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KEY FINDINGS 
 
Observed Changes 

Upward trends in the frequency of unusually warm nights, extreme precipitation 

episodes, the frequency of North Atlantic tropical cyclones (hurricanes), the length of the 

frost-free season, and extreme wave heights along the west coast are notable changes in 

the North American climate record. 

• Most of North America is experiencing more unusually hot days. The number of 2136 

warm spells has been increasing since 1950. However, the heat waves of the 1930s 

remain the most severe in the U.S. historical record back to 1895.  
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• There are fewer unusually cold days during the last few decades. The last 10 years 2139 

have seen a lower number of severe cold waves than for any other 10-yr period in the 

historical record which dates back to 1895. There has been a decrease in the number 

of frost days and a lengthening of the frost-free season, particularly in the western 

part of North America. 
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• Extreme precipitation episodes (heavy downpours) have become more frequent and 2144 

more intense in recent decades than at any other time in the historical record dating 

back to the late 19th Century and account for a larger percentage of total precipitation. 

The most significant changes have occurred in most of the U.S., northern Mexico, 

southeastern, northern and western Canada, and southern Alaska. 

• There are recent regional tendencies toward more severe droughts in the southwestern 2149 

U.S., parts of Canada and Alaska, and Mexico.  

• For the continental U.S. and southern Canada, the most severe droughts occurred in 2151 

the 1930s and there is no indication of an overall trend since 1895; in Mexico, the 

1950s and 1994-present were the driest period.  

• Atlantic tropical cyclone (hurricane) activity, as measured by both frequency and the 2154 

Power Dissipation Index (which combines storm intensity, duration and frequency) 

has increased. 

– The increases are substantial since about 1970, and are likely substantial since 

the 1950s and 60s, in association with warming Atlantic sea surface temperatures. 

There is less confidence in data prior to 1900. 

– It is likely that there has been an increase in tropical cyclone frequency in the 

North Atlantic over the past 100 years, which has closely followed warming 
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tropical Atlantic sea surface temperatures. There is increasing uncertainty in the 

data as one proceeds further back in time. 
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– The frequency of major hurricanes has increased coincident with overall 

tropical cyclone numbers. 

• There is no observational evidence for an increase in North American mainland land-2166 

falling hurricanes since the late 1800s. 

• The hurricane Power Dissipation Index in the eastern Pacific, affecting the Mexican 2168 

west coast and shipping lanes, has decreased since 1980, but rainfall from near-

coastal hurricanes has increased since 1949. 

• The balance of evidence suggests that there has been a northward shift in the tracks of 2171 

strong low pressure systems (storms) in both the N. Atlantic and N. Pacific basins. 

There is a trend toward stronger intense low pressure systems in the North Pacific.  

• Increases in extreme wave height characteristics have been observed along the 2174 

Atlantic and Pacific coasts of North America during recent decades based on 3 

decades of buoy data. 

– Increases along the West coast have been greatest in the Pacific Northwest, and are 

likely a reflection of changes in storm tracks. 

– Increases along the U.S. east coast are evident during the hurricane season. 

• Although snow cover extent has decreased over North America, there is no indication 2180 

of continental-scale trends in snowstorms and episodes of freezing rain during the 

20th Century. 

• There is no trend in the frequency of tornadoes and other severe convective storms 2183 

when the data are adjusted for changes in observing practices. 
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2.1 Background 2185 
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Weather and climate extremes exhibit substantial spatial variability. It is not unusual for 

severe drought and flooding to occur simultaneously in different parts of North America 

(e.g. catastrophic flooding in the Mississippi River basin and severe drought in the 

southeast U.S. during summer 1993). These reflect temporary shifts in large-scale 

circulation patterns that are an integral part of the climate system (Chapter 2, Box 2.3). 

The central goal of this chapter is to identify long-term shifts/trends in extremes and to 

characterize the continental-scale patterns of such shifts. Such characterization requires 

data that is homogeneous, of adequate length, and with continental-scale coverage. Many 

datasets meet these requirements for limited periods only. For temperature and 

precipitation, rather high quality data are available for the conterminous U.S. back to the 

late 19th Century. However, shorter data records are available for parts of Canada, 

Alaska, Hawaii, Mexico, the Caribbean, and U.S. territories. In practice, this limits true 

continental-scale analyses of temperature and precipitation extremes to the middle part of 

the 20th Century onward. Other phenomena have similar limitations and continental-scale 

characterizations are generally limited to the last 50-60 years or less, or must confront 

data homogeneity issues which add uncertainty to the analysis. We consider all studies 

that are available, but in many cases these studies have to be interpreted carefully because 

of these limitations. A variety of statistical techniques are used in the studies cited here. 

General information about statistical methods along with several illustrative examples are 

given in the Appendix. 
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2.2 Observed Changes and Variations in Weather and Climate Extremes 2208 
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2.2.1 Temperature Extremes 

Extreme temperatures do not always correlate with average temperature, but they often 

change in tandem; thus, average temperature changes provide a context for discussion of 

extremes. In 2005, virtually all of North America was above to much above average11 

(Shein et al. 2006) and 2006 was one of the warmest years on record in the conterminous 

United States (Arguez et al., 2007). The areas experiencing the largest temperature 

anomalies included the higher latitudes of Canada and Alaska. Annual average 

temperature time series for Canada, Mexico and the United States all show substantial 

warming since the middle of the 20th century (Shein et al. 2006). Since 1998 over half of 

the U.S. annual average temperatures have been extremely high, including the hottest two 

years on record (1998 and 2006). 

 

Since 1950, the annual percent of days exceeding the 90th, 95th, and 97.5th percentile 

thresholds12 for both maximum (daytime highs) and minimum (nighttime lows) 

temperature has increased when averaged over all the land area (Figure 2.1; Peterson et 

al. 2007). Although the changes are greatest in the 90th percentile (increasing from about 

10% of the days to about 13% for maximum and almost 15% for minimum) and decrease 

as the threshold temperatures increase indicating more rare events (the 97.5th percentage 

increases from about 3% of the days to 4% for maximum and 5% for minimum), the 

 
11 NOAA’s National Climatic Data Center uses the following terminology for classifying its 
monthly/seasonal/annual U.S. temperature and precipitation rankings: “near-normal” is defined as within 
the mid-tercile, “above/below normal” is within the top-tercile, and “much-above/much-below normal” is 
within the top-decile of all such periods on record. 
12 An advantage of the use of percentile, rather than absolute, thresholds is that they account for regional 
climate differences 
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relative changes are similar. There are important regional differences in the changes. For 

example, the largest increases in the 90th percentile threshold temperature occur in the 

western part of the continent from northern Mexico through the western U.S. and Canada 

and across Alaska, while some areas, such as eastern Canada, show declines of as many 

as 10 days per year from 1950 to 2004 (Fig. 2.2). 
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Other regional studies have shown similar patterns of change. For the U.S., the number of 

days exceeding the 90th, 95th and 99th percentile thresholds (defined monthly) have 

increased in recent years13, but are also dominated earlier in the 20th century by the 

extreme heat and drought of the 1930s14 (DeGaetano and Allen 2002). Changes in cold 

extremes (days falling below the 10th, 5th, and 1st percentile threshold temperatures) show 

decreases, particularly since 196015. For the 1900-1998 period in Canada, there are fewer 

cold extremes in winter, spring and summer in most of southern Canada and more high 

temperature extremes in winter and spring, but little change in warm extremes in 

summer16 (Bonsal et al. 2001). However, for the more recent (1950-1998) period there 

are significant increases in warm extremes over western Canada, but decreases in eastern 

Canada. Similar results averaged across all of Canada are found for the longer 1900-2003 

period, with 28 fewer cold nights, 10 fewer cold days, 21 more extreme warm nights and 

8 more warm days per year now than in 190017 (Vincent and Mekis 2006). For the U.S. 

and Canada, the largest increases in daily maximum and minimum temperature are 
 

13 The number of stations with statistically significant positive trends for 1960-1996 passed tests for field 
significance based on resampling.  
14 The number of stations with statistically significant negative trends for 1930-1996 was greater than the 
number with positive trends. 
15 The number of stations with statistically significant downward trends for 1960-1996 passed tests for field 
significance based on resampling, but not for 1930-1996. 
16 Statistical significance of trends was assessed using Kendall’s tau test 
17 These trends were statistically significant at more than 20% of the stations based on Kendall’s tau test 
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occurring in the colder days of each month (Robeson 2004). For the Caribbean region, 

there is an 8% increase in the number of very warm nights and 6% increase in the number 

of very warm days for the 1958-1999 period. There also has been a corresponding 

decrease of 7% in the number of cold days and 4% in the number of cold nights (Peterson 

et al. 2002). The number of warm nights has increased by 10 or more per year for Hawaii 

and 15 or more per year for Puerto Rico from 1950 to 2004 (Fig. 2.2). 
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Analysis of multi-day very extreme heat and cold episodes18 in the U.S. were updated19 

from Kunkel et al. (1999) for the period 1895-2005. The most notable feature of the 

pattern of the annual number of the extreme heat waves (Fig. 2.3a) through time is the 

high frequency in the 1930s compared to the rest of the years in the 1895-2005 period. 

This was followed by a decrease to a minimum in the 1960s and 1970s and then an 

increasing trend since then. There is no trend over the entire period, but a highly 

statistically significant upward trend since 1960. The heat waves during the 1930s were 

characterized by extremely high daytime temperatures while nighttime temperatures were 

not as unusual (Fig. 2.3b,c). An extended multi-year period of intense drought 

undoubtedly played a large role in the extreme heat of this period, particularly the 

daytime temperatures, by depleting soil moisture and reducing the moderating effects of 

evaporation. By contrast, the recent period of increasing heat wave index is distinguished 

by the dominant contribution of a rise in extremely high nighttime temperatures (Fig. 

2.3c). Cold waves show a decline in the first half of the 20th century, then a large spike of 

 
18 The threshold is approximately the 99.9 percentile. 
19 The data were first transformed to create near-normal distributions using a log transformation for the heat 
wave index and a cube root transformation for the cold wave index. The transformed data were then 
subjected to least squares regression. Details are given in the Appendix, Example 2. 
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events during the mid-1980s, then a decline20. The last 10 years have seen a lower 

number of severe cold waves in the U.S. than in any other 10-yr period since 1895, 

consistent with observed impacts such as insect populations (Chapter 1, Box 1.2). 

Decreases in the frequency of extremely low nighttime temperatures have made a 

somewhat greater contribution than extremely low daytime temperatures to this recent 

low period of cold waves. Over the entire period there is a downward trend but it is not 

statistically significant at the p=0.05 level. 
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The annual number of warm spells21 averaged over North America has increased since 

1950 (Peterson et al. 2007). In the U.S. the annual number of warm spells22 has increased 

by about 1 ½ per year, and the duration has increased by about 1 day since 1950 

(Easterling et al. 2007a). Regionally the largest increases, up to about 2 ½ per year, were 

found in the western U.S., with many parts of the south and southeast showing little 

change. Seasonal results show the largest increases in the spring and winter, with little 

change in the number of events for the fall or summer. These results for warm spells are 

roughly consistent with those for the much more extreme heat waves illustrated in Fig. 

2.3a for the common period of analysis (1950-present); the warm spell analyses do not 

extend back to the 1930s when very extreme heat was frequent. The frequency and extent 

of hot summers23 was highest in the 1930s, 1950s, and 1995-2003; the geographic pattern 

 
20 Details of this analysis are given in the Appendix, Example 1. 
21 Defined as at least 3 consecutive days above the 90th percentile threshold done separately for maximum 
and minimum temperature. 
22 Defined as at least 3 consecutive days with both the daily maximum and succeeding daily minimum 
temperature above the 80th percentile. 
23 Based on percentage of North American grid points with summer temperatures above the 90th or below 
the 10th percentiles of the 1950-1999 summer climatology. 
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of hot summers during 1995-2003 was similar to that of the 1930s (Gershunov and 

Douville 2007).  
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The occurrence of temperatures below the biologically- and societally-important freezing 

threshold (0°C, 32°F) is an important aspect of the cold season climatology. Studies have 

typically characterized this either in terms of the number of frost days (days with the 

minimum temperature below freezing) or the length of the frost-free season24. The 

number of frost days decreased by 4 days per year in the U.S. during the 1948-1999 

period, with the largest decreases, as many as 13 days per year, occurring in the Western 

U.S.25 (Easterling 2002). In Canada, there have been significant decreases in frost day 

occurrence over the entire country from 1950 to 2003, with the largest decreases in 

extreme western Canada where there have been decreases of up to 40 or more frost days 

per year, and slightly smaller decreases in eastern Canada (Vincent and Mekis 2006). The 

start of the frost-free season in the Northeastern U.S. occurred 11 days earlier in the 

1990s than in the 1950s (Cooter and LeDuc 1995). For the entire U.S., the average length 

of the frost-free season over the 1895-2000 period for the U.S. increased by almost 2 

weeks26 (Figure 2.4; Kunkel et al. 2004). The change is characterized by 4 distinct 

regimes, with decreasing frost-free season length from 1895 to1910, an increase in length 

of about 1 week from 1910 to 1930, little change during1930-1980, and large increases 

since1980. The frost-free season length has increased more in the western U.S. than in 

the eastern U.S. (Easterling 2002; Kunkel et al. 2004), which is consistent with the 

 
24 The difference between the date of the last spring frost and the first fall frost 
25 Trends in the western half of the U.S. were statistically significant based on simple linear regression 
26 Statistically significant based on least-squares linear regression 
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finding that the spring pulse of snow melt water in the Western U.S. now comes as much 

as 7-10 days earlier than in the late 1950s (Cayan et al. 2001). 
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Ice cover on lakes and the oceans is a direct reflection of the number and intensity of 

cold, below freezing days. Ice cover on the Laurentian Great Lakes of North American 

usually forms along the shore and in shallow areas in December and January, and in 

deeper mid-lake areas in February due to their large depth and heat storage capacity. Ice 

loss usually starts in early to-mid-March and lasts through mid-to-late April (Assel 2003). 

 

Annual maximum ice cover on the Great Lakes has been monitored since 1963. The 

maximum extent of ice cover over the past 4 decades varied from less then 10% to over 

90%. The winters of 1977-1982 were characterized by a higher ice cover regime relative 

to the prior 14 winters (1963-1976) and the following 24 winters (1983-2006) (Assel et 

al. 2003, Assel 2005a, Assel personal communication for winter 2006). A majority of the 

mildest (lowest) seasonal average ice cover winters (Assel 2005b) over the past 4 decades 

occurred during the most recent 10-year period (1997-2006). Analysis of ice breakup 

dates on other smaller lakes in North America with at least 100 years of data (Magnuson 

et al. 2000) show a uniform trend toward earlier breakup dates (up to 13 days earlier per 

100 years)27.  

 

Reductions in Arctic sea ice, especially near-shore sea ice, allow strong storm and wave 

activity to produce extensive coastal erosion resulting in extreme impacts. Observations 

from satellites starting in 1978 show that there has been a substantial decline in Arctic sea 
 

27 Statistically significant trends were found for 16 of 24 lakes 
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ice, with a statistically significant decreasing trend in annual Arctic sea ice extent of -33 

± 8.8 x 10
3 
km

2 
per year (equivalent to approximately -2.7% ± 0.7% per decade). 

Seasonally the largest changes in Arctic sea ice have been observed in the ice that 

survives the summer, where the trend in the minimum Arctic sea ice extent, between 

1979 and 2005, was -60 ± 24 x 10
3 
km

2 
per year (–7.4 ± 2.9% per decade) (Lemke et al. 

2007). 
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Rising sea surface temperatures have led to an increase in the frequency of extreme high 

SST events causing coral bleaching (see Box 1.1, Chapter 1). Mass bleaching events were 

not observed prior to 1980. However, since the 1970s, there have been 6 major global 

cycles of mass bleaching, with increasing frequency and intensity (Hoegh-Guldberg 

2005). Almost 30% of the world’s coral reefs have disappeared in that time. 

 

Less scrutiny has been focused on Mexico temperature extremes, in part, because much 

of the country can be classified as a ‘tropical climate’ where temperature changes are 

presumed fairly small, or semi-arid to arid climate where moisture availability exerts a far 

greater influence on human activities than does temperature. 

