60.0 percent in Rhode Island to 44.1 percent in Kentucky. Vermont had a relatively low percentage of teachers per staff (47.3 percent), the highest percentage of instructional aides (22.1 percent), and the lowest student/teacher ratio (12.1 students per teacher) (table 2).

Another 26.4 percent of all staff (librarians, counselors, and other support staff) provided support services to schools and students. Staff providing support included 97,369 guidance counselors and 54,281 librarians. This translates to 485 students for every guidance counselor reported on average, and 870 students for each librarian. An additional 1.4 million staff members provided other support services for students. These services included food, health, library assistance, maintenance, transportation, security, and other services in the nation's public schools.

Figure 2.—Percentage of public elementary and secondary staff, by type:School year 2000-01

NOTE: Percentages for categories shown may not sum to total because of rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

There were 141,407 school administrators (mostly principals and assistant principals), 58,891 school district administrators, and 380,655 school and district administrative support staff. Administrators and administrative support staff made up 10.1 percent of all education staff. On average, there were 15 teachers and 13 other staff for each district and school administrator.

What was the racial/ethnic background of students enrolled in public schools?

In the 2000-01 school year, racial/ethnic data were reported for 47.0 of the 47.2 million students enrolled in public elementary and secondary schools in the 50 states and the District of Columbia (table 4). White, non-Hispanic students made up the majority of students (61.2 percent 3), followed by Black, non-Hispanic and Hispanic students (17.2 and 16.3 percent, respectively) (figure 3 and table 5). Asian/Pacific Islander students made up 4.1 percent of the public school population and American Indian/Alaska Native students made up 1.2 percent.

In six states (California, Hawaii, Louisiana, Mississippi, New Mexico, and Texas) and the District of Columbia, 50
percent or more of students were non-White. Black, nonHispanic students made up more than 50 percent of all students in the District of Columbia and Mississippi. New Mexico reported 50.2 percent of its students as Hispanic, and Hawaii reported 72.3 percent of its student body as Asian/Pacific Islander. On the other hand, five states (Iowa, Maine, New Hampshire, Vermont, and West Virginia) reported that over 90 percent of their students were White, non-Hispanic.

How many students graduated from high school during the 1999-2000 school year?

Some 2.5 million students received a high school diploma in the 50 states and the District of Columbia during the 1999-2000 school year and subsequent summer (table 6). Another 41,638 received other high school completion credentials (e.g., a certificate of attendance). These "other high school completers" only made up 1.6 percent of all high school completers (diploma recipients and other high school completers, not including recipients of high school equivalencies). In addition, there were students who earned a high school equivalency certificate; however, a national total cannot be computed because of missing data from a

[^17]number of states. Some states grant only diplomas and high school equivalency certificates and do not recognize any other types of high school completion; therefore, data from different states are not necessarily comparable.

How many students were educated in Department of Defense and Bureau of Indian Affairs schools?

Two federal offices, the Department of Defense (DoD) and the Department of the Interior, also administer public schools. DoD administers schools inside and outside the boundaries of the United States for eligible minor dependents of DoD military and civilian personnel on official assignments. Over 100,000 students attended DoD schools in the 2000-01 school year (73,581 outside the United States and 34,174 inside the United States) (table 1). DoD schools accounted for 7,504 teachers and had a student/ teacher ratio of 14.4 for schools outside the United States and 14.2 for schools inside the United States (table 2). Over 50 percent of the DoD school students were White, nonHispanic (table 5). Of the students in the overseas schools, 21.6 percent were Black, non-Hispanic; 7.8 percent were Hispanic; and 10.1 percent were Asian/Pacific Islander. Of
domestic students, 26.0 percent were Black, non-Hispanic; 18.4 percent were Hispanic; and 3.5 percent were Asian/ Pacific Islander.

Approximately 47,000 students attended the Department of the Interior, Bureau of Indian Affairs (BIA) schools (table 1). The governance of BIA schools differs from that of the federal DoD schools. The Education Amendments Act of 1978 (P.L. 95-561) and further technical amendments (P.L. 98-511, 99-89, and 100-297) mandated major changes in BIA-funded schools. These amendments empowered Indian school boards, provided for local hiring of teachers and staff, and granted the direct funding of schools. The BIA does not report the number of staff or graduate counts.

How many students were educated in outlying areas?
Five outlying areas participate in the CCD collection: American Samoa, Guam, the Northern Marianas, Puerto Rico, and the Virgin Islands. Puerto Rico, considered the third largest school district, educated 612,725 public school students (table 1). The other four outlying areas are much

Figure 3.-Percentage of public elementary and secondary students, by race/ethnicity: School year 2000-01

NOTE: Percentages for categories shown may not sum to total because of rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CDD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.
smaller, with only 77,638 students combined in the 2000-01 school year. Student/teacher ratios ranged from 12.9 students per teacher (Virgin Islands) to 19.1 (American Samoa), exhibiting about the same range as the 50 states and the District of Columbia (table 2). Each outlying area has less than 2 percent White, non-Hispanic students (table 5). The majority of students in American Samoa, Guam, and the Northern Marianas are Asian/Pacific Islander; in the Virgin Islands the majority of students are Black, non-Hispanic. Puerto Rico reported that all students are Hispanic.

Data source: The Common Core of Data (CCD) "State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.
For technical information, see the complete report:
Young, B.A. (2002). Public School Student, Staff, and Graduate Counts by State: School Year 2000-01 (NCES 2002-348).
Author affiliation: B.A. Young, NCES.
For questions about content, contact Beth Aronstamm Young (beth.young@ed.gov).
To obtain the complete report (NCES 2002-348), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Table 1.-Public school student membership, by grade and state: School year 2000-01

State	Total student membership	$\stackrel{\mathrm{Pre}}{ }$ garten	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
United States	147,222,778	1795,597	3,381,629	3,634,724	3,632,608	3,673,058	3,707,931	3,702,792
Alabama	1740,176	${ }^{1} 11,020$	55,112	59,669	58,887	59,263	59,749	60,123
Alaska	133,356	1,210	9,677	9,786	9,817	10,700	10,646	10,743
Arizona	877,696	2,037	68,347	74,491	71,402	72,603	72,295	72,371
Arkansas	449,959	2,001	33,941	34,541	33,904	35,147	35,724	35,924
California	16,142,348	191,453	459,771	487,058	490,510	482,278	489,043	490,557
Colorado	724,508	15,377	51,039	55,144	55,709	56,984	57,056	57,404
Connecticut	562,179	10,484	41,570	44,347	43,860	44,711	44,682	45,562
Delaware	114,676	706	7,691	9,233	9,208	9,015	8,848	8,643
District of Columbia	68,925	4,289	5,357	6,253	6,213	5,839	5,830	5,281
Florida	2,434,821	55,120	175,812	186,708	186,474	191,028	194,320	192,575
Georgia	1,444,937	32,248	110,960	114,049	114,939	115,691	116,678	117,973
Hawaii	184,360	840	14,071	14,988	14,825	14,928	15,291	15,532
Idaho	245,117	2,174	17,093	18,096	18,348	18,753	18,964	19,464
Illinois	2,048,792	60,712	147,619	161,147	159,858	161,530	160,495	160,537
Indiana	989,225	5,567	70,727	78,786	78,021	78,386	79,738	79,147
lowa	495,080	5,797	33,977	33,946	34,952	35,818	36,448	36,975
Kansas	470,610	2,263	30,392	34,134	33,958	34,743	35,165	35,992
Kentucky	665,850	15,892	48,064	251,341	251,031	252,050	50,899	49,562
Louisiana	743,089	16,210	55,293	60,404	57,956	58,571	63,884	50,450
Maine	207,037	1,062	13,769	14,560	15,079	15,754	16,121	16,636
Maryland	852,920	20,031	56,073	63,751	65,339	65,834	69,279	67,431
Massachusetts	975,150	19,938	70,647	70,599	75,839	77,269	78,287	79,767
Michigan	${ }^{1} 1,743,337$	125,956	126,906	128,129	128,396	129,141	130,886	133,155
Minnesota	854,340	9,300	58,963	59,417	60,882	62,312	63,334	65,674
Mississippi	497,871	1,682	37,373	41,465	40,169	40,176	40,177	39,797
Missouri	912,744	17,980	63,634	66,043	68,355	71,586	71,208	70,594
Montana	154,875	537	10,129	10,959	10,946	11,597	11,682	12,152
Nebraska	286,199	4,900	20,210	20,384	20,647	20,985	21,357	22,007
Nevada	340,706	1,888	26,445	28,411	28,123	28,693	28,616	28,626
New Hampshire	208,461	1,879	9,188	16,337	15,929	16,720	16,852	17,552
New Jersey	1,307,828	21,931	89,717	99,888	99,751	100,184	100,622	100,541
New Mexico	320,306	3,090	22,065	24,201	24,577	24,984	25,493	25,515
New York	2,882,188	39,062	194,673	217,654	216,309	218,270	217,881	217,452
North Carolina	1,293,638	8,722	101,049	106,296	104,297	106,105	105,105	105,402
North Dakota	109,201	701	7,146	7,610	7,646	7,748	7,982	8,104
Ohio	1,835,049	22,988	128,640	139,802	140,025	141,308	143,373	143,398
Oklahoma	623,110	23,475	42,979	50,038	45,785	47,008	47,064	47,164
Oregon	546,231	686	37,739	40,208	40,632	42,253	43,436	43,762
Pennsylvania	1,814,311	2,479	119,318	134,814	135,850	138,337	142,366	144,247
Rhode Island	157,347	1,055	10,521	12,527	12,064	12,372	12,490	12,551
South Carolina	677,411	17,340	47,277	52,055	52,705	53,984	54,468	51,092
South Dakota	128,603	967	8,989	9,075	9,316	9,517	9,583	9,894
Tennessee	1909,388	${ }^{1} 13,539$	70,351	72,708	71,412	72,467	73,373	73,286
Texas	4,059,619	145,771	294,217	320,752	316,896	316,535	313,731	311,638
Utah	481,687	6,418	36,039	35,873	35,291	36,298	35,910	35,934
Vermont	102,049	2,371	6,511	7,051	7,166	7,445	7,736	7,995
Virginia	1,144,915	7,263	82,585	89,072	89,287	91,217	92,073	92,300
Washington	1,004,770	7,283	68,531	73,521	75,432	77,945	78,505	79,830
West Virginia	286,367	6,152	20,937	21,283	21,056	21,634	21,995	21,936
Wisconsin	879,476	23,751	56,507	59,962	61,205	62,810	64,455	65,570
Wyoming	89,940	(\dagger)	5,988	6,158	6,330	6,532	6,736	6,975
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs								
Bureau of Indian Affairs ${ }^{3}$	46,938	-	-	4,125	4,045	4,187	4,021	3,775
DoD overseas	73,581	1,846	6,892	7,136	6,905	7,019	6,570	6,453
DoD domestic	34,174	3,357	4,068	3,873	3,628	3,442	3,089	2,901
American Samoa	15,702	1,369	1,038	1,254	1,330	1,266	1,157	1,170
Guam	32,473	570	2,596	2,767	2,288	2,718	2,613	2,707
Northern Marianas	10,004	579	589	858	941	825	890	834
Puerto Rico	612,725	1,139	42,957	49,807	48,585	46,956	47,296	49,553
Virgin Islands	19,459	(\dagger)	1,189	1,391	1,409	1,548	1,650	1,554

See footnotes on second page of this table.

Table 1.—Public school student membership, by grade and state: School year 2000-01—Continued

State	Grade 6	Grade 7	Grade 8	Grade 9	Grade 10	Grade 11	Grade 12	Ungraded
United States	3,658,460	3,623,913	3,532,370	3,958,471	3,486,928	3,080,361	2,799,484	554,542
Alabama	58,825	59,219	56,951	60,463	51,991	46,392	42,512	(\dagger)
Alaska	10,624	10,862	10,377	11,582	10,110	8,887	8,335	(\dagger)
Arizona	69,828	69,110	65,526	70,727	63,765	52,940	49,501	2,753
Arkansas	35,416	35,562	34,873	36,078	34,958	31,557	28,918	1,415
California	464,494	458,823	441,877	485,910	455,134	409,119	357,789	78,532
Colorado	56,330	56,139	55,386	61,200	54,010	49,250	43,480	(\dagger)
Connecticut	44,536	44,096	42,597	45,525	40,608	37,010	32,591	(\dagger)
Delaware	8,841	9,541	9,075	10,628	8,887	7,256	7,104	(\dagger)
District of Columbia	4,777	3,766	3,371	4,207	3,606	3,183	2,785	4,168
Florida	197,293	194,909	185,663	238,825	170,385	145,900	119,809	(\dagger
Georgia	116,072	112,249	109,124	126,793	99,934	85,910	72,317	(\dagger)
Hawaii	14,579	13,772	13,424	15,915	13,148	12,560	10,408	79
Idaho	18,988	19,481	19,045	19,537	19,358	18,430	17,371	15
Illinois	158,587	151,830	149,045	165,220	150,473	132,793	124,760	4,186
Indiana	79,024	77,400	73,888	79,922	73,210	67,180	63,503	4,726
lowa	36,576	36,704	36,458	40,660	39,929	37,592	36,892	12,356
Kansas	35,663	36,091	36,085	39,170	37,229	34,300	33,085	12,340
Kentucky	48,433	49,681	48,938	58,299	49,055	44,583	39,879	28,143
Louisiana	58,038	58,826	61,997	53,940	52,819	46,058	41,836	6,807
Maine	16,917	17,269	17,035	17,134	15,842	14,465	13,341	2,053
Maryland	67,323	66,493	64,647	71,705	62,410	55,766	50,962	5,876
Massachusetts	78,971	76,731	74,527	78,201	71,430	64,622	58,322	(\dagger)
Michigan	127,565	124,898	123,080	134,402	121,513	105,759	94,837	108,714
Minnesota	65,148	66,482	66,254	70,729	71,064	67,208	67,573	(\dagger)
Mississippi	38,479	38,919	36,588	39,390	33,717	28,773	26,291	14,875
Missouri	70,128	69,747	68,717	75,148	69,939	62,166	58,103	9,396
Montana	12,070	12,431	12,517	13,359	12,861	11,974	11,371	290
Nebraska	21,495	21,637	21,864	24,236	23,378	21,948	21,151	(\dagger)
Nevada	27,340	26,550	25,327	29,972	19,998	21,477	18,519	721
New Hampshire	17,460	17,240	17,209	17,578	16,160	14,492	13,024	841
New Jersey	100,555	97,228	92,094	95,640	88,360	79,859	74,232	67,226
New Mexico	25,172	24,912	24,870	28,944	25,476	21,905	19,102	(\dagger)
New York	214,004	213,426	203,482	245,291	217,734	167,953	151,043	147,954
North Carolina	106,091	103,062	99,295	112,416	91,446	77,475	66,831	46
North Dakota	8,210	8,623	8,651	9,314	9,374	9,020	9,072	(\dagger)
Ohio	142,996	142,969	139,740	156,710	139,229	125,760	119,704	8,407
Oklahoma	46,769	46,455	46,276	49,667	45,912	41,721	39,409	3,388
Oregon	43,569	42,676	42,364	45,541	43,602	39,984	37,055	2,724
Pennsylvania	144,127	146,032	143,638	157,559	142,177	128,868	122,048	12,451
Rhode Island	12,557	12,394	11,750	12,819	11,272	10,341	9,184	3,450
South Carolina	56,124	54,922	53,259	63,776	48,628	37,870	33,911	(\dagger)
South Dakota	9,999	10,084	10,303	11,043	10,389	9,932	9,354	158
Tennessee	71,180	69,159	66,429	73,141	64,349	54,746	48,802	14,446
Texas	308,392	310,696	304,419	360,704	287,355	248,570	219,943	(\dagger)
Utah	35,190	35,520	34,579	35,538	36,489	36,210	35,484	10,914
Vermont	8,125	7,915	8,005	8,595	7,998	7,799	7,232	105
Virginia	91,743	88,338	87,455	98,371	86,395	74,045	70,337	4,434
Washington	78,729	77,431	77,160	87,322	80,453	74,048	68,580	(\dagger
West Virginia	22,055	22,007	21,902	23,723	21,849	19,684	19,716	438
Wisconsin	66,163	66,367	67,950	78,140	73,796	67,605	65,195	(\dagger)
Wyoming	6,890	7,239	7,284	7,762	7,724	7,416	6,881	25
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs								
Bureau of Indian Affairs	4,026	3,724	3,634	3,826	3,024	2,376	1,966	(\dagger)
DoD overseas	6,017	5,504	4,957	4,445	3,912	3,190	2,735	(\dagger
DoD domestic	2,657	1,854	1,712	1,305	882	696	594	116
American Samoa	1,131	1,071	1,109	1,103	1,008	906	745	45
Guam	2,628	2,493	2,318	3,490	2,279	1,592	1,414	(\dagger)
Northern Marianas	773	759	714	848	541	464	342	47
Puerto Rico	48,922	50,091	46,852	44,362	45,072	38,217	33,567	19,349
Virgin Islands	1,427	1,883	1,515	1,798	1,311	1,150	1,021	613

-Data missing.
†Not applicable.
${ }^{1}$ Data imputed based on current-year (fall 2000) data.
${ }^{2}$ Data disaggregated from reported total.
${ }^{3}$ Total students includes 4,209 students for which a grade level could not be determined. SOURCE: U.S.Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

Table 2.-Public school student/teacher ratio, student membership, and teachers, by level of instruction and state: School year 2000-01

State	Total student/ teacher ratio	Total student membership	Total teachers	Pre-kindergarten teachers	Kindergarten teachers	Elementary teachers	Secondary teachers	Teachers of ungraded classes
United States	16.0	${ }^{1} 47,222,778$	12,952,991	134,322	146,996	1,492,151	1,056,601	222,921
Alabama	15.4	1740,176	148,199	${ }^{1} 612$	3,410	23,910	20,267	(\dagger)
Alaska	16.9	133,356	7,880	38	330	4,747	2,765	(\dagger)
Arizona	19.8	877,696	44,438	142	1,709	30,065	12,522	(\dagger)
Arkansas	14.1	449,959	31,947	100	1,975	11,866	13,665	4,341
California	20.6	16,142,348	1298,064	15,078	23,400	189,815	75,568	4,203
Colorado	17.3	724,508	41,983	439	2,267	18,703	20,574	(\dagger)
Connecticut	13.7	562,179	41,044	184	1,521	22,399	11,944	4,996
Delaware	15.3	114,676	7,471	11	231	3,540	3,689	(\dagger)
District of Columbia	13.9	68,925	4,949	213	264	2,675	1,248	549
Florida	18.4	2,434,821	132,030	900	6,933	49,909	51,028	23,260
Georgia	15.9	1,444,937	91,044	1,921	5,283	45,831	38,009	(\dagger)
Hawaii	16.9	184,360	10,927	${ }^{2} 118$	${ }^{2} 464$	25,402	4,896	47
Idaho	17.9	245,117	13,714	97	475	6,409	6,733	(\dagger)
Illinois	16.1	2,048,792	127,620	1,530	4,927	70,026	31,727	19,410
Indiana	16.7	989,225	59,226	408	2,406	28,026	25,683	2,703
lowa	14.3	495,080	34,636	461	2,074	18,459	12,368	1,274
Kansas	14.4	470,610	32,742	262	1,168	13,198	14,680	3,434
Kentucky	16.8	665,850	39,589	728	1,311	19,503	11,750	6,297
Louisiana	14.9	743,089	49,916	472	2,626	31,677	14,797	344
Maine	12.5	207,037	16,559	${ }^{2} 221$	${ }^{2} 870$	${ }^{2} 10,141$	5,327	(\dagger
Maryland	16.3	852,920	52,433	628	1,900	28,990	20,915	(\dagger)
Massachusetts	14.5	975,150	67,432	959	2,492	27,765	30,300	5,916
Michigan	18.0	${ }^{1} 1,743,337$	97,031	1,029	3,820	36,561	43,234	12,387
Minnesota	16.0	854,340	53,457	1,152	2,037	24,761	25,507	(\dagger)
Mississippi	16.1	497,871	31,006	226	1,554	13,793	10,126	5,307
Missouri	14.1	912,744	64,739	1,267	3,252	28,221	31,385	614
Montana	14.9	154,875	10,411	${ }^{2} 140$	${ }^{2} 550$	²6,407	3,314	(\dagger)
Nebraska	13.6	286,199	20,983	${ }^{2} 248$	${ }^{2} 978$	${ }^{2} 11,392$	8,365	(\dagger)
Nevada	18.6	340,706	18,294	285	562	8,606	6,691	2,150
New Hampshire	14.5	208,461	14,341	97	320	9,565	4,359	(\dagger)
New Jersey	13.1	1,307,828	99,718	311	3,524	53,838	27,688	14,357
New Mexico	15.2	320,306	21,043	256	986	10,726	4,777	4,298
New York	13.9	2,882,188	206,961	2,356	11,653	93,891	68,649	30,412
North Carolina	15.5	1,293,638	83,680	835	5,354	44,563	29,357	3,571
North Dakota	13.4	109,201	8,141	111	273	4,478	3,279	(\dagger)
Ohio	15.5	1,835,049	118,361	1,280	4,433	73,499	38,971	178
Oklahoma	15.1	623,110	41,318	635	1,610	17,184	17,707	4,182
Oregon	19.4	546,231	28,094	40	1,028	13,965	8,229	4,832
Pennsylvania	15.5	1,814,311	116,963	${ }^{2} 1,059$	²4,167	${ }^{2} 48,548$	48,018	15,171
Rhode Island	14.8	157,347	10,646	17	246	4,372	4,405	1,606
South Carolina	14.9	677,411	45,380	495	2,062	29,820	12,835	168
South Dakota	13.7	128,603	9,397	96	369	5,249	2,650	1,033
Tennessee	14.9	1909,388	61,233	245	3,823	40,357	15,585	1,223
Texas	14.8	4,059,619	274,826	4,818	15,184	114,821	108,539	31,464
Utah	21.9	481,687	22,008	191	845	9,536	9,027	2,409
Vermont	12.1	102,049	8,414	62	303	2,844	3,086	2,119
Virginia	12.5	1,144,915	191,560	${ }^{1} 403$	23,926	${ }^{2} 45,896$	41,335	(\dagger
Washington	19.7	1,004,770	51,098	41	2,017	23,757	20,426	4,857
West Virginia	13.7	286,367	20,930	177	1,111	9,005	6,905	3,732
Wisconsin	14.1	879,476	62,332	928	2,752	40,445	18,207	(\dagger)
Wyoming	13.3	89,940	6,783	(\dagger)	221	2,995	3,490	77
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs								
Bureau of Indian Affairs	-	46,938	-	-	-	-	-	(\dagger)
DoD overseas	14.4	73,581	5,105	71	276	1,656	1,607	1,495
DoD domestic	14.2	34,174	2,399	93	180	893	509	725
American Samoa	19.1	15,702	820	119	39	424	223	15
Guam	16.4	32,473	1,975	25	114	838	998	(\dagger)
Northern Marianas	19.0	10,004	526	2	23	283	215	3
Puerto Rico	16.3	612,725	37,620	68	1,248	18,660	14,449	3,195
Virgin Islands	12.9	19,459	1,511	(\dagger	62	665	733	51

-Data missing.
\dagger Not applicable.
${ }^{1}$ Data imputed based on current-year (fall 2000) data.
${ }^{2}$ Data disaggregated from reported total.
NOTE: Teacher counts are full-time-equivalency counts. Elementary and secondary teacher counts are not directly comparable across states due to differences in the grades included in these designations.

SOURCE: U.S.Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

Table 3.-Number of staff employed by public elementary and secondary school systems and percentage of total staff, by category and state: School year 2000-01

State	Total staff	Teachers		Instructional aides		Instructional coordinators and supervisors		Guidance counselors	
		Number	Percent	Number	Percent	Number	Percent	Number	Percent
United States	${ }^{1} 5,726,822$	12,952,991	51.6	${ }^{1} 642,294$	11.2	${ }^{1} 40,664$	0.7	97,369	1.7
Alabama	189,823	148,199	53.7	6,738	7.5	484	0.5	1,686	1.9
Alaska	${ }^{1} 15,988$	7,880	49.3	2,197	13.7	${ }^{1} 139$	0.9	260	1.6
Arizona	90,115	44,438	49.3	12,391	13.8	153	0.2	1,152	1.3
Arkansas	61,917	31,947	51.6	6,061	9.8	299	0.5	1,427	2.3
California	1539,301	1298,064	55.3	63,852	11.8	6,342	1.2	6,398	1.2
Colorado	82,827	41,983	50.7	9,124	11.0	816	1.0	1,233	1.5
Connecticut	82,107	41,044	50.0	10,954	13.3	422	0.5	1,232	1.5
Delaware	12,618	7,471	59.2	928	7.4	135	1.1	235	1.9
District of Columbia	10,712	4,949	46.2	1,154	10.8	12	0.1	200	1.9
Florida	276,421	132,030	47.8	30,582	11.1	759	0.3	5,465	2.0
Georgia	184,867	91,044	49.2	21,612	11.7	1,205	0.7	3,074	1.7
Hawaii	18,352	10,927	59.5	1,316	7.2	445	2.4	628	3.4
Idaho	24,386	13,714	56.2	2,518	10.3	266	1.1	587	2.4
Illinois	${ }^{1} 250,643$	127,620	50.9	131,036	12.4	2,084	0.8	2,968	1.2
Indiana	126,834	59,226	46.7	17,708	14.0	1,533	1.2	1,832	1.4
Iowa	67,765	34,636	51.1	8,307	12.3	419	0.6	1,228	1.8
Kansas	64,152	32,742	51.0	6,902	10.8	106	0.2	1,167	1.8
Kentucky	89,674	39,589	44.1	14,487	16.2	141	0.2	1,305	1.5
Louisiana	101,201	49,916	49.3	10,945	10.8	1,212	1.2	3,047	3.0
Maine	33,305	16,559	49.7	5,434	16.3	162	0.5	643	1.9
Maryland	96,504	52,433	54.3	8,849	9.2	1,198	1.2	2,080	2.2
Massachusetts	122,481	67,432	55.1	15,667	12.8	1,159	0.9	2,347	1.9
Michigan	210,481	97,031	46.1	24,596	11.7	1,007	0.5	3,110	1.5
Minnesota	${ }^{1} 103,570$	53,457	51.6	15,283	14.8	509	0.5	1,029	1.0
Mississippi	64,723	31,006	47.9	8,652	13.4	594	0.9	963	1.5
Missouri	121,614	64,739	53.2	10,530	8.7	828	0.7	2,655	2.2
Montana	${ }^{1} 19,512$	10,411	53.4	12,346	12.0	159	0.8	433	2.2
Nebraska	39,925	20,983	52.6	4,277	10.7	347	0.9	769	1.9
Nevada	31,192	18,294	58.6	2,174	7.0	102	0.3	683	2.2
New Hampshire	28,055	14,341	51.1	5,056	18.0	${ }^{2} 175$	0.6	739	2.6
New Jersey	186,523	99,718	53.5	19,785	10.6	2,994	1.6	3,124	1.7
New Mexico	44,980	21,043	46.8	5,102	11.3	581	1.3	706	1.6
New York	416,236	206,961	49.7	40,618	9.8	1,920	0.5	6,072	1.5
North Carolina	162,431	83,680	51.5	27,447	16.9	817	0.5	3,302	2.0
North Dakota	15,115	8,141	53.9	1,716	11.4	98	0.6	274	1.8
Ohio	222,961	118,361	53.1	14,862	6.7	459	0.2	3,495	1.6
Oklahoma	75,148	41,318	55.0	6,366	8.5	173	0.2	1,566	2.1
Oregon	56,168	28,094	50.0	8,106	14.4	301	0.5	1,232	2.2
Pennsylvania	223,935	116,963	52.2	22,508	10.1	1,441	0.6	4,098	1.8
Rhode Island	17,737	10,646	60.0	2,295	12.9	53	0.3	288	1.6
South Carolina	185,584	45,380	53.0	${ }^{1} 10,262$	12.0	561	0.7	1,685	2.0
South Dakota	18,072	9,397	52.0	2,280	12.6	369	2.0	324	1.8
Tennessee	113,272	61,233	54.1	12,532	11.1	${ }^{2} 981$	0.9	1,801	1.6
Texas	542,791	274,826	50.6	55,468	10.2	1,288	0.2	9,439	1.7
Utah	40,717	22,008	54.1	5,426	13.3	599	1.5	637	1.6
Vermont	17,772	8,414	47.3	3,928	22.1	292	1.6	393	2.2
Virginia	${ }^{1} 167,074$	191,560	54.8	16,096	9.6	1,699	1.0	3,311	2.0
Washington	97,636	51,098	52.3	10,375	10.6	${ }^{2} 801$	0.8	1,957	2.0
West Virginia	38,549	20,930	54.3	3,018	7.8	339	0.9	661	1.7
Wisconsin	109,104	62,332	57.1	10,696	9.8	1,505	1.4	2,055	1.9
Wyoming	13,952	6,783	48.6	1,732	12.4	181	1.3	374	2.7
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs									
Bureau of Indian Affairs	-	-	-	-	-		-	-	
DoD overseas	7,736	5,105	66.0	531	6.9	83	1.1	237	3.1
DoD domestic	4,054	2,399	59.2	417	10.3	70	1.7	110	2.7
American Samoa	1,639	820	50.0	127	7.7	35	2.1	38	2.3
Guam	3,836	1,975	51.5	693	18.1	125	3.3	34	0.9
Northern Marianas	1,047	526	50.2	216	20.6	6	0.6	15	1.4
Puerto Rico	69,188	37,620	54.4	236	0.3	397	0.6	866	1.3
Virgin Islands	2,899	1,511	52.1	307	10.6	19	0.7	81	2.8

See footnotes on second page of this table.