 

Most of the sites in Mexico’s oldest temperature observing network are located in major 

metropolitan areas and there is considerable evidence to indicate that trend behaviors at 

least partly reflect urbanization and urban heat island influences (Englehart and Douglas, 

2003). To avoid such issues in analysis, a monthly rural temperature dataset has recently 
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been developed28. Examined in broad terms as a national aggregate, a couple of basic 

behaviors emerge. First, long period temperature trends over Mexico are generally 

compatible with continental-scale trends which indicate a cooling trend over North 

America from about the mid-1940s to the mid-1970s, with a warming trend thereafter. 

2354 

2355 

2356 

2357 

2358 

2359 

2360 

2361 

2362 

2363 

2364 

2365 

2366 

2367 

2368 

2369 

2370 

2371 

2372 

2373 

                                                

 

The rural gridded data set indicates that much of Mexico experienced decreases in both 

Tmax and Tmin during 1941-1970 (-0.27°C/decade for Tmax and -0.19°C/decade for Tmin) 

while the later period of 1971-2001 is dominated by positive trends that are most strongly 

evident in Tmax (0.35°C/decade for Tmax and 0.10°C/decade for Tmin). Based on these 

results it appears very likely that much of Mexico has experienced an increase in average 

temperature driven in large measure by increases in Tmax. The diurnal temperature range 

(Tmax minus Tmin) for the warm season (June-September) averaged over all of Mexico has 

increased by 0.26°C/decade since 1970 with particularly rapid rises since 1990 (Fig. 2.5) 

reflecting a comparatively rapid rise in Tmax with respect to Tmin (Englehart and Douglas 

2005)29. This behavior departs from the general picture for many regions of the world, 

where warming is attributable mainly to a faster rise in Tmin than in Tmax (e.g. Easterling 

et al., 1997).  

 

Given Mexico’s largely tropical/sub-tropical climate and the influence of nearby oceans, 

a reasonable expectation would be that changes in the behavior of temperature extremes 

 
28 It consists of monthly historical surface air temperature observations (1940-2001) compiled from stations 
(n=103) located in places with population <10,000 (2000 Census). To accommodate variable station record 
lengths and missing monthly observations, the dataset is formatted as a grid-type (2.5° x 2.5° lat.-long.) 
based on the climate anomaly method (Jones and Moberg, 2003) 
29 Statistically significant trends were found in the northwest, central, and south, but not the northeast 
regions 
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could be small and difficult to detect as compared to at many mid-and high latitude 

locations. However, the cold surge
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30 phenomena – the equatorward penetration of 

modified cold air, known as nortes in Mexico – is an integral part of the country’s cool 

season climatology. The frequency of both cold surge days and cold surge events tends to 

vary depending in part on Pacific Decadal Oscillation (PDO) phase: under negative PDO 

phase cold surge activity tends to be more prevalent. However, the intensity of cold surge 

events as indicated by the maximum daily drop in Tmin tends to be greater under positive 

PDO phase. Analysis of linear trends indicates that from the early 1950s onward, it is 

very likely that southern Mexico has experienced a trend toward decreasing frequency of 

both cold surge days by 2.4 cold days/decade and cold surge events by 0.88 

events/decade (Englehart and Douglas 2007). 

 

2.2.2 Precipitation Extremes 

2.2.2.1 Drought 

Droughts are one of the most costly natural disasters (Chapter 1, Box 1.4), with estimated 

annual U.S. losses of $6 – 8 billion (Federal Emergency Management Agency, 1995). An 

extended period of deficient precipitation is the root cause of a drought episode, but the 

intensity can be exacerbated by high evaporation rates arising from excessive 

temperatures, high winds, lack of cloudiness, and/or low humidity. Drought can be 

defined in many ways, from acute short-term to chronic long-term hydrological drought, 

agricultural drought, meteorological drought, and so on. The assessment in this report 

focuses mainly on meteorological droughts based on the Palmer (1965) Drought Severity 

Index (PDSI), though other indices are also documented in the report (Chapter 2, Box 

2.1). 

 
30 Cold surges are defined for the period 1925-2002 based on daily station observations of Tmin from two 
locations – stations in south Texas and near coastal stations from the southern Mexican state of Veracruz. 
Cold surge days have Tmin below its climatological values by 1 standard deviation. Cold surge events are 
runs of 1 or more consecutive cold surge days.  
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Individual droughts can occur on a range of spatial scales, but they often affect rather 

large areas and can persist for many months and even years. Thus, the aggregate impacts 

can be very large. For the U.S., the percentage area affected by severe to extreme drought 

(Fig. 2.6) highlights some major episodes of extended drought. The most widespread and 

severe drought conditions occurred in the 1930s and 1950s (Andreadis et al. 2005). The 

early 2000s were also characterized by severe droughts in some areas, notably in the 

western U.S. When averaged across the entire U.S. (Fig. 2.6), there is no clear tendency 

for a trend based on the PDSI. Similarly, long-term trends (1925-2003) of hydrologic 

droughts based on model derived soil moisture and runoff show that droughts have, for 

the most part, become shorter, less frequent, and cover a smaller portion of the U. S. over 

the last century (Andreadis and Lettenmaier, 2006). The main exception is the Southwest 

and parts of the interior of the West, where increased temperature has led to positive 

drought trends (Andreadis and Lettenmaier, 2006). The trends averaged over all of North 

America since 1950 (Fig. 2.6) are similar to U.S. trends for the same period, indicating no 

overall trend. 

 

Since the contiguous United States has experienced an increase in both temperature and 

precipitation during the 20th century, one question is whether these increases are 

impacting the occurrence of drought. Easterling et al (2007b) examined this possibility by 

looking at drought, as defined by the PDSI, for the United States using detrended 

temperature and precipitation. Results indicate that without the upward trend in 
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precipitation the increase in temperatures would have lead to an increase in the area of 

the U.S. in severe-extreme drought of up to 30% in some months. 
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Summer conditions, which relate to fire danger, have trended toward lesser drought in the 

upper Mississippi, Midwest, and Northwest, but the fire danger has increased in the 

Southwest, in California in the spring season (not shown), and, surprisingly, over the 

Northeast, despite the fact that annual precipitation here has increased. A century-long 

warming in this region is quite significant in summer, which reverses the tendencies of 

the precipitation contribution to soil wetness (Groisman et al. 2004). Westerling et al. 

(2006) document that large wildfire activity in the Western U.S. increased suddenly and 

markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire 

durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, 

Northern Rockies forests, where land-use histories have relatively little effect on fire risks 

and are strongly associated with increased spring and summer temperatures and an earlier 

spring snowmelt. 

 

For the entire North American continent, there is a north-south pattern in drought trends 

(Dai et al. 2004). Since 1950, there is a trend toward wetter conditions over much of the 

conterminous U.S., but a trend toward drier conditions over southern and western 

Canada, Alaska, and Mexico. The summer PDSI averaged for Canada indicates dry 

conditions during the 1940s and 1950s, generally wet conditions from the 1960s to 1995, 

but much drier after 1995 (Shabbar and Skinner, 2004). In Alaska and Canada, the 

upward trend in temperature, resulting in increased evaporation rates, has made a 
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substantial contribution to the upward trend in drought (Dai et al. 2004). In agreement 

with this drought index analysis, the area of forest fires in Canada has been quite high 

since 1980 compared to the previous 30 years and Alaska experienced a record high year 

for forest fires in 2004 followed by the third highest in 2005 (Soja et al. 2007). During 

the mid-1990s and early 2000s, central (Stahle et al. 2007) and western Mexico (Kim et 

al. 2002; Nicholas and Battisti, 2006; Hallack and Watkins, 2007) experienced 

continuous cool-season droughts having major impacts in agriculture, forestry, and 

ranching, especially during the warm summer season. In 1998, “El Niño” caused one of 

the most severe droughts in Mexico since the 1950s (Ropelewski, 1999), creating the 

most difficult wildfire season in Mexico’s history. Mexico had 14,445 wildfires affecting 

849,632 hectares - the largest area ever burned in Mexico in a single season 

(SEMARNAP, 2000). 
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Reconstructions of drought prior to the instrumental record based on tree-ring 

chronologies indicate that the 1930s may have been the worst drought since 1700 (Cook 

et al. 1999). There were three major multiyear droughts in the U.S. during the latter half 

of the 1800s: 1856-1865, 1870-1877 and 1890-1896 (Herweijer et al. 2006). Similar 

droughts have been reconstructed for northern Mexico (Therrell et al. 2002). There is 

evidence of earlier, even more intense drought episodes (Woodhouse and Overpeck 

1998). A period in the mid to late 1500s has been termed a “mega-drought” and was 

longer-lasting and more widespread than the 1930s Dust Bowl (Stahle et al. 2000). 

Several additional mega-droughts occurred during 1000-1470 (Herweijer et al. 2007). 

These droughts were about as severe as the 1930s Dust Bowl episode but much longer, 
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lasting 20-40 years. In the western U.S., the period of 900-1300 was characterized by 

widespread drought conditions (Fig. 2.7; Cook et al. 2004). In Mexico, reconstructions of 

seasonal precipitation (Stahle et al. 2000, Acuña-Soto et al. 2002, Cleaveland et al. 2004) 

indicate that there have been droughts more severe than the 1950s drought, e.g., the 

mega-drought in the mid- to late- 16th century, which appears as a continental-scale 

drought. 
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During the summer months, excessive heat and drought often occur simultaneously 

because the meteorological conditions typically causing drought are also conducive to 

high temperatures. The impacts of the Dust Bowl droughts and the 1988 drought were 

compounded by episodes of extremely high temperatures. The month of July 1936 in the 

central U.S. is a notable example. To illustrate, Lincoln, NE received only 0.05” of 

precipitation that month (after receiving less than 1 inch the previous month) while 

experiencing temperatures reaching or exceeding 110°F on 10 days, including 117°F on 

July 24. Although no studies of trends in such “compound” extreme events have been 

performed, they represent a significant societal risk. 

 

BOX 2.1: Drought Indicators and Resources 

• Palmer Drought Severity Index (PDSI; Palmer, 1965) – meteorological drought. 2484 

The PDSI is a commonly-used drought index that measures intensity, duration, and 

spatial extent of drought. It is derived from measurements of precipitation, air 

temperature, and local estimated soil moisture content. Categories range from less 

than -4 (extreme drought) to more than +4 (extreme wet conditions), and have been 
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standardized to facilitate comparisons from region to region. Alley (1984) identified 

some positive characteristics of the PDSI that contribute to its popularity: (1) it is an 

internationally recognized index; (2) it provides decision makers with a measurement 

of the abnormality of recent weather for a region; (3) it provides an opportunity to 

place current conditions in historical perspective; and (4) it provides spatial and 

temporal representations of historical droughts. However, the PDSI has some 

limitations (1) it may lag emerging droughts by several months; (2) it is less well 

suited for mountainous land or areas of frequent climatic extremes; (3) it does not 

take into account streamflow, lake and reservoir levels, and other long-term 

hydrologic impacts (Karl and Knight, 1985), such as snowfall and snow cover; (4) the 

use of temperature alone to estimate potential evapotranspiration (PET) can introduce 

biases in trend estimates because humidity, wind and radiation also affect PET and 

changes in these elements are not accounted for. In fact, Hobbins et al. (2007) show 

that the PDSI trends in Australia and New Zealand are exaggerated compared to 

trends using more realistic methods to estimate evapotranspiration. The use of 

temperature alone is a practical consideration since measurements of these other 

elements are often not available.  
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• Crop Moisture Index (CMI; Palmer, 1968) – short-term meteorological drought. 2506 

Whereas the PDSI monitors long-term meteorological wet and dry spells, the CMI 

was designed to evaluate short-term moisture conditions across major crop-producing 

regions. It is based on the mean temperature and total precipitation for each week, as 

well as the CMI value from the previous week. Categories range from less than -3 

(severely dry) to more than +3 (excessively wet). The CMI responds rapidly to 
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changing conditions, and it is weighted by location and time so that maps, which 

commonly display the weekly CMI across the United States, can be used to compare 

moisture conditions at different locations. Weekly maps of the CMI are available as 

part of the USDA/JAWF Weekly Weather and Crop Bulletin. 
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• Standardized Precipitation Index (SPI; McKee et al., 1993) – precipitation-based 2516 

drought. The SPI was developed to categorize rainfall as a standardized departure 

with respect to a rainfall probability distribution function; categories range from less 

than -3 (extremely dry) to more than +3 (extremely wet). The SPI is calculated on the 

basis of selected periods of time (typically from 1 to 48 months of total precipitation) 

and it indicates how the precipitation for a specific period compares with the long-

term record at a given location (Edwards and McKee, 1997). The index correlates 

well with other drought indices. Sims et al. (2002) suggested that the SPI was more 

representative of short-term precipitation and a better indicator of soil wetness than 

the PDSI. The 9-month SPI corresponds closely to the PDSI (Heim 2002; Guttman 

1998). 

• Keetch-Byram Index (KBDI; Keetch and Byram, 1968) – meteorological drought 2527 

and wildfire potential index. This was developed to characterize the level of potential 

fire danger. It uses daily temperature and precipitation information and estimates soil 

moisture deficiency. High values of KBDI are indicative of favorable conditions for 

wildfires. However, the index needs to be regionalized, as values are not comparable 

among regions Groisman et al. 2004, 2007a).  

• No-rain episodes – meteorological drought. Groisman and Knight (2007) proposed 2533 

to directly monitor frequency and intensity of prolonged no-rain episodes (greater 
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than 20, 30, 60, etc. days) during the warm season, when evaporation and 

transpiration are highest and the absence of rain may affect natural ecosystems and 

agriculture. They found that during the past four decades the duration of prolonged 

dry episodes has significantly increased over the Eastern and Southwestern United 

States and adjacent areas of Northern Mexico and Southeastern Canada.  
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• Soil Moisture and Runoff Index (SMRI; Andreadis and Lettenmaier, 2006) – 2540 

hydrologic and agricultural droughts. The SMRI is based on model-derived soil 

moisture and runoff as drought indicators; it uses percentiles and the values are 

normalized from 0 (dry) to 1 (wet conditions). The limitation of this index is that it is 

based on land-surface model-derived soil moisture. However, long-term records of 

soil moisture – a key variable related to drought – are essentially non-existent 

(Andreadis and Lettenmaier, 2006). Thus, the advantage of the SMRI is that it is 

physically based and with the current sophisticated land-surface models it is easy to 

produce multimodel average climatologies and century-long reconstructions of land 

surface conditions, which could be compared under drought conditions. 

Resources: A list of these and other drought indicators, data availability, and current 

drought conditions based on observational data can be found at the National Climatic 

Data Center (NCDC, http://www.ncdc.noaa.gov). The North American Drought Monitor 

at NCDC monitors current drought conditions in Canada, the United States, and Mexico. 

Tree-ring reconstruction of PDSI across North America over the last 2000 years can be 

also found at NCDC 
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http://www.ncdc.noaa.gov/
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2.2.2.2 Short Duration Heavy Precipitation  2558 
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2.2.2.2.1 Data Considerations and Terms 

Intense precipitation often exhibits higher spatial variability than many other extreme 

phenomena. This poses challenges for the analysis of observed data since the heaviest 

area of precipitation in many events may fall between stations. This adds uncertainty to 

estimates of regional trends based on the climate network. The uncertainty issue is 

explicitly addressed in some recent studies.  

 

Precipitation extremes are typically defined based on the frequency of occurrence [by 

percentile (e.g., upper 5%, 1%, 0.1%, etc) or by return period (e.g. an average occurrence 

of once every 5 years, once every 20 years, etc.)] of rain events and/or their absolute 

values (e.g., above 50 mm, 100 mm, 150 mm, or more). Values of percentile or return 

period thresholds vary considerably across North America. For example, in the U.S., 

regional average values of the 99.9 percentile threshold for daily precipitation are lowest 

in the Northwest and Southwest (average of 55 mm) and highest in the South (average of 

130mm)31. 

 

As noted above, spatial patterns of precipitation have smaller spatial correlation scales 

(for example, compared to temperature and atmospheric pressure) which means that a 

denser network is required in order to achieve a given uncertainty level. While monthly 

precipitation time series for flat terrain have typical radii of correlation32 (ρ) of ~300 km 

 
31 The large magnitude of these differences is a major motivation for the use of regionally-varying 
thresholds based on percentiles. 
32 Spatial correlation decay with distance, r, for many meteorological variables, X, can be approximated by 
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or even more, daily precipitation may have ρ less than 100 km with typical values for 

convective rainfall in isolated thunderstorms of ~15 to 30 km (Gandin and Kagan 1976). 

Values of ρ can be very small for extreme rainfall events and sparse networks may not be 

adequate to detect a desired minimum magnitude of change that can result in societally-

important impacts and can indicate important changes in the climate system. 
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2.2.2.2.2 United States 

One of the clearest trends in the U.S. observational record is that of an increasing 

frequency and intensity of heavy precipitation events (Karl and Knight 1998; Groisman et 

al. 1999, 2001, 2004; Kunkel et al. 1999; Easterling et al. 2000; IPCC 2001; Semenov 

and Bengtsson 2002, Kunkel 2003). For example, the area of the United States affected 

by a much above normal contribution to total annual precipitation of daily precipitation 

events exceeding 50.8 mm (2 inches) increased by a statistically significant amount from 

about 9% in the 1910s to about 11% in the 1980s and 1990s (Karl and Knight 1998). 

Total precipitation also increased during this time, due in large part to increases in the 

intensity of heavy precipitation events (Karl and Knight 1998). In fact, there has been 

little change or decreases in the frequency of light and average precipitation days 

(Easterling et al. 2000; Groisman et al. 2004, 2005) during the last 30 years while heavy 

precipitation frequencies have increased (Sun and Groisman 2004). For example, the 

amount of precipitation falling in the heaviest 1% of rain events has increased by 20% 

during the 20th Century while total precipitation has increased by only 7% (Groisman et 

al. 2004). Although the exact character of those changes has been questioned (e.g. 
 

an exponential function of distance: Corr (X(A), X(B)) ~ e - r/ρ where r is a distance between point A and B 
and ρ is a radius of correlation, which is a distance where the correlation between the points is reduced to 
1/e compared to an initial “zero” distance. 
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Michaels et al. 2004), it is highly likely that in recent decades extreme precipitation 

events have increased more than light to medium events.  
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A statistically significant 50% increase during the 1900s in the frequency of days with 

precipitation exceeding 101.6 mm (4 inches) was found in the upper Midwest U.S. 

(Groisman et al. 2001). Upward trends in the amount of precipitation occurring in the 

upper 0.3% of daily precipitation events are statistically significant for the period of 

1908-2002 within three major regions (the South, Midwest, and Upper Mississippi; see 

Fig. 2.8) of the central United States (Groisman et al. 2004). The upward trends are 

primarily a warm season phenomenon when the most intense rainfall events typically 

occur. A time series of the frequency of events in the upper 0.3% averaged for these 3 

regions (Fig 2.8) shows a 20% increase over the period of 1893-2002 with all of this 

increase occurring over the last third of the 1900s (Groisman et al. 2005).  

 

Examination of intense precipitation events defined by return period, covering the period 

of 1895-2000, indicates that the frequencies of extreme precipitation events before 1920 

were generally above the long-term averages for durations of 1 to 30 days and return 

periods 1 to 20 years and only slightly lower than values during the 1980s and 1990s 

(Kunkel et al. 2003). The highest values occur after about 1980, but the elevated levels 

prior to about 1920 are an interesting feature suggesting that there is considerable 

variability in the occurrence of extreme precipitation on multi-decadal time scales 
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There is a seeming discrepancy between the results for the 99.7th percentile (which do not 

show high values early in the record in the analysis of Groisman et al. 2004) and for 1 to 

20-yr return periods (which do in the analysis of Kunkel et al. 2003). The number of 

stations with available data is only about half (about 400) in the late 1800s of what is 

available in most of the 1900s (800-900). Furthermore, the spatial distribution of stations 

throughout the record is not uniform; the density in the western U.S. is relatively lower 

than in the central and eastern U.S. It is possible that the resulting uncertainties in heavy 

precipitation estimates are too large to make unambiguous statements about the recent 

high frequencies.  
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Recently, this question was addressed (Kunkel et al. 2007a) by analyzing the modern 

dense network to determine how the density of stations affects the uncertainty and then to 

estimate the level of uncertainty in the estimates of frequencies in the actual (sparse) 

network used in the long-term studies. The results were unambiguous. For all 

combinations of three durations (1-day, 5-days and 10-days) and 3 return periods (1-yr, 

5-yr, and 20-yr), the frequencies for 1983-2004 were significantly higher than those for 

1895-1916 at a high level of confidence. In addition, the observed linear trends were all 

found to be upward, again with a high level of confidence. Based on these results, it is 

highly likely that the recent elevated frequencies in the U.S. are the highest since 1895.  

 

2.2.2.2.3 Alaska and Canada 

The sparse network of long-term stations in Canada increases the uncertainty in estimates 

of extremes. Changes in the frequency of heavy events exhibit considerable multi-decadal 
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variability since 1900, but no long-term trend for the entire century (Zhang et al. 2001). 

However, according to Zhang et al. (2001), there are not sufficient instrumental data to 

discuss the nationwide trends in precipitation extremes over Canada prior to 1950. 

Nevertheless, there are changes that are noteworthy. For example, the frequency of 

99.7% events exhibits a statistically significant upward trend of 19%/50yr in British 

Columbia since 1910 (Fig. 2.8; Groisman et al. 2005). For Canada, increases in 

precipitation intensity during the second half of the 1900s are concentrated in heavy and 

intermediate events, with the largest changes occurring in Arctic areas (Stone et al. 2000). 

The tendency for increases in the frequency of intense precipitation while the frequency 

of days with average and light precipitation does not change or decreases has also been 

observed in Canada over the last 30 years (Stone et al. 2000), mirroring U.S. changes. 

Recently, Vincent and Mekis (2006) repeated analyses of precipitation extremes for the 

second half of 1900s (1950-2003 period). They reported a statistically significant increase 

of 1.8 days per 54 years in heavy precipitation days (defined as the days with 

precipitation above 10 mm) and statistically insignificant increases in the maximum 5-

day precipitation (by ~5%) and in the number of “very wet days” defined as days with 

precipitation above the upper 5th percentiles of local daily precipitation (by 0.4 days).  

2646 

2647 

2648 

2649 

2650 

2651 

2652 

2653 

2654 

2655 

2656 

2657 

2658 

2659 

2660 

2661 

2662 

2663 

2664 

2665 

2666 

2667 

2668 

 

There is an upward trend of 37%/50yr in southern Alaska since 1950 although this trend 

is not statistically significant (Fig. 2.8; Groisman et al. 2005). 
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2.2.2.2.4 Mexico 2669 
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On an annual basis, the number of heavy precipitation (P > 10 mm) days has increased in 

northern Mexico and the Sierra Madre Occidental and decreased in the south-central part 

of the country (Alexander et al. 2006). The percent contribution to total precipitation 

from heavy precipitation events exceeding the 95th percentile threshold has increased in 

the monsoon region (Alexander et al., 2006) and along the southern Pacific coast 

(Aguilar et al. 2005), while some decreases are documented for south-central Mexico 

(Aguilar et al. 2005). 

 

On a seasonal basis, the maximum precipitation reported in 5 consecutive days during 

winter and spring has increased in Northern Mexico and decreased in south-central 

Mexico (Alexander et al. 2006). Northern Baja California, the only region in Mexico 

characterized by a Mediterranean climate, has experienced an increasing trend in winter 

precipitation exceeding the 90th percentile, especially after 1977 (Cavazos and Rivas, 

2004). Heavy winter precipitation in this region is significantly correlated with El Niño 

events (Pavia and Badan, 1998; Cavazos and Rivas, 2004); similar results have been 

documented for California (e.g., Gershunov and Cayan, 2003). During the summer there 

has been a general increase of 2.5 mm in the maximum 5-consecutive-day precipitation in 

most of the country and an upward trend in the intensity of events exceeding the 99th and 

99.7th percentiles in the high plains of Northern Mexico during the summer season 

(Groisman et al. 2005). 
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During the monsoon season (June-September) in northwestern Mexico, the intensity and 

seasonal contribution of rainfall events exceeding the 95th percentiles significantly 

increased (p<0.05) in the core monsoon region and at mountain sites (Fig. 2.8; Cavazos et 

al. 2007). The mean intensity of 95th percentile events in the monsoon region increased 

significantly by 0.6 mm dec-1 during 1950-2003. It went from 17.9 mm d-1 in the 1950-

1976 period to 19.6 mm d-1 in 1977-2003 while at mountain sites the increase was from 

40.8 mm d-1 to 43.9 mm d-1, respectively. These increases are mainly due to an increase 

in tropical cyclone-derived rainfall after 1980. The frequency of heavy events does not 

show a significant trend (Englehart and Douglas 2001; Neelin et al. 2006; Cavazos et al., 

2007). Similarly, Groisman et al. (2005) report that the frequency of very heavy summer 

precipitation events (above the 99th percentile) in the high plains of Northern Mexico 

(east of the core monsoon) has not increased, whereas their intensity has increased 

significantly. 
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The increase in the mean intensity of heavy summer precipitation events in the core 

monsoon region during the 1977-2003 period are significantly correlated with the 

Oceanic El Niño Index (ONI33) conditions during the cool season. El Niño SST 

anomalies antecedent to the monsoon season are associated with less frequent, but more 

intense, heavy precipitation events34 (exceeding the 95th percentile threshold), and vice 

versa. 

 
33 ONI INDEX: 
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml  
Warm and cold episodes based on a threshold of +/- 0.5°C for the Oceanic Niño Index (ONI) [3 month 
running mean of ERSST.v2 SST anomalies in the Niño 3.4 region (5oN-5oS, 120o-170oW)], based on the 
1971-2000 base period. 
34 The correlation coefficient between ONI and heavy precipitation frequency (intensity) is -0.37 (+0.46) 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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There has been an insignificant decrease in the number of consecutive dry days in 

northern Mexico, while an increase is reported for south-central Mexico (Alexander et 

al., 2006), and the southern Pacific coast (Aguilar et al. 2005). 
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2.2.2.2.5 Summary 

All studies indicate that changes in heavy precipitation frequencies are always higher 

than changes in precipitation totals and, in some regions, an increase in heavy and/or 

very heavy precipitation occurred while no change or even a decrease in precipitation 

totals was observed (e.g., in the summer season in central Mexico). There are regional 

variations in where these changes are statistically significant (Fig. 2.8). The most 

significant changes occur in the central U.S., central Mexico, southeastern, northern and 

western Canada, and southern Alaska. These changes have resulted in a wide range of 

impacts, including human health impacts (Chapter 1, Box 1.3). 

 

2.2.2.3 Monthly to Seasonal Heavy Precipitation 

On the main stems of large river basins, significant flooding will not occur from short 

duration extreme precipitation episodes alone. Rather, excessive precipitation must be 

sustained for weeks to months. The 1993 Mississippi River flood, which resulted in an 

estimated $17 billion in damages, was caused by several months of anomalously high 

precipitation (Kunkel et al. 1994). 

 

A time series of the frequency of 90-day precipitation totals exceeding the 20-year return 

period (a simple extension of the approach of Kunkel et al. 2003) indicates a statistically 
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significant upward trend (Fig. 2.9). The frequency of such events during the last 25 years 

is 20% higher than during any earlier 25-year period. Even though the causes of multi-

month excessive precipitation are not necessarily the same as for short duration extremes, 

both show moderately high frequencies in the early 20th Century, low values in the 1920s 

and 1930s, and the highest values in the past 2-3 decades. The trend
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35 over the entire 

period is highly statistically significant. 

 

2.2.2.4 North American Monsoon 

Much of Mexico is dominated by a monsoon type climate with a pronounced peak in 

rainfall during the summer (June through September) when up to 60% to 80% of the 

annual rainfall is received (Douglas et al., 1993; Higgins et al., 1999 and Cavazos et al., 

2002). Monsoon rainfall in southwest Mexico is often supplemented by tropical cyclones 

moving along the coast. Farther removed from the tracks of Pacific tropical cyclones, 

interior and northwest sections of Mexico receive less than 10% of the summer rainfall 

from passing tropical cyclones (Fig. 2.10; Englehart and Douglas 2001). The main 

influences on total monsoon rainfall in these regions rests in the behavior of the monsoon 

as defined by its start and end date, rainfall intensity and duration of wet and dry spells 

(Englehart and Douglas 2006). Extremes in any one of these parameters can have a 

strong effect on the total monsoon rainfall. 

 

The monsoon in northwest Mexico has been studied in detail because of its singular 

importance to that region and because summer rainfall from this core monsoon region 
 

35 The data were first subjected to a square root transformation to produce a data set with an approximate 
normal distribution; then least squares regression was applied. Details can be found in the Appendix, 
Example 4. 
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spills over into the U.S. Desert Southwest (Douglas et al., 1993; Higgins et al. 1999, 

Cavazos et al. 2002). Based on long term data from 8 stations in southern Sonora, the 

summer rains have become increasingly late in arriving (Englehart and Douglas 2006) 

and this has had strong hydrologic and ecologic repercussions for this northwest core 

region of the monsoon. Based on linear trend, the mean start date for the monsoon has 

been delayed almost 10 days (9.89 days with a significant trend of 1.57 days per decade) 

over the past 63 years (Figure 2.11a). Because extended periods of intense heat and 

desiccation typically precede the arrival of the monsoon, the trend toward later starts to 

the monsoon will place additional stress on the water resources and ecology of the region 

if continued into the future. 
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Accompanying the tendency for later monsoon starts, there also has been a notable 

change in the “consistency” of the monsoon as indicated by the average duration of wet 

spells in southern Sonora (Figure 2.11b). Based on a linear trend, the average wet spell36 

has decreased by almost one day (0.88 days with a significant trend of -0.14 days per 

decade) from nearly four days in the early 1940s to slightly more than three days in 

recent years. The decrease in wet spell length indicates a more erratic monsoon is now 

being observed. Extended periods of consecutive days with rainfall are now becoming 

less common during the monsoon. These changes can have profound influences on 

surface soil moisture levels which affect both plant growth and runoff in the region. 

 

 
36 For southern Sonora, Mexico, wet spells are defined as the mean number of consecutive days with mean 
regional precipitation >1mm.  
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A final measure of long term change in monsoon activity is associated with the change in 

rainfall intensity over the past 63 years (Figure 2.11c). Based on linear trend, rainfall 

intensity
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37 in the 1940s was roughly 5.6mm per rain day, but in recent years has risen to 

nearly 7.5mm per rain day38. Thus, while the summer monsoon has become increasingly 

late in arriving and wet spells have become shorter, the average rainfall during rain 

events has actually increased very significantly by 17% or 1.89mm over the 63 year 

period (0.3 mm per decade) as well as the intensity of heavy precipitation events (Fig. 

2.9). Taken together, these statistics indicate that the rainfall in the core region of the 

monsoon (i.e., northwest Mexico) has become more erratic with a tendency towards high 

intensity rainfall events countering the tendency towards a shorter monsoon with shorter 

wet spells. 

 

Variability in Mexican monsoon rainfall shows modulation by large-scale climate modes. 

Englehart and Douglas (2002) demonstrate that a well developed inverse relationship 

exists between ENSO and total seasonal rainfall (June-September) over much of Mexico, 

but the relationship is only operable in the positive phase of the PDO. Evaluating 

monsoon rainfall behavior on intraseasonal time scales, Englehart and Douglas (2006) 

demonstrate that rainfall intensity (mm/rain day) in the core region of the monsoon is 

related to PDO phase with the positive (negative) phase favoring relatively high (low) 

intensity rainfall events. Analysis indicates that other rainfall characteristics of the 

monsoon respond to ENSO with warm events favoring later starts to the monsoon and 

 
37 Daily rainfall intensity during the monsoon is defined as the regional average rainfall for all days with 
rainfall > 1mm. 
38 The linear trend in this time series is significant at the p=0.01 level 
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shorter length wet spells (days) with cold events favoring opposite behavior (Englehart 

and Douglas 2006).  
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2.2.2.5 Tropical Storm Rainfall in Western Mexico 

Across southern Baja California and along the southwest coast of Mexico, 30% to 50% of 

warm season rainfall (May-November) is attributed to tropical cyclones (Fig. 2.10) and in 

years heavily affected by tropical cyclones (upper 95th percentile) 50% to 100% of the 

summer rainfall comes from tropical cyclones. In this region of Mexico, there is a long 

term, upward trend in tropical cyclone-derived rainfall at both Manzanillo 

(41.8mm/decade; Fig. 2.12a) and Cabo San Lucas (20.5mm/decade)39. This upward trend 

in tropical cyclone rainfall has led to an increase in the importance of tropical cyclone 

rainfall in the total warm season rainfall for southwest Mexico (Fig. 2.12b) and this has 

resulted in a higher ratio of tropical cyclone rainfall to total warm season rainfall. Since 

these two stations are separated by more than 700km, these significant trends in tropical 

cyclone rainfall imply large scale shifts in the summer climate of Mexico. 