Table 3.-Number of staff employed by public elementary and secondary school systems and percentage of total staff, by category and state: School year 2000-01-Continued

State	Librarians		Student/other support staff ${ }^{3}$		School administrators		School district administrators		Administrative support staff	
	Number	Percent								
United States	54,281	0.9	${ }^{1} 1,358,270$	23.7	141,407	2.5	58,891	1.0	1380,655	6.6
Alabama	1,317	1.5	23,467	26.1	3,294	3.7	1,203	1.3	3,435	3.8
Alaska	140	0.9	2,939	18.4	739	4.6	239	1.5	1,455	9.1
Arizona	811	0.9	21,921	24.3	2,008	2.2	393	0.4	6,848	7.6
Arkansas	1,011	1.6	16,708	27.0	1,617	2.6	671	1.1	2,176	3.5
California	1,386	0.3	296,544	17.9	13,009	2.4	2,599	0.5	51,107	9.5
Colorado	800	1.0	19,541	23.6	2,200	2.7	882	1.1	6,248	7.5
Connecticut	743	0.9	19,798	24.1	2,063	2.5	1,201	1.5	4,650	5.7
Delaware	120	1.0	2,386	18.9	349	2.8	268	2.1	726	5.8
District of Columbia	122	1.1	2,976	27.8	267	2.5	15	0.1	1,017	9.5
Florida	2,646	1.0	68,968	25.0	6,332	2.3	1,736	0.6	27,903	10.1
Georgia	2,069	1.1	50,268	27.2	4,573	2.5	1,726	0.9	9,296	5.0
Hawaii	291	1.6	3,202	17.4	475	2.6	136	0.7	932	5.1
Idaho	189	0.8	4,947	20.3	715	2.9	121	0.5	1,329	5.4
Illinois	1,986	0.8	158,700	23.4	5,812	2.3	3,887	1.6	${ }^{1} 16,550$	6.6
Indiana	1,063	0.8	33,979	26.8	2,946	2.3	942	0.7	7,605	6.0
lowa	673	1.0	15,134	22.3	2,119	3.1	1,112	1.6	4,137	6.1
Kansas	1,002	1.6	15,983	24.9	1,755	2.7	1,234	1.9	3,261	5.1
Kentucky	1,061	1.2	26,256	29.3	1,856	2.1	486	0.5	4,493	5.0
Louisiana	1,212	1.2	28,109	27.8	2,611	2.6	319	0.3	3,830	3.8
Maine	248	0.7	27,035	21.1	902	2.7	527	1.6	21,795	5.4
Maryland	1,106	1.1	22,060	22.9	3,058	3.2	1,049	1.1	4,671	4.8
Massachusetts	944	0.8	22,003	18.0	3,083	2.5	1,817	1.5	8,029	6.6
Michigan	1,623	0.8	65,556	31.1	5,394	2.6	2,085	1.0	10,079	4.8
Minnesota	1,016	1.0	21,750	21.0	1,871	1.8	1,973	1.9	16,682	6.5
Mississippi	983	1.5	16,160	25.0	1,686	2.6	980	1.5	3,699	5.7
Missouri	1,614	1.3	${ }^{2} 24,932$	20.5	2,967	2.4	1,223	1.0	${ }^{2} 12,126$	10.0
Montana	365	1.9	13,893	20.0	502	2.6	152	0.8	11,251	6.4
Nebraska	565	1.4	9,557	23.9	972	2.4	543	1.4	21,912	4.8
Nevada	299	1.0	6,612	21.2	908	2.9	223	0.7	1,897	6.1
New Hampshire	284	1.0	25,255	18.7	540	1.9	439	1.6	21,226	4.4
New Jersey	1,776	1.0	37,086	19.9	4,737	2.5	1,375	0.7	15,928	8.5
New Mexico	282	0.6	11,158	24.8	984	2.2	1,616	3.6	3,508	7.8
New York	3,135	0.8	115,296	27.7	7,668	1.8	2,925	0.7	31,641	7.6
North Carolina	2,284	1.4	38,723	23.8	4,551	2.8	1,547	1.0	80	0.0
North Dakota	192	1.3	3,346	22.1	406	2.7	457	3.0	485	3.2
Ohio	1,646	0.7	49,774	22.3	5,112	2.3	5,753	2.6	23,499	10.5
Oklahoma	1,019	1.4	16,890	22.5	2,023	2.7	728	1.0	5,065	6.7
Oregon	555	1.0	10,928	19.5	1,631	2.9	838	1.5	4,483	8.0
Pennsylvania	2,237	1.0	55,566	24.8	4,392	2.0	1,537	0.7	15,193	6.8
Rhode Island	53	0.3	2,614	14.7	338	1.9	155	0.9	1,295	7.3
South Carolina	1,123	1.3	${ }^{1} 17,981$	21.0	2,862	3.3	258	0.3	15,472	6.4
South Dakota	173	1.0	3,804	21.0	426	2.4	454	2.5	845	4.7
Tennessee	1,497	1.3	${ }^{2} 23,025$	20.3	4,188	3.7	1,092	1.0	²6,923	6.1
Texas	4,735	0.9	${ }^{2} 155,262$	28.6	13,550	2.5	2,844	0.5	25,379	4.7
Utah	309	0.8	7,967	19.6	956	2.3	106	0.3	2,709	6.7
Vermont	235	1.3	3,022	17.0	421	2.4	143	0.8	924	5.2
Virginia	2,094	1.3	33,835	20.3	3,901	2.3	4,264	2.6	10,314	6.2
Washington	1,301	1.3	221,767	22.3	2,692	2.8	1,132	1.2	6,513	6.7
West Virginia	389	1.0	9,556	24.8	1,077	2.8	358	0.9	2,221	5.8
Wisconsin	1,430	1.3	20,805	19.1	2,529	2.3	937	0.9	6,815	6.2
Wyoming	127	0.9	3,226	23.1	340	2.4	191	1.4	998	7.2
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs										
Bureau of Indian Affairs	-	-	-	-	-	-	-	-	-	-
DoD overseas	157	2.0	596	7.7	269	3.5	44	0.6	714	9.2
DoD domestic	72	1.8	501	12.4	118	2.9	31	0.8	336	8.3
American Samoa	6	0.4	388	23.7	63	3.8	34	2.1	128	7.8
Guam	16	0.4	224	5.8	51	1.3	21	0.5	697	18.2
Northern Marianas	0	0.0	151	14.4	28	2.7	9	0.9	96	9.2
Puerto Rico	821	1.2	21,574	31.2	1,399	2.0	1,721	2.5	4,554	6.6
Virgin Islands	34	1.2	570	19.7	86	3.0	79	2.7	212	7.3

[^18]Table 4.-Public school membership, by race/ethnicity and state: School year 2000-01

State	Students reported ${ }^{1}$	American Indian/Alaska Native	Asian/Pacific Islander	Black, nonHispanic	Hispanic	White, nonHispanic
United States	47,018,606	548,492	1,935,593	8,081,344	7,668,222	28,784,955
Alabama	728,327	5,190	5,383	265,600	9,543	442,611
Alaska	133,356	33,399	7,337	6,078	4,493	82,049
Arizona	877,696	58,159	18,049	40,483	297,703	463,302
Arkansas	449,959	2,202	3,951	104,947	16,163	322,696
California	6,015,676	51,926	667,630	510,779	2,613,480	2,171,861
Colorado	724,508	8,701	20,932	40,967	159,600	494,308
Connecticut	562,179	1,559	15,596	77,156	73,922	393,946
Delaware	114,710	299	2,620	35,347	6,843	69,601
District of Columbia	68,925	40	1,112	58,320	6,340	3,113
Florida	2,434,821	6,593	45,879	613,364	472,029	1,296,956
Georgia	1,444,937	2,330	32,127	551,805	68,760	789,915
Hawaii	184,360	776	133,382	4,278	8,312	37,612
Idaho	245,009	3,310	3,005	1,827	26,121	210,746
Illinois	2,048,792	3,474	68,796	436,568	315,446	1,224,508
Indiana	989,225	2,104	9,705	115,586	34,757	827,073
lowa	495,080	2,562	8,471	19,723	17,635	446,689
Kansas	465,911	6,081	10,325	41,347	41,452	366,706
Kentucky	641,141	1,213	4,124	68,356	6,219	561,229
Louisiana	743,089	4,725	9,392	355,290	10,485	363,197
Maine	207,037	1,377	2,151	2,476	1,265	199,768
Maryland	852,920	3,007	37,201	316,231	41,317	455,164
Massachusetts	975,150	2,711	43,004	83,228	104,207	742,000
Michigan	1,722,022	17,582	31,350	341,246	60,298	1,271,546
Minnesota	854,340	17,196	43,353	56,558	28,736	708,497
Mississippi	497,870	733	3,366	254,343	3,806	235,622
Missouri	912,744	2,875	10,617	159,199	16,669	723,384
Montana	154,875	16,293	1,473	877	2,658	133,574
Nebraska	286,199	4,370	4,345	19,102	20,762	237,620
Nevada	340,696	5,922	19,272	34,591	87,696	193,215
New Hampshire	208,461	477	2,694	2,340	3,827	199,123
New Jersey	1,307,828	2,626	82,432	233,334	200,652	788,784
New Mexico	320,306	35,595	3,461	7,622	160,708	112,920
New York	2,882,188	11,531	172,353	581,855	533,645	1,582,804
North Carolina	1,293,638	18,994	23,953	404,856	57,177	788,658
North Dakota	109,201	8,292	860	1,074	1,363	97,612
Ohio	1,835,049	2,292	20,722	299,874	31,049	1,481,112
Oklahoma	623,073	105,459	8,818	67,181	37,103	404,512
Oregon	536,918	11,424	21,581	15,590	56,453	431,870
Pennsylvania	1,814,311	2,240	36,325	274,697	81,641	1,419,408
Rhode Island	157,347	791	5,123	12,415	22,069	116,949
South Carolina	677,348	1,621	6,496	284,890	12,807	371,534
South Dakota	128,603	13,038	1,200	1,525	1,585	111,255
Tennessee	906,210	1,445	10,278	222,068	15,966	656,453
Texas	4,059,619	12,091	108,422	585,609	1,646,508	1,706,989
Utah	479,435	7,440	13,120	4,627	42,326	411,922
Vermont	102,049	577	1,446	1,117	596	98,313
Virginia	1,144,915	3,214	47,429	310,107	55,860	728,305
Washington	1,004,770	27,212	73,663	53,205	102,925	747,765
West Virginia	286,367	296	1,530	12,338	1,056	271,147
Wisconsin	879,476	12,342	28,959	88,253	39,958	709,964
Wyoming	89,940	2,786	780	1,095	6,231	79,048
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs ${ }^{2}$	46,938	46,938	0	0	0	0
DoD overseas	58,773	498	5,959	12,694	4,576	35,046
DoD domestic	29,807	200	1,055	7,739	5,492	15,321
American Samoa	15,702	0	15,702	0	0	0
Guam	32,473	28	31,724	106	68	547
Northern Marianas	10,004	0	9,972	5	0	27
Puerto Rico ${ }^{2}$	612,725	0	0	0	612,725	0
Virgin Islands	19,461	20	46	16,693	2,552	150

[^19]Table 5.-Percentage of public school membership by race/ethnicity and state: School year 2000-01

State	Total reported ${ }^{1}$	American Indian/Alaska Native	Asian/Pacific Islander	Black, nonHispanic	Hispanic	White, nonHispanic
United States	100.0	1.2	4.1	17.2	16.3	61.2
Alabama	100.0	0.7	0.7	36.5	1.3	60.8
Alaska	100.0	25.0	5.5	4.6	3.4	61.5
Arizona	100.0	6.6	2.1	4.6	33.9	52.8
Arkansas	100.0	0.5	0.9	23.3	3.6	71.7
California	100.0	0.9	11.1	8.5	43.4	36.1
Colorado	100.0	1.2	2.9	5.7	22.0	68.2
Connecticut	100.0	0.3	2.8	13.7	13.1	70.1
Delaware	100.0	0.3	2.3	30.8	6.0	60.7
District of Columbia	100.0	0.1	1.6	84.6	9.2	4.5
Florida	100.0	0.3	1.9	25.2	19.4	53.3
Georgia	100.0	0.2	2.2	38.2	4.8	54.7
Hawaii	100.0	0.4	72.3	2.3	4.5	20.4
Idaho	100.0	1.4	1.2	0.7	10.7	86.0
Illinois	100.0	0.2	3.4	21.3	15.4	59.8
Indiana	100.0	0.2	1.0	11.7	3.5	83.6
Iowa	100.0	0.5	1.7	4.0	3.6	90.2
Kansas	100.0	1.3	2.2	8.9	8.9	78.7
Kentucky	100.0	0.2	0.6	10.7	1.0	87.5
Louisiana	100.0	0.6	1.3	47.8	1.4	48.9
Maine	100.0	0.7	1.0	1.2	0.6	96.5
Maryland	100.0	0.4	4.4	37.1	4.8	53.4
Massachusetts	100.0	0.3	4.4	8.5	10.7	76.1
Michigan	100.0	1.0	1.8	19.8	3.5	73.8
Minnesota	100.0	2.0	5.1	6.6	3.4	82.9
Mississippi	100.0	0.1	0.7	51.1	0.8	47.3
Missouri	100.0	0.3	1.2	17.4	1.8	79.3
Montana	100.0	10.5	1.0	0.6	1.7	86.2
Nebraska	100.0	1.5	1.5	6.7	7.3	83.0
Nevada	100.0	1.7	5.7	10.2	25.7	56.7
New Hampshire	100.0	0.2	1.3	1.1	1.8	95.5
New Jersey	100.0	0.2	6.3	17.8	15.3	60.3
New Mexico	100.0	11.1	1.1	2.4	50.2	35.3
New York	100.0	0.4	6.0	20.2	18.5	54.9
North Carolina	100.0	1.5	1.9	31.3	4.4	61.0
North Dakota	100.0	7.6	0.8	1.0	1.2	89.4
Ohio	100.0	0.1	1.1	16.3	1.7	80.7
Oklahoma	100.0	16.9	1.4	10.8	6.0	64.9
Oregon	100.0	2.1	4.0	2.9	10.5	80.4
Pennsylvania	100.0	0.1	2.0	15.1	4.5	78.2
Rhode Island	100.0	0.5	3.3	7.9	14.0	74.3
South Carolina	100.0	0.2	1.0	42.1	1.9	54.9
South Dakota	100.0	10.1	0.9	1.2	1.2	86.5
Tennessee	100.0	0.2	1.1	24.5	1.8	72.4
Texas	100.0	0.3	2.7	14.4	40.6	42.0
Utah	100.0	1.6	2.7	1.0	8.8	85.9
Vermont	100.0	0.6	1.4	1.1	0.6	96.3
Virginia	100.0	0.3	4.1	27.1	4.9	63.6
Washington	100.0	2.7	7.3	5.3	10.2	74.4
West Virginia	100.0	0.1	0.5	4.3	0.4	94.7
Wisconsin	100.0	1.4	3.3	10.0	4.5	80.7
Wyoming	100.0	3.1	0.9	1.2	6.9	87.9
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs ${ }^{2}$	100.0	100.0	0.0	0.0	0.0	0.0
DoD overseas	100.0	0.8	10.1	21.6	7.8	59.6
DoD domestic	100.0	0.7	3.5	26.0	18.4	51.4
American Samoa	100.0	0.0	100.0	0.0	0.0	0.0
Guam	100.0	0.1	97.7	0.3	0.2	1.7
Northern Marianas	100.0	0.0	99.7	0.0	0.0	0.3
Puerto Rico ${ }^{2}$	100.0	0.0	0.0	0.0	100.0	0.0
Virgin Islands	100.0	0.1	0.2	85.8	13.1	0.8

[^20]SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

Table 6.-Number of public high school completers, by state: School year 1999-2000

State	Total high school completers	Diploma recipients	Other high school completers	High school equivalency recipients ${ }^{2}$
United States	-	2,546,102	141,638	-
Alabama	43,459	37,819	2,535	3,105
Alaska	7,968	6,615	53	1,300
Arizona	-	38,304	375	-
Arkansas	36,616	27,335	2,176	7,105
California	328,490	309,866	(\dagger)	18,624
Colorado	42,501	38,924	140	3,437
Connecticut	33,086	31,562	33	1,491
Delaware	6,469	6,108	78	283
District of Columbia	-	2,695	221	-
Florida	124,285	106,708	3,997	13,580
Georgia	-	62,563	5,334	-
Hawaii	-	10,437	229	-
Idaho	-	16,170	37	-
Illinois	-	111,835	(\dagger)	-
Indiana	-	57,023	1,896	-
lowa	36,447	33,926	124	2,397
Kansas	-	29,102	(\dagger)	-
Kentucky	43,430	36,830	339	6,261
Louisiana	43,817	38,430	960	4,427
Maine	12,674	12,148	97	429
Maryland	50,991	47,849	461	2,681
Massachusetts	-	52,950	(\dagger)	-
Michigan	91,246	89,986	459	801
Minnesota	60,257	57,372	(\dagger)	2,885
Mississippi	26,756	24,232	2,092	432
Missouri	58,050	52,848	99	5,103
Montana	12,250	10,903	(\dagger)	1,347
Nebraska	-	20,149	172	-
Nevada	17,444	14,551	839	2,054
New Hampshire	-	11,829	-	915
New Jersey	-	74,423	-	-
New Mexico	20,883	18,031	541	2,311
New York	166,293	141,731	5,553	19,009
North Carolina	69,872	62,140	704	7,028
North Dakota	10,452	8,606	(\dagger	1,846
Ohio	120,541	111,668	(\dagger)	8,873
Oklahoma	45,742	37,646	(\dagger)	8,096
Oregon	-	30,151	3,282	-
Pennsylvania	123,031	113,959	(\dagger)	9,072
Rhode Island	9,216	8,477	18	721
South Carolina	-	31,617	2,301	-
South Dakota	-	9,278	(\dagger)	-
Tennessee	-	41,568	4,257	-
Texas	214,880	212,925	(\dagger)	1,955
Utah	35,540	32,501	312	2,727
Vermont	6,714	6,675	23	16
Virginia	72,420	65,596	1,862	4,962
Washington		57,597	-	5,235
West Virginia	20,587	19,437	12	1,138
Wisconsin	-	58,545	-	8,377
Wyoming	-	6,462	27	-
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs				
Bureau of Indian Affairs	-	-	-	-
DoD overseas	-	2,642	0	-
DoD domestic	-	560	-	-
American Samoa	-	698	3	2
Guam	-	1,406	-	-
Northern Marianas	-	360	-	-
Puerto Rico	-	30,856	-	12,917
Virgin Islands	-	1,060	-	-

—Data missing.
\dagger Not applicable.
${ }^{1}$ Total other high school completers does not include New Hampshire, New Jersey, Washington, and Wisconsin.
${ }^{2}$ Includes recipients age 19 or younger, except in Minnesota, where they are age 20 or younger.
NOTE:High school completer categories may include students not included in 12th-grade membership.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

Table 7.-Public diploma recipients, by race/ethnicity and state: School year 1999-2000

State	Total reported*	American Indian/ Alaska Native	Asian/Pacific Islander	Black, nonHispanic	Hispanic	White, nonHispanic
Alabama	37,798	465	363	12,562	223	24,185
Alaska	6,615	1,257	347	245	190	4,576
Arizona	-	-	-	-	-	-
Arkansas	27,335	123	315	5,782	508	20,607
California	308,905	2,655	45,499	22,536	100,637	137,578
Colorado	38,924	321	1,288	1,693	5,172	30,450
Connecticut	31,562	84	920	3,511	2,739	24,308
Delaware	6,107	11	168	1,510	181	4,237
District of Columbia	2,695	1	63	2,333	200	98
Florida	106,708	236	3,067	22,595	16,092	64,718
Georgia	62,563	89	1,709	20,180	1,085	39,500
Hawaii	10,437	27	7,841	172	491	1,906
Idaho	16,168	130	234	64	948	14,792
Illinois	111,835	206	4,750	16,416	10,873	79,590
Indiana	57,023	68	626	4,328	1,186	50,815
lowa	33,926	74	547	734	537	32,034
Kansas	29,102	275	681	1,766	1,205	25,175
Kentucky	36,830	555	239	2,902	197	32,937
Louisiana	38,430	210	659	14,831	503	22,227
Maine	12,148	58	128	90	63	11,809
Maryland	47,849	120	2,566	15,252	1,489	28,422
Massachusetts	52,950	111	2,322	4,030	3,505	42,982
Michigan	89,986	841	1,894	5,718	1,890	79,643
Minnesota	57,372	629	2,280	1,683	885	51,895
Mississippi	24,232	22	152	11,322	55	12,681
Missouri	52,848	124	829	6,683	643	44,569
Montana	10,903	681	82	23	134	9,983
Nebraska	20,149	126	327	808	673	18,215
Nevada	14,551	204	920	1,265	1,863	10,299
New Hampshire	-	-	-	-	-	-
New Jersey	74,423	207	5,198	11,102	8,607	49,309
New Mexico	18,031	1,858	207	416	7,591	7,959
New York	141,731	438	9,859	20,798	15,853	94,783
North Carolina	62,140	729	1,313	16,592	1,061	42,445
North Dakota	8,606	388	52	58	68	8,040
Ohio	111,668	102	1,444	11,253	656	98,213
Oklahoma	37,646	5,646	657	3,132	1,260	26,951
Oregon	29,782	448	1,340	519	1,595	25,880
Pennsylvania	113,959	67	2,395	11,713	2,825	96,959
Rhode Island	8,477	14	292	464	708	6,999
South Carolina	-	-	-	-	-	-
South Dakota	9,278	326	76	60	69	8,747
Tennessee	-	-	-	-	-	-
Texas	212,925	521	6,862	27,507	68,314	109,721
Utah	32,501	328	731	168	1,349	29,925
Vermont	-	-	-	-	-	-
Virginia	65,596	163	3,070	15,042	2,039	45,282
Washington	-	-	-	-	-	-
West Virginia	19,437	23	134	678	73	18,529
Wisconsin	58,545	532	1,520	2,573	1,446	52,474
Wyoming	6,462	85	49	29	353	5,946
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs	-	-	-	-	-	-
DoD overseas	2,362	0	387	434	204	1,337
DoD domestic	518	0	31	101	171	215
American Samoa	698	0	698	0	0	0
Guam	1,404	0	1,354	2	8	40
Northern Marianas	360	0	351	0	0	9
Puerto Rico	30,856	0	0	0	30,856	0
Virgin Islands	1,060	0	0	969	81	10

-Data missing
*Total excludes students for whom race/ethnicity was not reported.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education,"2000-01.

Table 8.-Other public high school completers, by race/ethnicity and state: School year 1999-2000

State	Total reported*	American Indian/ Alaska Native	Asian/Pacific Islander	Black, nonHispanic	Hispanic	White, nonHispanic
Alabama	2,534	48	20	1,298	25	1,143
Alaska	53	14	8	0	2	29
Arizona	-	-	-	-	-	-
Arkansas	2,176	10	8	604	20	1,534
California	(\dagger)					
Colorado	140	0	5	4	19	112
Connecticut	(\dagger)					
Delaware	-	-	-	-	-	-
District of Columbia	221	0	0	216	1	4
Florida	3,997	10	81	1,910	983	1,013
Georgia	5,334	9	121	3,407	162	1,635
Hawaii	229	1	160	5	22	41
Idaho	37	0	0	1	3	33
Illinois	(\dagger)	(\dagger	(\dagger)	(\dagger)	(\dagger)	(\dagger)
Indiana	1,896	2	39	349	106	1,400
Iowa	124	0	5	3	2	114
Kansas	(\dagger	(\dagger)	(\dagger)	(\dagger)	(\dagger)	(\dagger
Kentucky	-	-	-	-	-	-
Louisiana	960	6	4	647	7	296
Maine	97	0	1	1	5	90
Maryland	461	2	15	213	19	212
Massachusetts	(\dagger)	(\dagger	(\dagger)	(\dagger)	(\dagger)	(\dagger)
Michigan	459	7	10	160	23	259
Minnesota	(\dagger)	(\dagger)	(\dagger	(\dagger)	(\dagger)	(\dagger)
Mississippi	1,660	1	1	1,199	0	459
Missouri	-	-	-	-	-	-
Montana	(\dagger)					
Nebraska	172	6	2	14	17	133
Nevada	839	12	70	241	262	254
New Hampshire	-	-	-	-	-	-
New Jersey	-	-	-	-	-	-
New Mexico	541	105	4	12	273	147
New York	5,553	27	700	675	1,099	3,052
North Carolina	-	-	-	-	-	-
North Dakota	(\dagger)					
Ohio	(\dagger)	(\dagger)	(\dagger)	(\dagger)	(\dagger	(\dagger)
Oklahoma	(\dagger)	(\dagger	(\dagger	(\dagger)	(\dagger)	(\dagger)
Oregon	3,255	71	143	110	306	2,625
Pennsylvania	(\dagger)	(\dagger	(\dagger)	(\dagger)	(\dagger)	(\dagger
Rhode Island	18	2	0	2	0	14
South Carolina	-	-	-	-	-	-
South Dakota	(\dagger)					
Tennessee	-	-	-	-	-	-
Texas	(\dagger)	(\dagger)	(\dagger)	(\dagger	(\dagger)	(\dagger)
Utah	312	3	20	2	41	246
Vermont	-	-	-	-	-	-
Virginia	1,862	0	43	513	55	1,251
Washington	-	-	-	-	-	-
West Virginia	12	0	0	0	0	12
Wisconsin	-	-	-	-	-	-
Wyoming	27	5	2	1	2	17
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs	-	-	-	-	-	-
DoD overseas	-	-	-	-	-	-
DoD domestic	-	-	-	-	-	-
American Samoa	3	0	3	0	0	0
Guam	-	-	-	-	-	-
Northern Marianas	-	-	-	-	-	-
Puerto Rico	-	-	-	-	-	-
Virgin Islands	-	-	-	-	-	-

—Data missing.
\dagger Not applicable.
*Total excludes students for whom race/ethnicity was not reported.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public
Elementary/Secondary Education," 2000-01.