 

This recent shift in emphasis on tropical cyclone warm season rainfall in western Mexico 

has strong repercussions as rainfall becomes less reliable from the monsoon and becomes 

more dependent on heavy rainfall events associated with passing tropical cyclones. Based 

on the large scale and heavy rainfall characteristics associated with tropical cyclones, 

dams in the mountainous regions of western Mexico are often recharged by strong 

 
39 The linear trends in tropical cyclone rainfall at these two stations are significant at the p=0.01 and p=0.05 
level, respectively. 
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tropical cyclone events which therefore have positive benefits for Mexico despite any 

attendant damage due to high winds or flooding. 

2819 

2820 

2821 

2822 

2823 

2824 

2825 

2826 

2827 

2828 

2829 

2830 

2831 

2832 

2833 

2834 

2835 

2836 

2837 

2838 

2839 

2840 

                                                

 

This trend in tropical cyclone-derived rainfall is consistent with a long term analysis of 

near-shore tropical storm tracks along the west coast of Mexico (storms passing within 5° 

of the coast) which indicates an upward trend in the number of near shore storms over the 

past 50 years (Fig. 2.12c). While the number of tropical cyclones occurring in the entire 

east Pacific Basin is uncertain prior to the advent of satellite tracking in about 1967, it 

should be noted that the long term data sets for near shore storm activity (within 5° of the 

coast) are considered to be much more reliable due to coastal observatories and heavy 

ship traffic to and from the Panama Canal to Pacific ports in Mexico and the United 

States. The number of near shore storm days (storms less than 550km from the station) 

has increased by 1.3 days/decade in Manzanillo and about 0.7days/decade in Cabo San 

Lucas (1949-2006)40. The long term correlation between tropical cyclone days at each 

station and total tropical cyclone rainfall is r = 0.61 for Manzanillo and r = 0.37 for Cabo 

San Lucas, illustrating the strong tie between passing tropical cyclones and the rain that 

they provide to coastal areas of Mexico. 

 

Interestingly, the correlations between tropical cyclone days and total tropical cyclone 

rainfall actually drop slightly when based only on the satellite era, 1967-2006 ( r = 0.54 

for Manzanillo and r = 0.31 for Cabo San Lucas). The fact that the longer time series has 

the higher set of correlations shows no reason to suggest problems with near shore 

 
40 The linear trends in near shore storm days are significant at the p=0.05 level and p=0.10 level, 
respectively. 
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tropical cyclone tracking in the pre-satellite era. The lower correlations in the more recent 

period between tropical cyclone days and total tropical cyclone rainfall may be tied to 

tropical cyclone derived rainfall rising at a faster pace compared to the rise in tropical 

cyclone days. In other words, tropical cyclones are producing more rain per event than in 

the earlier 1949-1975 period when SSTs were colder. 
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2.2.2.6 Tropical Storm Rainfall in the Southeastern United States 

Tropical cyclone-derived rainfall along the southeastern coast of the United States on a 

century time scale has changed insignificantly in summer (when no century-long trends 

in precipitation was observed) as well as in autumn (when the total precipitation 

increased by more than 20% since the 1900s; Groisman et al. 2004).  

 

2.2.3 Storm Extremes 

2.2.3.1 Tropical Cyclones 

2.2.3.1.1 Introduction  

Each year, about 90 tropical cyclones develop over the world's oceans, and some of these 

make landfall in populous regions, exacting heavy tolls in life and property. Their 

occurrence is often statistically modeled as a Poisson process. The global number has 

been quite stable since 1970, when global satellite coverage began in earnest, having a 

standard deviation of 10 and no evidence of any substantial trend (e.g. Webster et al 

1995). However,, there is some evidence for trends in storm intensity and/or duration 

(e.g. Holland and Webster 2007 and quoted references for the North Atlantic; Chan 2000 

for the Western North Pacific), and there is substantial variability in tropical cyclone 
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frequency within each of the ocean basins they affect. Regional variability occurs on all 

resolved time scales, and there is also some evidence of trends in certain measures of 

tropical cyclone energy, affecting many of these regions and perhaps the globe as well.  
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There are at least two reasons to be concerned with such variability. The first and most 

obvious is that tropical cyclones rank with flash floods as the most lethal and expensive 

natural catastrophes, greatly exceeding other phenomena such as earthquakes. In 

developed countries, such as the U.S., they are enormously costly: Hurricane Katrina is 

estimated to have caused in excess of $80 billion 2005 dollars in damage, and killed more 

than 1500 people. Death and injury from tropical cyclones is yet higher in developing 

nations; for example, Hurricane Mitch of 1998 took more than 11,000 lives in Central 

America. Any variation or trend in tropical cyclone activity is thus of concern to coastal 

residents in affected areas, compounding trends related to societal factors such as 

changing coastal population.  

 

A second, less obvious and more debatable issue is the possible feedback of tropical 

cyclone activity on the climate system itself. The inner cores of tropical cyclones have 

the highest specific entropy content of any air at sea level, and for this reason such air 

penetrates higher into the stratosphere than is the case with other storm systems. Thus 

tropical cyclones may play a role in injecting water and trace gases and microscopic 

airborne particles into the upper troposphere and lower stratosphere, though this idea 

remains largely unexamined. There is also considerable evidence that tropical cyclones 

vigorously mix the upper ocean, affecting its circulation and biogeochemistry, perhaps to 
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the point of having a significant effect on the climate system. Since the current generation 

of coupled climate models greatly under-resolves tropical cyclones, such feedbacks are 

badly underrepresented, if they are represented at all.  
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For these reasons, it is important to quantify, understand, and predict variations in 

tropical cyclone activity. The following sections review current knowledge of these 

variations on various time scales. 

 

2.2.3.1.2 Data Issues 

Quantifying tropical cyclone variability is limited, sometimes seriously, by a large suite 

of problems with the historical record of tropical cyclone activity. In the North Atlantic 

and eastern North Pacific regions, responsibility for the tropical cyclone database rests 

with NOAA's National Hurricane Center (NHC), while in other regions, archives of 

hurricane activity are maintained by several organizations, including the U.S. Navy's 

Joint Typhoon Warning Center (JTWC), the Japan Meteorological Agency (JMA), the 

Hong Kong Observatory (HKO) and the Australian Bureau of Meteorology (BMRC). 

The data, known as ``best track'' data (Jarvinen et al. 1984; Chu et al. 2002), comprise a 

global historical record of tropical cyclone position and intensity, along with more recent 

structural information. Initially completed in real time, the best tracks are finalized by 

teams of forecasters update the best track data at the end of the hurricane season in each 

ocean basin using data collected during and after each hurricane's lifetime.  

 

It should first be recognized that the primary motivation for collecting data on tropical 

cyclones was initially to support real-time forecasts and this remains the case in many 
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regions today. From the 1970s onwards increasing emphasis has been placed on 

improving the archive for climate purposes, and on extending the record back to include 

historical systems (e.g. Laurensz 1977; Neumann 1993; Landsea et al 2004). 

Unfortunately, improvements in measurement and estimation techniques have often been 

implemented with little or no effort to calibrate against existing techniques and with poor 

documentation where such calibrations were done. Thus the available tropical cyclone 

data contain an inhomogeneous mix of changes in quality of observing systems, reporting 

policies, and the methods utilized to analyze the data 
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It remains a scientific tragedy that insufficient effort is expended in re-examining and 

quality controlling the tropical cyclone record on a year to year basis, particularly outside 

the Atlantic and eastern North Pacific regions. Efforts are ongoing to reanalyze the 

historic best track data, but such a posteriori reanalyses are less than optimal because not 

all of the original data that the best track was based on are readily available. 

 

Documentation of the occurrence of tropical cyclones is thought to be reliable back to 

about 1945 in the Atlantic and 1970 in the Eastern Pacific (e.g. Holland and Webster 

2007 and references therein), and back to about 1975 for the Western and Southern 

Pacific basins, thanks to earth-orbiting satellites (e.g. Holland 1981). Until the launch of 

MeteoSat-7 in 1998, the Indian Oceans were seen only obliquely, but storm counts may 

still be expected to be accurate after 1977. Before those periods, storms could and 

undoubtedly remain undetected, especially if they did not pass near ships at sea or land 

masses. For the North Atlantic it is likely that up to 3 storms per year were missing 
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before 1900 dropping to zero by the early 1960s (Holland and Webster 2007; Chang and 

Guo 2007). Estimates of the duration of storms are considered to be less reliable prior to 

the 1970’s due particularly to a lack of good information on their time of genesis. Since 

the 1970s storms were more accurately tracked throughout their lifetimes by 

geostationary satellites.  
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Estimates of storm intensity are far less reliable, and this remains true for large portions 

of the globe even today. Airborne hurricane reconnaissance flight became increasingly 

routine in the North Atlantic and western North Pacific regions after 1945, but was 

discontinued in the western North Pacific region in 1987. Some missions are today being 

conducted under the auspices of the government of Taiwan. However airborne 

reconnaissance only samples a small fraction of storms, and then only over a fraction of 

their lifetimes; moreover, good, quantitative estimates of wind speeds from aircraft did 

not become available until the late 1950s. Beginning in the mid 1970s, tropical cyclone 

intensity has been estimated from satellite imagery. Until relatively recently, techniques 

for doing so were largely subjective, and the known lack of homogeneity in both the data 

and techniques applied in the post-analyses has resulted in significant skepticism 

regarding the consistency of the intensity estimates in the data set. This lack of temporal 

consistency renders the data suspect for identifying trends, particularly in metrics related 

to intensity. 

 

Recent studies have addressed these known data issues. Kossin et al. (2007a) constructed 

a more homogeneous record of hurricane activity and found remarkably good agreement 
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in both variability and trends between their new record and the best track data in the N. 

Atlantic and Eastern Pacific basins during the period 1983–2005. They concluded that the 

best track maintained by the NHC does not appear to suffer from data quality issues 

during this period. On the other hand, they were not able to corroborate the presence of 

upward intensity trends in any of the remaining tropical cyclone-prone ocean basins. This 

could be due to inaccuracies in the satellite best tracks, or could be due to the training of 

the Kossin et al technique on North Atlantic data. This is supported by Wu et al. (2006), 

who considered Western Pacific best track data constructed by other agencies (HKMO 

and JMA) who construct best track data for the western North Pacific. Harper and 

Callaghan (2006) report on reanalyzed data from the Southeastern Indian Ocean and 

showed some biases, but a remaining upward intensity trend. These studies underscores 

the need for improved care in analyzing tropical cyclones and in obtaining better 

understanding of the climatic controls of tropical cyclone activity beyond SST-based 

arguments alone. 
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The standard tropical cyclone databases do not usually contain information pertaining to 

the geometric size of tropical cyclones Exceptions include the Australian region and the 

enhanced database for the North Atlantic over the last few decades. A measure of size of 

a tropical cyclone is a crucial complement to estimates of intensity as it relates directly to 

storm surge and damage area associated with landfalling storms. Such size measures can 

be inferred from aircraft measurements and surface pressure distributions, and can now 

be estimated from satellite imagery (e.g. Mueller et al. 2006; Kossin et al. 2007b).  
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2.2.3.1.3 Low-frequency Variability and Trends of Tropical cyclone Activity Indices 

“Low frequency” variability is here defined as variations on time scales greater than 

those associated with ENSO (i.e. more than 3-4 years). Several papers in recent years 

have quantified interdecadal variability of tropical cyclones in the Atlantic (Goldenberg 

et al., 2001; Bell and Chelliah, 2006) and the western North Pacific (Chan and Shi, 1996), 

attributing most of the variability to natural interdecadal variability of regional climates 

in the Atlantic and Pacific, respectively. In the last few years, however, several papers 

have attributed both low frequency variability and trends in tropical cyclone activity to 

changing radiative forcing owing to anthropogenic sulfate aerosols and greenhouse gases. 

Emanuel (2005a) developed a “Power Dissipation Index” (PDI) of tropical cyclones, 

defined as the sum of the cubed estimated maximum sustained surface wind speeds at 6-

hour intervals accumulated over each Atlantic tropical cyclone from the late 1940s to 

2003. Landsea (2005) commented on the quality of data comprising the index. An 

updated version of this analysis (Emanuel 2007), shown in Fig. 2.13, confirms that there 

has been a substantial increase in tropical cyclone activity since about 1970, and indicates 

that the low-frequency Atlantic PDI variations are strongly correlated with low-frequency 

variations in tropical Atlantic SSTs. Based on this analysis, it is likely that hurricane 

activity, as measured by the Power Dissipation Index (PDI), has increased substantially 

since the 1950s and 60s in association with warmer Atlantic SSTs. The magnitude of this 

increase depends on the adjustment to the wind speed data from the 1950s and 60s 

(Landsea 2005; Emanuel 2007). It is very likely that PDI has generally tracked SST 

variations on decadal time scales in the tropical Atlantic since 1950 and likely that it also 
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generally tracked the secular increase of SST. Confidence in these statistics prior to the 

late 1940s is low, due mainly to the decreasing confidence in hurricane duration and 

intensity observations. The PDI in the eastern Pacific has decreased since 1980 (Kossin et 

al. 2007). 
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The Power Dissipation Index for U.S. landfalling tropical cyclones has not increased 

since the late 1800s (Landsea 2005). Pielke (2005) noted that there are no evident trends 

in observed damage in the North Atlantic region, after accounting for population 

increases and coastal development. However, Emanuel (2005b) notes that a PDI series 

such as Landsea's (2005) based on only U.S. landfalling data, contains only about 1 

percent of the data that Emanuel's (2005a) basin-wide PDI contains, which is based on all 

storms over their entire lifetimes. Thus a trend in basin-wide PDI may not be detectable 

in U.S. landfalling PDI since the former index has a factor of 10 advantage in signal to 

noise ratio. 

 

Figure 2.14 (from Holland and Webster 2007), indicates that there has been no distinct 

trend in the mean intensity of all Atlantic storms, hurricanes, and major hurricanes. A 

distinct increase in the most intense storms occurred around the time of onset of aircraft 

reconnaissance, but this is considered to be largely due to better observing methods. 

Holland and Webster also found that the overall proportion of hurricanes has remained 

remarkably constant during the 20th century at around 50%, and there has been a marked 

oscillation in major hurricane proportions, which has no observable trend. 

Webster et al. (2005) reported that the number of category 4 and 5 hurricanes has almost 
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doubled globally over the past three decades. The recent reanalysis of satellite data 

beginning in the early 1980s by Kossin et al. (2007a) support these results in the Atlantic 

although the results in the remaining basins were not corroborated.  
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The recent Emanuel and Webster et al. studies have generated much debate in the 

hurricane research community, particularly with regard to homogeneity of the tropical 

cyclone data over time and the required adjustments (e.g. Landsea 2005; Knaff and 

Sampson 2006; Chan 2006; Hoyos et al. 2006; Landsea et al. 2006; Sriver and Huber 

2006; Klotzbach 2006; Elsner et al. 2006; Maue and Hart 2007; Manning and Hart 2007; 

Holland and Webster 2007, Landsea 2007, Mann et al 2007, Holland 2007). Several of 

these studies argue that data problems preclude determination of significant trends in 

various tropical cyclone measures, while others provide further evidence in support of 

reported trends. In some cases, differences between existing historical data sets 

maintained by different nations can yield strongly contrasting results (e.g., Kamahori et 

al. 2006).  