Table 9.-High school equivalencies, by race/ethnicity and state: School year 1999-2000

State	Total reported*	American Indian/ Alaska Native	Asian/Pacific Islander	Black, nonHispanic	Hispanic	White, nonHispanic
Alabama	-	-	-	-	-	-
Alaska	1,300	237	36	43	38	946
Arizona	-	-	-	-	-	-
Arkansas	6,774	116	6	959	288	5,405
California	-	-	-	-	-	-
Colorado	3,437	81	77	212	705	2,362
Connecticut	1,491	16	19	235	206	1,015
Delaware	-	-	-	-	-	-
District of Columbia	-	-	-	-	-	-
Florida	13,580	98	170	1,213	2,020	10,079
Georgia	-	-	-	-	-	-
Hawaii	-	-	-	-	-	-
Idaho	-	-	-	-	-	-
Illinois	-	-	-	-	-	-
Indiana	-	-	-	-	-	-
Iowa	2,397	49	31	268	151	1,898
Kansas	-	-	-	-	-	-
Kentucky	6,261	110	28	1,409	226	4,488
Louisiana	4,427	89	43	775	185	3,335
Maine	429	1	3	7	6	412
Maryland	-	-	-	-	-	-
Massachusetts	-	-	-	-	-	-
Michigan	801	6	14	83	41	657
Minnesota	-	-	-	-	-	-
Mississippi	432	-	1	138	-	293
Missouri	-	-	-	-	-	-
Montana	1,347	172	5	6	60	1,104
Nebraska	-	-	-	-	-	-
Nevada	1,970	67	71	157	361	1,314
New Hampshire	-	-	-	-	-	-
New Jersey	-	-	-	-	-	-
New Mexico	-	-	-	-	-	-
New York	-	-	-	-	-	-
North Carolina	7,028	116	73	1,409	194	5,236
North Dakota	1,846	602	9	28	64	1,143
Ohio	-	-	-	-	-	-
Oklahoma	7,834	1,042	59	784	487	5,462
Oregon	-	-	-	-	-	
Pennsylvania	-	-	-	-	-	-
Rhode Island	-	-	-	-	-	-
South Carolina	-	-	-	-	-	-
South Dakota	-	-	-	-	-	-
Tennessee	-	-	-	-	-	-
Texas	1,955	4	32	278	695	946
Utah	2,727	101	66	87	319	2,154
Vermont	-	-	-	-	-	-
Virginia	4,962	26	90	905	278	3,663
Washington		-	-	-	-	-
West Virginia	-	-	-	-	-	-
Wisconsin	-	-	-	-	-	-
Wyoming	-	-	-	-	-	-
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs	-	-	-	-	-	-
DoD overseas	-	-	-	-	-	-
DoD domestic	-	-	-	-	-	-
American Samoa	2	0	2	0	0	0
Guam	-	-	-	-	-	-
Northern Marianas	-	-	-	-	-	-
Puerto Rico	12,917	0	0	0	12,917	0
Virgin Islands	-	-	-	-	-	-

[^21]Table 10.-Public school student membership and total teachers, by state: School years 1990-91 and 2000-01

State	Total student membership			Total teachers		
	1990-91	2000-01	Percent change from 1990-91 to 2000-01	1990-91	2000-01	Percent change from 1990-91 to 2000-01
United States	41,216,683	47,222,778	14.6	2,398,169	2,952,991	23.1
Alabama	721,806	740,176	2.5	36,266	48,199	32.9
Alaska	113,903	133,356	17.1	6,710	7,880	17.4
Arizona	639,853	877,696	37.2	32,987	44,438	34.7
Arkansas	436,286	449,959	3.1	25,984	31,947	22.9
California	4,950,474	6,142,348	24.1	217,228	298,064	37.2
Colorado	574,213	724,508	26.2	32,342	41,983	29.8
Connecticut	469,123	562,179	19.8	34,785	41,044	18.0
Delaware	99,658	114,676	15.1	5,961	7,471	25.3
District of Columbia	80,694	68,925	-14.6	5,950	4,949	-16.8
Florida	1,861,592	2,434,821	30.8	108,088	132,030	22.2
Georgia	1,151,687	1,444,937	25.5	63,058	91,044	44.4
Hawaii	171,708	184,360	7.4	9,083	10,927	20.3
Idaho	220,840	245,117	11.0	11,254	13,714	21.9
Illinois	1,821,407	2,048,792	12.5	108,775	127,620	17.3
Indiana	954,525	989,225	3.6	54,806	59,226	8.1
lowa	483,652	495,080	2.4	31,045	34,636	11.6
Kansas	437,034	470,610	7.7	29,140	32,742	12.4
Kentucky	636,401	665,850	4.6	36,777	39,589	7.6
Louisiana	784,757	743,089	-5.3	45,401	49,916	9.9
Maine	215,149	207,037	-3.8	15,513	16,559	6.7
Maryland	715,176	852,920	19.3	42,562	52,433	23.2
Massachusetts	834,314	975,150	16.9	54,003	67,432	24.9
Michigan	1,584,431	1,743,337	10.0	80,008	97,031	21.3
Minnesota	756,374	854,340	13.0	43,574	53,457	22.7
Mississippi	502,417	497,871	-0.9	28,062	31,006	10.5
Missouri	816,558	912,744	11.8	52,359	64,739	23.6
Montana	152,974	154,875	1.2	9,613	10,411	8.3
Nebraska	274,081	286,199	4.4	18,764	20,983	11.8
Nevada	201,316	340,706	69.2	10,373	18,294	76.4
New Hampshire	172,785	208,461	20.6	10,637	14,341	34.8
New Jersey	1,089,646	1,307,828	20.0	79,886	99,718	24.8
New Mexico	301,881	320,306	6.1	16,703	21,043	26.0
New York	2,598,337	2,882,188	10.9	176,390	206,961	17.3
North Carolina	1,086,871	1,293,638	19.0	64,283	83,680	30.2
North Dakota	117,825	109,201	-7.3	7,591	8,141	7.2
Ohio	1,771,089	1,835,049	3.6	103,088	118,361	14.8
Oklahoma	579,087	623,110	7.6	37,221	41,318	11.0
Oregon	472,394	546,231	15.6	26,174	28,094	7.3
Pennsylvania	1,667,834	1,814,311	8.8	100,275	116,963	16.6
Rhode Island	138,813	157,347	13.4	9,522	10,646	11.8
South Carolina	622,112	677,411	8.9	36,963	45,380	22.8
South Dakota	129,164	128,603	-0.4	8,511	9,397	10.4
Tennessee	824,595	909,388	10.3	43,051	61,233	42.2
Texas	3,382,887	4,059,619	20.0	219,298	274,826	25.3
Utah	446,652	481,687	7.8	17,884	22,008	23.1
Vermont	95,762	102,049	6.6	7,257	8,414	15.9
Virginia	998,601	1,144,915	14.7	63,638	91,560	43.9
Washington	839,709	1,004,770	19.7	41,764	51,098	22.3
West Virginia	322,389	286,367	-11.2	21,476	20,930	-2.5
Wisconsin	797,621	879,476	10.3	49,302	62,332	26.4
Wyoming	98,226	89,940	-8.4	6,784	6,783	0.0
Outlying areas, DoD Dependents Schools, and Bureau of Indian Affairs						
Bureau of Indian Affairs	-	46,938	-	-	-	-
DoD overseas	-	73,581	-	-	5,105	-
DoD domestic	-	34,174	-	-	2,399	-
American Samoa	12,463	15,702	26.0	662	820	23.9
Guam	26,391	32,473	23.0	1,543	1,975	28.0
Northern Marianas	6,449	10,004	55.1	416	526	26.4
Puerto Rico	644,734	612,725	-5.0	34,260	37,620	9.8
Virgin Islands	21,750	19,459	-10.5	1,575	1,511	-4.1

—Data missing.
NOTE:Teacher counts are full-time-equivalency counts.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/ Secondary Education,"1990-91 and 2000-01.

Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1999-2000

Frank Johnson

This article was originally published as a Statistics in Brief report. The universe data are primarily from the "National Public Education Financial Survey" (NPEFS), part of the NCES Common Core of Data (CCD). Technical notes and definitions from the original report have been omitted.

Nearly $\$ 373$ billion of revenues were raised to fund public education for grades prekindergarten through 12 in school year 1999-2000. Current expenditures (those excluding construction, equipment, and debt financing) came to almost $\$ 324$ billion. Three out of every five current expenditure dollars were spent on teachers, textbooks, and other instructional services and supplies. An average of $\$ 6,911$ was spent on each student-an increase of 6.2 percent from \$6,508 in school year 1998-99 (in unadjusted dollars).* Total expenditures for public education, including school construction, debt financing, community services, and adult education programs, came to nearly $\$ 382$ billion.

These and other financial data on public elementary and secondary education are collected and reported each year by the National Center for Education Statistics (NCES), U.S. Department of Education. The data are part of the "National Public Education Financial Survey" (NPEFS), one of the components of the Common Core of Data (CCD) collection of surveys.

Revenues for Public Elementary and Secondary Education

About $\$ 373$ billion was collected for public elementary and secondary education for school year 1999-2000 in the 50 states and the District of Columbia (table 1). Total revenues ranged from a high of around $\$ 45$ billion in California, which serves about 1 out of every 8 students in the nation, to a low of about $\$ 750$ million in North Dakota, which serves about 1 out of every 416 students in the nation. Nationally, revenues increased an average of 7.4 percent over the previous year's revenues of $\$ 347$ billion (in unadjusted dollars).

By far, the greatest part of education revenues came from nonfederal sources (state, intermediate, and local governments), which together provided about $\$ 346$ billion, or 92.7 percent of all revenues. The federal government contribution to education revenues made up the remaining $\$ 27$ billion. The relative contributions from these levels of government can be expressed as portions of the typical

[^22]education dollar (figure 1). For school year 1999-2000, local and intermediate sources made up 43 cents of every dollar in revenue, state revenues comprised 50 cents, and the remaining 7 cents came from federal sources.

Among states with more than one school district, revenues from local sources ranged from 14.4 percent (New Mexico) to 65.8 percent (Nevada) of total revenues (table 2). Hawaii and the District of Columbia have only one school district each and thus are not comparable to other states. Revenues from state sources also showed a wide distribution in their share of total revenues. The state revenue share of total revenues was less than 30 percent in Nevada (29.1 percent) and more than 70 percent in Vermont (73.6 percent) and New Mexico (71.5 percent). Federal revenues ranged from 3.9 percent in New Jersey to 15.4 percent in Alaska. Federal revenues made up 20.4 percent of total revenues in the District of Columbia.

Current Expenditures for Public Elementary and Secondary Education

Current expenditures for public education in 1999-2000 totaled about $\$ 324$ billion (table 3). This represents a $\$ 21$ billion (6.9 percent) increase over expenditures in the previous school year ($\$ 303$ billion in unadjusted dollars). About $\$ 200$ billion in current expenditures went for instruction. Another $\$ 110$ billion was expended for a cluster of services that support instruction. Almost $\$ 14$ billion was spent on noninstructional services.

When expressed in terms of the typical education dollar, instructional expenditures accounted for 62 cents of the education dollar for current expenditures (figure 2). Instructional expenditures include teacher salaries and benefits, supplies (e.g., textbooks), and purchased services.

About 34 cents of the education dollar went for support services, which include operation and maintenance of buildings, school administration, transportation, and other student and school support activities (e.g., student counseling, libraries, and health services). Approximately 4 cents of every education dollar went to noninstructional activities, which include school meals and enterprise activities, such as bookstores.

Figure 1.-The public education dollar: Revenues by source:School year 1999-2000

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1999-2000.

Most states were closely clustered around the national average (61.7 percent) in terms of the share of current expenditures that was spent on instruction; all but five states and the District of Columbia spent more than 58.0 percent of their current expenditures on instruction (table 4). These states were Alaska, Colorado, Kansas, New Mexico, and Oklahoma. Three states spent more than twothirds of their current expenditures on instruction. These states were New York (68.1 percent), Maine (66.9 percent), and Massachusetts (66.8 percent).

Current Expenditures per Pupil

In 1999-2000, the 50 states and the District of Columbia spent an average of $\$ 6,911$ in current expenditures for every pupil in membership (table 5). This represents a 6.2 percent increase in current expenditures per pupil from the previous school year ($\$ 6,508$ in unadjusted dollars). Three states—New Jersey $(\$ 10,337)$, New York $(\$ 9,846)$, and Connecticut $(\$ 9,753)$ —expended more than $\$ 9,000$ per pupil. The District of Columbia, which comprises a single urban district, spent $\$ 10,107$ per pupil. Only one state, Utah, had expenditures of less than $\$ 4,500$ for each pupil in membership ($\$ 4,378$). The median per pupil expenditure
was $\$ 6,530$, indicating that one-half of all states educated students at a cost of less than $\$ 6,530$ per pupil.

In 1999-2000, on average, about $\$ 4,267$ per pupil was spent for instructional services, $\$ 2,350$ for support services, and $\$ 293$ for noninstructional purposes.

Expenditures for Instruction

Expenditures for instruction totaled nearly $\$ 200$ billion for school year 1999-2000 (table 6). Over $\$ 145$ billion went for salaries for teachers and instructional aides. Benefits for instructional staff made up an additional $\$ 36$ billion, bringing the total for salaries and benefits for teachers and instructional aides to $\$ 181$ billion. Instructional supplies, including textbooks, made up nearly $\$ 10$ billion. (Expenditures for computers and desks are not considered current expenditures, but are reported as replacement equipment in table 7.) Expenditures for purchased services were nearly $\$ 6$ billion. These expenditures include the costs for contract teachers (who are not on the school district's payroll), educational television, computer-assisted instruction, and rental equipment for instruction. Tuition expenditures for sending students to out-of-state schools and nonpublic schools within the state totaled over $\$ 2$ billion.

Figure 2.-The public education dollar: Current expenditures by function:School year 1999-2000

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "National Public Education Financial Survey," 1999-2000.

Total Expenditures

Total expenditures made by school districts came to nearly $\$ 382$ billion in the 1999-2000 school year (table 7). About $\$ 324$ billion of total expenditures were current expenditures for public elementary and secondary education. An additional $\$ 35$ billion went for facilities acquisition and construction, $\$ 8$ billion for replacement equipment, and another $\$ 9$ billion for interest payments on debt. The remaining amount ($\$ 5$ billion) was spent on other programs, such as community services and adult education, which are not part of public elementary and secondary education.

Total expenditures include all types of expenditures by school districts and other public elementary/secondary education agencies. Researchers generally use current expenditures instead of total expenditures when comparing education spending between states or across time because current expenditures exclude expenditures for capital outlay, which tend to have dramatic increases and decreases from year to year. Also, the current expenditures commonly reported are for public elementary and secondary education
only. Many school districts also support community services, adult education, private education, and other programs, which are included in total expenditures. These programs and the extent to which they are funded by school districts vary greatly both across states and within states.

Reference

Johnson, F. (2001). Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1998-99 (NCES 2001321). U.S. Department of Education. Washington, DC: National Center for Education Statistics.

Data sources: The NCES Common Core of Data (CCD):"National Public Education Financial Survey" (NPEFS), 1999-2000; and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1999-2000 (Revised).
For technical information, see the complete report:
Johnson, F. (2002). Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1999-2000 (NCES 2002-367).

Author affiliation: F. Johnson, NCES.
For questions about content, contact Frank Johnson (frank.johnson@ed.gov).
To obtain the complete report (NCES 2002-367), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Table 1.—Revenues for public elementary and secondary schools, by source and state: School year 1999-2000
(In thousands of dollars)

State	Revenues, by source				
	Total	Local	Intermediate	State	Federal
United States	${ }^{1}$ \$372,864,603	1\$159,965,647	\$1,187,737	\$184,613,352	\$27,097,866
Alabama	4,832,135	1,364,160	25,640	3,003,809	438,526
Alaska	1,359,764	348,638	0	801,151	209,975
Arizona	25,503,272	22,370,674	143,013	2,397,670	591,915
Arkansas	2,730,722	840,684	4,396	1,644,700	240,942
California	45,058,305	13,961,088	0	27,162,573	3,934,645
Colorado	5,044,275	2,670,064	19,685	2,083,173	271,353
Connecticut	16,065,482	13,376,030	0	2,437,888	251,564
Delaware	1,072,494	288,688	0	703,331	80,475
District of Columbia	875,619	696,598	0	0	179,021
Florida	16,946,014	7,135,449	0	8,381,170	1,429,395
Georgia	11,076,955	5,041,726	0	5,302,674	732,555
Hawaii	1,404,897	30,596	0	1,247,257	127,044
Idaho	1,472,070	458,734	0	899,725	113,611
Illinois	16,590,948	10,199,946	0	5,114,557	1,276,444
Indiana	8,427,757	3,522,147	54,061	4,407,729	443,820
lowa	3,714,861	1,602,372	7,724	1,879,143	225,622
Kansas	3,408,634	992,324	75,920	2,127,046	213,344
Kentucky	4,330,619	1,268,991	0	2,628,338	433,290
Louisiana	14,907,761	${ }^{1} 1,917,666$	0	2,427,118	562,977
Maine	1,811,965	859,844	0	807,656	144,465
Maryland	7,242,344	4,011,935	0	2,821,796	408,613
Massachusetts	9,260,130	4,722,857	0	4,048,287	488,986
Michigan	15,385,152	4,384,417	13,641	9,935,347	1,051,747
Minnesota	7,188,407	2,331,909	198,893	4,311,209	346,396
Mississippi	2,778,506	835,345	316	1,561,897	380,949
Missouri	6,665,304	3,682,722	35,252	2,507,804	439,526
Montana	1,101,615	375,820	99,590	491,890	134,315
Nebraska	2,216,656	1,233,634	18,552	812,386	152,084
Nevada	2,262,002	1,489,406	0	658,889	113,706
New Hampshire	1,559,653	621,271	0	869,992	68,391
New Jersey	14,882,015	8,174,000	1,898	6,124,074	582,043
New Mexico	2,240,777	322,968	0	1,602,483	315,325
New York	32,403,066	15,884,428	133,943	14,503,218	1,881,476
North Carolina	8,797,269	2,222,251	0	5,949,172	625,846
North Dakota	749,936	343,327	8,386	301,279	96,945
Ohio	15,231,086	7,836,107	33,167	6,473,138	888,673
Oklahoma	3,705,393	1,101,782	70,707	2,164,236	368,669
Oregon	4,333,956	1,493,141	74,003	2,473,350	293,463
Pennsylvania	16,224,853	9,024,171	20,357	6,136,158	1,044,167
Rhode Island	1,448,205	766,575	0	597,832	83,799
South Carolina	4,917,485	1,909,491	0	2,595,941	412,054
South Dakota	865,041	446,809	11,603	298,364	108,264
Tennessee	5,378,527	2,429,506	0	2,463,997	485,024
Texas	28,657,019	13,454,868	77,970	12,654,437	2,469,744
Utah	2,579,092	859,522	0	1,527,108	192,462
Vermont	966,128	189,714	0	711,262	65,152
Virginia	8,749,757	4,531,858	0	3,723,104	494,794
Washington	27,573,768	22,210,766	37	4,812,763	550,202
West Virginia	2,294,744	659,461	2,498	1,415,246	217,540
Wisconsin	7,785,586	3,213,504	0	4,201,630	370,452
Wyoming	786,582	255,664	56,486	408,356	66,077
Outlying areas					
American Samoa	58,640	3,206	78	10,920	44,436
Guam			-	-	-
Northern Marianas	53,895	375	0	36,280	17,239
Puerto Rico	2,222,824	400	0	1,595,389	627,035
Virgin Islands	150,060	122,493	0	0	27,567

-Data not available.
${ }^{1}$ Value contains imputation for missing data. Imputed value is less than 2 percent of total revenues in any one state.
${ }^{2}$ Value affected by redistribution of reported values to correct for missing data items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1999-2000.

Table 2.-Percentage distribution of revenue for public elementary and secondary schools, by source and state: School year 1999-2000

State	Within-state percentage distribution			
	Local	Intermediate	State	Federal
United States*	42.9	0.3	49.5	7.3
Alabama	28.2	0.5	62.2	9.1
Alaska	25.6	0.0	58.9	15.4
Arizona*	43.1	2.6	43.6	10.8
Arkansas	30.8	0.2	60.2	8.8
California	31.0	0.0	60.3	8.7
Colorado	52.9	0.4	41.3	5.4
Connecticut*	55.7	0.0	40.2	4.1
Delaware	26.9	0.0	65.6	7.5
District of Columbia	79.6	0.0	0.0	20.4
Florida	42.1	0.0	49.5	8.4
Georgia	45.5	0.0	47.9	6.6
Hawaii	2.2	0.0	88.8	9.0
Idaho	31.2	0.0	61.1	7.7
Illinois	61.5	0.0	30.8	7.7
Indiana	41.8	0.6	52.3	5.3
Iowa	43.1	0.2	50.6	6.1
Kansas	29.1	2.2	62.4	6.3
Kentucky	29.3	0.0	60.7	10.0
Louisiana*	39.1	0.0	49.5	11.5
Maine	47.5	0.0	44.6	8.0
Maryland	55.4	0.0	39.0	5.6
Massachusetts	51.0	0.0	43.7	5.3
Michigan	28.5	0.1	64.6	6.8
Minnesota	32.4	2.8	60.0	4.8
Mississippi	30.1	0.0	56.2	13.7
Missouri	55.3	0.5	37.6	6.6
Montana	34.1	9.0	44.7	12.2
Nebraska	55.7	0.8	36.6	6.9
Nevada	65.8	0.0	29.1	5.0
New Hampshire	39.8	0.0	55.8	4.4
New Jersey	54.9	0.0	41.2	3.9
New Mexico	14.4	0.0	71.5	14.1
New York	49.0	0.4	44.8	5.8
North Carolina	25.3	0.0	67.6	7.1
North Dakota	45.8	1.1	40.2	12.9
Ohio	51.4	0.2	42.5	5.8
Oklahoma	29.7	1.9	58.4	9.9
Oregon	34.5	1.7	57.1	6.8
Pennsylvania	55.6	0.1	37.8	6.4
Rhode Island	52.9	0.0	41.3	5.8
South Carolina	38.8	0.0	52.8	8.4
South Dakota	51.7	1.3	34.5	12.5
Tennessee	45.2	0.0	45.8	9.0
Texas	47.0	0.3	44.2	8.6
Utah	33.3	0.0	59.2	7.5
Vermont	19.6	0.0	73.6	6.7
Virginia	51.8	0.0	42.6	5.7
Washington*	29.2	0.0	63.5	7.3
West Virginia	28.7	0.1	61.7	9.5
Wisconsin	41.3	0.0	54.0	4.8
Wyoming	32.5	7.2	51.9	8.4
Outlying areas				
American Samoa	5.5	0.1	18.6	75.8
Guam	-	-	-	-
Northern Marianas	0.7	0.0	67.3	32.0
Puerto Rico	0.0	0.0	71.8	28.2
Virgin Islands	81.6	0.0	0.0	18.4

*Distribution affected by imputations and redistribution of reported values to correct for missing items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "National Public Education Financial Survey," 1999-2000.

Table 3.-Current expenditures for public elementary and secondary schools, by function and state: School year 1999-2000
(In thousands of dollars)

State	Current expenditures, by function			
	Total	Instruction	Support services	Noninstruction
United States	1\$323,808,909	¹99,951,526	²\$110,119,090	${ }^{1}$ \$13,738,293
Alabama	4,176,082	2,577,581	1,319,454	279,047
Alaska	1,183,499	²662,932	2480,990	39,577
Arizona	24,262,182	2,605,219	21,450,949	206,014
Arkansas	2,380,331	1,447,716	798,529	134,085
California	38,129,479	23,832,969	12,815,848	1,480,662
Colorado	4,400,888	2,550,133	1,691,725	159,030
Connecticut	15,402,868	3,426,238	1,719,095	1257,535
Delaware	937,630	576,886	316,901	43,843
District of Columbia	780,192	324,325	434,354	21,513
Florida	13,885,988	8,076,047	5,121,344	688,597
Georgia	9,158,624	5,713,274	2,948,563	496,787
Hawaii	1,213,695	765,134	373,037	75,524
Idaho	1,302,817	804,086	442,073	56,658
Illinois	14,462,773	8,686,846	5,280,916	495,011
Indiana	7,110,930	4,433,163	2,388,519	289,249
Iowa	3,264,336	1,921,516	1,098,019	244,801
Kansas	2,971,814	1,703,818	1,122,727	145,268
Kentucky	3,837,794	2,343,704	1,280,466	213,624
Louisiana	14,391,214	2,645,628	1,408,763	${ }^{1} 336,823$
Maine	1,604,438	1,072,763	469,366	62,309
Maryland	6,545,135	4,028,454	2,190,247	326,435
Massachusetts	8,511,065	5,683,701	2,550,466	276,898
Michigan	13,994,294	8,137,640	5,454,043	402,611
Minnesota	6,140,442	3,861,367	2,023,544	255,531
Mississippi	2,510,376	1,532,550	814,941	162,885
Missouri	5,655,531	3,484,116	1,932,389	239,026
Montana	994,770	620,684	334,121	39,966
Nebraska	1,926,500	${ }^{2} 1,209,991$	569,901	2146,607
Nevada	1,875,467	1,119,108	698,300	58,058
New Hampshire	1,418,503	929,165	443,067	46,272
New Jersey	13,327,645	7,848,553	5,066,132	412,961
New Mexico	1,890,274	1,066,564	731,346	92,365
New York	28,433,240	19,368,224	8,299,373	765,643
North Carolina	7,713,293	4,893,381	2,387,992	431,920
North Dakota	638,946	382,289	203,506	53,151
Ohio	12,974,575	7,633,412	4,871,562	469,601
Oklahoma	3,382,581	1,956,646	1,202,906	223,030
Oregon	3,896,287	2,313,122	1,446,181	136,984
Pennsylvania	14,120,112	8,857,974	4,732,578	529,561
Rhode Island	1,393,143	916,608	437,400	39,135
South Carolina	4,087,355	2,450,038	1,404,865	232,452
South Dakota	737,998	444,596	253,953	39,449
Tennessee	4,931,734	3,216,104	1,468,494	247,136
Texas	25,098,703	15,278,648	8,555,496	1,264,559
Utah	2,102,655	1,372,663	603,245	126,746
Vermont	870,198	562,372	283,750	24,075
Virginia	7,757,598	4,825,091	2,639,236	293,271
Washington	²,399,883	23,816,968	2,269,270	313,646
West Virginia	2,086,937	1,288,004	675,680	123,254
Wisconsin	6,852,178	4,265,597	2,370,682	215,899
Wyoming	683,918	417,920	242,788	23,210
Outlying areas				
American Samoa	42,395	16,164	17,380	8,851
Guam	-	-	-	-
Northern Marianas	49,832	40,226	6,488	3,118
Puerto Rico	2,086,414	1,453,889	397,265	235,261
Virgin Islands	135,174	84,107	44,682	6,384

-Data not available.
${ }^{1}$ Value contains imputation for missing data. Imputed value is less than 2 percent of total current expenditures in any one state.
${ }^{2}$ Value affected by redistribution of reported values to correct for missing data items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1999-2000.