 

Several studies have examined past regional variability in tropical cyclone tracks (Wu et 

al. 2005; Xie et al. 2005; Vimont and Kossin 2007; Kossin and Vimont 2007). Thus far, 

no clear long-term trends in this metric have been reported, but there is evidence that 

Atlantic tropical cyclone formation regions have undergone systematic long-term shifts to 

more eastward developments (Holland 2007). These shifts affect track and duration, 

which subsequently affects intensity. The modulation of the Atlantic tropical cyclone 

genesis region occurs through systematic changes of the regional SST and circulation 
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patterns. Thus SST affects intensity not just through thermodynamic pathways that are 

local to the storms, but also through changes in basinwide circulation patterns (Kossin 

and Vimont 2007).  
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In summary, we conclude that Atlantic tropical storm and hurricane destructive potential 

as measured by the Power Dissipation Index (which combines storm intensity, duration, 

and frequency) has increased. This increase is substantial since about 1970, and is likely 

substantial since the 1950s and 60s, in association with warming Atlantic sea surface 

temperatures. 

 

2.2.3.1.4 Low-frequency Variability and Trends of Tropical Cyclone Counts 

Mann and Emanuel (2006) reported that Atlantic tropical cyclone counts closely track 

low-frequency variations in tropical Atlantic SSTs, including a long-term increase since 

the late 1800s and early 1900s (see also Fig. 2.15 from Holland and Webster 2007). 

There is currently debate on the relative roles of internal climate variability (e.g., 

Goldenberg et al. 2001) versus radiative forcing, including greenhouse gases, and sulfate 

aerosols (Mann and Emanuel 2006; Santer et al 2006) in producing the multi-decadal 

cooling of the tropical North Atlantic. This SST variation is correlated with reduced 

hurricane activity during the 1970s and 80s relative to the 1950s and 60s or to the period 

since 1995 (see also Zhang et al. 2007).  

 

On a century time scale, time series of tropical storm frequency in the Atlantic (Fig. 2.15) 

show substantial interannual variability and a marked increase (of over 100%) since 
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about 1900. This increase occurred in two sharp jumps of around 50%, one in the 1930s 

and another that commenced in 1995 and has not yet stabilized. Holland and Webster 

(2007) have suggested that these sharp jumps are transition periods between relatively 

stable climatic periods of tropical cyclone frequency (Fig. 2.15). Figure 2.15 uses 

unadjusted storm—an issue which will be addressed further below.  
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For tropical cyclone frequency, the finding that the largest recorded increases over the 

past century have been in the eastern North Atlantic (e.g., see recent analysis in Vecchi 

and Knutson 2007; Holland 2007), which historically has been the least well observed, 

has led to questions of whether this may be due to data issues (Landsea et al. 2004; 

Landsea 2007). The major observing system change points over the past century have 

been:  

• The implementation of routine aircraft reconnaissance in 1944-45; 

• The use of satellite observations and related analysis procedures from the late 

1960s onwards; and, 

• A change in analysis practice by the National Hurricane Center from 1970 to 

include more mid-latitude systems.  

In addition, there have steady improvements in techniques and instrumentation, which 

may also introduce some spurious trends.  

 

Landsea (2007) has used the fraction of storms striking land in the satellite and pre-

satellite era to estimate the number of missing storms per year in the pre-satellite era 

(1900 to 1965) to be about 3.2 storms per year. This assumes that the fraction of all 
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storms that strike land in the real world has been relatively constant over time, which has 

been shown to be incorrect by Holland (2007). Holland also shows that the smaller 

fraction of storms that made landfall during the past fifty years (1956-2005) compared to 

the previous fifty years (1906-1955) is directly related to changes in the main formation 

location regions, with a decrease in western Caribbean and Gulf of Mexico developments 

and an increase in the eastern Atlantic.  
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Alternative approaches to estimating the earlier data deficiencies have been used by 

Chang and Guo (2007), Vecchi and Knutson (2007) and Mann et al (2007). The first two 

studies use historical ship tracks from the pre-satellite era, combined with storm track 

information from the satellite era, to infer an estimated adjustment for missing storms in 

the pre-satellite era (assumed as all years prior to 1965). Mann et al used statistical 

climate relationships to estimate potential errors. Vecchi and Knutson found 2.5 storms 

per year were missing prior to 1900, decreasing to zero by 1960. Chang and Guo found 

1.2 storms missing around 1910 also decreasing to zero by 1960. Mann et al, estimated a 

more modest undercount bias of 1 per year back to 1970. The adjusted time series by 

Vecchi and Knutson (Fig. 2.16) suggest a statistically significant (p=0.003 or less) 

positive linear trend in adjusted storm counts of 55%/century since 1900. However, 

beginning the trend from 1878, the trend through 2006 is smaller (+15%/century) and not 

statistically significant at the p=0.05 level (p-value of about 0.3)41. It is notable that the 

degree of increase over the past century depends on the analysis methodology. When 

using a linear trend, as above, the increase from 1900 to 2005 is around 55% in the 

adjusted storm counts. However, using the essentially non-linear approach by Holland 
 

41 Details of the statistical analysis are given in the Appendix, Example 5. 
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and Webster (2007) of separate climatic regimes, the increase in adjusted storm counts 

from the 1900-1920 regime to the 1995-2006 regime is 85%. The trend from 1900 begins 

near a local minimum in the time series and ends with the recent high activity, perhaps 

exaggerating the significance of the trend due to multidecadal variability. On the other 

hand high levels of activity during the late 1800s, which lead to the insignificant trend 

result, are indirectly inferred in large part from lack of ship track data, and the uncertainty 

in the late 1800s storm counts is greater than that during the 1900s.  
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Hurricane frequency closely follows the tropical cyclone variability, with a stable 50% of 

all cyclones developing to hurricane strength over much of the past century (Holland and 

Webster 2007). However, there has been a concomitant increase in both overall storm 

frequency and the proportion of major hurricanes since 1995. Taken together, these result 

in a very sharp increase in major hurricane numbers, which can be associated with 

changes of SST (Holland and Webster 2007, Webster et al 2005). The PDI trend reported 

by Emanuel (2007) is largely due to this increase in major hurricane numbers.  

 

Atlantic basin total hurricane counts, major hurricane counts, and U.S. landfalling 

hurricane counts as recorded in the HURDAT data base for the period 1851-2006 are 

shown in Fig. 2.17. These have not been adjusted for missing storms, as there was likely 

less of a tendency to miss both hurricanes and major hurricanes in earlier years compared 

to tropical storms, largely because of their intensity and damage potential. There is a 

slight negative trend in U.S. landfalling hurricane frequency. The basin-wide  major 

hurricane counts increase over the long-term. For total hurricanes, trends to 2005 
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beginning in 1881 through 1921 are positive and statistically significant (p=0.05) 

whereas trends beginning in 1851 through 1871 are positive but not statistically 

significant, owing to the prolonged active period in the late 1800s. For major hurricanes, 

trends beginning in 1851 through 1911 were positive and statistically significant, whereas 

the trend beginning from 1921 was positive but not statistically significant
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42.  

 

Regional storm track reconstructions for the basin (Vecchi and Knutson 2007; Holland 

and Webster 2007b(?)) indicate a decrease in tropical storm occurrence in the western 

part of the basin, consistent with the minimal change or slight decrease in U.S. 

landfalling tropical storm or hurricane counts. These analyses further suggest that—after 

adjustment for missing storms-- a century-scale increase in basin-wide Atlantic tropical 

storm occurrence has occurred, with increases mainly in the central and eastern parts of 

the basin (also consistent with Chang and Guo 2007). From a climate variability 

perspective, Kossin and Vimont (2007) have shown that a positive phases of the Atlantic 

Meridional Mode is correlated to an systematic eastward extension of the genesis region 

in the Atlantic. Elsner (1996) and Holland and Webster (2007) have shown that the 

increasing frequency over the past 30 years is associated with a changeover to equatorial 

developments and particularly to developments in the eastern equatorial region. 

 

In summary, we conclude that there have been fluctuations from decade to decade in 

tropical cyclone numbers, and data uncertainty is larger in the earlier parts of the record, 

particularly prior to aircraft reconnaissance beginning in the mid-1940s. While there are 

undoubtedly data deficiencies and missing storms in the early record, they appear 
 

42 Further details of the statistical analysis are given in the Appendix, Example 6. 
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insufficient to remove the observed positive trends in basin-wide tropical storm counts. It 

is likely that that the annual numbers of tropical storms/hurricanes and major hurricanes 

in the North Atlantic basin have increased significantly over the past 100 years in close 

relationship with warming equatorial Atlantic sea surface temperatures. The positive 

linear trend in all storm categories extends back to the 1800s, but is generally not 

significant prior to 1890. The increasingly decreased confidence in the data before 1900 

precludes any definitive conclusions from this era. The increases in basin-wide storm 

counts has occurred primarily from an eastward shift in the formation and occurrence 

regions and there has been a distinct decrease in western Caribbean and Gulf of Mexico 

developments. As a result, North American mainland land-falling hurricanes have 

remained quasi-static over the past century.  
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2.2.3.1.5 Paleoclimate Proxy Studies of Past Tropical Cyclone Activity 

Paleotempestology is an emerging field of science that attempts to reconstruct past 

tropical cyclone activity using geological proxy evidence or historical documents. This 

work attempts to expand knowledge about hurricane occurrence back in time beyond the 

limits of conventional instrumental records, which cover roughly the last 150 years. A 

broader goal of paleotempestology is to help researchers explore physically based 

linkages between prehistoric tropical cyclone activity and other aspects of past climate.  

 

Among the geologically based proxies, overwash sand layers deposited in coastal lakes 

and marshes have proven to be quite useful (Liu and Fearn, 1993, 2000; Liu 2004; 

Donnelly and Webb 2004). Similar methods have been used to produce proxy records of 
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hurricane strikes from back-barrier marshes in Rhode Island and New Jersey extending 

back about 700 years (Donnelly et al. 2001a, 2001b; Donnelly et al. 2004; Donnelly and 

Webb 2004), and more recently in the Caribbean (Donnelly 2005). Stable isotope signals 

in tree rings (Miller et al. 2006), cave deposits (Frappier et al. 2007) and coral reef 

materials are also being actively explored for their utility in providing paleoclimate 

information on tropical cyclone activity. Historical documents apart from traditional 

weather service records (newspapers, plantation diaries, Spanish and British historical 

archives, etc.) can also be used to reconstruct some aspects of past tropical cyclone 

activity (Ludlam, 1963; Millas, 1968; Fernandez-Partagas and Diaz, 1996; Chenoweth, 

2003; Mock 2004; Garcia Herrera et al. 2004; 2005; Liu et al. 2001; Louie and Liu 2003; 

Louie and Liu 2004).  
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Donnelly and Woodruff's (2007) proxy reconstruction the past 5,000 years of intense 

hurricane activity in the western North Atlantic suggests that hurricane variability has 

been strongly modulated by El Nino during this time and that the past 250 years has been 

relatively active in the context of the past 5,000 years. Nyberg et al. (2007) suggest that 

major hurricane activity in the Atlantic was anomalously low in the 1970s and 1980s 

relative to the past 270 years. As with Donnelly and Woodruff, their proxy measures 

were located in the western part of the basin (near Puerto Rico), and in their study, 

hurricane activity was inferred indirectly through statistical associations with proxies for 

vertical wind shear and SSTs.  
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2.2.3.2 Strong Extratropical Cyclones Overview 

Extra-tropical cyclone (ETC)43 is a generic term for any non-tropical, large-scale low 

pressure storm system that develops along a boundary between warm and cold air 

masses. These types of cyclonic44 disturbances are the dominant weather phenomenon 

occurring in the mid- and high-latitudes during the cold season because they are typically 

large and often have associated severe weather. The mid-latitude North Pacific and North 

Atlantic basins, between ~30oN-60 oN, are regions where large-numbers of ETC’s 

develop and propagate across the ocean basins each year. Over land or near populous 

coastlines, strong or extreme ETC events generate some of the most devastating impacts 

associated with extreme weather and climate, and have the potential to affect large areas 

and dense population centers. A notable example was the blizzard of 12-14 March 1993 

along the East Coast of the U.S. that is often referred to as the “super-storm” or “storm of 

the century”45 (e.g., Kocin et al.1995;). Over the ocean, strong ETCs generate high waves 

that can cause extensive coastal erosion when combined with storm surge as they reach 

the shore, resulting in significant economic impact. Rising sea level extends the zone of 

impact from storm surge and waves farther inland, and will likely result in increasingly 

greater coastal erosion and damage from storms of equal intensity. 

 

 

 
43 The fundamental difference between the characteristics of extra-tropical and tropical cyclones is that 
ETC’s have a cold core and their energy is derived from baroclinic instability, while tropical cyclones have 
a warm core and derive their energy from barotropic instability (Holton 1979). 
44 A term applied to systems rotating in the counter-clockwise direction in the Northern Hemisphere. 
45 The phrase “Storm of the Century” is also frequently used to refer to the 1991 Halloween ETC along the 
Northeast US coast, immortalized in the movie The Perfect Storm 
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Studies of changes in strong ETC’s and associated frontal systems have focused on 

locations where ETCs form and the resulting storm tracks, frequencies, and intensities46. 

The primary constraint on these studies has been the limited period of record available 

that has the best observation coverage for analysis and verification of results, with most 

research focused on the latter half of the 20th century. Model reanalysis data is used in the 

majority of studies, either NCEP-NCAR (Kalnay et al. 1996) or ERA-40 (Upalla et al. 

2005) datasets, although prior to 1965 data quality have been shown to be less reliable 

 

It is important to stress that any observed changes in ETC storm tracks, frequencies or 

intensities are highly dependent on broad-scale atmospheric modes of variability, and the 

noise associated with this variability is large in relation to any observed linear trend. 

Therefore, detection and attribution of long-term (decadal- to century-scale) changes in 

ETC activity is extremely difficult. 

 

2.2.3.2.1 Variability of Extra-Tropical Cyclone Activity 

Inter-annual and inter-decadal variability of ETC’s is primarily driven by the location and 

other characteristics associated with the Polar jet stream. The mean location of the Polar 

jet is often referred to as the “storm track”. The large-scale circulation is governed by the 

equator-to-pole temperature gradient, which is strongly modulated by SST’s over the 

oceans. The magnitude of the equator-to-pole temperature gradient is of utmost 

 
46 These studies use in situ observations (both surface and upper-air), re-analysis fields, and Atmospheric-
Ocean Global Climate Model (GCM) hind-casts 
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importance in determining the intensity of storms: the smaller (larger) the gradient in 

temperature, the weaker (stronger) the potential energy available for extra-tropical 

cyclone formation. The observed intensity of ETC’s at the surface is related to the 

amplitude of the large-scale circulation pattern, with high-amplitude, negatively tilted 

troughs favoring stronger development of ETC’s at the surface (Sanders and Gyakum 

1980).  
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From a seasonal perspective, the strongest ETC’s are temporally out of phase in the 

Pacific and Atlantic basins, since the baroclinic wave energy climatologically reaches a 

peak in late fall in the North Pacific and in January in the North Atlantic (Nakamura 

1992; Eichler and Higgins 2006). While it remains unclear what the physical basis is for 

the offset in peak storm activity between the two basins, Nakamura (1992) showed 

statistically that when the Pacific jet exceeds 45 m s-1 there is a suppression of baroclinic 

wave energy, even though the low-level regional baroclinicity and strength of the Pacific 

jet are at a maximum (this effect is not evident in the Atlantic basin, since the peak 

strength of the jet across the basin rarely exceeds 45 m s-1). Despite the observed 

seasonal difference in the peak of ETC activity, Chang and Fu (2002) found a strong 

positive correlation between the Pacific and Atlantic storm tracks using monthly mean 

reanalysis data covering 51 winters (1949 to 1999). They found the correlations between 

the two basins remained positive and robust over individual months during winter (DJF) 

or over the entire season (Chang and Fu 2002). 