Table 4.-Percentage distribution of current expenditures for public elementary and secondary schools, by function and state: School year 1999-2000

State	Within-state percentage distribution		
	Instruction	Support services	Noninstruction
United States*	61.7	34.0	4.2
Alabama	61.7	31.6	6.7
Alaska*	56.0	40.6	3.3
Arizona*	61.1	34.0	4.8
Arkansas	60.8	33.5	5.6
California	62.5	33.6	3.9
Colorado	57.9	38.4	3.6
Connecticut*	63.4	31.8	4.8
Delaware	61.5	33.8	4.7
District of Columbia	41.6	55.7	2.8
Florida	58.2	36.9	5.0
Georgia	62.4	32.2	5.4
Hawaii	63.0	30.7	6.2
Idaho	61.7	33.9	4.3
Illinois	60.1	36.5	3.4
Indiana	62.3	33.6	4.1
lowa	58.9	33.6	7.5
Kansas	57.3	37.8	4.9
Kentucky	61.1	33.4	5.6
Louisiana*	60.2	32.1	7.7
Maine	66.9	29.3	3.9
Maryland	61.5	33.5	5.0
Massachusetts	66.8	30.0	3.3
Michigan	58.1	39.0	2.9
Minnesota	62.9	33.0	4.2
Mississippi	61.0	32.5	6.5
Missouri	61.6	34.2	4.2
Montana	62.4	33.6	4.0
Nebraska*	62.8	29.6	7.6
Nevada	59.7	37.2	3.1
New Hampshire	65.5	31.2	3.3
New Jersey	58.9	38.0	3.1
New Mexico	56.4	38.7	4.9
New York	68.1	29.2	2.7
North Carolina	63.4	31.0	5.6
North Dakota	59.8	31.9	8.3
Ohio	58.8	37.5	3.6
Oklahoma	57.8	35.6	6.6
Oregon	59.4	37.1	3.5
Pennsylvania	62.7	33.5	3.8
Rhode Island	65.8	31.4	2.8
South Carolina	59.9	34.4	5.7
South Dakota	60.2	34.4	5.3
Tennessee	65.2	29.8	5.0
Texas	60.9	34.1	5.0
Utah	65.3	28.7	6.0
Vermont	64.6	32.6	2.8
Virginia	62.2	34.0	3.8
Washington*	59.6	35.5	4.9
West Virginia	61.7	32.4	5.9
Wisconsin	62.3	34.6	3.2
Wyoming	61.1	35.5	3.4
Outlying areas			
American Samoa	38.1	41.0	20.9
Guam	-	-	-
Northern Marianas	80.8	13.0	6.3
Puerto Rico	69.7	19.0	11.3
Virgin Islands	62.2	33.1	4.7

-Data not available.
*Distribution affected by imputations and redistribution of reported values to correct for missing items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "National Public Education Financial Survey," 1999-2000.

Table 5.-Student membership and current expenditures per pupil in membership for public elementary and secondary schools, by function and state: School year 1999-2000

State	Fall 1999 student membership	Current expenditures per pupil in membership			
		Total	Instruction	Support services	Noninstruction
United States	${ }^{1} 46,857,149$	${ }^{1}$ \$6,911	1\$4,267	${ }^{1}$ \$2,350	${ }^{1}$ \$293
Alabama	1740,732	15,638	13,480	${ }^{1} 1,781$	1377
Alaska	134,391	8,806	24,933	23,579	294
Arizona	852,612	24,999	3,056	21,702	242
Arkansas	451,034	5,277	3,210	1,770	297
California	${ }^{1} 6,038,590$	${ }^{1} 6,314$	13,947	12,122	${ }^{1} 245$
Colorado	708,109	6,215	3,601	2,389	225
Connecticut	553,993	19,753	6,185	3,103	${ }^{1} 465$
Delaware	112,836	8,310	5,113	2,809	389
District of Columbia	77,194	10,107	4,201	5,627	279
Florida	2,381,396	5,831	3,391	2,151	289
Georgia	1,422,762	6,437	4,016	2,072	349
Hawaii	185,860	6,530	4,117	2,007	406
Idaho	245,136	5,315	3,280	1,803	231
Illinois	2,027,600	7,133	4,284	2,605	244
Indiana	988,702	7,192	4,484	2,416	293
lowa	497,301	6,564	3,864	2,208	492
Kansas	472,188	6,294	3,608	2,378	308
Kentucky	648,180	5,921	3,616	1,975	330
Louisiana	756,579	15,804	3,497	1,862	445
Maine	209,253	7,667	5,127	2,243	298
Maryland	846,582	7,731	4,758	2,587	386
Massachusetts	971,425	8,761	5,851	2,625	285
Michigan	${ }^{1} 1,725,639$	8,110	4,716	3,161	233
Minnesota	854,034	7,190	4,521	2,369	299
Mississippi	500,716	5,014	3,061	1,628	325
Missouri	914,110	6,187	3,811	2,114	261
Montana	157,556	6,314	3,939	2,121	254
Nebraska	288,261	6,683	24,198	1,977	2509
Nevada	325,610	5,760	3,437	2,145	178
New Hampshire	206,783	6,860	4,493	2,143	224
New Jersey	1,289,256	10,337	6,088	3,930	320
New Mexico	324,495	5,825	3,287	2,254	285
New York	2,887,776	9,846	6,707	2,874	265
North Carolina	1,275,925	6,045	3,835	1,872	339
North Dakota	112,751	5,667	3,391	1,805	471
Ohio	1,836,554	7,065	4,156	2,653	256
Oklahoma	627,032	5,395	3,120	1,918	356
Oregon	545,033	7,149	4,244	2,653	251
Pennsylvania	1,816,716	7,772	4,876	2,605	291
Rhode Island	156,454	8,904	5,859	2,796	250
South Carolina	666,780	16,130	13,674	12,107	${ }^{1} 349$
South Dakota	131,037	5,632	3,393	1,938	301
Tennessee	1916,202	15,383	13,510	11,603	${ }^{1} 270$
Texas	3,991,783	6,288	3,828	2,143	317
Utah	480,255	4,378	2,858	1,256	264
Vermont	104,559	8,323	5,379	2,714	230
Virginia	1,133,994	6,841	4,255	2,327	259
Washington	1,003,714	²6,376	23,803	2,261	312
West Virginia	291,811	7,152	4,414	2,315	422
Wisconsin	877,753	7,806	4,860	2,701	246
Wyoming	92,105	7,425	4,537	2,636	252
Outlying areas					
American Samoa	15,477	2,739	1,044	1,123	572
Guam	32,951	-	-	-	-
Northern Marianas	9,732	5,120	4,133	667	320
Puerto Rico	613,019	3,404	2,372	648	384
Virgin Islands	20,866	6,478	4,031	2,141	306

-Data not available.
${ }^{1}$ Value contains imputation for missing data.
${ }^{2}$ Value affected by redistribution of reported expenditure values to correct for missing data items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD): "National Public Education Financial Survey," 1999-2000; and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1999-2000 (Revised).

Table 6.-Current expenditures for instruction for public elementary and secondary education, by state: School year 1999-2000 (In thousands of dollars)

State	Total	Salaries	Employee benefits	Purchased services	Tuition to out-of-state and private schools	Supplies	Other
United States	*\$199,951,526	*\$145,071,888	*\$36,180,209	*\$5,839,679	*\$2,231,271	*\$9,751,742	*\$876,737
Alabama	2,577,581	1,880,268	471,091	60,094	1,547	155,166	9,415
Alaska	*662,932	*450,803	*123,113	*29,523	63	*36,445	*22,985
Arizona	2,605,219	1,787,356	307,010	42,580	*111,814	*325,405	*31,054
Arkansas	1,447,716	1,084,820	251,580	30,443	2,300	74,978	3,595
California	23,832,969	17,023,741	4,321,949	880,778	398,294	1,199,931	8,276
Colorado	2,550,133	1,875,740	345,590	55,168	37,710	163,556	72,370
Connecticut	3,426,238	2,421,650	603,449	103,001	193,305	99,942	4,892
Delaware	576,886	400,240	113,124	14,474	12,838	33,016	3,194
District of Columbia	324,325	258,678	43,041	9,935	0	11,875	795
Florida	8,076,047	5,515,153	1,470,190	633,587	43	379,922	77,152
Georgia	5,713,274	4,190,657	1,141,443	71,676	2,077	303,767	3,653
Hawaii	765,134	554,483	136,781	26,790	0	39,384	7,697
Idaho	804,086	573,955	163,969	21,596	653	43,669	245
Illinois	8,686,846	6,451,475	1,398,202	281,004	142,295	398,565	15,305
Indiana	4,433,163	3,008,728	1,205,380	50,536	57	161,701	6,760
lowa	1,921,516	1,428,357	353,961	45,032	15,136	75,471	3,559
Kansas	1,703,818	1,345,682	242,136	26,000	1,236	81,596	7,168
Kentucky	2,343,704	1,772,480	400,663	50,341	0	109,381	10,839
Louisiana	2,645,628	1,946,912	519,847	39,870	109	134,784	4,107
Maine	1,072,763	704,649	231,429	41,710	53,247	36,785	4,943
Maryland	4,028,454	2,737,879	879,914	81,841	158,121	128,759	41,939
Massachusetts	5,683,701	4,170,790	1,012,006	72,668	206,913	214,961	6,361
Michigan	8,137,640	5,612,978	1,877,110	246,857	93	350,254	50,349
Minnesota	3,861,367	2,870,653	697,977	126,011	3,121	139,626	23,979
Mississippi	1,532,550	1,124,768	274,975	30,896	2,754	94,067	5,089
Missouri	3,484,116	2,616,916	497,581	*82,817	0	273,494	*13,308
Montana	620,684	441,927	113,022	19,454	792	43,453	2,037
Nebraska	*1,209,991	*879,751	*215,926	35,382	17,563	49,362	12,006
Nevada	1,119,108	824,344	233,859	12,531	387	46,398	1,589
New Hampshire	929,165	648,399	153,513	23,842	69,862	31,690	1,859
New Jersey	7,848,553	5,586,129	1,374,889	112,262	400,369	308,056	66,848
New Mexico	1,066,564	784,601	193,582	20,256	0	67,876	249
New York	19,368,224	14,559,417	3,537,509	716,358	0	551,635	3,305
North Carolina	4,893,381	3,722,836	815,055	88,874	0	262,908	3,708
North Dakota	382,289	276,145	74,292	10,794	1,159	18,724	1,175
Ohio	7,633,412	5,456,104	1,445,353	186,614	76,589	364,664	104,089
Oklahoma	1,956,646	1,434,025	310,841	36,809	0	164,162	10,809
Oregon	2,313,122	1,497,879	549,014	116,597	21,602	120,215	7,816
Pennsylvania	8,857,974	6,413,721	1,638,539	334,979	118,537	339,076	13,122
Rhode Island	916,608	632,791	204,008	20,598	34,922	23,590	699
South Carolina	2,450,038	1,804,590	446,028	47,312	531	123,394	28,183
South Dakota	444,596	319,000	71,268	19,578	5,315	27,961	1,475
Tennessee	3,216,104	2,311,893	493,620	51,975	0	348,761	9,855
Texas	15,278,648	12,037,283	1,599,724	432,306	30,728	1,059,003	119,605
Utah	1,372,663	929,199	339,869	28,224	218	68,497	6,657
Vermont	562,372	377,966	95,097	28,326	40,911	18,731	1,342
Virginia	4,825,091	3,514,269	991,946	81,622	1,164	233,789	2,300
Washington	*3,816,968	2,715,224	737,312	161,888	*6,807	169,686	26,050
West Virginia	1,288,004	865,650	345,288	18,674	171	58,094	127
Wisconsin	4,265,597	2,937,714	1,030,316	63,104	59,424	162,977	12,064
Wyoming	417,920	291,223	86,832	16,091	496	22,537	741
Outlying areas							
American Samoa	16,164	11,120	2,150	919	0	1,630	345
Guam	-	-	-	-		-	-
Northern Marianas	40,226	28,086	7,476	2,732	0	1,873	59
Puerto Rico	1,453,889	1,189,760	153,494	5,721	0	15,183	89,732
Virgin Islands	84,107	65,199	17,321	164	0	1,399	24

-Data not available.
*Value affected by redistribution of reported values to correct for missing data items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1999-2000.

Table 7.-Total expenditures for public elementary and secondary education and other related programs, by state: School year 1999-2000 (In thousands of dollars)

State	Total	Current expenditures	Facilities acquisition and construction	Replacement equipment	Other programs	Interest on debt
United States	${ }^{1}$ \$381,915,263	${ }^{1} \$ 323,808,909$	\$35,482,203	\$7,919,292	${ }^{1}$ \$5,483,573	${ }^{1}$ \$9,135,443
Alabama	5,010,612	4,176,082	533,652	133,146	92,742	74,991
Alaska	1,397,285	1,183,499	165,483	19,116	7,134	22,053
Arizona	25,895,099	${ }^{2} 4,262,182$	1,098,073	197,628	230,516	306,701
Arkansas	2,679,792	2,380,331	165,620	73,537	8,714	51,590
California	44,759,855	38,129,479	4,625,124	930,531	774,401	300,320
Colorado	5,460,884	4,400,888	662,029	124,541	39,178	234,249
Connecticut	${ }^{1} 6,304,452$	15,402,868	580,208	96,605	${ }^{1} 101,974$	122,799
Delaware	1,048,652	937,630	62,350	19,582	15,374	13,709
District of Columbia	${ }^{1} 890,143$	780,192	67,563	20,150	1,664	120,574
Florida	17,515,027	13,885,988	2,560,277	245,761	449,022	373,979
Georgia	10,899,994	9,158,624	1,286,459	234,644	49,228	171,039
Hawaii	1,406,978	1,213,695	85,089	33,829	33,842	40,522
Idaho	1,492,809	1,302,817	117,288	38,256	3,370	31,078
Illinois	17,392,541	14,462,773	1,916,145	547,876	131,771	333,975
Indiana	8,612,151	7,110,930	700,963	151,678	54,667	593,913
lowa	3,694,883	3,264,336	241,845	111,560	25,789	51,353
Kansas	3,284,809	2,971,814	86,674	124,421	3,111	98,795
Kentucky	4,145,224	3,837,794	42,085	134,331	47,633	83,381
Louisiana	14,925,948	14,391,214	307,913	107,723	17,843	101,256
Maine	1,799,866	1,604,438	112,504	29,327	17,983	35,615
Maryland	7,348,943	6,545,135	620,456	89,096	17,807	76,450
Massachusetts	9,025,643	8,511,065	68,091	131,965	116,919	197,603
Michigan	16,841,093	13,994,294	1,613,576	383,289	336,809	513,125
Minnesota	7,614,218	6,140,442	730,326	184,228	280,143	279,078
Mississippi	2,931,371	2,510,376	240,673	105,138	18,201	56,983
Missouri	6,733,065	5,655,531	547,816	211,963	131,651	186,103
Montana	1,073,132	994,770	40,138	20,339	7,096	10,789
Nebraska	2,195,263	1,926,500	135,561	92,875	3,171	37,155
Nevada	2,444,804	1,875,467	366,396	62,522	12,300	128,119
New Hampshire	1,580,317	1,418,503	107,150	22,995	3,642	28,026
New Jersey	14,953,710	13,327,645	1,074,870	158,074	164,134	228,987
New Mexico	2,214,591	1,890,274	255,387	24,181	12,717	32,031
New York	32,354,348	28,433,240	1,543,391	406,298	1,112,759	858,660
North Carolina	19,366,553	7,713,293	1,250,980	137,776	48,014	1216,491
North Dakota	732,929	638,946	55,112	25,541	5,138	8,193
Ohio	15,021,942	12,974,575	966,225	426,230	398,489	256,423
Oklahoma	3,677,397	3,382,581	172,180	64,525	17,186	40,924
Oregon	4,419,127	3,896,287	327,143	68,238	13,217	114,241
Pennsylvania	16,981,551	14,120,112	1,613,004	261,271	340,408	646,755
Rhode Island	1,456,291	1,393,143	9,196	21,397	8,397	24,158
South Carolina	4,968,906	4,087,355	623,695	98,114	50,872	108,870
South Dakota	902,255	737,998	98,432	45,942	2,042	17,842
Tennessee	5,818,502	4,931,734	611,089	132,817	26,853	116,009
Texas	31,071,241	25,098,703	4,061,524	658,178	161,112	1,091,725
Utah	2,599,491	2,102,655	319,929	46,860	64,889	65,159
Vermont	929,310	870,198	19,408	19,757	5,341	14,606
Virginia	9,094,490	7,757,598	764,374	241,177	54,375	191,125
Washington	27,765,236	²6,399,883	918,663	125,104	35,736	285,850
West Virginia	2,281,245	2,086,937	73,286	74,450	32,928	13,645
Wisconsin	8,136,932	6,852,178	793,331	178,786	93,596	219,041
Wyoming	764,360	683,918	43,457	25,922	1,677	9,386
Outlying areas						
American Samoa	51,050	42,395	2,694	3,214	2,747	0
Guam	-	-	-	-	-	-
Northern Marianas	57,669	49,832	7,084	417	337	0
Puerto Rico	2,198,277	2,086,414	316	44,839	47,086	19,621
Virgin Islands	147,528	135,174	9,034	1,165	2,155	0

-Data not available.
${ }^{1}$ Value contains imputation for missing data. Imputed value is less than 2 percent of total expenditures in any one state.
${ }^{2}$ Value affected by redistribution of reported values to correct for missing data items.
NOTE: Detail may not add to totals due to rounding. National figures do not include outlying areas.
SOURCE: U.S.Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1999-2000.

Abstract

This article was originally published as the Executive Summary of the Research and Development Report of the same name. The universe data are primarily from the "National Public Education Financial Survey" (NPEFS), part of the NCES Common Core of Data (CCD). Additional data sources are listed at the end of this article.

Research and Development Reports are intended to

- share studies and research that are developmental in nature;
- share results of studies that are on the cutting edge of methodological developments; and - participate in discussions of emerging issues of interest to researchers.

These reports present results or discussion that do not reach definitive conclusions at this point in time, either because the data are tentative, the methodology is new and developing, or the topic is one on which there are divergent views. Therefore, the techniques and inferences made from the data are tentative and are subject to revision.

Introduction

The National Public Education Financial Survey (NPEFS) is an annual survey of state financial data that is part of the Common Core of Data (CCD). The NPEFS collects data on revenues and expenditures in grades prekindergarten through 12 in public schools in the 50 states, the District of Columbia, and the outlying territories.

This report presents state-level analyses of revenues and expenditures for the 1997-98 school year. NPEFS finance data form the core of these analyses, but information is supplemented by data on state demographic and fiscal characteristics from the Bureau of the Census and the Bureau of Economic Analysis. While aggregate finance data used in these analyses are complete for all states, missing detailed items of revenue and expenditure were imputed in some states.

Analyses of revenues and expenditures per pupil are presented using both unadjusted and cost-adjusted dollars. Cost adjustments are designed to take into account differences in the cost of education across states. The cost adjustment used in these analyses is the Geographic Cost of Education Index (GCEI) (Chambers 1998). This index reflects how much more or less it costs in different geographic locations to recruit and employ comparable school
personnel, as well as the varying costs of nonpersonnel items such as purchased services, supplies and materials, furnishings and equipment, travel, utilities, and facilities.

Major Findings

Education revenues

Total education revenues per pupil averaged $\$ 7,067$ (in unadjusted dollars) in 1997-98, but the range in revenues per pupil across the 50 states and the District of Columbia was quite substantial-from \$10,550 in New Jersey to $\$ 4,770$ in Mississippi (table A). New Jersey, the state with the highest revenues per pupil, raised 2.2 times the revenue of Mississippi, the lowest revenue state. Cost adjustments reduced the range in revenues per pupil, but New Jersey, the state with the highest revenues per pupil $(\$ 9,158)$, still raised 1.8 times the revenues of Utah, the state with the lowest revenues per pupil $(\$ 4,998)$ (table B). ${ }^{1}$

Although federal, state, and local revenues per pupil all varied across the 50 states, revenues per pupil from state sources showed the largest range between the highest and lowest revenue states and federal revenues per pupil the smallest. In unadjusted dollars, state revenues per pupil in Hawaii ($\$ 6,009$) were nearly 10 times higher than state revenues in New Hampshire (\$633) (table A). Local revenues per pupil were almost seven times higher in New Jersey ($\$ 5,972$) than in New Mexico ($\$ 857$), and federal revenues per pupil were over four times higher in Alaska ($\$ 1,133$) than in New Hampshire ($\$ 258$). In cost-adjusted dollars, the ratios between the highest and lowest revenue states were 10.0 to 1 for state revenues, 6.1 to 1 for local revenues, and 3.6 to 1 for federal revenues (table B). (All ratios exclude the District of Columbia, and local revenues exclude Hawaii, a state with nearly full state funding of education.)

State wealth—measured as gross state product (GSP) per capita, median household income, and median housing value-showed a positive relationship with unadjusted local

[^23]Table A.-Total revenues (in unadjusted dollars) per pupil across sources, by state: School year 1997-98

State	Total revenues		Federal sources		State sources		Local sources ${ }^{1}$	
	Per pupil	Rank						
United States	\$7,067		\$481		\$3,418		\$3,168	
Alabama	25,535	46	${ }^{2} 520$	20	23,457	19	21,558	46
Alaska	9,222	4	1,133	2	5,732	2	2,358	34
Arizona	5,812	41	593	11	2,575	41	2,644	30
Arkansas	5,697	44	615	10	3,287	28	1,796	42
California	26,572	30	${ }^{2} 538$	16	23,957	12	22,078	39
Colorado	6,297	35	320	49	2,735	38	3,243	22
Connecticut	²9,643	3	377	42	3,598	18	25,668	4
Delaware	8,160	10	618	9	5,254	4	2,288	37
District of Columbia	9,168	5	1,509	1	0	51	7,659	1
Florida	6,533	32	499	21	3,187	29	2,847	26
Georgia	6,571	31	448	29	3,362	26	2,761	27
Hawaii	6,755	25	583	12	6,009	1	163	51
Idaho	5,404	48	380	41	3,388	23	1,636	44
Illinois	7,103	21	479	23	2,018	48	4,606	7
Indiana	7,614	15	368	44	3,912	14	3,334	20
Iowa	6,679	27	354	47	3,424	21	2,901	25
Kansas	6,662	28	395	39	3,856	16	2,411	33
Kentucky	5,875	39	563	13	3,626	17	1,686	43
Louisiana	25,786	42	652	7	2,917	35	22,216	38
Maine	7,530	16	526	18	3,428	20	3,575	16
Maryland	7,770	13	407	38	3,026	32	4,337	12
Massachusetts	8,318	7	417	36	3,386	24	4,515	9
Michigan	8,416	6	558	14	5,555	3	2,302	36
Minnesota	7,649	14	375	43	4,004	11	3,269	21
Mississippi	4,770	51	672	6	2,642	39	1,456	49
Missouri	6,595	29	412	37	2,619	40	3,564	17
Montana	6,345	34	648	8	2,973	34	2,723	28
Nebraska	6,711	26	447	31	2,224	45	4,041	14
Nevada	6,442	33	295	50	2,049	47	4,097	13
New Hampshire	6,770	24	258	51	633	50	5,879	3
New Jersey	10,550	1	382	40	4,196	9	5,972	2
New Mexico	5,887	38	780	3	4,250	8	857	50
New York	9,708	2	528	17	3,857	15	5,322	5
North Carolina	5,816	40	421	35	3,914	13	1,480	48
North Dakota	5,755	43	711	4	2,363	44	2,681	29
Ohio	7,286	18	424	33	3,003	33	3,858	15
Oklahoma	5,478	47	473	27	3,372	25	1,632	45
Oregon	7,175	20	459	28	4,073	10	2,642	31
Pennsylvania	8,175	9	479	24	3,160	31	4,536	8
Rhode Island	8,245	8	448	30	3,309	27	4,488	10
South Carolina	${ }^{2} 6,151$	37	${ }^{2} 521$	19	23,167	30	22,463	32
South Dakota	5,576	45	558	15	1,983	49	3,034	23
Tennessee	25,393	49	${ }^{2} 477$	25	22,575	42	22,341	35
Texas	6,213	36	474	26	2,743	37	2,996	24
Utah	4,774	50	331	48	2,912	36	1,530	47
Vermont	8,130	11	422	34	2,393	43	5,315	6
Virginia	²6,984	22	365	45	2,190	46	24,429	11
Washington	6,957	23	446	32	4,589	6	1,921	41
West Virginia	7,355	17	680	5	4,608	5	2,067	40
Wisconsin	8,006	12	359	46	4,297	7	3,350	18
Wyoming	7,229	19	486	22	3,400	22	3,342	19

${ }^{1}$ Local sources of revenue include intermediate sources of revenue. Intermediate sources of revenue are educational agencies with fundraising capabilities that operate between the state and local government levels. One example is New York's Board of Cooperative Educational Services (BOCES).
${ }^{2}$ Data imputed based on current-year (school year 1997-98) data.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), "National Public Education Financial Survey, ${ }^{\prime}$ 1997-98. (Originally published as table 2-1 on p. 9 of the complete report from which this article is excerpted.)