 

It has been widely documented that the track position, intensity and frequency of ETC’s 
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is strongly modulated on inter-annual time-scales by different modes of variability, such 

as the El Niño/Southern Oscillation (ENSO) phenomenon (Gershunov and Barnett 1998; 

An et al. 2007). In a recent study, Eichler and Higgins (2006) used both NCEP-NCAR 

and ERA-40 reanalysis data to diagnose the behavior of ETC activity during different 

ENSO phases. Their results showed that during El Niño events there is an equator-ward 

shift in storm tracks in the North Pacific basin, as well as an enhancement of the storm 

track along the U.S. East Coast. However, they found significant variability related to the 

magnitude of the El Niño event. During strong El Niños, ETC frequencies peak over the 

North Pacific and along the eastern U.S., from the southeast coast to the Maritime 

Provinces of Canada (Eichler and Higgins 2006), with a weaker track across the Midwest 

from the lee of the Rocky Mountains to the Great Lakes. During weak to moderate El 

Niños, the storm tracks are similar to the strong El Niños, except there is a slight increase 

in the number of ETC’s over the northern Plains and the frequency of ETC activity 

decreases over the mid-Atlantic region. Similar to other previous studies (e. g. Hirsch et 

al. 2001; Noel and Changnon 1998), an inverse relationship typically exists during La 

Niñas; as the strength of La Niña increases, the frequency maxima of East Coast storms 

shifts poleward, the North Pacific storm track extends eastward toward the Pacific 

Northwest, and the frequency of cyclones increases across the Great Lakes region 

(Eichler and Higgins (2006). 
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In addition to ENSO, studies have shown that the Arctic Oscillation (AO) can strongly 

influence the position of storm tracks and the intensity of ETC’s. Previous studies have 

shown that during positive AO conditions Northern Hemisphere cyclone activity shifts 
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poleward (Serreze et al. 1997; Clark et al. 1999). Inversely, during negative AO 

conditions the polar vortex is weaker and cyclone activity shifts southward. Since the 

North Atlantic Oscillation (NAO) represents the primary component of the AO, it has a 

similar affect on storm tracks position, especially over the eastern North Atlantic basin 

(McCabe et al. 2001). For futher information on the different atmospheric modes of 

variability (Chapter 2, Box 2.3). 
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2.2.3.2.2 Changes in Storm Tracks and Extra-Tropical Cyclone Characteristics 

Many studies have documented changes in storm track activity. Specifically, a significant 

pole-ward shift of the storm track in both the Pacific and Atlantic ocean basins has been 

verified by a number of recent studies that have shown a decrease in ETC frequency in 

mid-latitudes, and a corresponding increase in ETC activity in high-latitudes (Wang et al. 

2006a; Simmons and Keay 2002; Paciorek et al. 2002; Graham and Diaz 2001; Geng and 

Sugi 2001; McCabe et al. 2001; Key and Chan 1999; Serreze et al. 1997). Several of 

these studies have examined changes in storm tracks over the entire Northern Hemisphere 

(i.e. McCabe et al. 2001; Paciorek et al. 2002; Key and Chan 1999), while several others 

have focused on the storm track changes over the Pacific (i.e., Graham and Diaz 2001) 

and Atlantic basins (i.e., Geng and Sugi 2001), or both (i.e., Wang and Swail 2001). Most 

of these studies focused on changes in frequency and intensity observed during winter 

(DJF) or the entire cold season (Oct-Mar). However, for spring, summer and autumn, 

Key and Chan (1999) found opposite trends in 1000-hPa and 500-hPa cyclone 

frequencies for both the mid- and high latitudes of the Northern Hemisphere. 
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The standardized annual departures47 of ETC frequency for the entire Northern 

Hemisphere over the period 1959-1997 (Fig. 2.18a,b; McCabe et al. 2001) shows that 

cyclone frequency has decreased for the mid-latitudes (30o-60oN) and increased for the 

high latitudes (60o-90oN). For the 55-year period of 1948-2002, a metric called the 

Cyclone Activity Index (CAI)
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48 was developed by Zhang et al. (2004) to document the 

variability of Northern Hemisphere cyclone activity. The CAI has increased in the Arctic 

Ocean (70o-90oN) during the latter half of the 20th century, while it has decreased in mid-

latitudes (30o-60oN) from 1960 to 1993, which is evidence of a pole-ward shift in the 

average storm track position. Interestingly, the number and intensity of cyclones entering 

the Arctic from the mid-latitudes has increased, particularly during summer (Zhang et al. 

2004). The increasing activity in the Arctic was more recently verified by Wang et al. 

(2006a), who analyzed ETC counts by applying two separate cyclone detection 

thresholds to ERA-40 reanalysis of mean sea level pressure data. Their results showed an 

increase in high latitude storm counts, and a decrease in ETC counts in the mid-latitudes 

during the latter half of the 20th century. 

 

Northern Hemisphere ETC intensity has increased over the period 1959-1997 across both 

mid- and high-latitudes cyclone intensity (McCabe et al. 2001; Fig. 2.18c,d), with the 

upward trend more significant for the high latitudes (0.01 level) than for the mid-latitudes 

 
47 Standardized departures (z scores) were computed for each 5o latitudinal band by subtracting the 
respective 1959-1997 mean from each value and dividing by the respective 1959-1997 standard deviation 
(McCabe et al. 2001). 
48 The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index 
of cyclone activity. The CAI is defined as the sum over all cyclone centers, at a 6-hourly resolution, of the 
differences between the cyclone central SLP and the climatological monthly mean SLP at corresponding 
grid points in a particular region during the month (Zhang et al. 2004). 
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(0.10 level). From an ocean basin perspective, the observed increase in intense ETC’s 

appears to be more robust across the Pacific than the Atlantic. Using reanalysis data 

covering the period 1949-1999, Paciorek et al. (2002) found that extreme wind speeds 

have increased significantly in both basins (Fig. 2.19a,d). Their results also showed that 

the observed upward trend in the frequency of intense cyclones has been more 

pronounced in the Pacific basin (Fig. 2.19c), although the inter-annual variability is much 

less in the Atlantic (Fig. 2.19f). Surprisingly, they found that the overall counts of ETC’s 

showed either no long-term change, or a decrease in the total number of cyclones (Fig. 

2.19b,e). However, this may be a result of the large latitudinal domain used in their study 

(20o-70oN), which included parts of the tropics, sub-tropics, mid- and high latitudes. 
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On a regional scale, ETC activity has increased in frequency, duration and intensity in the 

lower Canadian Arctic during 1953-2002 with the most statistically significant trends 

during winter49 (p=0.05 level; Wang et al. 2006b). In contrast to the Arctic region, 

cyclone activity was less frequent and weaker along the southeast and southwest coasts of 

Canada. Winter cyclone deepening rates (i.e. rates of intensification) have increased in 

the zone around 60oN, but decreased further south in the Great Lakes area and southern 

Prairies-British Columbia region of Canada. This is also indicative of a pole-ward shift in 

ETC activity, and corresponding weakening of ETC’s in the mid-latitudes and an 

increase in observed intensities in the high latitudes. For the period of 1949-1999, the 

intensity of Atlantic ETC’s increased from the 1960’s to the 1990’s during the winter 

 
49 Results based on hourly average sea level pressure data observed at 83 stations 
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season50 (Harnik and Chang 2003). Their results showed no significant trend in the 

Pacific region but this is a limited finding because of a lack of upper-air (i.e. radiosonde) 

data over the central North Pacific
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51 in the region of the storm track peak (Harnik and 

Chang 2003). 

 

There have been very few studies that have analyzed the climatological frequencies and 

intensities of ETC’s across the central U.S., specifically in the Great Lakes region (e.g., 

Lewis 1987; Harmon et al. 1980; Garriott 1903). Over the period 1900 to 1990 the 

number of strong cyclones (≤992 mb) increased significantly across the Great Lakes 

(Angel and Isard 1998). This increasing trend was evident (at the p=0.05 level) both 

annually and during the cold season,. In fact, over the 91-yr period analyzed, they found 

that the number of strong cyclones per year more than doubled during both November 

and December. 

 

In addition to studies using reanalysis data, which have limited record lengths, other 

longer-term studies of the variability of storminess typically use wave or water level 

measurements as proxies for storm frequency and intensity. Along the U.S. West Coast, 

one of the longest continuous climate-related instrumental time series in existence is the 

hourly tide gauge record at San Francisco that dates back to 1858. A derived metric 

called non-tide residuals (NTR)52, which are related to broad-scale atmospheric 

 
50 Results based on gridded rawinsonde observations covering the Northern Hemisphere 
51 Besides the few radiosonde sites located on islands (i.e., Midway or the Azores), most upper-air 
observations over the vast expanses of the North Pacific and Atlantic are from automated pilot reports 
(pireps) that measure temperature, wind speed, and barometric pressure onboard commercial aircraft 
traveling at or near jet stream level (between 200-300 hPa). 
52 Non-tide residuals are obtained by first removing the known tidal component from the water level 
variations using a spectral method; then, variations longer than 30 days and shorter than 2.5 days are 
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circulation patterns across the eastern North Pacific that affect storm track location, 

provides a measure of storminess variability along the California coast (Bromirski et al. 

2003). Average monthly variations in NTR, which are associated with the numbers and 

intensities of all ETCs over the eastern North Pacific, did not change substantially over 

the period 1858-2000 or over the period covered by most ETC reanalysis studies, 1951-

2000. However, the highest 2% of extreme winter NTR (Fig. 2.20), which are related to 

the intensity of the most extreme ETCs, had a significant upward trend since ~1950, with 

a pronounced quasi-periodic decadal-scale variability that is relatively consistent over the 

last 140 yr. Changes in storm intensity from the mid-1970s to early 1980s are also 

suggested by a substantial pressure decreases at an elevation above sea level of about 

3000 m over the eastern North Pacific and North America (Graham 1994), indicating that 

the pattern of variability of extreme storm conditions observed at San Francisco (as 

shown in Fig. 2.20) likely extends over much of the North Pacific basin and the U.S. The 

oscillatory pattern of variability is thought to be influenced by teleconnections from the 

tropics, predominately during ENSO events (Trenberth and Hurrell 1994), resulting in a 

deepened Aleutian low shifted to the east that causes both ETC intensification and a shift 

in storm track. It is interesting to note that peaks in the 5-year moving average in Fig. 

2.20 generally correspond to peaks in extreme rainfall in Fig. 2.10 suggesting that the 

influence of El Niño and broad-scale atmospheric circulation patterns across the Pacific 

that affect sea level variability along the West Coast are associated with storm systems 

that affect rainfall variability across the U.S.. 
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The amplitude and distribution of ocean wave energy measured by ocean buoys is 
 

removed with a bandpass filter. 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 153 of 389 Public Review Draft 

determined by ETC intensity and track location. Changes in long period (>12 sec), 

intermediate period, and short period (<6 sec) components in the wave-energy spectra 

permit inferences regarding the changes over time of the paths of the storms, as well as 

their intensities and resulting wave energies (Bromirski et al. 2005). Analysis of the 

combination of observations from several buoys in the eastern North Pacific supports a 

progressive northward shift of the dominant Pacific storm tracks to the central latitudes 

(section 2.2.3.3). 
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2.2.3.2.3 Nor’easters 

Those ETCs that develop and propagate along the East Coast of the U.S. and southeast 

Canada are often termed colloquially as Nor’easters53. In terms of their climatology and 

any long-term changes associated with this subclass of ETCs, there are only a handful of 

studies in the scientific literature that have analyzed their climatological frequency and 

intensity (Jones and Davis 1995), likely due to a lack of any formal objective definition 

of this important atmospheric phenomenon (Hirsch et al. 2001). 

 

Because waves generated by ETCs are a function of storm size and the duration and area 

over which high winds persist, changes in significant wave heights can also be used as a 

proxy for changes in Nor’easters. Using hindcast wave heights and assigning a minimum 

criterion of open ocean waves greater than 1.6 m in height (a commonly used threshold 

for storms that caused some degree of beach erosion along the mid-Atlantic coast) to 

qualify as a nor’easter, the frequency of nor’easters along the Atlantic coast peaked in the 

 
53 According to the Glossary of Meteorology (Huschke 1959), a nor’easter is any cyclone forming within 

167 km of the East Coast between 30o-40oN and tracking to the north-northeast 
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1950’s, declined to a minimum in the 1970’s, and then increased again to the mid-1980’s 

(Dolan et al. 1988; Davis et al. 1993). 
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An alternate approach utilized by Hirsch et al. (2001) uses pressure, direction of 

movement and wind speed to identify such systems and generically names them as East 

Coast Winter Storms (ECWS)54. Hirsch et al. (2001) defined an ECWS as “strong” if the 

maximum wind speed is greater than 23.2 m s-1 (45 kt). During the period of 1951-1997, 

their analysis showed that there were an average of 12 ECWS events occurring each 

winter (October-April), with a maximum in January, and an average of 3 strong events 

(Fig. 2.21a). They found a general tendency toward weaker systems over the past few 

decades, based on a marginally significant (at the 90% confidence level) increase in 

average storm minimum pressure (not shown). However, their analysis found no 

statistically significant trends in ECWS frequency for all nor’easters identified in their 

analysis, for those storms that occurred over the northern portion of the domain (>35oN), 

or those that traversed full coast (Fig. 2.21b,c) during the 46-year period of record used in 

this study. 

 

Because strong storms over the open ocean generate high amplitude waves, buoy 

measurements of wave height and wave period can be used to infer characteristics of 

ETC variability. The wave power index (WPI) of strong storm-forced wave events 

 
54 According to Hirsch et al. (2001), in order to be classified as an ECWS, an area of low pressure is 
required to (1) have a closed circulation; (2) be located along the east coast of the United States, within the 

quadrilateral bounded at 45oN by 65o and 70oW and at 30oN by 75o and 85oW; (3) show general 
movement from the south-southwest to the north-northeast; and (4) contain winds greater than 10.3 m s-1 
(20 kt) during at least one 6-h period. 
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(significant wave heights > 3 m) measured at deep-water open-ocean NOAA buoys 

44004, 41001, 41002 along the U.S. Atlantic coast (see Figure 2.25 for locations) during 

winter months (October-March, excluding tropical cyclone wave events) shows a 

decreasing trend that is significant at the p=0.05 level amounting to a decrease in ETC-

forced wave power of about 1%/yr (Bromirski 2007). Coupled with no statistically 

significant change in either mean wave height or the number of measurements exceeding 

3 m (implying no change in storm duration and/or the number of strong storms), the 

downward trend in the WPI suggests that winter ETC intensity has decreased since 1980, 

in general agreement with Hirsch et al. (2001). 
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BOX 2.2: Extreme Coastal Storm Impacts: “The Perfect Storm” as a True  

Nor’easter: From a coastal impacts perspective, damage is greatest when large storms 

are propagating towards the coast, which generally results in both a larger storm surge 

and more long period wave energy (resulting in greater run-up causing more 

beach/coastal erosion/damage). Storm intensity (winds) is usually greatest in the right-

front quadrant of the storm (based on the cyclone’s forward movement), so the typical 

track of east coast winter storms propagating parallel to the coast leaves the most intense 

part of the storm out to sea. In contrast to storms propagating parallel to the coast, 

Nor’easters (such as “the Perfect Storm”) that propagate from east-to-west in a retrograde 

track at some point in their lifetime (Fig. 2.22) can generate much greater surge and 

greater long period wave energy, and also potentially have the most intense associated 

winds making landfall along the coast. 
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2.2.3.3 Coastal Waves: Trends of Increasing Heights and Their Extremes 3466 
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The high wind speeds of hurricanes and extratropical cyclones over bodies of water cause 

extremes in the heights and energies of the waves they generate. Seasonal and long-term changes 

in storm intensities and their tracks produce corresponding variations in wave heights and 

periods along coasts, defining their wave climates. Waves generated by extratropical storms 

dominate the oceans at higher latitudes, including the Northeast Pacific along the shores of 

Canada and the west coast of the United States, and along the Atlantic coast of North America 

where they originate from destructive Nor’easters. Tropical cyclones dominate the wave climates 

at lower latitudes during the warm season (June-September), including the southeast Atlantic 

coast of the United States, Gulf of Mexico, and the Caribbean, while hurricanes in the East 

Pacific generate waves along the western shores of Mexico and Central America . The 

magnitude of associated damage from storm waves depends to a large extent on whether the 

storms make landfall, when storm surge, high winds, and heavy rainfall combined with high 

waves cause severe impacts. However, high waves from strong tropical cyclones that reach 

hurricane strength and then track northward along the East Coast as they weaken, can combine 

with extratropical systems, such as the 1991 Halloween Storm (Bromirski 2001; Chapter 2, Box 

2.2), and cause severe coastal erosion and have significant economic impacts (Davis et al. 1993; 

Dolan et al. 1988; Mather et al. 1967). 