Table B.-Total revenues (in cost-adjusted dollars) per pupil across sources, by state: School year 1997-98

State	Total revenues		Federal sources		State sources		Local sources ${ }^{1}$	
	Per pupil	Rank						
United States	\$7,067		\$481		\$3,418		\$3,168	
Alabama	²6,198	44	${ }^{2} 582$	15	23,871	16	21,745	46
Alaska	7,279	22	894	2	4,524	6	1,861	42
Arizona	5,859	49	598	13	2,596	43	2,665	33
Arkansas	6,541	37	706	9	3,773	17	2,061	39
California	${ }^{2} 5,889$	47	${ }^{2} 482$	25	23,545	23	${ }^{2} 1,862$	41
Colorado	6,387	41	324	49	2,773	40	3,289	23
Connecticut	28,378	4	328	48	3,126	30	24,924	5
Delaware	7,977	10	605	12	5,136	4	2,237	38
District of Columbia	8,536	3	1,405	1	0	51	7,131	1
Florida	6,827	29	522	22	3,330	27	2,975	28
Georgia	7,058	25	481	26	3,611	22	2,966	29
Hawaii	6,775	31	585	14	6,027	1	164	51
Idaho	5,873	48	413	37	3,682	20	1,778	45
Illinois	6,883	28	464	30	1,956	49	4,463	9
Indiana	8,143	9	394	41	4,184	12	3,565	19
lowa	7,572	17	402	39	3,882	15	3,289	24
Kansas	7,452	19	441	32	4,313	9	2,697	32
Kentucky	6,571	36	629	11	4,056	14	1,886	40
Louisiana	26,472	39	729	7	3,263	29	22,479	35
Maine	7,675	14	537	18	3,495	25	3,644	18
Maryland	7,610	15	398	40	2,964	36	4,248	12
Massachusetts	7,097	24	355	45	2,889	38	3,853	15
Michigan	8,283	6	549	17	5,468	2	2,266	37
Minnesota	7,797	13	383	42	4,082	13	3,333	22
Mississippi	5,470	50	771	5	3,030	34	1,670	47
Missouri	6,949	27	434	33	2,760	42	3,755	16
Montana	6,980	26	713	8	3,271	28	2,996	27
Nebraska	7,575	16	504	23	2,510	44	4,561	8
Nevada	6,760	32	310	50	2,150	48	4,299	11
New Hampshire	6,460	40	246	51	604	50	5,610	2
New Jersey	9,158	1	331	47	3,643	21	5,184	4
New Mexico	6,337	43	840	3	4,574	5	923	50
New York	8,652	2	471	28	3,438	26	4,744	6
North Carolina	6,342	42	460	31	4,268	10	1,614	48
North Dakota	6,747	33	834	4	2,771	41	3,143	26
Ohio	7,375	21	429	35	3,040	33	3,905	14
Oklahoma	6,073	45	525	20	3,739	18	1,809	44
Oregon	7,427	20	475	27	4,216	11	2,735	30
Pennsylvania	7,975	11	467	29	3,083	31	4,425	10
Rhode Island	7,475	18	406	38	3,000	35	4,069	13
South Carolina	²6,796	30	${ }^{2} 576$	16	23,499	24	22,721	31
South Dakota	6,529	38	654	10	2,322	46	3,553	20
Tennessee	25,906	46	${ }^{2} 522$	21	22,820	39	22,564	34
Texas	6,588	35	503	24	2,909	37	3,177	25
Utah	4,998	51	347	46	3,050	32	1,602	49
Vermont	8,220	7	427	36	2,419	45	5,374	3
Virginia	27,207	23	377	43	2,260	47	4,571	7
Washington	6,702	34	430	34	4,421	8	1,851	43
West Virginia	8,209	8	758	6	5,143	3	2,307	36
Wisconsin	8,375	5	376	44	4,495	7	3,504	21
Wyoming	7,891	12	531	19	3,712	19	3,649	17

${ }^{1}$ Local sources of revenue include intermediate sources of revenue. Intermediate sources of revenue are educational agencies with fundraising capabilities that operate between the state and local government levels. One example is New York's Board of Cooperative Educational Services (BOCES).
${ }^{2}$ Data imputed based on current-year (school year 1997-98) data.
NOTE: All cost adjustments were made using the Geographic Cost of Education Index (GCEI) (Chambers 1998). Only state data have been adjusted for cost for comparison purposes.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1997-98. (Originally published as table 2-3 on p .12 of the complete report from which this article is excerpted.)
revenues per pupil and total revenues per pupil, but no relationship with either state or federal revenues per pupil. States with higher fiscal capacity tended to raise larger amounts of money from local sources. Since state and federal revenues did not eliminate these differences, wealthier states tended to have higher total revenues per pupil for public education. However, cost adjustments to revenues reduced or eliminated these relationships.

Education expenditures

Total expenditures for elementary and secondary education, which include both current and capital expenditures, were $\$ 334$ billion in 1997-98, with current expenditures totaling over $\$ 285$ billion-or about 85 percent of total expenditures. Total expenditures were $\$ 7,247$ per pupil, current expenditures were $\$ 6,189$ per pupil, and capital expenditures were $\$ 953$ per pupil. ${ }^{2}$

Current expenditures per pupil showed a substantial range across the 50 states and the District of Columbia-from a high of \$9,643 in New Jersey to a low of \$3,969 in Utah, with a ratio of expenditure between the highest and lowest spending states of 2.4 to 1 (table C). Cost adjustments reduced the range between the highest and lowest spending states, but the ratio between New Jersey $(\$ 8,371)$ and Utah $(\$ 4,156)$ was still 2.0 to 1 (table D).

Within current expenditures, the range in expenditures per pupil was highest for student and instructional staff support services and lowest for instruction. Excluding the District of Columbia, unadjusted expenditures per pupil for student and instructional staff support services ranged from a high of $\$ 1,042$ in New Jersey to a low of $\$ 285$ in North Dakotaa ratio of nearly 3.7 to 1 between the highest and lowest

[^24]expenditure states. Expenditures per pupil for instruction, in contrast, ranged from a high of $\$ 6,017$ in New York to a low of $\$ 2,620$ in Utah—a ratio of just 2.3 to 1 (table C).

All three measures of state wealth-GSP per capita, median household income, and median housing value-were consistently related to all measures of expenditure per pupil except capital expenditures. Or, stated differently, wealthier states tended to spend more money per pupil on almost all education functions than poorer states. Cost adjustments tended to reduce the relationship between state wealth and most measures of expenditure per pupil. But even with cost adjustments, wealthier states still tended to have higher expenditures for education.

Reference

Chambers, J.G. (1998). Geographic Variations in Public Schools' Costs (NCES 98-04). U.S. Department of Education. Washington, DC: National Center for Education Statistics Working Paper.

Data sources:

NCES:The Common Core of Data (CCD),"National Public Education Financial Survey" (NPEFS), 1997-98, and "Public Elementary/Secondary School Universe Survey," 1997-98; the Schools and Staffing Survey (SASS), "Public School Questionnaire," 1993-94; and the following publications: Digest of Education Statistics: 1998 (NCES 1999-036) and Geographic Variations in Public Schools'Costs (NCES 98-04).

Other: U.S. Department of Commerce, Bureau of Economic Analysis, Regional Accounts Data, 1999; Bureau of the Census, Current Population Survey (CPS), March 1999, and 1990 Census of Population and Housing
For technical information, see the complete report:
Sherman, J.D., Rowe, E., and Peternick, L. (2002). Financing Elementary and Secondary Education in the States: 1997-98 (NCES 2002-319).

Author affiliations: J.D. Sherman, E. Rowe, and L. Peternick, American Institutes for Research.
For questions about content, contact Frank Johnson (frank.johnson@ed.gov).

To obtain the complete report (NCES 2002-319), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Table C.—Current expenditures (in unadjusted dollars) per pupil across functions, by state: School year 1997-98

State	Current expenditures (in unadjusted dollars)		Current expenditures (in unadjusted dollars) per pupil spent on									
			Instruction		Student and instructional staff support services		Administration		Operations		Food and enterprise operations	
	Per pupil	Rank										
United States	\$6,189		\$3,827		\$567		\$669		\$855		\$271	
Alabama	14,849	45	12,963	45	${ }^{1} 384$	45	${ }^{1} 531$	43	${ }^{1} 630$	47	${ }^{1} 341$	8
Alaska	8,271	5	24,711	6	${ }^{2} 901$	3	971	4	1,407	3	281	24
Arizona	4,595	49	22,657	49	${ }^{2} 353$	47	${ }^{2} 603$	31	${ }^{2} 703$	37	279	26
Arkansas	4,708	47	2,985	43	392	43	354	50	646	43	330	11
California	15,644	32	13,452	30	${ }^{1} 559$	23	${ }^{1} 702$	16	${ }^{1} 705$	35	${ }^{1} 226$	40
Colorado	5,656	30	3,271	35	451	34	999	2	730	33	205	50
Connecticut	18,904	2	5,664	3	757	7	841	9	1,212	5	${ }^{1} 429$	3
Delaware	7,420	8	4,593	8	444	37	876	7	1,144	6	362	7
District of Columbia	18,393	4	13,676	25	1,809	1	${ }^{2} 1,052$	1	1,548	1	308	15
Florida	5,552	34	3,269	36	595	19	573	36	840	23	275	27
Georgia	5,647	31	3,513	29	583	20	566	37	662	42	323	13
Hawaii	5,858	27	3,750	21	496	29	602	32	632	46	378	5
Idaho	4,721	46	2,936	46	412	41	490	46	675	41	207	49
Illinois	6,242	19	3,788	19	618	16	687	17	934	17	216	45
Indiana	6,318	18	3,949	16	460	32	606	30	1,023	11	280	25
Iowa	5,998	25	3,677	24	666	9	668	21	696	38	290	20
Kansas	5,727	28	3,300	33	559	24	729	14	850	21	289	21
Kentucky	5,213	39	3,188	38	445	36	541	42	737	32	303	18
Louisiana	15,188	40	3,109	41	423	40	498	45	726	34	${ }^{1} 432$	2
Maine	6,742	14	4,536	10	399	42	627	24	940	16	240	36
Maryland	7,034	13	4,407	12	596	18	672	20	1,021	12	339	9
Massachusetts	7,778	7	5,163	5	630	15	661	22	1,069	7	255	31
Michigan	7,050	12	4,137	13	758	6	909	5	1,038	9	208	48
Minnesota	6,388	16	4,011	15	538	26	677	18	898	19	264	29
Mississippi	4,288	50	2,630	50	337	49	443	48	572	50	307	17
Missouri	5,565	33	3,413	31	476	30	593	34	843	22	240	35
Montana	5,724	29	3,578	27	469	31	610	28	833	24	234	37
Nebraska	5,958	26	23,746	22	446	35	625	25	696	39	${ }^{2} 445$	1
Nevada	5,295	37	3,185	39	390	44	814	12	738	31	168	51
New Hampshire	6,156	22	${ }^{2} 4,018$	14	${ }^{2} 512$	27	${ }^{2} 615$	26	${ }^{2} 795$	27	${ }^{2} 216$	46
New Jersey	9,643	1	5,833	2	1,042	2	990	3	1,486	2	292	19
New Mexico	5,005	43	2,863	48	672	8	460	47	765	28	244	34
New York	8,852	3	6,017	1	556	25	796	13	1,238	4	245	33
North Carolina	5,257	38	3,295	34	456	33	552	40	623	49	331	10
North Dakota	5,056	41	3,096	42	285	51	582	35	682	40	410	4
Ohio	6,198	21	3,656	26	654	10	909	6	748	30	232	38
Oklahoma	5,033	42	2,984	44	443	38	594	33	704	36	308	16
Oregon	6,419	15	3,829	18	598	17	850	8	919	18	222	41
Pennsylvania	7,209	9	4,594	7	572	21	726	15	1,050	8	267	28
Rhode Island	7,928	6	5,321	4	771	5	656	23	964	14	216	44
South Carolina	15,320	36	13,166	40	${ }^{1} 648$	11	${ }^{1} 530$	44	${ }^{1} 646$	44	${ }^{1} 329$	12
South Dakota	4,669	48	2,873	47	343	48	554	38	639	45	260	30
Tennessee	14,937	44	13,210	37	${ }^{1} 425$	39	${ }^{1} 422$	49	${ }^{1} 629$	48	${ }^{1} 251$	32
Texas	5,444	35	3,344	32	506	28	554	39	752	29	289	22
Utah	3,969	51	2,620	51	295	50	346	51	481	51	227	39
Vermont	7,075	11	4,587	9	644	13	823	10	807	26	214	47
Virginia	${ }^{1} 6,067$	23	3,699	23	635	14	545	41	869	20	${ }^{1} 320$	14
Washington	16,040	24	23,552	28	774	4	607	29	824	25	283	23
West Virginia	6,323	17	3,921	17	379	46	610	27	1,037	10	375	6
Wisconsin	7,123	10	4,499	11	644	12	814	11	946	15	219	42
Wyoming	6,218	20	3,775	20	562	22	672	19	991	13	218	43

${ }^{1}$ Data imputed based on current-year (school year 1997-98) data
${ }^{2}$ Data disaggregated from reported total.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1997-98. (Originally published as table 4-3 on p. 52 of the complete report from which this article is excerpted.)

Table D.-Current expenditures (in cost-adjusted dollars) per pupil across function, by state: School year 1997-98

State	Current expenditures in cost-adjusted dollars)		Current expenditures (in cost-adjusted dollars) per pupil spent on									
			Instruction		Student and instructional staff support services		Administration		Operations		Food and enterprise operations	
	Per pupil	Rank										
United States	\$6,189		\$3,827		\$567		\$669		\$855		\$271	
Alabama	15,430	43	13,318	43	${ }^{1} 430$	43	${ }^{1} 595$	37	${ }^{1705}$	45	${ }^{1} 382$	5
Alaska	6,528	20	23,718	25	2711	8	766	12	1,110	5	222	41
Arizona	4,632	50	22,678	51	${ }^{2} 356$	49	${ }^{2} 608$	32	${ }^{2} 709$	44	282	25
Arkansas	5,405	45	3,427	37	450	40	406	50	742	39	379	6
California	${ }^{1} 5,058$	48	13,093	47	${ }^{1} 501$	29	${ }^{1} 629$	29	${ }^{1} 632$	50	${ }^{1} 203$	49
Colorado	5,737	38	3,317	44	458	39	1,013	1	740	40	208	46
Connecticut	17,736	4	4,921	3	658	12	731	15	1,053	9	${ }^{1} 373$	8
Delaware	7,253	6	4,490	8	434	42	857	7	1,119	4	354	11
District of Columbia	17,815	3	23,423	38	1,685	1	${ }^{2} 979$	2	1,441	1	287	24
Florida	5,802	36	3,416	40	622	17	599	36	878	23	287	23
Georgia	6,066	26	3,773	23	626	15	608	31	711	43	347	13
Hawaii	5,876	30	3,761	24	498	30	604	34	634	49	379	7
Idaho	5,131	47	3,192	46	448	41	533	46	734	41	225	40
Illinois	6,048	27	3,670	28	599	20	665	23	905	20	209	45
Indiana	6,757	16	4,224	14	492	34	648	27	1,094	7	299	22
lowa	6,801	14	4,169	15	755	3	758	13	789	32	329	18
Kansas	6,406	22	3,691	27	625	16	816	11	951	16	323	19
Kentucky	5,831	33	3,566	32	497	31	605	33	825	25	338	15
Louisiana	15,804	35	3,478	36	473	37	557	45	812	28	${ }^{1} 483$	2
Maine	6,872	13	4,624	7	406	46	639	28	958	14	245	34
Maryland	6,890	12	4,316	12	584	21	658	25	1,000	12	332	16
Massachusetts	6,637	19	4,405	10	538	24	564	43	913	19	217	43
Michigan	6,939	11	4,072	18	746	5	895	4	1,021	11	205	48
Minnesota	6,511	21	4,088	17	548	23	690	19	916	18	269	28
Mississippi	4,918	49	3,016	49	387	48	508	47	656	48	352	12
Missouri	5,864	32	3,597	30	502	28	625	30	888	22	253	33
Montana	6,297	23	3,937	20	516	26	671	22	916	17	258	31
Nebraska	6,725	17	24,228	13	503	27	705	18	786	33	${ }^{2} 502$	1
Nevada	5,556	41	3,342	42	409	45	854	8	774	35	177	51
New Hampshire	5,874	31	23,834	21	${ }^{2} 488$	36	${ }^{2} 587$	40	${ }^{2} 759$	36	${ }^{2} 206$	47
New Jersey	8,371	1	5,064	2	904	2	859	6	1,290	2	253	32
New Mexico	5,387	46	3,082	48	724	6	495	48	823	26	263	29
New York	7,889	2	5,363	1	495	33	709	16	1,104	6	218	42
North Carolina	5,732	39	3,593	31	497	32	601	35	680	47	361	10
North Dakota	5,927	28	3,630	29	334	50	683	20	800	29	480	3
Ohio	6,273	24	3,700	26	662	11	920	3	757	37	235	37
Oklahoma	5,579	40	3,308	45	491	35	659	24	781	34	341	14
Oregon	6,645	18	3,964	19	619	18	880	5	952	15	230	38
Pennsylvania	7,033	10	4,482	9	558	22	708	17	1,024	10	261	30
Rhode Island	7,188	7	4,824	4	699	9	594	38	874	24	196	50
South Carolina	15,878	29	13,499	35	${ }^{1716}$	7	${ }^{1} 585$	41	${ }^{1714}$	42	${ }^{1} 364$	9
South Dakota	5,467	42	3,364	41	402	47	649	26	748	38	304	21
Tennessee	15,408	44	13,516	34	${ }^{1} 465$	38	${ }^{1} 462$	49	${ }^{1} 689$	46	${ }^{1} 275$	26
Texas	5,773	37	3,546	33	537	25	587	39	798	30	306	20
Utah	4,156	51	2,743	50	308	51	362	51	504	51	238	35
Vermont	7,153	8	4,638	6	651	14	832	10	816	27	216	44
Virginia	16,261	25	3,817	22	655	13	562	44	897	21	${ }^{1} 330$	17
Washington	15,818	34	23,422	39	746	4	584	42	794	31	272	27
West Virginia	7,057	9	4,376	11	423	44	681	21	1,158	3	419	4
Wisconsin	7,451	5	4,706	5	674	10	852	9	990	13	229	39
Wyoming	6,789	15	4,122	16	614	19	734	14	1,082	8	238	36

${ }^{1}$ Data imputed based on current-year (school year 1997-98) data.
${ }^{2}$ Data disaggregated from reported total.
NOTE: All cost adjustments were made using the Geographic Cost of Education Index (GCEI) (Chambers 1998). Only state data have been adjusted for cost for comparison purposes.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"National Public Education Financial Survey," 1997-98. (Originally published as table 4-5 on p. 55-56 of the complete report from which this article is excerpted.)

Postsecondary Education

Persistence and Attainment of Beginning Students With Pell Grants
Christina Chang Wei and Laura Horn .. 91
Part-Time Instructional Faculty and Staff: Who They Are, What They Do,
and What They Think
Valerie Martin Conley and David W. Leslie ... 97

Christina Chang Wei and Laura Horn
This article was originally published as the Executive Summary of the Statistical Analysis Report of the same name. The sample survey data are from the NCES Beginning Postsecondary Students Longitudinal Study (BPS).

Introduction

The Pell Grant program is the largest federal need-based grant program available to postsecondary education students. In 1998-99, the federal government spent $\$ 7.2$ billion on Pell Grants for more than 3.8 million students (U.S. Department of Education 1999). Students can use a Pell Grant at almost all 2- and 4-year public and private not-for-profit institutions, as well as several thousand private for-profit institutions. Pell Grant program eligibility is based primarily on the student's and/or parents' income for the previous year, with awards made primarily to low-income students. Among undergraduates who enrolled in postsecondary education for the first time in 1995-96, 87 percent of Pell Grant recipients were either dependent students whose parents' incomes were under $\$ 45,000$ (59 percent) or independent students with incomes under $\$ 25,000$ (28 percent). Other factors are also taken into account in awarding Pell Grants, such as student
and parent assets and other family members who are concurrently enrolled in college.

This report provides a description of Pell Grant recipients who were first-time beginning postsecondary students in 1995-96. Using data from the 1996 Beginning Postsecondary Students Longitudinal Study, "First Follow-up" (BPS:96/98), the report examines the academic and enrollment characteristics of beginning students who received a Pell Grant and their rates of persistence 3 years after first starting postsecondary education. These students are compared with beginning students who did not receive a Pell Grant. Because Pell Grant recipients are predominantly low-income students, high-income students were excluded from the analysis when comparing students' educational background and postsecondary outcomes. For these analyses, Pell Grant recipients were only compared to lowand middle-income nonrecipients. However, all students
were included when analyzing the distribution of different types of financial aid and the types of institutions that students attended with respect to whether or not they received a Pell Grant.

In 1995-96, 29 percent of all beginning students and 32 percent of full-time beginning students received a Pell Grant. Beginning postsecondary students receiving Pell Grants differed from other first-time students in the types of institutions attended and receipt of other types of financial aid. When examining low- and middle-income students only, Pell Grant recipients differed from nonrecipients in their level of high school academic preparation and the number of factors that put them at risk for not achieving their educational objectives.

Institution Type, Pell Grant Awards, and Other Financial Aid

Taking into account all students who enrolled in postsecondary education for the first time in 1995-96, Pell Grant recipients differed from nonrecipients in where they enrolled. In particular, they were more likely than nonrecipients to attend private for-profit less-than-4-year institutions, which provide primarily short-term occupational training. Pell Grant recipients were less likely than nonrecipients to attend public 4-year, public 2-year, and private not-for-profit 4-year institutions (table A). Differ-
ences in enrollment patterns were also notable among fulltime students, with 26 percent of Pell Grant recipients attending public 4 -year institutions and 22 percent attending private for-profit less-than-4-year institutions. In contrast, 35 percent of full-time nonrecipients attended public 4-year institutions and 8 percent attended private for-profit less-than-4-year institutions.

Because Pell Grant recipients are primarily low-income students, they were more likely than nonrecipients to qualify for and receive additional types of financial aid such as loans, work-study, and other grant aid. Among Pell Grant recipients, those enrolled at private not-for-profit 4-year institutions were more likely than those at other institutions to receive other financial aid.

Academic Background and Enrollment Characteristics

Taking into account low- and middle-income students only, Pell Grant recipients were less well prepared academically than their counterparts who did not receive a Pell Grant. Among students enrolled at 4-year institutions, Pell Grant recipients were more likely than nonrecipients to have SAT I (or equivalent ACT) scores that fell in the lowest quartile and less likely to have completed a rigorous curriculum while in high school. Those attending less-than-4-year institutions were less likely than nonrecipients to have

Table A.-Percentage distribution of all 1995-96 beginning postsecondary students according to first institution type, by receipt of Pell Grant and attendance status

$\underline{\text { Receipt of Pell Grant }}$	Public 4-year	Private not-for-profit 4-year	Public 2-year	Private forprofit less-than-4-year	Other*
			Total		
Total	25.9	14.7	45.7	10.6	3.1
Pell Grant recipients	23.5	12.7	38.8	20.6	4.4
Nonrecipients	26.9	15.7	48.3	6.4	2.6
	Full-time students				
Total	32.3	19.1	32.6	12.6	3.4
Pell Grant recipients	26.1	14.8	32.5	22.1	4.6
Nonrecipients	35.3	21.2	32.7	8.0	2.8

[^25]received a high school diploma (i.e., they did not graduate or they finished high school with a GED or high school completion certificate).

Low- and middle-income Pell Grant recipients attending less-than-4-year institutions differed in some respects from nonrecipients in their educational objectives. Recipients at public 2-year institutions were more likely than nonrecipients to be pursuing an associate's degree and less likely to be working toward a vocational certificate. Pell Grant recipients enrolled at private for-profit less-than-4year institutions were more likely than nonrecipients to be pursuing no degree and less likely to be pursuing a vocational certificate.

Pell Grant recipients enrolled at public 2-year institutions also were more likely than nonrecipients to enroll full time and less likely to work while enrolled. This may be due in part to the Pell Grant program's requirements. Both parttime attendance and income earned from employment can decrease eligibility for a Pell Grant.

Persistence Risk Factors

Seven characteristics have been shown to be associated with leaving postsecondary education without a degree (Horn and Premo 1995): not graduating from high school (or finishing with a GED or high school completion certificate), delaying enrollment in postsecondary education, being financially independent (i.e., for financial aid purposes), having dependents other than one's spouse, being a single parent, attending part time, and working full time while enrolled. Among low- and middle-income beginning students, Pell Grant recipients were more likely than nonrecipients to have each of these persistence risk factors except for full-time employment and part-time enrollment (figure A). Recipients also had a higher average number of risk factors than did nonrecipients. Recipients' likelihood of having such factors varied by institution type, with those at less-than-4-year institutions more likely than those at 4-year institutions to be at risk. Within each institution type, however, Pell Grant recipients were more likely than nonrecipients to be independent, to have children, and to be single parents.

Figure A.-Percentage of 1995-96 low- and middle-income beginning postsecondary students with persistence risk factors, by receipt of Pell Grant

[^26]
Three-Year Rates of Persistence

Examination of 3-year rates of persistence included comparisons of students by institution type and academic background, comparisons of Pell Grant recipients by receipt of other financial aid or parental support, and a multivariate analysis taking into account several variables associated with persistence.

The 3-year persistence rates of Pell Grant recipients initially enrolled at 4-year institutions and those enrolled at less-than-4-year institutions were examined separately to account for differences in the academic preparation and educational goals of students at different types of institutions. Because Pell Grant recipients were less well prepared academically and reported more persistence risk factors than nonrecipients, it might be expected that Pell Grant recipients would have lower rates of persistence and attainment than nonrecipients. However, with a few exceptions, this appeared in large part not to be observed in this study.

Persistence at 4-year institutions

Considering all low- and middle-income beginning students who were enrolled at 4-year institutions in 1995-96, no differences in 3-year persistence rates were detected between Pell Grant recipients and nonrecipients. Furthermore, with one exception, no differences were detected in persistence between Pell recipients and nonrecipients when taking into account either SAT I/ACT composite test scores (table B) or high school curriculum (table C). The exception was for those who scored in the lowest SAT I/ACT quartile (table B): Pell grant recipients were less likely than nonrecipients to leave postsecondary education without a degree (16 vs. 26 percent).