 

2.2.3.3.1 The Waves of Extratropical Storms and Hurricanes 

The heights and periods of waves generated by a storm depend on the speed of its winds, the area 

over which the winds blow (the storm’s fetch), and on the duration of the storm, factors that 

determine the amount of energy transferred to the waves. Wave climate variability has been 
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estimated from: (1) direct measurements by buoys; (2) visual observations from ships; (3) wave 

hindcast analyses where wave heights and periods are assessed using forecast models that are run 

retrospectively using observed meteorological data; and (4) in recent years from satellite 

altimetry. The reliability of the wave records ranges widely for these different sources, and 

changes in data-collection methodologies and processing techniques can affect the data 

consistency. However, long records from these sources make it possible to identify long-term 

trends, and to investigate underlying climate controls.  
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In the Northern Hemisphere the hurricane winds are strongest on the right-hand side of the storm 

relative to it track, where its cyclonic winds coincide with the direction of the storm’s 

propagation, in turn producing the highest waves on that side of the storm. They achieve their 

greatest heights in proximity to the wall of the storm’s eye where the winds reach their 

maximum, and systematically decrease outward as the wind speeds are reduced. Extreme heights 

are closely associated with the Saffir-Simpson hurricane classification system, where the central 

atmospheric pressures are lower and the associated wind speeds are higher for the higher 

hurricane categories. A correlation between the meausred wave heights and the central 

atmospheric pressure (Hsu et al. 2000) allows the magnitude of the significant wave height55, 

HS,to be related to the hurricane categories56. Estimates of the maximum HS generated close to 

the wall of the hurricane’s eye on the storm’s leading right quadrant where the wind speeds are 

greatest, range from 6 to 7 m for Category 1 storms to about 20 m and greater for Category 5 

storms. The decrease in observed HS outward from the hurricane’s eye in response to the 

 
55 The “significant wave height” is a commonly used statistical measure for the waves generated by a 
storm, defined as the average of the highest one-third of the measured wave heights 
56 Hsu et al. (2000) have developed the empirical formula Hsmax=0.2(Pn-Pc) where Pc and Pn ~ 1013 mbar 
are respectively the atmospheric pressures at the center and edge of the tropical cyclone, and Hsmax is the 
maximum value of the significant wave height 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 158 of 389 Public Review Draft 

outward decrease in wind speeds, demonstrates that HS is reduced by 50% at approximately a 

distance of 5 times the radius of the eye, typically occurring about 250 km outward from the 

storm’s center (Hsu, et al. 2000). 
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The impression has been, however, that such models under-predict the highest waves of 

Category 4 and 5 storms, and this has led to recent investigations that included the direct 

measurement of waves generated by hurricanes. For example, measurements obtained by six 

wave gauges deployed by the Naval Research Laboratory (NRL) at depths of 60 to 90 m in the 

Gulf of Mexico, when the Category 4 Hurricane Ivan passed directly over the array on 15 

September 2004, recorded significant wave heights ranging from 16.1 to 17.9 m; the largest 

individual wave height reached 27.7 m (Wang et al. 2005). The simple model of Hsu et al. 

(2000) yields a maximum significant wave height of 15.6 m for Ivan’s 935-mbar central 

pressure, seemingly in agreement with the 16-m measured waves. However, the NRL gauges 

were about 30 km outward from the zone of strongest winds and were positioned toward the 

forward face of Ivan rather than in its right-hand quadrant, so Wang et al. (2005) concluded it is 

likely that the maximum significant wave height was greater than 21 m, with the largest 

individual wave heights having been greater than 40 m, indicating that the Hsu et al. (2000) 

empirical formula somewhat under predicts the waves generated by high-category hurricanes. On 

the other hand, hurricane waves from more complex models that use spatially distributed surface 

wind measurements (Tolman et al. 2002) compare well with satellite and buoy observations both 

in deep water and in shallow water as hurricanes make landfall (Moon et al. 2003).  
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Any trend over the years of increasing intensities of hurricanes or of extratropical storms should 

on average be reflected in similar upward trends in associated wave heights. Analyses of wave-

buoy data along both the Atlantic and Pacific coasts of the United States document that wave-

height increases have occurred at some locations since the late 1970s. 
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2.2.3.3.2 Atlantic Coast Waves 

Two analyses have recently been undertaken of the hourly measurements of the significant wave 

heights collected by the buoys of NOAA’s National Data Buoy Center (NDBC) along the U.S. 

Atlantic shore. These analyses, while differing in some important methodological aspects that 

affect some of the results, both show changes in waves generated by hurricanes while the ranges 

of wave heights created by extratropical storms appear to have undergone little change. 

 

Komar and Allan (2007a) analyzed the data from three buoys located in deep water to the east of 

Cape May, New Jersey, Cape Hatteras, North Carolina, and offshore from Charleston, South 

Carolina. These buoys were selected due to their long record lengths and because the sites 

represent a range of latitudes where the wave climate is expected to be affected by both tropical 

hurricanes and extratropical storms (Nor’easters). Separate analyses were undertaken for the 

winter season dominated by extratropical storms and the summer season of hurricanes57. There 

was not a statistically significant change over the decades in the heights of waves generated by 

extratropical storms, but statistically significant increases have occurred for the hurricane-

generated waves. The increases in annual-averaged significant wave heights measured by the 

 
57 The hurricane waves were analyzed for the months of July through September, expected to be dominated 
by tropical cyclones, while the waves of extratropical storms were based on the records from November 
through March; transitional months such as October were not included, when both types of storms could be 
expected to be important in wave generation. Also, strict missing data criteria eliminated some years from 
the analysis. 
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three Atlantic buoys for the summer hurricane seasons are graphed in Figure 2.23. These annual 

averages have included only occurrences when the significant wave heights were greater than 3 

m, it having been found that those higher waves can be directly attributed to specific hurricanes, 

whereas the lower waves represent the calmer periods between storms. It is seen in Figure 2.23 

that there has been a dependence on the latitude, with the highest rate of increase having 

occurred in the south; 0.059 m/yr (1.8 m in 30 years) for the Charleston buoy, 0.024 m/yr for the 

Hatteras buoy, and 0.017 m/yr for Cape May

3553 

3554 

3555 

3556 

3557 

3558 

3559 

3560 

3561 

3562 

3563 

3564 

3565 

3566 

3567 

3568 

3569 

3570 

3571 

                                                

58. 

 

Figure 2.24 provides a comparison of histograms for the numbers of significant wave heights 

measured during the hurricane season by the Cape Hatteras buoy, one histogram for data from 

early in its record (1977-1990) and the second from 1996-2005, this comparison further 

documenting the decadal increase seen in Figure 2.23, especially of the more-extreme waves59. 

The histogram for the early decade in the wave record shows that the maximum significant wave 

height measured was 7.8 m, providing an approximate estimate for the height expected to have a 

10-year recurrence interval. From this, we could expect that the 100-year extreme (1% 

probability) would have been on the order of 9.5 m significant wave height. In contrast, during 

1996-2005 there has been a considerably larger number of occurrences having significant wave 

heights greater than 4 m, with the most extreme heights measured ranging up to 10.3 m. The 

100-year extreme is now on the order of 12 m, about 3 m higher than in the 1980s. Similar 

 
58 The regressions in Figure 2.38 for the Charleston and Cape Hatteras buoy data are statistically significant at the 
p=0.05 level according to the Wilcoxon Test, whereas the value of the trend for the Cape May does not pass that 
test. 
59 Traditionally a wave histogram is graphed as the percentages of occurrences, but here the actual numbers 
of occurrences for the range of wave heights have been plotted, using a log scale that emphasizes the most-
extreme heights.  
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results have been found in analyses of the wave-height histograms for the Cape May and 

Charleston buoys (Komar and Allan, 2007a). 
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This analysis of the three U.S. East Coast buoys (Figures 2.23 and 2.24) demonstrate that there 

has been a 30-year increase in wave heights measured during the hurricane season. This increase 

could depend on several factors, including changes from year to year in the numbers and 

intensities of storms, their tracks that determine whether they traveled northward through the 

Atlantic where their generated waves could be recorded by these buoys, and how distant the 

hurricanes were from the buoys, whether they passed far offshore within the central Atlantic, or 

approached the east coast and possibly made landfall. Analyses by Komar and Allan (2007b) 

indicate that all of these factors have been important to the observed wave-height increases, but 

the increased hurricane intensities found by Emanuel (2005) based on the measured wind speeds 

provide the best explanation for the progressive increase in wave heights seen in Figure 2.23, 

since the numbers and tracks of the storms show considerable variability from year to year. 

 

In the second study (Bromirski and Kossin, 2007)60, extreme tropical cyclone-associated HS 

events (deep water HS exceeding 3 m) measured at buoys in both the Atlantic and Gulf regions 

(Figure 2.25a) show a general tendency for more significant tropical cyclone-associated wave 

events since 1995 (Figure 2.25b), consistent with increasing overall counts of named storms 

during recent years [Webster et al. 2005; Klotzbach 2006]. As would be expected, the intense 

2005 hurricane season had the highest incidence of significant HS events over the data record in 

 
60 In this study, the entire hurricane season (June-November) was analyzed. Hurricane track data were used 
to restrict the analysis to time periods when hurricanes were likely the cause of extreme waves, the goal 
being to minimize the effects of ETCs during the transition months of October and November. Less 
stringent missing data were applied, resulting in the inclusion of more years than in Komar and Allan 
(2007). 
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the Gulf when Hurricanes Katrina, Rita, and Wilma occurred. Since 1978, there were 

substantially more significant HS events along the Atlantic coast than in the Gulf, with almost 

three times as many events during September (Figure 2.25c). The monthly distribution along 

both coasts peaks in September, with an equally likely chance of a significant tropical cyclone 

wave event occurring during October as during August over the 1978-2006 data record. About 3 

times as many extreme events occurred in September in the Atlantic compared with the Gulf 

from 1978-2006. However, inclusion of all tropical cyclone generated wave events (listed in 
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http://www.nhc.noaa.gov/pastall.shtml) for the entire June though November hurricane season 

indicates that there is no significant trend in mean tropical cyclone associated HS at either the 

western North Atlantic or Gulf buoys (Bromirski and Kossin, 2007; Figure 2.25b).  
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A tropical cyclone wave power index, WPI61, shows an increase in the Atlantic during 

the mid-1990s (Bromirski and Kossin, 2007; Figure 2.26), associated with an increase in 

the number of significant tropical cyclone forced wave events, that is proportiona

consistent with the increase observed for the tropical cyclone power dissipation index 

(PDI, Emanuel 2005]\). The Gulf WPI indicates that only the 2005 hurricane season was 

exceptional in the Gulf, but is highly correlated with the Atlantic multidecadal oscillation 

(AMO, Goldenberg et al. 2001) over the 1980-2006 period. In contrast, the Atlantic WPI 

is not well correlated with the AMO, suggesting that tropical sea surface temperature 

variability has a greater influence on the characteristics of tropical cyclones that reach the 

Gulf. 

 

 
61 The WPI for the Atlantic and Gulf regions is obtained as the average of the total wave power for all 
tropical cyclone associated wave events during the June – November hurricane season at the three 
southernmost Atlantic buoys and the three Gulf buoys in Figure 2.waves.1a (Bromirski, 2007).  

http://www.nhc.noaa.gov/pastall.shtml
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To summarize, these 2 studies both detect changes in tropical cyclone-related waves, but 

in different aspects. Komar and Allan (2007a) show statistically significant increases in 

extreme wave heights during July-September, while Bromirski and Kossin (2007) do not 

find the trends over the entire hurricane season to be statistically significant. However, 

Bromirski and Kossin (2007) do find a statistically significant increase in tropical 

cyclone-caused wave power, a trend that is attributed to an increase in numbers of events 

rather than intensity. 
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In contrast to the changes in the hurricane waves, analyses of the winter wave heights 

generated by extratropical storms and recorded since the mid-1970s by the three buoys 

along the central U.S. Atlantic shore have shown little change (Komar and Allan, 2007a). 

The records from the Cape Hatteras and Charleston NDBC buoys yield regressions 

indicating that they have actually experienced a slight decrease over the decades (-0.005 

m/yr), while the Cape May buoy shows a lower rate of reduction (-0.001 m/yr). These 

trends are not statistically significant, but may a reflection in the changes in storm tracks 

over the decades, with the storms having shifted to the north.  

 

Analyses of the winter waves generated by extratropical storms demonstrate that the highest 

measured occurrences are on the order of 10.5-m significant wave heights, with the extreme-

value assessments placing the 100-year event at on the order of 11.5 m, effectively the same as 

seen in the histogram of Figure 2.24 for the summer hurricane waves recorded by the Hatteras 

buoy during the 1996-2005 decade, so the wave climates of the two seasons are now quite 

similar. However, thirty-years ago when these buoys first became operational, the significant 
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wave heights generated in the summer by hurricanes were much lower than those of the 

extratropical storms during the winter; while the heights of hurricane-generated waves have 

progressively increased since the 1970s, the wave heights due to extratropical storms have not. 
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Although minimal change in the heights of waves generated by extratropical storms have been 

measured by buoys along the U.S. shore in the Western Atlantic, progressive increases have 

occurred in the Northeast Atlantic extending back to at least the 1960s, documented by the Seven 

Stones ship-borne wave recorder located in deep water off the southwest coast of England 

(Carter and Draper, 1988; Bacon and Carter, 1991). Of interest, the rate of increase (0.022 m/yr) 

in the annual averages are closely similar to those measured by buoys along the northwest coast 

of the United States in the Pacific Ocean, discussed below. 

 

The documentation by buoys of trends in wave heights in the North Atlantic are limited by 

their relatively short records, hindering a determination of the longevity of the identified trends 

and the possible presence of any decadal cycles in climate-determined variability. To 

supplement the buoy data, visual observations from ships in transit provide longer time series 

of estimated ocean wave-heights; although the quality of the data may be questionable, its 

availability extends back through the entire 20th century, and in general appears to yield 

reasonably consistent trends when compared with the buoy data and with wave hindcasts. 

Gulev and Grigorieva (2004) have undertaken detailed analyses of the visual assessments of 

wave heights from ships, covering the years 1895-2002 except for a gap in the data during 

World War II. The observations for the northeast Atlantic showed a distinct increase in wave 

heights after about 1955, corresponding to the wave-sensor measurements since the 1960s 
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collected southwest of England. Earlier in the 20th century, however, there were distinct cycles 

in the visual wave heights observed from ships, with years during which the average wave 

heights were some 0.2 m higher than at present. These cycles correlate with the North Atlantic 

Oscillation (NAO), with the higher wave heights having been associated with high NAO 

indices. 
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Hindcasts by Wang and Swail (2001) of the wave climates based on the meteorological records 

of extratropical storms have been analyzed with respect to changes in the 90th and 99th 

percentiles of the significant wave heights, thereby representing the trends for the more 

extreme wave conditions. The results indicate a lack of change along the east coast of North 

America, in agreement with the buoy data for waves generated by extratropical storms. 

 

2.2.3.3.3 Pacific Coast Waves 

Analyses of the wave data from NDBC buoys have also been undertaken along the U.S. Pacific 

coast, similar to those discussed above for the Atlantic but with the focus having been on the 

waves generated by extratropical storms in the Northeast Pacific. The principal investigations of 

the trends of changing wave heights and their potential climate controls are those of Allan and 

Komar (2000, 2006), who analyzed the records from 6 buoys along the coast from Washington 

to south-central California (Point Conception). The analyses were limited to the “winter” waves, 

October though the following March, the season with the most intense storms and highest waves. 

Trends of increasing wave heights spanning the past 30 years were found, with the greatest rate 

of increase having occurred off the coast of Washington where the regression yielded an average 

rate of 0.032 m/yr for the winter, with a regular pattern of lesser rates of increase for the latitudes 
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to the south, such that off the coast of south-central California there has not been a statistically 

significant trend
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62.  