Private not-for-profit 4-year institutions. When examining low- and middle-income students in 4-year institutions separately within sector, some differences were observed among students enrolled at private not-for-profit institutions. Specifically, among those who had completed a midlevel high school academic curriculum, nonrecipients were

Table B.-Percentage distribution of all 1995-96 low-and middle-income beginning postsecondary students enrolled at 4 -year institutions according to their enrollment status in 1998, by receipt of Pell Grant and SAT I/ACT composite score

	Remained enrolled at same or higher level Receipt of Pell Grant institution in spring 1998	Stopped out or transferred to lower level institution ${ }^{2}$	Left postsecondary education without a degree by spring 1998
Total in public and private not-for-profit 4-year institutions			
Total Grant recipients	65.0	20.2	14.8
Nonrecipients	62.9	20.9	16.2
	66.1	19.9	14.0
Total	51.9	Lowest quartile (400-700)	
Pell Grant recipients	53.7	27.8	
Nonrecipients	49.9	30.8	20.4
		24.5	15.5
Total	64.0	Middle quartiles (710-1020)	25.6
Pell Grant recipients	63.2	22.4	13.6
Nonrecipients	64.4	21.4	15.4
		23.0	12.6
Total	79.0	Highest quartile (1030-1600)	
Pell Grant recipients	78.2	13.1	7.9
Nonrecipients		10.5	8.3

[^27]Table C.-Percentage distribution of 1995-96 low-and middle-income beginning postsecondary students enrolled at 4 -year institutions according to their enrollment status in 1998, by receipt of Pell Grant and level of high school curriculum

	Remained enrolled at same or higher level Receipt of Pell Grant institution in spring 1998	Stopped out or transferred to lower level institution ${ }^{2}$	Left postsecondary education without a degree by spring 1998
Total in public and private not-for-profit 4-year institutions			
Total	65.0	20.2	14.8
Pell Grant recipients	62.9	20.9	16.2
Nonrecipients	66.1	19.9	14.0
	Core curriculum or lower ${ }^{3}$		
Total	57.6	23.5	18.9
Pell Grant recipients	57.6	24.6	17.8
Nonrecipients	57.6	22.9	19.5
	70.0	Mid-level curriculum ${ }^{4}$	
Total	67.0	20.8	9.2
Pell Grant recipients	71.6	21.4	11.6
Nonrecipients		20.5	7.8
	85.9	Rigorous curriculum ${ }^{5}$	
Total	87.0	10.3	3.8
Pell Grant recipients	85.5	7.9	5.2
Nonrecipients		11.2	3.4

[^28]more likely than Pell Grant recipients to remain enrolled at an institution of the same level or higher (80 vs. 64 percent). Among those who had taken a rigorous high school curriculum, however, no differences in persistence rates were detected between recipients and nonrecipients (89 percent for both groups).

Public 4-year institutions. Among low- and middle-income beginning students enrolled at public 4-year institutions, differences were found among students scoring in the lowest and middle quartiles on their entrance exams: Among those scoring in the lowest quartile, Pell Grant recipients were less likely to leave without a degree (15 vs. 28 percent), while among those scoring in the
middle quartiles, Pell Grant recipients were more likely to leave without a degree (17 vs. 12 percent). However, in neither of these test score groups (lowest or middle quartiles) were differences detected in the likelihood of remaining enrolled at an institution of the same level or higher.

Persistence at less-than-4-year institutions

Among low- and middle-income students enrolled at less-than-4-year institutions, Pell Grant recipients averaged more persistence risk factors than nonrecipients and were less likely than nonrecipients to have graduated from high school. Despite such risk attributes, no differences in 3-year persistence rates were detected between Pell Grant
recipients and nonrecipients attending either public 2-year or private for-profit less-than-4-year institutions.

Persistence of Pell Grant recipients receiving other financial aid or parental support

The study also examined 3-year persistence rates for fulltime beginning students with a Pell Grant in light of other types of financial assistance received, in particular loan aid and assistance from parents. Among full-time Pell Grant recipients enrolled at private institutions (both not-forprofit 4-year and for-profit less-than-4-year institutions), those who received loan aid during their first year of enrollment were more likely than those who did not receive any loans to remain enrolled at an institution of the same level or higher. No such differences in persistence were detected among Pell Grant recipients enrolled at public 2 -year or public 4-year institutions.

Finally, Pell Grant recipients were examined with respect to the relationship between persistence and financial support from parents. ${ }^{1}$ Unlike the results found for loan aid, no differences in persistence were observed between Pell Grant recipients who reported receiving financial support from their parents and those who did not.

Relationship of specific variables to persistence

Finally, a multivariate analysis was conducted analyzing the likelihood of remaining enrolled at an institution of the same level or higher for 3 years. The analysis included all full-time low- and middle-income beginning students enrolled at all types of institutions. It took into account Pell Grant receipt and several other variables associated with persistence, including type of institution first attended, demographic characteristics (gender, race/ethnicity, age, and parents' education level), income level (low vs. middle),

[^29]and persistence risk factors. ${ }^{2}$ Taken together, these variables accounted for 8.5 percent of the variance in the likelihood of remaining enrolled for 3 years at an institution of the same or higher level.

Before any of the background variables were taken into consideration, among all full-time low- and middle-income beginning students enrolled at all postsecondary institutions, Pell Grant recipients were less likely to remain enrolled than their nonrecipient counterparts. However, the findings from the multivariate analysis showed that no differences in persistence could be detected after controlling for the covariation of related variables. In other words, after taking into account such variables as type of institution first attended, income, parents' education, age, and persistence risk factors, the analysis failed to find a difference in persistence between Pell Grant recipients and nonrecipients.

References

Horn, L.J., and Premo, M.D. (1995). Profile of Undergraduates in U.S. Postsecondary Education Institutions: 1992-93, With an Essay on Undergraduates at Risk (NCES 96-237). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
U.S. Department of Education, Office of Postsecondary Education. (1999). Title IV/Federal Pell Grant Program 1998-99 End of Year Report. Washington, DC: Author.
${ }^{2}$ Bivariate correlations showed that the effect sizes of the independent variables on the likelihood of remaining enrolled for 3 years were small, with correlations ranging from . 012 to 190 .

Data source: 1996 Beginning Postsecondary Students Longitudinal Study, "First Follow-up" (BPS:96/98).

For technical information, see the complete report:
Wei, C.C., and Horn, L. (2002). Persistence and Attainment of Beginning Students With Pell Grants (NCES 2002-169).
Author affiliations: C.C.Wei and L. Horn, MPR Associates, Inc.
For questions about content, contact Aurora D'Amico (aurora.d'amico@ed.gov).

To obtain the complete report (NCES 2002-169), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

 Part-Time Instructional Faculty and Staff: Who They Are, What They Do,

 Part-Time Instructional Faculty and Staff: Who They Are, What They Do, and What They Think

Valerie Martin Conley and David W. Leslie

This article was originally published as the Executive Summary of the Statistical Analysis Report of the same name. The sample survey data are from the NCES National Study of Postsecondary Faculty (NSOPF).

Introduction

Part-time faculty members are a sizable part of the workforce in postsecondary institutions today. Forty-two percent of all instructional faculty and staff were employed part time by their institution in the fall of 1992 (Kirshstein, Matheson, and Jing 1997). Two out of five (44 percent) of those employed part time were teaching in public 2-year institutions. Part-time instructional faculty and staff represented 62 percent of all instructional faculty and staff teaching for credit in public 2-year institutions during the fall of 1992 (Palmer 2000). That there has been an increase in the number and percentage of part-time faculty over the last 20 years is undeniable. The Digest of Education Statistics has tracked this increase over time (Snyder and Hoffman 2000).

What is perhaps surprising to some, however, is that we have very little historical information about the characteristics of part-time faculty overall and that we have even less information about the similarities and differences among part-time faculty members and between part-time and fulltime faculty in general. One notable exception is Gappa and Leslie's (1993) The Invisible Faculty, which used data from the 1988 National Survey of Postsecondary Faculty (NSOPF:88) and interviews with part-time faculty members from around the country to describe their characteristics. They concluded that part-time faculty members were a diverse workforce and that they were even more diverse in many ways than full-time faculty, yet more similar to them than is often assumed.

Policymakers, administrators, researchers, and the public have become more concerned in recent years about the increase in part-time faculty. Part-time faculty members have become more vocal about what they see as inequitable treatment in the workplace and, in many states, have sought to unionize in an effort to improve working conditions, salary, and benefits (Saltzman 2000). As a result, understanding who part-time faculty members are, what they do, and what they think is becoming an increasingly important issue.

Data from the 1993 National Study of Postsecondary Faculty (NSOPF:93) provide valuable insight into the characteristics of this group of faculty from a national perspective. A nationally representative sample of faculty and instructional staff received questionnaires in 1993 that asked about their employment in the fall of 1992. These data add to our knowledge about the characteristics of parttime faculty overall and the similarities and differences among part-time faculty members and between part-time faculty and full-time faculty in general.

Specifically, this report presents estimates of the characteristics, qualifications, motivations, work patterns, and attitudes of part-time instructional faculty and staff in 4-year and 2-year institutions by program area for the fall of 1992. The report compares part-time faculty and full-time faculty, examines some of the common perceptions about part-time faculty, and provides a comprehensive source of descriptive statistics about part-time faculty characteristics. ${ }^{1}$ This report is a valuable resource about part-time faculty in the United States. Gappa and Leslie (1993) provided data from the 1988 NSOPF, which up to this point has been the most comprehensive resource on part-time faculty available. In addition to providing an updated resource, this report offers researchers a resource for making comparisons with future NSOPF reports on part-time faculty.

Key Findings

Drawing from this report's compendium of descriptive statistics about part-time instructional faculty and staff available from NSOPF:93, we have identified five major findings:

- A higher proportion of part-time faculty members than full-time faculty members were female.
- There were differences between part-time faculty members in the humanities compared with part-time faculty members in other program areas.

[^30]- Part-time faculty members perceived lower levels of support from their institution than full-time faculty.
- About one-half (49 percent) of part-time faculty members also held full-time employment.
- Part-time faculty members had different motivations for part-time employment. Many of those employed part time wanted to be a part of an academic environment or preferred working part time. Still others worked part time because full-time work was unavailable or they were finishing their degrees.

These findings are discussed below.

Differences among part-time faculty

One of the strengths of postsecondary institutions is the variation among them. Just as it is preferable to distinguish among types of institutions, it is also preferable to distinguish among instructional faculty and staff who teach in them because patterns of faculty employment seem to be different in each sector (Clark 1997). In addition to the type of institution, the various academic disciplines act as somewhat unique "labor markets," affected in different ways by changing enrollments, doctoral pipeline patterns, gender composition of the faculty, and many other issues. As Clark has suggested, understanding faculty work may require disaggregation into the "small worlds" of the individual disciplines and the particular contexts of the many strata of institutions (Clark 1997).

Likewise, part-time instructional faculty and staff are not a homogeneous group. While it is true that part-time instructional faculty and staff were not generally in positions that had the same benefits, job security, and working conditions as full-time faculty, there was variation in their employment characteristics (such as academic rank, tenure status, type of appointment, and income). For example, about 30 percent of part-time instructional faculty and staff in 4-year institutions held academic ranks of assistant, associate, or full professor. Although the majority of those employed part time held the academic rank of instructor or lecturer, the variation across the academic ranks in 4-year institutions suggests that part-time faculty held different types of appointments at their institutions (table A).

In addition, the percentage of part-time instructional faculty and staff who held a doctorate or first-professional degree was higher in 4-year than in 2-year institutions, perhaps because the doctorate or first-professional degree is more often a requirement in 4-year institutions. Thirty-eight percent of part-time faculty in 4-year institutions held a
doctorate or first-professional degree compared with 13 percent of those in 2-year institutions. Overall, about one-quarter of part-time faculty members held a doctorate or first-professional degree and one-half held a master's degree as their highest degree. In the fall of 1992, part-time faculty members were 46 years old on average, and full-time faculty were 48 years old on average. Seven percent of those employed part time were 65 or older. Part-time faculty were also distributed across the age ranges of people typically in mid-career: about one-third of part-time faculty were 35-44 years old (34 percent) or 45-54 years old (30 percent) (figure A).

Gender

In the fall of 1992, part-time instructional faculty and staff were more likely to be female (45 percent) than were fulltime instructional faculty and staff (33 percent), although the majority of both full- and part-time faculty were male (67 percent and 55 percent, respectively). About 45 percent of part-time faculty in 4-year institutions, part-time faculty in 2-year institutions, and full-time faculty in 2-year institutions were female, while 30 percent of the full-time faculty members in 4-year institutions were female.

Regardless of the type of institution, women were underrepresented in several program areas. In disciplines that have been historically male dominated, women held proportionately fewer positions, regardless of employment status. Among part-time faculty in 4-year institutions, for example, 34 percent of instructional faculty and staff in business, law, and communications, and 25 percent of those in the natural sciences and engineering were women.

These broad categories of program areas may mask differences in specific disciplines, however. In Characteristics and Attitudes of Instructional Faculty and Staff in the Humanities (Conley 1997), for example, NSOPF:93 data were presented separately for four disciplines that make up the humanities: English and literature, foreign languages, history, and philosophy and religion. Although the report focused only on full-time instructional faculty and staff, the data showed clear patterns among the humanities disciplines with respect to gender. Female faculty members were more likely to be employed in English and literature and foreign languages than in history or philosophy and religion.

Part-time faculty in the humanities

In the fall of 1992, about 60 percent of those employed part time in the humanities were working part time because fulltime employment was unavailable, a higher percentage than

Table A.-Percentage distribution of instructional faculty and staff, by academic rank, employment status, institution type, and program area: Fall 1992

\left.| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Academic rank | | |$\right]$

*Includes individuals who did not designate a program area of instruction.
NOTE:This table includes only faculty and staff with instructional responsibilities for credit (e.g., teaching one or more classes for credit, or advising or supervising students'academic activities). Percentages may not total to 100 because of rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, 1993 National Study of Postsecondary Faculty (NSOPF:93).
in most other program areas. Part-time faculty members may have selected multiple reasons for working part time, however. In 4-year institutions, part-time humanities faculty were more likely to be employed at the instructor or lecturer level than were part-time faculty in other program areas with the exception of social sciences and education, and vocational training. For example, while 74 percent of part-time humanities faculty in 4-year institutions held the academic rank of instructor or lecturer and 8 percent held the rank of full professor, 58 percent of part-time business, law, and communications faculty held the rank of instructor or lecturer and 21 percent held the rank of full professor
(table A). Yet there was no substantive difference across program areas in the number of years part-time faculty members in 4-year institutions had held their current job (almost 7 years, table B). In both 4-year and 2-year institutions, a higher proportion of part-time humanities faculty reported that they were only employed by their sampled institution than part-time faculty members in other program areas, with the exception of natural sciences and engineering faculty in 4-year institutions and social sciences and education faculty in 2-year institutions. Taken together, these data suggest that the employment characteristics of part-time instructional faculty and staff in the humanities

Figure A.-Percentage distribution of part-time instructional faculty and staff, by age: Fall 1992

NOTE: Percentages may not total to 100 because of rounding.
SOURCE:U.S. Department of Education, National Center for Education Statistics, 1993 National Study of Postsecondary Faculty (NSOPF:93).
were different from those employed part time in other program areas, especially in 4-year institutions.

Teaching and support from the institution

The majority (92 percent overall) of part-time instructional faculty and staff reported that their principal activity at their employing institution in the fall of 1992 was teaching, regardless of their program area of teaching or the type of institution in which they taught. Part-time instructional faculty and staff taught principally undergraduate students. On average, they taught 1.6 undergraduate courses per semester. A higher percentage of part-time faculty (86 percent) than full-time faculty (70 percent) reported teaching only undergraduate students.

Part-time faculty perceived a lower level of support from their institution than full-time faculty. For example, only 3 percent of full-time instructional faculty and staff reported that office space was not available compared with 33 percent of those employed part time.

Ninety-four percent of those teaching part time agreed that teaching effectiveness should be the primary criterion for promotion. Seventy-nine percent of those teaching full time
also agreed that teaching effectiveness should be the primary criterion for promotion.

Other employment of part-time faculty

Twenty-four percent of part-time instructional faculty and staff in 4-year institutions and 21 percent of those in 2-year institutions reported that their only employment in the fall of 1992 was part time at their current institution (figure B). In other words, about three-quarters had other employment. The average number of additional jobs held by parttime faculty was 1.7 (table B). Part-time faculty who held three or more other jobs constituted a small proportion of the part-time faculty population (12 percent in 2-year institutions and 14 percent in 4-year institutions).

About one-half (49 percent) of part-time faculty members also held full-time employment. More than one-half (64 percent) of part-time faculty who had more than one job reported that the employment status of their other main job was full time. Some (e.g., Fulton 2000) have argued that part-time faculty members who have full-time jobs in the field bring real-life experience to the classroom and can enhance program quality.

Motivations for holding a part-time position

NSOPF:93 asked those employed part time to identify their motivations for part-time employment. The answers provided a unique opportunity to examine and perhaps distinguish for the first time groups of part-time faculty from one another based on their motivations for holding part-time positions. Figure C shows the percentages of parttime instructional faculty and staff who reported each of several reasons. ${ }^{2}$

[^31]About 70 percent of part-time instructional faculty and staff in both 4-year and 2-year institutions cited "to be in academia" as a reason for holding part-time employment in the fall of 1992. Around one-half (54 percent in 4-year institutions and 50 percent in 2-year institutions) of parttime instructional faculty and staff said they preferred parttime employment. Seventy percent of part-time faculty who preferred part-time employment reported that their other main job was full time (not shown). Thus, to a majority of those employed part time, academia appears to bear at least some intrinsic value.

Table B.-Average number of years instructional faculty and staff held their current job at a postsecondary institution and the average number of additional jobs held during the term, by employment status, institution type, and program area: Fall 1992

Employment status, institution type, and program area	Average years held in current job	Average number of additional jobs held
Part-time instructional faculty and staff	6.3	1.7
4-year institutions	6.6	1.7
Business, law, and communications	6.5	1.6
Humanities	6.0	1.7
Natural sciences and engineering	6.3	1.5
Social sciences and education	5.4	1.6
Vocational training	5.3	1.5
All other program areas*	7.9	1.9
2-year institutions	5.9	1.6
Business, law, and communications	6.5	1.5
Humanities	5.5	1.7
Natural sciences and engineering	5.9	1.5
Social sciences and education	6.2	1.8
Vocational training	5.6	1.5
All other program areas*	5.7	1.9
Full-time instructional faculty and staff	11.2	1.8
4-year institutions	11.1	1.9
Business, law, and communications	9.7	1.9
Humanities	13.0	1.8
Natural sciences and engineering	12.3	1.9
Social sciences and education	11.5	1.9
Vocational training	10.5	1.6
All other program areas*	9.8	1.8
2-year institutions	11.5	1.6
Business, law, and communications	10.9	1.5
Humanities	12.8	1.5
Natural sciences and engineering	12.0	1.7
Social sciences and education	12.2	1.5
Vocational training	11.1	1.0
All other program areas*	10.0	
		1.7

[^32]Figure B.-Percentage distribution of part-time instructional faculty and staff, by presence or absence of other employment during the term and type of institution: Fall 1992

NOTE: Percentages may not total to 100 because of rounding.
SOURCE: U.S. Department of Education, National Center for Education Statistics, 1993 National Study of Postsecondary Faculty (NSOPF:93).

Figure C.-Percentage of part-time instructional faculty and staff, by reasons for holding a part-time position and type of institution: Fall 1992

[^33]On the other hand, a substantial percentage of those employed in 4-year institutions (40 percent) and in 2-year institutions (47 percent) reported that the lack of full-time employment was at least partially the reason why they were working part time. One-half (51 percent) of part-time faculty in 4-year institutions and 63 percent of those in 2 -year institutions were working part time to supplement their income. About 10 percent of part-time faculty in both 4- and 2-year institutions said they were working part time because they were finishing their degrees.

Conclusion

The academic labor market is rapidly changing (Rhoades 1998). Increases in part-time faculty and the possible negative impacts of these increases on the quality of the academy are areas of increasing concern (Lee 1995; Grenzke 1998). An understanding that not all part-time faculty are the same, just as not all full-time faculty are the same, is vital for those wrestling with how best to react to the altered academic labor market of the new millennium. NSOPF:93 data indicate that certain issues may be of particular concern when analyzing part-time faculty characteristics, work life, and attitudes. These issues include differences by gender, academic discipline, perceived level of support from the institution, presence or absence of full-time employment elsewhere, and motivations for accepting part-time employment.

References

Clark, B.R. (1997). Small Worlds, Different Worlds: The Uniqueness and Troubles of American Academic Professions. Daedalus, 126(4): 21-42.
Conley, V.M. (1997). Characteristics and Attitudes of Instructional Faculty and Staff in the Humanities. (NCES 97-973). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Fulton, R.D. (2000). The Plight of Part-Timers in Higher Education: Some Ruminations and Suggestions. Change, 32(3): 38-43.

Gappa, J.M., and Leslie, D.W. (1993). The Invisible Faculty. San Francisco: Jossey-Bass.
Grenzke, J. (1998). Part-Time Faculty: Quality Issues. Update, 4(2). Washington, DC: National Education Association.

Kirshstein, R.J., Matheson, N., and Jing, Z. (1997). Instructional Faculty and Staff in Higher Education Institutions: Fall 1987 and Fall 1992. (NCES 97-470). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
Lee, J. (1995). Part-Time Faculty Members. Update, 1(2). Washington, DC: National Education Association.
Palmer, J.C. (2000). Instructional Faculty and Staff in Public 2-Year Colleges. (NCES 2000-192). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Rhoades, G. (1998). Managed Professionals: Unionized Faculty and Restructuring Academic Labor. Albany, NY: State University of New York Press.

Saltzman, G.M. (2000). Union Organizing and the Law: Part-Time Faculty and Graduate Teaching Assistants. The NEA 2000 Almanac of Higher Education. Washington, DC: National Education Association.
Snyder, T.D., and Hoffman, C. (2000). Digest of Education Statistics: 1999 (NCES 2000-031). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.

Data source: 1993 National Study of Postsecondary Faculty (NSOPF:93).

For technical information, see the complete report:
Conley, V.M., and Leslie, D.W. (2002). Part-Time Instructional Faculty and Staff: Who They Are, What They Do, and What They Think (NCES 2002-163).
Author affiliations: V.M. Conley, Virginia Polytechnic Institute and State University; D.W. Leslie, College of William and Mary.
For questions about content, contact Linda J.Zimbler (linda.zimbler@ed.gov).
To obtain the complete report (NCES 2002-163), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).

Methodology

National Postsecondary Student Aid Study 1999-2000 (NPSAS:2000)
Methodology Report
John A. Riccobono, Melissa B. Cominole, Peter H. Siegel, Tim J. Gabel, Michael W. Link, and Lutz K. Berkner 105
Classification of Instructional Programs: 2000 Edition
National Center for Education Statistics 109

National Postsecondary Student Aid Study 1999-2000 (NPSAS:2000) Methodology Report

John A. Riccobono, Melissa B. Cominole, Peter H. Siegel, Tim J. Gabel, Michael W. Link, and Lutz K. Berkner

This article was originally published as the Executive Summary of the Technical Report of the same name. The sample survey data are from the NCES National Postsecondary Student Aid Study (NPSAS).

Introduction

The National Postsecondary Student Aid Study (NPSAS), a comprehensive study of financial aid among postsecondary education students in the United States and Puerto Rico, provides information on trends in financial aid and on the ways in which families pay for postsecondary education. NPSAS represents students attending all types and levels of institutions, including public, private for-profit, private not-for-profit, less-than-2-year, 2-year, and 4-year institutions. The NPSAS data are part of the comprehensive information that the National Center for Education Statistics (NCES) provides on student financial aid receipt and other characteristics of those enrolled in postsecondary education.

NPSAS also serves as the base-year survey for longitudinal studies of postsecondary students. Thus, the 1999-2000

NPSAS (NPSAS:2000) was the base-year survey for a sample of baccalaureate degree recipients who were interviewed again in 2001.

This report describes the methods and procedures used for NPSAS:2000. The NPSAS:2000 sample design and collection procedures included notable changes from those used for previous NPSAS cycles. For example, NPSAS:2000 was the first to restrict institutional sampling to institutions having Title IV Program Participation Agreements with the U.S. Department of Education. It was also the first to employ a Web-based instrument for collection of institutional records. However, sufficient comparability in survey design and instrumentation was maintained to ensure that important comparisons with data from previous NPSAS cycles could be made.

Target Population and Sample Design

The target population for NPSAS:2000 consisted of all students who were enrolled in postsecondary institutions in the United States or Puerto Rico that had Title IV Program Participation Agreements with the Department of Education at any time between July 1, 1999, and June 30, 2000 (defined as the NPSAS:2000 year).

The institutional sampling frame for NPSAS:2000 was constructed from the 1998-99 Integrated Postsecondary Education Data System (IPEDS) Institutional Characteristics (IC) file and, because NPSAS:2000 also served as the base-year survey for a longitudinal study of baccalaureate recipients, the 1996-97 IPEDS Completions file. Eligible institutions were partitioned into 22 institutional strata based on institutional control, highest level of offering, and percentage of baccalaureate degrees awarded in education. Approximately 1,100 institutions were initially selected for NPSAS:2000, and all but 10 of these institutions were found to be eligible. Sampling frames for selecting students consisted of enrollment lists or data files provided by the institutions for those students enrolled during the NPSAS:2000 year.

The desired number of sample students was determined by accounting for expected rates of nonresponse and ineligibility among sample students in different strata and rates of misclassification of baccalaureate recipients (as determined from NPSAS:93 and the NPSAS:2000 field test). These sampling procedures resulted in the selection of about 70,200 students for NPSAS:2000, including 16,600 potential baccalaureate recipients. Almost 6,000 of these sample members were determined to be ineligible for NPSAS:2000 during various phases of data collection, resulting in a final eligible sample of about 64,500 students.

Data Collection Design and Outcomes

NPSAS:2000 involved a multistage effort to collect information related to student aid. All student sample members were first matched to the Department of Education's Central Processing System (CPS) to collect an electronic student aid report (Institutional Student Information Report, or ISIR) for each federal financial aid applicant. The second stage involved abstracting information from the student's records at the sampled postsecondary institution, using a Webbased computer-assisted data entry (CADE) system. Interviews were then conducted with sampled students, primarily using a computer-assisted telephone interviewing (CATI) procedure. To help reduce the level of nonresponse to CATI, computer-assisted personal interviewing (CAPI)
procedures using field interviewers were also used for the first time on a NPSAS study.

Over the course of data collection, some data were obtained from the Department of Education's National Student Loan Data System (NSLDS), the ACT, and the Educational Testing Service. These additional data sources provided information that was not collected from the institutions or the students and provided a way to "fill in" institutional record abstraction (CADE) data or student interview (CATI) data that were missing for individual sample members (e.g., demographic characteristics). The additional data sources also provided a way to check or confirm information obtained from student records or the interview.

Institutional Contacting

Once institutions were sampled, attempts were made to contact the chief administrator of the selected institutions to verify institutional eligibility, solicit participation of eligible institutions, and request appointment of an Institutional Coordinator. Coordinators were asked to provide lists or data files of all eligible students enrolled in any term within the NPSAS:2000 year. Several checks on quality and completeness of student lists were implemented before the sample students were selected. For applicable schools, separate checks were made for baccalaureate recipients, undergraduate students, graduate students, and firstprofessional students. Of the nearly 1,100 eligible institutions, 1,000 provided a student enrollment list or data file that could be used for sample selection, for an overall weighted institutional participation rate of 95 percent.

Institutional Record Abstraction

A CADE software system was developed for use in collecting data from student records. Institutions could choose either to enter the data themselves using a Web-based instrument or to have a field data collector enter the data. The CADE instrument was structured into eight sections: locating (telephone and address) information, demographic characteristics, admissions testing, enrollment, tuition data, financial aid awards, need analysis, and-for those students not previously matched successfully to the CPS, but who had applied for federal financial aid for the study yearISIR.

The CADE record abstraction process began when a student sample had been selected from an institution's list and transmitted to the CPS for obtaining financial aid application data. Upon completion of the CPS matching, a number of data elements were preloaded into the CADE database,
thus initializing the CADE system. In addition, the system was customized for each institution by preloading the names of up to 10 institution financial aid programs and up to 10 state financial aid programs. Once CADE was initialized for a particular institution, the Institutional Coordinator was notified by telephone that the CADE data collection could begin. Institutions that had chosen field data collection were also notified by telephone of CADE initialization, at which time an appointment was made for a field data collector to visit the institution.

Records for about 59,300 students (92 percent of the eligible students) were abstracted, with almost 70 percent of these abstracted by the institutions themselves using the NPSAS CADE Web Site.

Student Locating and Interviewing

Using information provided by CADE, sample members were traced to their current location prior to conducting the interview using the CATI system. The most current information for the student and any other contacts was preloaded into the CATI system to assist the interviewers in locating sample members. Cases that were not located during the CATI locating process were submitted to the tracing operations unit for intensive locating. Overall, 81 percent of the eligible sample members were located.

The CATI system developed for NPSAS:2000 presented interviewers with screens of questions to be asked of the respondents, with the software guiding the interviewer and respondent through the interview. The student interview consisted of seven sections administered sequentially, namely: eligibility, enrollment, financial aid, employment, education experiences and expectations, disabilities, and locating information. To reduce interview burden and to guide the interview, information collected from CADE and other sources was preloaded before the interviews. Online coding programs developed by NCES (for industry/occupation, IPEDS, and field of study coding) were embedded in the overall interview administration system.

Student interviews were conducted primarily by CATI. A paper-copy mail questionnaire or an "abbreviated" telephone interview was also available. All students finalized as "unlocatable" in CATI were eligible for field locating and/or CAPI. Nonresponding and unlocatable cases falling within predetermined geographic clusters were assigned to field staff for CAPI. CAPI procedures included attempts to locate, gain cooperation from, and interview sample members either by telephone or in person. Similar cases not in an identified cluster were assigned to field locators. Field
locators then attempted to locate the students and convince them to call an 800 number to complete the interview in CATI.

Of the eligible sample members located, about 44,500 (87 percent) were interviewed. Adjusting for institution nonresponse, the overall weighted CATI response rate was 66 percent. Ninety-one percent of those interviewed completed the full interview.

Study Respondents

Students included in the final NPSAS:2000 analysis file were those students with completed institutional records (CADE) data and/or completed student interview (CAPI or CATI) data. Using this definition, about 61,800 of the 64,500 eligible sample students were classified as study respondents, for an unweighted student yield of 96 percent. After adjusting for institutional nonresponse and for attendance at more than one institution, the overall weighted study response rate was 89 percent.

Evaluation of Operations and Data Quality

Evaluations of NPSAS:2000 operations and procedures focused on the time line for data collection, the effectiveness of student tracing and locating procedures, refusal conversion efforts, the use of incentives for selected respondent groups, and the length of the student interview. Evaluations of data quality included analysis of nonresponse bias, examination of items with high rates of "don't know" and "refusal" responses, interviewer use of online help text, item coding and administration errors, quality control procedures, and analysis of the stability of item responses over time.

Data Files

Data are available for the 61,800 study respondents, including about 49,900 undergraduate students, 10,600 graduate students, and 1,200 first-professional students. Statistical analysis weights adjusting for unequal sampling rates and differential propensities to respond were computed for respondents.

Products

NPSAS:2000 reports or data products that have been or will be published include the following:

National Postsecondary Student Aid Study: Student Financial Aid Estimates for 1999-2000 (NCES 2001-209). Available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2001209, this report briefly describes key findings from NPSAS:2000.

Profile of Undergraduates in U.S. Postsecondary Education Institutions: 1999-2000 (NCES 2002-168). Available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2002168, this report contains detailed tables on the characteristics of undergraduates enrolled during 1999-2000, including age, race/ethnicity, gender, income, financial aid receipt, community service, veteran status, and more. It also includes an essay on the diversity of undergraduate students.

Student Financing of Undergraduate Education: 1999-2000 (NCES 2002-167). Available at http://nces.ed.gov/ pubsearch/pubsinfo.asp? pubid=2002167, this report focuses on how undergraduate students enrolled during 1999-2000 financed their education, providing detailed tables on the distribution and average amounts of grants, loans, and work-study funds received by students from federal, state, institutional, and private sources. These data are shown by selected student characteristics, such as age, gender, race/ ethnicity, income, and attendance status for the various types of institutions. Information includes tuition, total student budgets, and the net price of attendance by type of institution. The report also includes an essay on students who borrow at the federal loan limits.

Student Financing of Graduate and First-Professional Education: 1999-2000 (NCES 2002-166). Available at http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2002166, this report describes the characteristics of graduate and first-professional students enrolled during 1999-2000, including age, race, gender, income, financial aid receipt, community service, veteran status, and more. It also describes those graduate and first-professional students who received financial aid—including grants, loans, and work-study-from federal, state, institutional, or other
sources, by selected student characteristics. In addition, the report includes an essay on graduate students with assistantships.

NPSAS:2000 Undergraduate and Graduate/First-Professional Data Analysis Systems. These Windows-based software applications provide public access to the NPSAS:2000 survey data. Users can generate tables of percentages, means, or correlation coefficients by choosing the Data Analysis System variables of interest and specifying what function should be used.

NPSAS:2000 Restricted-Use Electronic Codebook and Data Files. This data product provides the complete data obtained through NPSAS:2000, documented by the electronic codebook. It is available only to researchers who have applied for and received authorization from NCES to access restricted-use research files. Contact Cynthia Barton, Data Security Officer, at 202-502-7307, or e-mail cynthia.barton@ed.gov.

Data source: The 1999-2000 National Postsecondary Student Aid Study (NPSAS:2000).
For technical information, see the complete report:
Riccobono, J.A., Cominole, M.B., Siegel, P.H., Gabel, T.J., Link, M.W., and Berkner, L.K. (2002). National Postsecondary Student Aid Study 1999-2000 (NPSAS:2000) Methodology Report (NCES 2002-152).
Author affiliations: J.A. Riccobono, M.B. Cominole, P.H. Siegel, T.J. Gabel, and M.W. Link, Research Triangle Institute (RTI); L.K. Berkner, MPR Associates, Inc.
For questions about content, contact Aurora M. D'Amico (aurora.d'amico@ed.gov).

To obtain the complete report (NCES 2002-152), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

This article was originally published as the Introduction to the Handbook of the same name.

The Classification of Instructional Programs: 2000 Edition (CIP:2000) is the third revision of the National Center for Education Statistics (NCES) taxonomy of instructional programs. Previous revisions of the CIP were published in 1985 and 1990. Two drafts of the CIP:2000 were made available for public review in 2000 and revised as a result of that review process. The sections that follow delineate the methods, processes, and procedures used to develop the CIP:2000 and provide information on the CIP's structure, contents, and organization. They also provide a guide to identifying changes that have been made to the CIP taxonomy.

Development of the CIP:2000: Process and Procedures

NCES engaged a wide range of CIP users and stakeholders in the development of the CIP:2000. Meetings and discussions were held with representatives of federal agencies, accrediting and professional associations, academic societies, institutional administrators, and other interested parties in an effort to develop mutually agreed-upon program classifications and descriptions. An extensive examination of government and private data resources on instructional programs was also undertaken. Postsecondary institutional catalogs and course listings were analyzed, as were commercial databases and published lists of approved programs. NCES also analyzed its own data files as well as those of other federal agencies, state agencies, and other organizations to identify programs for inclusion in the CIP. These databases included the Completions File of the Integrated Postsecondary Education Data System (IPEDS); the Postsecondary Transcript Data File of the National Longitudinal Study; databases sponsored by the National Occupational Information Coordinating Committee (NOICC); the National Science Foundation's Survey of Earned Doctorates; the Dictionary of Occupational Titles of the Department of Labor; the Standard Occupational Classification System of the Department of Commerce; and various databases and publications of the Bureau of Labor Statistics and the Bureau of the Census. A similarly extensive review process involving the Provincial Ministries of Education, education associations, and institutions of Canada was undertaken by Statistics Canada.

Defining the CIP: Its Contents, Structure, Purposes, and Uses

The CIP is a taxonomic coding scheme of instructional programs. It is intended to facilitate the organization, collection, and reporting of program completions data using classifications that capture the majority of reportable program completion activity. The CIP titles and program descriptions are intended to be generic categories into which program completions data can be placed, not exact duplicates of specific major field of study titles used by individual institutions.

The CIP is not intended to be a regulatory device. CIP codes and their associated programs are standard statistical coding tools that reflect current practice, not a prescriptive list of officially recognized or permitted programs. Codes that have been added, deleted, or moved reflect variations in instructional program offerings and reported data that have occurred since the 1990 edition of the CIP was produced.

CIP codes, for the most part, are not intended to correspond exclusively to any specific degree or program level. In most cases, any given instructional program may be offered at various levels, and CIP codes are intended to capture all such data.

Organization of the CIP:2000

The CIP:2000 is divided into six chapters and appendix A that contain information and codes that are distinguishable from each other. The chapters contain the following types of instructional programs:

Chapter I contains academic and occupationally specific instructional programs offered for academic credit at one or more postsecondary educational levels. These programs usually result in recognized completion points and awards such as degrees, diplomas, certificates, or some other formal award. ${ }^{1}$

[^34]Chapter II contains residency programs in various dental, medical, and veterinary specializations offered in teaching hospitals and similar locations that may lead to advanced professional certification if board approval is sought and obtained. These residency programs are in a separate chapter to preclude confusion with research degree programs with similar names in the clinical, biological, and agricultural sciences.

Chapter III contains technology education and industrial arts programs that are taught at high schools and other nonpostsecondary levels.

Chapter IV contains Reserve Officer Training Corps (ROTC) programs that are offered for limited regular credit and that lead to professionally recognized completions, but that do not lead to academic awards or completions.

Chapter V contains personal improvement and leisure-time programs that are not typically offered for academic credit, but that may receive some form of recognition and may lead to a completion award.

Chapter VI contains instructional programs that lead to general diplomas and certificates awarded at the secondary education level only.

Appendix A contains instructional programs offered in French to Canadian residents and others for whom French is the first language, or to other students enrolled in schools, colleges, and universities in Canada in which the primary language of instruction is French.

Organization of the Taxonomy

The CIP taxonomy is organized on three levels: (1) a 2-digit Series, (2) a 4-digit Series, and (3) a 6-digit program level, with the 2-digit Series codes and programs representing the most general groupings of related programs, the 4-digit Series codes and programs representing intermediate groupings of programs that have comparable content and objectives, and the 6-digit codes representing the specific instructional programs.

The numbering format for the 2-digit Series consists of a 2-digit number followed by a period. (Examples: 01., 13. and 22.) Codes and program titles at this level appear in bold type and in capital letters. (Examples: 01. AGRICULTURE, AGRICULTURE OPERATIONS, AND RELATED SCIENCES; 13. EDUCATION; and 22. LEGAL PROFESSIONS AND STUDIES.)

Program descriptions at the 2-digit Series level begin with the standard phrase "Instructional programs," followed by a general description of the content areas and topics associated with the instructional programs within that Series.

The numbering sequence for the 4-digit Series consists of the 2-digit Series number followed by a period and an assigned 2-digit number following the period that is uniquely associated with that 4-digit Series. Codes and program titles at the 4-digit level appear in bold type. (Examples: 01.01 Agricultural Business and Management and 51.02 Communication Disorders Sciences and Services.) The programs that comprise the 4-digit groupings are listed in numerical sequence. Within a 4-digit Series, single instructional programs with a more general focus appear at the beginning of the Series and an "Other" program entry appears as the final program entry within the Series. This convention of including an "other" program code was established to provide a category for reporting on programs that fall within a 4-digit Series but do not have a separate program code. (Example: Within Series 01.01, Agricultural Business and Management, the code and program 01.0101 Agricultural Business and Management, General, appears first and 01.0199, Agricultural Business and Management, Other, is the last program code.)

Program descriptions are not provided at the 4-digit summary level. The user is instead informed where the instructional content for the Series is contained. (Example: For Series 01.01, Agricultural Business and Management, the program description is indicated as follows: Instructional content for this group of programs is defined in codes 01.010101.0199.)

Six-digit codes are the most detailed program classifications within the CIP. They are the basic unit of analysis used by NCES and institutions in tracking and reporting program completions and field of study data. There is at least one 6 -digit code within every 4-digit Series. The numbering sequence is similar to the 4 -digit Series sequence, with two more digits added after the 4-digit Series number; the standard format for the 6-digit codes is XX.XXXX. (Examples: 01.0101, 05.0101, 51.0201.) Program titles appear in bold type. (Examples: 01.0101 Agricultural Business and Management, General; 01.0102 Agribusiness/Agricultural Business Operations; and 51.0201 Communication Disorders, General.)

Each 6-digit program appears with a description that indicates the instructional content of the program. These
subject matter listings are intended as a general guide to the content areas addressed by the instructional program.
Programs offered at different levels may cover more or fewer topics than those listed.

The program descriptions generally identify the objectives and content of the instructional programs. Program descriptions for academic or general programs begin with the phrase "A program that focuses on..." Program descriptions that begin with the phrase "A program that prepares individuals for..." or the phrase "generally prepares individuals..." indicate that the program is designed to prepare individuals for specific occupations upon completion.

Example:

1. AGRICULTURE, AGRICULTURE OPERATIONS, AND

RELATED SCIENCES. Instructional programs that focus on agriculture and related sciences and that prepare individuals to apply specific knowledge, methods, and techniques to the management and performance of agricultural operations.
01.01 Agricultural Business and Management. Instructional content for this group of programs is defined in codes 01.0101-01.0199.
01.0102 Agribusiness/Agricultural Business Operations. A program that prepares individuals to manage agricultural businesses and agriculturally related operations within diversified corporations. Includes instruction in agriculture, agricultural specialization, business management, accounting, finance, marketing, planning, human resources management, and other managerial responsibilities.

Series and Code Titles

The titles of Series and programs presented in the CIP:2000 generally represent the most commonly used current titles of programs and program groupings. However, some titles have been maintained in the CIP:2000 either because of their historical importance and their continued usage by large numbers of institutions and schools, or because the terminology is accepted by accreditors and professional bodies in some cases where programs are governed by regulations related to preparation for licensed occupations.

Single titles are comprised of one word or phrase, such as "Psychology" or "Civil Engineering," that conveys the most commonly used or accepted name describing a program.

In some cases, more than one title may be used for the same instructional program. The CIP:2000 uses words or phrases separated by slashes in situations where (1) two or more commonly accepted names exist for the same program, (2) the same program has different names at different educational levels, or (3) the program has undergone a recent name change but many institutions still use the older name for the program. (Example: "Engineering Technologists/Technicians" is the slashed title of Series 15 ., which includes programs that prepare engineering technologists [the preferred term, but not the only one used] and also engineering technicians [an alternative title].) Different terms may also be used at different educational levels in some cases. (Example:"Family and Consumer Sciences/ Human Sciences," where the term Human Sciences is the new title but it has not yet been universally adopted and thus the older title is still referenced.)

The CIP:2000 groups closely related programs together in 6 -digit codes and in Series so that institutions may report data for them in discrete codes and not in undifferentiated "other" categories. The titles of closely related programs captured under the same code are separated by commas and/or the conjunction "and." (Example: The title of Series 50., "Visual and Performing Arts," indicates that it contains programs in both the visual or plastic arts [fine art, applied art, crafts, photography, etc.] and the kinetic or performing arts [music, dance, theatre, etc.]. Likewise, the title of code 03.0201, "Natural Resources Management and Policy," indicates that this code is the appropriate place to report data on majors in either or both natural resources management and natural resources policy.)

Principles Governing the Inclusion of Programs in the CIP

For purposes of the CIP, NCES defines an instructional program as follows:

A combination of courses and experiences that is designed to accomplish a predetermined objective or set of allied objectives such as preparation for advanced study, qualification for an occupation or range of occupations, or simply the increase of knowledge and understanding. (Chismore and Hill 1978, p.165)

Under this definition, instructional programs included in the CIP must meet all of the following operational criteria:
(1) An instructional program must be offered by, through, or under the auspices of an education institution or other recognized provider.
(2) The program must consist of more than one isolated course or learning experience and must not be a haphazard collection of unrelated courses or experiences.
(3) There must be a set of structured learning experiences, defined by an institution or other provider, leading to a completion point that is formally certified by a degree, another formal award, or some other form of recognition.

Types of instructional programs that meet the above criteria for inclusion in the CIP are as follows:

- postsecondary programs culminating in the following types of awards: postsecondary certificates for the completion of programs that are less than 1 academic year, at least 1 but less than 2 academic years, or at least 2 but less than 4 academic years; associate's degrees; bachelor's degrees; post-baccalaureate certificates; master's degrees; post-master's certificates; first-professional degrees; education specialist's degrees (Ed.Sp.); doctor's degrees; and post-doctorate certificates;
- residency programs conducted by the dental, medical, and veterinary professions that lead to advanced professional certification, including specific training offered by the U.S. military in programs parallel to civilian instructional programs;
- secondary and postsecondary Cadet and Junior/ Senior ROTC programs;
- adult education programs leading to certificates of completion;
- secondary programs culminating in the following awards: regular/general high school diplomas and secondary/senior high graduation/completion diplomas/certificates; college/university preparatory and advanced high school/secondary school diplomas; vocational high school diplomas and secondary/ vocational/industrial diplomas; programs culminating in diplomas, honors/regents high school diplomas and provincial graduation certificates; high school/ secondary equivalence certificates; adult secondary school diplomas; certificates of competence and provincial certificates of education; certificates of Individualized Education Program (IEP) completion; and certificates for homeschooled instruction.

The CIP is a coding guide designed to assist in the collection of data on formal instructional programs only. The following programs are, therefore, not included in the CIP:

- in-house, professional, or on-the-job training activities that are not recognized by an education institution or provider and that do not lead to any kind of formal award, credit, or certification; and
- subject matter specializations or individual courses within a program that are not treated as a major and are generally not recognized by the education institution as a formal program offering.

An instructional program that meets the criteria stated above is eligible for inclusion in the CIP. To determine whether an eligible program would be retained or added, the following decision rules were used:

- federal survey data showing that at least 30 program completions have been reported over a 3-year period in at least 10 postsecondary institutions in three or more states (e.g., from surveys such as IPEDS or the National Science Foundation's Survey of Earned Doctorates);
- written requests for new codes provided via federal education surveys and meeting the threshold criterion above;
- requests from other federal agencies, state governments, or Canadian authorities for new or modified codes together with evidence of the existence of such programs and the need for them;
- evidence, including testimony, from authorities in a field who state, and provide evidence to show, that a new program exists and is offered; and/or
- empirical evidence of program viability based on the authors' review of primary sources and related databases at both the secondary and postsecondary levels.

Programs and codes could have been deleted from the current edition of the CIP for the following reasons:

- federal survey data showing that fewer than 30 program completions were recorded over a 3-year period, in less than 10 postsecondary institutions, and spread across fewer than three states;
- evidence, including testimony, from authorities in a field who state, and provide evidence to show, that a program is or will no longer be offered or recognized; and/or
- empirical evidence that a program is not in fact offered, based on the authors' review of primary sources and databases at both the secondary and postsecondary levels.

Revisions to the CIP:2000

The development of the CIP:2000 resulted in several significant changes to the program listings (additions, deletions, and movements of individual programs and program groups). The conventions used to implement these changes are delineated below.

Several new codes and programs were added to the CIP:2000 to reflect program titles and definitions that are currently used by education providers and professional associations. New programs were added when there was sufficient evidence that a new instructional program or Series of programs was evolving and when the programs met the operational criteria for inclusion. The identification of new programs resulted from meetings and extensive discussions between NCES and representatives of professional associations, academic societies, federal agencies, and institutional registrars and academic affairs officials. Searches of institutional and association program databases also informed the identification of new programs.

A standard procedure was used to identify programs that were added to the CIP:2000. The programs are presented in italics and labeled "NEW" in the Index of CIP:2000 Codes and Titles. They appear in bold italics and are also labeled "NEW" in the full program listing of the CIP:2000. (Examples: 09.10 Publishing (NEW) and 09.1001 Publishing (NEW).) These examples indicate that both a new 4-digit Series and a new 6-digit instructional program for Publishing were added to the CIP. ${ }^{2}$

Programs that are identified as "NEW" in the CIP:2000 are programs that were either added to the taxonomy for the first time or reinstated from previous CIP taxonomies. (Examples: Series 01.08, Agricultural Public Services, and code/program 51.2209, Maternal and Child Health, are classified as NEW because they were added to the CIP taxonomy for the first time. Urban Forestry [code 03.0508], Comparative Psychology [code 42.0501], and Personality Psychology [code 42.1001] are also classified as NEW, but they were reinstated from previous editions of the CIP.)

[^35]The CIP also contains several new CIP codes; that is, numeric codes that have been added to the taxonomy. ${ }^{3}$ The codes do not necessarily reflect new programs, but typically result from a repositioning or reorganization of programs within the taxonomy. (Example: Code 51.3603 was added to the taxonomy because the Hypnotherapy program was moved from its program group in the CIP:1990 and integrated into a newly created program group, Series 51.36, Movement and Mind-Body Therapies and Education.)

Programs and codes that were deleted from the taxonomy are identified in distinct ways in the Full Listing of Program Codes, Titles, and Descriptions. The code for the deleted program appears in brackets and a "Deleted" qualifier appears after the program title. (Example 1: [04.07] Architectural Urban Design and Planning (Deleted); Example 2: [04.0701] Architectural Urban Design and Planning (Deleted, Report under 04.0301).) This information appears in the location formerly occupied by the program entry. The first example indicates that an entire 4-digit Series (group) was deleted from the taxonomy. The second example indicates that the 6-digit instructional program originally contained within the Series was eliminated and integrated into another 6-digit program. Instructions are provided to alert the CIP user where the deleted program should be reported (e.g., Report under 04.0301).

Several programs that occupied a particular location in the CIP:1990 were moved to new locations within the CIP:2000. Multiple sources were consulted before Series or program location changes (i.e., moves) were made. Programs that have been moved to new locations (i.e., placed under new program groups) are identified as follows: the program code appears in parentheses with instructions that indicate where the program has been moved to. (Example: (12.0405) Massage (Moved, Report under 51.3501).) This information is provided in the location formerly occupied by the program entry. Indications of where programs have been moved from are also made. (Example: 15.1201 Computer Engineering Technology/Technician (Moved from 15.0301). ${ }^{4}$

[^36]
Other Major Changes to the CIP:2000

- Several general programs were added at both the 4 -digit Series and 6-digit code levels. (Examples: 01.00 Agriculture, General, and 01.0000 Agriculture, General; 46.00 Construction Trades, General, and 46.0000 Construction Trades, General.) These codes were added to permit reporting of undifferentiated or general programs in Series where no such opportunity existed previously.
- Several program groups (Series) were deleted from the CIP:2000. The deletions were made to implement a more logical organization of the program classifications. (Examples: Series 02. Agricultural Sciences; Series 20. Vocational Home Economics; Series 08. Marketing Operations/Marketing and Distribution; and Series 45.08 History.) These programs were, in most cases, moved (integrated) into other program groups. (Examples: Series 02. programs were integrated into Series 01. and 26.; Series 20. programs [of chapter 1] were moved into Series 19.; and Series 08. programs were integrated into Series 52.) ${ }^{5}$
- Several programs and program groups were moved to new locations in the CIP and assigned new CIP codes. Examples include the history and residency programs. History (previously located in Series 45.) was moved into a newly created program group (Series 54.); the residency programs were assigned a new Series code (Series 60.). Dental residency programs were moved to and should be reported under Series 60.01, medical residency programs were moved to and should be reported under Series 60.02, and veterinary residency programs were moved to and should be reported under Series 60.03.

Cross-References

Cross-references or crosswalks are provided to refer the CIP user to related codes/programs within the CIP. Their primary purpose is to refer the CIP user to a more appropriate code/classification for use in reporting a program. Crossreferences are located immediately below the program that
${ }^{5}$ These changes/movements are summarized in table 2 of the complete handbook and specified in the CIP:1990 to CIP:2000 crosswalk (table 3).
they are related to and are preceded by five dashes in the place where a CIP code would appear. They contain the precise title of the Series or program that the CIP user is referred to, followed by a (Report under) instruction that indicates which Series or program should be considered for use. Cross-references are made to specific programs (i.e., 6 -digit programs) or to 4 - or 2 -digit groups.

Example:

14.0701 Chemical Engineering.

----- Chemistry. (Report under 40.05 Series)

----- Chemical Technology/Technician. (Report under 41.0301)

A second type of cross-reference uses a (See also) notation to refer the user to a similar program located in another 6 -digit program or 4 - or 2 -digit Series that may be considered before final selection.

Example:

19.0201 Business Family and Consumer Sciences/Human Sciences.

----- Hospitality Administration/Management. (See also 52.09 Series)

Reference

Chismore, D., and Hill, Q. (1978). A Classification of Educational Subject Matter. U.S. Department of Education. Washington, DC: National Center for Education Statistics.

For technical information, see the complete report:
National Center for Education Statistics. (2002) Classification of Instructional Programs: 2000 Edition (NCES 2002-165).
For questions about content, contact Roslyn A. Korb (roslyn.korb@ed.gov).
To obtain the complete handbook (NCES 2002-165), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).

Data Products, Other Publications, and Funding Opportunities

Data Products
ECLS-K Longitudinal Kindergarten-First Grade Public-Use Data Files and Electronic Codebook 115
Data File: CCD State Nonfiscal Survey of Public Elementary/Secondary Education: School Year 2000-01 116
Data File: Common Core of Data (CCD): School Years 1996-97 Through 1999-2000 116
Data File: Public Libraries Survey: Fiscal Year 1999 116
National Household Education Surveys of 1991, 1993, 1995, 1996, and 1999: Data Files and Electronic Codebook 117
Other Publications
The Nation's Report Card: U.S. History Highlights 2001
National Center for Education Statistics 117
Directory of Public Elementary and Secondary Education Agencies: 1999-2000
Lena M. McDowell and John Sietsema 117
Findings From the Condition of Education 2001: Students Whose Parents Did Not Go to College
Susan P. Choy 118
Pocket Projections: Projections of Education Statistics to 2011 William J. Hussar 118
Mini-Digest of Education Statistics 2001
Charlene Hoffman 118
Funding Opportunities
The AERA Grants Program 119
The NAEP Secondary Analysis Grant Program 120

Data Products

ECLS-K Longitudinal Kindergarten-First Grade Public-Use Data Files and Electronic Codebook

The Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), follows a nationally representative sample of about 22,000 kindergartners through the fifth grade, measuring their home and academic environments, opportunities, and achievements. This CD-ROM contains both kindergarten and first-grade public-use data from ECLS-K.

The CD-ROM contains an Electronic Codebook (ECB); a child-level data file containing data from children, parents, teachers, and schools for the first four waves of data collection; and survey and ECB documentation. User's manuals describing the longitudinal, base-year, and first-grade data files are included on the CD and include descriptions of the design of ECLS-K and information to help users access and use the longitudinal kindergarten/first-grade data files and ECB. The longitudinal user's manual is also available as a separate volume (NCES 2002-149) in the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

There are no additional data beyond the data already included in the base-year and first-grade CDs that were individually released. The ECB will be most useful for researchers examining both base-year and first-grade data simultaneously; only data and weights for children who participated in both kindergarten and first grade are included. Researchers interested in conducting cross-sectional or within-grade analyses should use the separate base-year and first-grade ECBs.

For questions about this CD-ROM, contact Jonaki Bose (jonaki.bose@ed.gov).
To obtain this CD-ROM (NCES 2002-148), call the toll-free ED Pubs number (877-433-7827).

Data File: CCD State Nonfiscal Survey of Public Elementary/Secondary Education: School Year 2000-01

The "State Nonfiscal Survey of Public Elementary/ Secondary Education" is part of the Common Core of Data (CCD) collection of surveys. This survey provides public elementary and secondary student, staff, and graduate counts for the 50 states, District of Columbia, five outlying areas, Bureau of Indian Affairs schools, and U.S. Department of Defense Dependents (domestic and overseas) schools. The data are provided annually by state education agencies (SEAs) from their administrative records. The 2000-01 data set contains 59 records, one for each reporting state or jurisdiction.

For each state or jurisdiction, the data file includes the following information: name, address, and phone number of the SEA; number of teachers, by level; number of other staff, by occupational category; number of students, by grade and ungraded, as well as by race/ethnicity (five racial/ethnic categories); and number of high school completers (for school year 1999-2000), by type of completion (diploma, high school equivalency, or other completion) and by race/ ethnicity.

The data can be downloaded from the NCES Web Site either as an Excel file or as a flat file that can be used with statistical processing programs such as SPSS or SAS. Documentation is provided in separate files.

[^37]
Data File: Common Core of Data (CCD): School Years 1996-97 Through 1999-2000

The Common Core of Data (CCD) is the NCES primary database on elementary and secondary public education in the United States. CCD is a comprehensive, annual, national statistical database of all elementary and secondary schools and school districts, containing data that are comparable across all states. The 50 states and the District of Columbia, Bureau of Indian Affairs schools, Department of Defense Dependents schools, and outlying areas (American Samoa, Guam, the Northern Marianas, Puerto Rico, and the Virgin Islands) schools are included in the collection.

This CD-ROM contains portions of 4 years of CCD data, beginning with school year 1996-97 and continuing through 1999-2000, including data on migrant enrollment and high school completers. For schools and states, data are included for the last 3 years; for agencies, all 4 years. This CD-ROM contains approximately 300,000 school records, more than 65,000 agency records, and 177 state records. Agencylevel finance data for fiscal years (FY) 1997, 1998, and 1999 have been merged with the appropriate agency nonfiscal records. Some of the agency fiscal and demographic data were obtained from the 1990 Decennial Census and F-33 survey conducted by the U.S. Bureau of the Census. State nonfiscal and fiscal data have also been merged into a single file; state-level fiscal data are available for FY 98 only.

For questions about this CD-ROM, contact Tai A. Phan (tai.phan@ed.gov).
To obtain this CD-ROM (NCES 2002-373), call the toll-free ED Pubs number (877-433-7827).

Data File: Public Libraries Survey: Fiscal Year 1999

The Public Libraries Survey (PLS) is conducted annually by NCES through the Federal-State Cooperative System for Public Library Data. The data are collected by a network of state data coordinators appointed by the Chief Officers of State Library Agencies. For fiscal year (FY) 1999, the PLS includes data from 9,048 libraries in the 50 states, the District of Columbia, and the outlying areas of Guam and the Northern Marianas. Data collected include population of legal service area, service outlets, public service hours, library materials, total circulation, circulation of
children's materials, reference transactions, library visits, children's program attendance, electronic services and information, staff, operating income, operating expenditures, and capital outlay.

Three data files were generated (in Microsoft Access and ASCII formats) from the FY 99 PLS:

- Public Library Data File, including data for the universe of public libraries;
- State Summary/State Characteristics Data File; and
- Public Library Outlet Data File, including data for the universe of public library service outlets (central or main libraries, branches, bookmobiles, and books-by-mail-only outlets).

These database files and related documentation are available on the NCES Web Site.

For questions about this data product, contact P. Elaine Kroe (patricia.kroe@ed.gov).
To obtain this data product (NCES 2002-376), visit the NCES
Electronic Catalog (http://nces.ed.gov/pubsearch).

National Household Education Surveys of 1991, 1993, 1995, 1996, and 1999: Data Files and Electronic Codebook

This set of two CD-ROMs contains all of the publicrelease data collected through the National Household Education Survey (NHES) from 1991 through 1999. The CDs contain data collected as part of 13 random-digit-dial household surveys about parent involvement in their children's education, early childhood education, adult participation in various educational activities, young children's school readiness, school safety and discipline, and civic education. Data documentation is provided for each file. Software is also included to help users navigate the data sets and produce extract files to be used with statistical programs such as SPSS, SAS, or Stata.

[^38]
Other Publications

The Nation's Report Card: U.S. History Highlights 2001

National Center for Education Statistics
The National Assessment of Educational Progress (NAEP), known as "The Nation's Report Card," is authorized by Congress, administered by NCES, and overseen by the National Assessment Governing Board (NAGB). For more than 30 years, NAEP has been the only ongoing national indicator of what American students know and can do in major academic subjects. In 2001, NAEP administered a U.S. history assessment to a national sample representative of students at grades 4,8 , and 12. The findings from the NAEP 2001 U.S. History Assessment provide a picture of U.S. students' knowledge, skills, and achievements in U.S. history.

This 20-page publication uses a full-color tabloid format to present highlights from the 2001 U.S. history assessment. It describes the assessment content, presents major findings, and provides information about practices in school that are related to U.S. history achievement. Results in 2001 are compared to results in 1994 and summarized by gender, race/ethnicity, and school characteristics. The publication also includes sample test questions and sample student responses.

For questions about content, contact Janis Brown (janis.brown@ed.gov).
To obtain this document (NCES 2002-482), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Directory of Public Elementary and Secondary Education Agencies: 1999-2000

Lena M. McDowell and John Sietsema

This directory provides a complete listing of agencies responsible for providing free public elementary/ secondary instruction or education support services in the 50 states, District of Columbia, five outlying areas, Bureau of Indian Affairs schools, and U.S. Department of Defense Dependents (overseas) schools. The agencies are organized by state or jurisdiction and, within
each state or jurisdiction, by agency type. Agencies are divided into six types: regular school districts, supervisory union administrative centers, regional educational service agencies, state-operated agencies, federally operated agencies, and other agencies.

The entry for each listed agency (if complete) includes the following information: agency name, address, and phone number; name of county; metropolitan status code; grade span; student membership (number of students enrolled on the school day closest to October 1, 1999); number of regular high school graduates (1989-99 school year); number of students with Individualized Education Programs; number of teachers; and number of schools. This information comes primarily from the 1999-2000 "Local Education Agency Universe Survey," part of the NCES Common Core of Data (CCD).

This publication also includes summary tables on district size, grade span, and student population.

Author affiliations: L. McDowell and J. Sietsema, NCES.

For questions about this directory, contact Lena M. McDowell (lena.mcdowell@ed.gov) or John Sietsema (john.sietsema@ed.gov).
To obtain this directory (NCES 2002-314), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Findings From the Condition of Education 2001: Students Whose Parents Did Not Go to College

Susan P. Choy
The Condition of Education, published annually by NCES, summarizes important developments and trends in education using the latest available data. The report, which is required by law, is an indicator report intended for a general audience of readers who are interested in education. The indicators represent a consensus of professional judgment on the most significant national measures of the condition and progress of education for which accurate data are available.

The 2001 edition also includes a special-focus essay on the access, persistence, and success of first-generation students (i.e., students whose parents did not attend college) in postsecondary education. This essay,
published separately here, summarizes the findings of a series of recent nationally representative NCES stud-ies-the National Education Longitudinal Study (NELS), Beginning Postsecondary Students Longitudinal Study (BPS), and Baccalaureate and Beyond Longitudinal Study (B\&B) -about the experiences of high school graduates and postsecondary students whose parents did not attend college.

Author affiliation: S.P. Choy, MPR Associates, Inc.
For questions about content, contact John G. Wirt (john.wirt@ed.gov).

To obtain this publication (NCES 2001-126), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

Pocket Projections: Projections of Education Statistics to 2011
 William J. Hussar

Each year, NCES publishes this pocket summary of the Projections of Education Statistics. The pocket summary provides the reader with key information extracted from the full report. Included are data on enrollment at all education levels (including postsecondary), numbers of high school graduates, earned degrees conferred, classroom teachers, and expenditures for public elementary and secondary schools. This year's edition of Pocket Projections starts with 1988-89 data and includes estimates for 1999-2000 and projections for 2010-11.

Author affiliation: W.J. Hussar, NCES.
For questions about this pocket summary, contact William J. Hussar (william.hussar@ed.gov).
To obtain this pocket summary (NCES 2002-145), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).
To obtain the complete Projections (NCES 2002-083), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).

Mini-Digest of Education Statistics 2001

Charlene Hoffman

The Mini-Digest of Education Statistics 2001 (the ninth edition) is a pocket-sized compilation of statistical information covering the broad field of American education from kindergarten through graduate school. It presents brief text summaries and short tables that
serve as a convenient reference for materials found in greater detail in the complete Digest of Education Statistics.

The Mini-Digest includes sections on elementary/ secondary and postsecondary enrollments, teachers and staff, educational outcomes, and finance. The data are from numerous sources, especially surveys and activities carried out by NCES. Current and past-year data are included, as well as projections for elementary/ secondary enrollment through 2011.

Author affiliation: C. Hoffman, NCES.
For questions about content, contact Charlene Hoffman (charlene.hoffman@ed.gov).
To obtain this publication (NCES 2002-026), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).
To obtain the complete Digest (NCES 2002-130), call the toll-free ED Pubs number (877-433-7827), visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch), or contact GPO (202-512-1800).

Funding Opportunities

The AERA Grants Program

Jointly funded by the National Science Foundation (NSF), NCES, and the Office of Educational Research and Improvement (OERI), this training and research program is administered by the American Educational Research Association (AERA). The program has four major elements: a research grants program, a dissertation grants program, a fellows program, and a training institute. The program is intended to enhance the capability of the U.S. research community to use large-scale data sets, specifically those of the NSF and NCES, to conduct studies that are relevant to educational policy and practice, and to strengthen communications between the educational research community and government staff.

Applications for this program may be submitted at any time. The application review board meets three times per year. The following are examples of grants recently awarded under the program:

Research Grants

- Albert Beaton, Boston College-Examining Changes in International Multilevel Variance and Student Correlates of Mathematics Achievement Using Data From TIMSS 1995 and TIMSS 1999
- Terry Ishitani, Indiana State University-The Longitudinal Impact of "First-Generation" on College Student Attrition
- Sharon Judge, University of Tennessee—Resilient and Vulnerable At-Risk Children: What Makes the Difference?
- Ann O'Connell, University of ConnecticutFactors Associated With Growth in Proficiency During Kindergarten and Through First Grade
- Brian Powell, Indiana University-Parental Involvement, Educational Investment, and School Outcomes of Young Children From Biracial Families

Dissertation Grants

- Betsy McCoach, University of ConnecticutDoes Grouping Matter? A Cross-Classified Random Effects Model of Children's Reading Growth During the First Two Years of School
- Sam Michalowski, City University of New YorkThe Organizational Context of School Violence and Disruption: A National Perspective
- Colin Ong-Dean, University of California, San Diego-Parents' Role in the Diagnosis and Accommodation of Disabled Children in the Educational Context
- Christina Sentovich, University of South Florida-Teacher Satisfaction in Public, Private, and Charter Schools: The Influence of Workplace Conditions and Professionalization-A Multilevel Analysis
- Sandra Way, University of Arizona-For Their Own Good? The Effects of School Discipline on Student Behavior and Academic Achievement
- Ying Zhou, Pennsylvania State UniversityExamining the Influences on Faculty Departure Using NSOPF-99

For more information, contact Edith McArthur (edith.mcarthur@ed.gov) or visit the AERA Grants Program Web Site (http://www.aera.net/grantsprogram).

The NAEP Secondary Analysis Grant Program

The NAEP Secondary Analysis Grant Program was developed to encourage education researchers to conduct secondary analysis studies using data from the National Assessment of Educational Progress (NAEP) and the NAEP High School Transcript Studies. This program is open to all public or private organizations and consortia of organizations. The program is typically announced annually, in the late fall, in the Federal Register. Grants awarded under this program run from 12 to 18 months and awards range from $\$ 15,000$ to $\$ 100,000$. The following grants were awarded for fiscal year 2002:

- Hua-Hua Chang, University of Texas at Austin-Improving the DIF Detection Procedures for NAEP Data Analysis
- Laura Desimone, Vanderbilt UniversityPreparation, Professional Development, and Policy in Mathematics: Does It All Add Up?
- Henry Braun, Educational Testing ServiceUsing State NAEP Data to Examine Patterns in Eighth-Grade Mathematics Achievement and the Efficacy of State Education Policy Initiatives

Susan Lubienski, Iowa State University-A Closer Look at Mathematics Achievement and Instructional Practices: Examinations of Race, SES, and Gender in a Decade of NAEP Data

- Kendrick Curry, United Negro College Fund Special Programs Corporation-The Trickle Down Effect: How Teacher Quality and Recruitment Practices Affect the Achievement of African American Students in a Three-State Metropolitan Area
- Claudia Gentile, Educational Testing ServiceReading Test Design, Validity, and Fairness: A ReAnalysis of Data From the 2000 Fourth-Grade Reading Assessment
- Matthias von Davier, Educational Testing Service-A Tool for Improved Precision Reporting in Secondary Analysis of National and State Level NAEP Data
- Norman Webb, University of WisconsinInforming State Mathematics Reform Through State NAEP
- Laura O'Dwyer, Boston College-Estimating the Full NAEP Population Distribution: Imputing Scores for Excluded SD and LEP Students Using Hierarchical Linear Modeling Techniques

For more information, contact Alex Sedlacek (alex.sedlacek@ed.gov).

[^0]: ${ }^{1}$ A certificate of high school attendance may be awarded when a student attended high school for the minimum amount of time required but did not complete all courses required for a diploma. A General Educational Development (GED) certificate is awarded to those who did not finish high school but who have earned the equivalent of a high school diploma by passing required GED exams.
 ${ }^{2}$ Six risk factors (at eighth grade) were identified and included in the at-risk variable: living in a single-parent household; having neither parent complete high school; having an older sibling who dropped out of high school; being home alone after school more than 3 hours a day; being limited English proficient; and being in a lowincome family (less than \$15,000 annual income in 1987). Socioeconomic status (SES) is a composite variable; some SES components (family income, parent education) are also components of the at-risk variable.

[^1]: ${ }^{3}$ The reference here is to a certificate certifying completion of a postsecondary education program, usually requiring less than 2 years of study or enrollment. (For example, one might obtain a certificate in some aspect of computing or data processing.) Not included here are postbaccalaureate or post-master's degree certificates. (For example, a paralegal certificate program might have a B.A. or B.S. degree as a prerequisite for admission.)
 ${ }^{4}$ In this report, race categories (Black, White, etc.) exclude individuals of Hispanic ethnicity, who are reported separately in their own (Hispanic) category.

[^2]: ${ }^{5}$ NELS:88/2000 measured job satisfaction overall as well as satisfaction with fringe benefits, opportunities for further training, job security, opportunities for promotion, opportunities to use past training, importance and challenge of the work, and pay.

[^3]: ${ }^{6}$ The percentage of all people employed (82 percent) is lower than the sum of respondents with full-time jobs (75 percent) and the percentage of respondents with part-time jobs (13 percent) because respondents could have both types of jobs simultaneously.

[^4]: ${ }^{7}$ Most of these differences, though they appear large, were not statistically significant.
 ${ }^{8}$ Again, the risk factors (at eighth grade) used in this report are living in a single-parent household; having neither parent complete high school; having an older sibling who dropped out of high school; being home alone after school for more than 3 hours a day; being limited English proficient; and being in a low-income family (less than \$15,000 annual income in 1987).

[^5]: Data source: The NCES National Education Longitudinal Study of 1988 (NELS:88).
 For technical information, see the complete report:
 Ingels, S.J., Curtin, T.R., Kaufman, P., Alt, M.N., and Chen, X. (2002). Coming of Age in the 1990s:The Eighth-Grade Class of 198812 Years Later (NCES 2002-321).
 Author affiliations: S.J. Ingels and T.R. Curtin, Research Triangle Institute; P. Kaufman, M.N. Alt, and X. Chen, MPR Associates, Inc.
 For questions about content, contact Jeffrey Owings (jeffrey.owings@ed.gov).
 To obtain the complete report (NCES 2002-321), call the toll-free ED Pubs number (877-433-7827) or visit the NCES Electronic Catalog (http://nces.ed.gov/pubsearch).

[^6]: *Significantly different from 1994.
 NOTE: Score differences are calculated based on differences between unrounded average scale scores.
 SOURCE: U.S.Department of Education, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1994 and 2001 U.S. History Assessments. (Previously published on p. 6 of The Nation's Report Card: U.S. History Highlights 2001.)

[^7]: *The achievement-level intervals correspond to different score ranges on the NAEP U.S. history scale that was developed for each grade. On the grade 4 scale, Basic is 195-242, Proficient is 243-275, and Advanced is above 275 . On the grade 8 scale, Basic is 252-293, Proficient is 294-326, and Advanced is above 326 . On the grade 12 scale, Basic is 294-324, Proficient is 325-354, and Advanced is above 354. The tables do not show the percentage of students at the Advanced level who answered each question successfully, because the sample size was insufficient to permit a reliable estimate.

[^8]: ${ }^{1}$ As was the case in the Smerdon et al. analyses, this Issue Brief focuses on teachers in schools with Internet access.

[^9]: ${ }^{2}$ The relationship between poverty concentration and minority enrollment should be considered when interpreting data presented in this report; schools with high minority enrollment were also more likely to have high poverty concentration.

[^10]: *Regular schools are defined as public elementary/secondary schools that do not focus primarily on vocational, special, or alternative education.

[^11]: *This report replaces the version that was on the NCES Web Site from May 11, 2002, to June 26, 2002. Changes occurred in the table footnotes and in revenues (two states) and expenditures (one state) data in tables 4 and 5.

[^12]: ${ }^{1}$ Data imputed by NCES based on previous year's data.
 ${ }^{2}$ Early estimate number reported by state, adjusted by NCES.
 ${ }^{3}$ Actual count/amount reported by state.
 NOTE: All estimated data are state estimates, except where noted. Estimates were reported by December 2001. Detail may not add to totals because of rounding.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD):"Early Estimates of Public Elementary/Secondary Education Survey," 2001-02;"National Public Education Financial Survey" and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1997-98 through 2000-01

[^13]: Data sources: The following components of the NCES Common Core of Data (CCD): Data File: Local Education Agency (School District) Universe Dropout and Completion Data: School Years 1991-92 Through 1996-97, Data File: Local Education Agency (School District) Universe Dropout Data: School Year 1997-98, and "State Nonfiscal Survey of Public Elementary/Secondary Education," 1998-99.

 For technical information, see the complete report:
 Young, B.A., and Hoffman, L. (2002). Public High School Dropouts and Completers From the Common Core of Data: School Years 1991-92 Through 1997-98 (NCES 2002-317).

[^14]: -Data missing.
 ${ }^{1}$ Includes regular and other diplomas, as well as other completion credentials (e.g., certificates of attendance or other certificates of completion), but does not include high school equivalency credentials (e.g., GEDs).
 ${ }^{2}$ Effective with the 1995-96 school year, Louisiana changed its dropout data collection, which increased the number of its dropouts. In calculating the completion rates, 1995-96 data were used in place of older data.
 NOTE:The completion rate is calculated by dividing the number of high school completers in a given year by the number of high school completers in that year and dropouts over a 4 -year period. A state that reported completers but not dropouts would not have a high school completion rate. Data for other completers are missing in the following states: Kentucky, New Hampshire, New Jersey, Washington, and Wisconsin.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD): Data File:Local Education Agency (School District) Universe Dropout and Completion Data: School Years 1991-92 Through 1996-97 and Data File: Local Education Agency (School District) Universe Dropout Data: School Year 1997-98. (Originally published as table 10 on p. 49 of the complete report from which this article is excerpted.)

[^15]: ${ }^{1}$ Grade-level counts do not sum to 47.2 million because of rounding.

[^16]: ${ }^{2}$ Ungraded students are students assigned to a class or program that does not have standard grade designations.

[^17]: ${ }^{3}$ Based on the 47.0 million students with reported racial/ethnic data

[^18]: -Data missing.
 ${ }^{1}$ Data imputed based on current-year (fall 2000) data.
 ${ }^{2}$ Data disaggregated from reported total.
 ${ }^{3}$ Student/other support staff includes library support staff, student support services staff, and all other support staff.
 NOTE: All staff counts are full-time-equivalency counts.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/Secondary Education," 2000-01.

[^19]: ${ }^{1}$ Total excludes students for whom race/ethnicity was not reported.
 ${ }^{2}$ Puerto Rico and the Bureau of Indian Affairs reported all of their students in one race/ethnicity.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/ Secondary Education," 2000-01.

[^20]: ${ }^{1}$ Total excludes students for whom race/ethnicity was not reported.
 ${ }^{2}$ Puerto Rico and the Bureau of Indian Affairs reported all of their students in one race/ethnicity.
 NOTE: Percents may not add to 100 due to rounding

[^21]: -Data missing.
 *Total excludes students for whom race/ethnicity was not reported.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD),"State Nonfiscal Survey of Public Elementary/ Secondary Education," 2000-01.

[^22]: *Comparisons are based on the previous edition of this report, Revenues and Expenditures for Public Elementary and Secondary Education: School Year 1998-99 (Johnson 2001).

[^23]: ${ }^{1}$ Throughout the report, ratios of revenues and expenditures per pupil between the highest and lowest ranking states are presented. For example, the ratio of total revenues per pupil (in adjusted dollars) was 1.8 between the highest and lowest revenue states (New Jersey and Utah), meaning that the highest revenue state raised 1.8 times the revenues of the lowest revenue state.

[^24]: ${ }^{2}$ Current expenditures plus capital expenditures do not equal total expenditures, because total expenditures also include any amounts that school districts and other public elementary/secondary agencies spent on programs (such as community services and adult education) that are not part of public elementary and secondary education.

[^25]: *Other institutions include public less-than-2-year institutions, private not-for-profit less-than-4-year institutions, and private for-profit 4-year institutions.
 NOTE: Detail may not add to 100 because of rounding.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, 1996 Beginning Postsecondary Students Longitudinal Study,"First Follow-up" (BPS:96/98).

[^26]: NOTE:Low- and middle-income students include all dependent students whose parents had an annual income in 1994 of less than $\$ 70,000$ and all independent students who, combined with their spouse's earnings, had an annual income in 1994 of less than $\$ 25,000$.
 SOURCE:U.S. Department of Education, National Center for Education Statistics, 1996 Beginning Postsecondary Students Longitudinal Study, "First Follow-up" (BPS:96/98).

[^27]: ${ }^{1}$ Percentage who were continuously enrolled or made immediate lateral or upward transfers to other institutions.
 ${ }^{2}$ Percentage who made downward transfers (e.g., transferring from a 4-year institution to a less-than-4-year institution) or left for more than 4 months and then returned (i.e., stopped out).
 NOTE: Detail may not add to 100 because of rounding. Low- and middle-income students include all dependent students whose parents had annual incomes in 1994 of less than $\$ 70,000$ and all independent students who, in combination with their spouse's earnings, had annual incomes in 1994 of less than $\$ 25,000$.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, 1996 Beginning Postsecondary Students Longitudinal Study, "First Follow-up" (BPS:96/98).

[^28]: ${ }^{1}$ Percentage who were continuously enrolled or made immediate lateral or upward transfers to other institutions.
 ${ }^{2}$ Percentage who made downward transfers (e.g., transferring from a 4-year institution to a less-than-4-year institution) or left for more than 4 months and then returned (i.e., stopped out).
 ${ }^{3}$ Core curriculum includes 4 years of English, 3 years of social studies, 3 years of mathematics, and 3 years of science.
 ${ }^{4}$ Mid-level curriculum includes the core curriculum requirements and also requires 1 year of a foreign language, geometry and algebra 1, and two of the following classes: biology, chemistry, or physics.
 ${ }^{5}$ Rigorous curriculum includes 4 years of English, 4 years of mathematics (including precalculus or higher), 3 years of a foreign language, 3 years of social studies, 3 years of science (including biology, chemistry, and physics), and at least one Advanced Placement (AP) class or test taken.
 NOTE: Detail may not add to 100 because of rounding. Low- and middle-income students include all dependent students whose parents had annual incomes in 1994 of less than $\$ 70,000$ and all independent students who, in combination with their spouse's earnings, had annual incomes in 1994 of less than $\$ 25,000$.
 SOURCE: U.S. Department of Education, National Center for Education Statistics, 1996 Beginning Postsecondary Students Longitudinal Study, "First Follow-up" (BPS:96/98).

[^29]: ${ }^{1}$ Dependent students do not necessarily receive financial support from parents even though, for financial aid eligibility determination, their parents' income and assets are taken into consideration.

[^30]: ${ }^{1}$ Terminology related to full- and part-time instructional faculty and staff references the employment status of the person at the institution rather than the amount of instruction the person did. For brevity, the term "faculty" is used to refer to instructional faculty and staff.

[^31]: ${ }^{2}$ The question that asked respondents why they were working part time allowed multiple responses. As a result, respondents may be assigned to more than one category.

[^32]: *Includes individuals who did not designate a program area of instruction.
 NOTE:This table includes only faculty and staff with instructional responsibilities for credit (e.g., teaching one or more classes for credit, or advising or supervising students' academic activities).

 SOURCE: U.S. Department of Education, National Center for Education Statistics, 1993 National Study of Postsecondary Faculty (NSOPF:93).

[^33]: SOURCE: U.S. Department of Education, National Center for Education Statistics, 1993 National Study of Postsecondary Faculty (NSOPF:93).

[^34]: ${ }^{1}$ Note that the numerical sequences in chapter I occasionally skip codes or Series numbers. This results from either deletions of code numbers that appeared in previous editions of the CIP, or moves of 2- or 4-digit Series and/or 6-digit codes to new locations or chapters.

[^35]: ${ }^{2} \mathrm{~A}$ comprehensive list of "NEW" programs is provided in table 1 of the complete handbook.

[^36]: ${ }^{3}$ A listing of the added CIP codes is provided in appendix C of the complete handbook.
 ${ }^{4}$ A summarized list of moved programs is provided in table 2 of the complete handbook. The Crosswalk of CIP:1990 to CIP:2000 Programs (table 3) provides detailed information on program moves.

[^37]: For questions about this data product, contact Beth Young (beth.young@ed.gov).
 To obtain this data product (NCES 2002-363), visit the NCES
 Electronic Catalog (http://nces.ed.gov/pubsearch).

[^38]: For questions about these CD-ROMs, contact Chris Chapman (chris.chapman@ed.gov).
 To obtain these CD-ROMs (NCES 2002-005), call the toll-free ED Pubs number (877-433-7827).