 

Analyses of the more extreme wave heights measured off the Washington coast were undertaken 

due to their importance to coastal-erosion occurrences (Allan and Komar, 2006). Figure 2.27 

contains graphs of the annual averages of the winter wave heights, and the averages of the five 

largest significant wave heights measured each winter, the latter showing a higher rate of 

increase (0.095 m/yr, a 2.85-m increase in the significant wave heights in 30 years). The full 

series of analyses are listed in Table 2.1, demonstrating that there is an orderly progression with 

the more extreme the assessment the greater the rate of increase, up to a rate of 0.108 m/yr for 

the single highest measured significant wave height each year. While the data in Figure 2.27 for 

the averages of the largest five storm-wave occurrences each year are statistically significant at 

the p=0.05 level, the trends for the more extreme waves do not meet this criterion (Table 2.1). 

However, for applications to engineering design of coastal structures and in coastal management 

assessments of hazards, these extremes for the measured wave heights are of greatest relevance, 

and therefore are sometimes used in applications as is the trend for the assessment of the 100-

year projected extreme, which has increased at a still greater rate over the decades, from about 11 

m in 1975 to 16 m at present. This use in applications is further supported by the fact that much 

of the scatter in the diagrams, as seen in Figure 2.27, can be accounted for by considering the 

range of climate events from El Niños to La Niñas (Allan and Komar, 2000, 2006). 

 

 
62 Where trends of increasing wave heights do exist, they have again been verified by application of the 
Wilcoxon test, a statistical analysis that basically compares the first half the record with the second half to 
establish that there has been a meaningful change. 
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The intensities of North Pacific extratropical storms and their associated tracks are strongly 

affected by the depth and position of the Aleutian Low, which tends to intensify and shift 

southward and eastward during strong El Nino events (Mo and Livezey, 1986). This southward 

shift results in increased occurrences of extreme waves throughout the eastern North Pacific, 

particularly along the south-central California coast (Seymour et al. 1984; Allan and Komar 

2000, 2006; Bromirski et al. 2005). Correlations between the measured wave heights and the 

Multivariate ENSO Index show that increased wave heights occur at all latitudes along the U.S. 

Pacific coast during major El Niños, but with the greatest increases along the shore of southern 

California (Allan and Komar, 2006). Along the coast of California where the trends of decadal 

increases are small to non-existent, it is this cycle between El Niños and La Niñas that exerts the 

primary climate control on the storm-wave heights and their extremes (and also on the monthly-

mean winter water levels, which are elevated by 20 to 50 cm during a major El Niño above the 

long-term mean sea levels). 
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The documentation of increasing wave heights in the North Pacific is given limited by the 

relatively short records from buoys, extending back only to the 1970s. Similar to discussed for 

the Atlantic, visual observations from ships in transit provide longer time series of ocean wave 

height estimates, but of questionable quality. Gulev and Grigorieva (2004)examined this source 

of wave data for the North Pacific, finding that there has been a general increase in the 

significant wave heights throughout the 20th century, with a rapid increase from 1900 to about 

1925, and a leveling off from 1925 to about 1950-60 but with an apparent maximum during the 

1940s (there being a gap in the data during World War II). There was a renewed increase 

beginning in about 1960, corresponding to that documented by the wave buoy measurements 
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(Fig. 2.27). The wave hindcasts63 by Wang and Swail (2001), representing the more extreme 

significant wave-height occurrences (the 90th and 99th percentiles), largely also confirm the 

general increase in wave heights throughout the central to eastern North Pacific. 
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There is the potential for the use of proxy evidence to examine the changes in wave heights 

back beyond that provided by the wave data, the proxy having the clearest potential being 

measurements by seismometers installed to monitor earthquake activity. During the “quiet” 

intervals between earthquakes it has been noted that there is a consistent level of "noise" in the 

recorded ground motions, termed "microseisms". It has been shown that much of this energy is 

derived from surf on the coast, with the microseisms increasing at times of storms. Analyses 

have been undertaken by Bromirski et al. (1999) correlating buoy measurements of ocean 

waves along the coast of central California and the microseisms measured by the seismometer 

at the University of California, Berkeley. The results of that study yielded a calibration 

between the ocean wave heights and the microseism energy, demonstrating the potential use of 

the archived seismic data that dates back to 1930, to investigate changes in the U.S. West Coast 

wave climate. 

 

2.2.3.4 Winter Storms 

2.2.3.4.1 Snowstorms 

The amount of snow that causes serious impacts varies depending on a given location’s 

usual snow conditions. A snowstorm is defined here as an event in which more than 15 

cm of snow falls in 24 hours or less at some location in the U.S. This is an amount 

 
63 Hindcasts are model estimates of waves using forecast models that are run retrospectively using observed 
meteorological data 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 169 of 389 Public Review Draft 

sufficient to cause societally-important impacts in most locations. During the 1901-2001 

period, 2,257 snowstorms occurred (Changnon et al. 2006). Temporal assessment of the 

snowstorm incidences during 1901-2000 revealed major regional differences. 

Comparison of the storm occurrences in 1901-1950 against those in 1951-2000 revealed 

that much of the eastern U.S. had more storms in the early half of the 20th Century, 

whereas in the West and New England, the last half of the century had more storms. 

Nationally, 53% of the weather stations had their peaks in 1901-1950 and 47% peaked in 

1951-2000. 
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The South and lower Midwest had distinct statistically significant downward trends in 

snowstorm frequency from 1901 to 2000. In direct contrast, the Northeast and upper 

Midwest had statistically significant upward linear trends. These contrasting regional 

trends suggest a northward shift in snowstorm occurrence. Nationally, the regionally 

varying up and down trends resulted in a national storm trend that was slightly upward 

for 1901-2000, but not statistically significant. The long-term increases in the upper 

Midwest and Northeast occurred where snowstorms are most frequent, and thus had an 

influence on the upward trend in national snowstorm activity. Research has shown that 

cyclonic activity was low during 1931-1950, a period of few snowstorms in the U.S.  

 

Nationally, 39 of 231 stations with long-term records had their lowest frequencies of 

storms during 1931-1940, whereas 29 others had their peak of incidences then. The 

second ranked decade with numerous stations having low snowstorm frequencies was 

1981-1990. Very few low storm occurrences were found during 1911-1920 and in the 
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1961-1980 period, times when storms were quite frequent. The 1911-1920 decade had the 

greatest number of high station values with 38 stations. The fewest peak values occurred 

in the next decade, 1921-1930. Comparison of the decades of high and low frequencies of 

snowstorms reveals, as expected, an inverse relationship. That is, when many high storm 

values occurred, there are few low storm frequencies. 
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Generally, the decades with high snowstorm frequencies were characterized by cold 

winters. The three highest decades for snowstorms (1911-1920, 1961-1970, and 1971-

1980) were ranked 1st, 4th, and 3rd coldest, respectively while the two lowest decades 

(1921-1930 and 1931-1940) were ranked as 3rd and 4th warmest. One exception to this 

general relationship is the warmest decade (1991-2000), which experienced a moderately 

high number of snowstorms. 

 

Very snowy seasons (those with seasonal snowfall totals exceeding the 90th percentile 

threshold) were infrequent in the 1920s and 1930s and have also been rare since the mid-

1980s (Kunkel et al. 2007b). There is a high correlation with average winter temperature. 

Warm winters tend to have few stations with high snowfall totals and most of the snowy 

seasons have also been cold. 

 

Some of the snowiest regions in North America are the southern and eastern shores of the 

Great Lakes where cold northwesterly winds flowing over the warmer lakes pick up 

moisture and deposit on the shoreline areas. There is evidence of upward trends in 

snowfall since 1951 in these regions even while locations away from the snowy shoreline 
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areas have not experienced increases (Burnett et al. 2003). An analysis of historical heavy 

lake-effect snowstorms identified several weather conditions to be closely related to 

heavy lake-effect snowstorm occurrence including moderately high surface wind speed, 

wind direction promoting a long fetch over the lakes, surface air temperature in the range 

of -10 to 0°C, lake surface to air temperature difference of at least 7°C, and an unstable 

lower troposphere (Kunkel et al. 2002). It is also necessary that the lakes be mostly ice-

free. 
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Snow cover extent for North America based on satellite data (Robinson et al. 1993) 

abruptly decreased in the mid-1980s and generally has remained low since then 

(http://climate.rutgers.edu/snowcover/chart_anom.php?ui_set=0&ui_region=nam&ui_mo

nth=6). 

 

2.2.3.4.2 Ice Storms 

Freezing rain is a phenomenon where even light amounts can have substantial impacts. 

All days with freezing rain (ZR) were determined during the 1948-2000 period based on 

data from 988 stations across the U.S. (Changnon and Karl 2003). The national frequency 

of freezing rain days (FZRA) exhibited a downward trend, being higher during 1948-

1964 than in any subsequent period. 

 

The temporal distributions of FZRA for three climate regions (Northeast, Southeast, and 

South) reveal substantial variability. They all were high in 1977-1980, low in 1985-1988, 

and lowest in 1973-1976. The 52-year linear trends for all three regions were downward 
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over time. The time distributions for the Central, West North Central, and East North 

Central regions are alike, all showing that high values occurred early, 1949-1956. All 

climate regions had their lowest FZRA during 1965-1976. The East north central, 

Central, Northwest, and Northeast regions, which embrace the northern half of the 

conterminous U.S., all had statistically significant downward linear trends. This is in 

contrast to trends in snowstorm incidences.  
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Both snowstorms and ice storms are often accompanied or followed by extreme cold 

because a strong ETC (which is the meteorological cause of the snow and ice) is one of 

the meteorological components of the flow of extreme cold air from the Arctic. This 

compounds the impacts of such events in a variety of ways, including increasing the risks 

to human health and adversely affecting the working environment for snow removal and 

repair activities. While there have been no systematic studies of trends in such compound 

events, observed variations in these events appear to be correlated. For example, the late 

1970s were characterized both by a high frequency of extreme cold (Kunkel et al. 1999) 

and a high frequency of high snowfall years (Kunkel et al. 2007b).  

 

2.2.3.5 Convective Storms 

Thunderstorms in the United States are defined to be severe by the National Weather 

Service (NWS) if they produce hail of at least 1.9 cm (3/4 inch) in diameter, wind gusts 

of at least 25.5 m s-1 (50 kt) or a tornado. Currently, reports come from a variety of 

sources to the local NWS forecast offices that produce a final listing of events for their 

area. Over the years, procedures and efforts to produce that listing have changed. Official 
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data collection in near real-time began in 1953 for tornadoes and 1955 for hail and wind. 

Prior to 1973, tornado reports were verified by state climatologists (Changnon 1982). In 

addition, efforts to improve verification of severe thunderstorm and tornado warnings, the 

introduction of Doppler radars, changes in population, and increases in public awareness, 

have led to increases in reports over the years. Changes in reporting practices have also 

led to inconsistencies in many aspects of the records (e.g., Brooks 2004). Changnon and 

Changnon (2000) identified regional changes in hail frequency from reports made at 

official surface observing sites. With the change to automated surface observing sites in 

the 1990s, the number of hail reports at those locations dropped dramatically because of 

the loss of human observers at the sites. As a result, comparisons to the Changnon and 

Changnon work cannot be continued, although Changnon et al. (2001) have attempted to 

use insurance loss records as a proxy for hail occurrence. 
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The raw reports of annual tornado occurrences show an approximately doubling from 

1954-2003 (Brooks and Dotzek 2007), a reflection of the changes in observing and 

reporting. When detrended to remove this artificial trend, the data show large interannual 

variability, but a persistent minimum in the late 1980s (Fig. 2.28). There were changes in 

assigning intensity estimates in the mid-1970s that resulted in tornadoes prior to 1975 

being rated more strongly than those in the later part of the record (Verbout et al. 2006). 

More recently, there have been no tornadoes rated F5, the highest rating, since 3 May 

1999, the longest gap on record. Coupled with a large decrease in the number of F4 

tornadoes (McCarthy et al. 2006), it has been suggested that the strongest tornadoes are 

now being rated lower than practice prior to 2000. 
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A dataset of F2 and stronger tornadoes extending back before the official record 

(Grazulis 1993) provides an opportunity to examine longer trends. This examination64 of 

the record from 1921-1995 indicates that the variability between periods was large, 

without significant long-term trends (Concannon et al. 2000).  

 

The fraction of strong tornadoes (F2 and greater) that have been rated as violent (F4 and 

greater) has been relatively consistent in the US from the 1950s through the 1990s65 

(Brooks and Doswell 2001)66. There were no significant changes in the high-intensity 

end of these distributions from 1950s through the 1990s, although the distribution from 

2000 and later may di

 

Nontornadic reports have increased even more rapidly than tornadic reports (Doswell et 

al. 2005, 2006). Over the period 1955-2004, this increase was approximately exponential, 

resulting in an almost 20-fold increase over the period. The increase is mostly in 

marginally severe thunderstorm reports (Brooks 2007. An overall increase is seen, but the 

distribution by intensity is similar in the 1970s and post-2000 eras for the strongest 10% 

of reports of hail and wind. Thus, there is no evidence for a change in the severity of 

events, and the large changes in the overall number of reports make it impossible to 

detect if meteorological changes have occurred.  

 
64 This analysis used the technique described in Brooks et al. (2003a) to estimate the spatial distribution 
over different periods 
65 Note that consistent overrating will not change this ratio. 
66 Feuerstein et al. (2005) showed that the distribution in the US and other countries could be fit to Weibull 
distributions with the parameters in the distribution converging as time goes along, which they associated 
with more complete reporting of events. 
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Environmental conditions that are most likely associated with severe and tornadic 

thunderstorms have been derived from reanalysis data (Brooks et al. 2003b) and counts of 

the frequency of favorable environments for significant severe thunderstorms67 have been 

determined for the area east of the Rocky Mountains in the US for the period 1958-1999 

(Brooks and Dotzek 2007). The count of favorable environments decreased from the late 

1950s into the early 1970s and increased after that through the 1990s, so that the 

frequency was approximately the same at both ends of the analyzed period. Given the 

high values seen at the beginning of the reanalysis era, it is likely that the record is long 

enough to sample natural variability, so that it is possible that even though the 1973-1999 

increase is statistically significant, it does not represent a departure from natural 

variability. The time series of the count of reports of very large hail (7 cm diameter and 

larger) shows an inflection at about the same time as the inflection in the counts of 

favorable environments. A comparison of the rate of increase of the two series suggested 

that the change in environments could account for approximately 7% of the change in 

reports from the mid-1970s through 1999, with the rest coming from non-meteorological 

sources. Changes in tornado reports do not correspond to the changes in overall favorable 

severe thunderstorm environment, in part because the discrimination of tornadic 

environments in the reanalysis data is not as good as the discrimination of severe 

thunderstorm environments (Brooks et al. 2003a). 

 

 

 
 

67 Hail of at least 5 cm diameter, wind gusts of at least 33 m s-1, and/or a tornado of F2 or greater intensity 
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BOX 2.3: Changes in Modes of Variability 3908 
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The atmosphere-ocean system has a wide variety of circulation patterns, or modes, of 

climate variability that pulse on time scales ranging from days, to many decades, or 

longer. For example, the well-known winter weather pattern of a storm followed by clear 

skies and then another storm a week later is, part of an atmospheric wave (wind) pattern 

that circles the Earth. As these waves move over the ocean, heat from the ocean is given 

up to the air, which impacts both the intensity and the movement of the atmospheric 

waves (weather) as well as ocean circulations. Weather and climate extremes are often 

linked to one or more of these modes of climate variability, and following is a brief 

description of the most important circulation regimes. However, it is important to keep in 

mind that these modes of variability are not independent of each other. 

 

El Niño-Southern Oscillation (ENSO) 

The ENSO phenomenon is the result of coupled ocean-atmosphere dynamics and is the 

largest source of interannual variability in global weather and climate. It is characterized 

by changes in eastern equatorial Pacific sea surface temperature (SST) and surface air 

pressure in the tropical Pacific region. Warm (cold) eastern Pacific SST anomalies are 

associated with El Niño (La Niña) events. El Niños occur at irregular intervals of 

approximately 2 to 7 years, and generally persists for 12 to 18 months. The Southern 

Oscillation component of ENSO is defined by air pressure differences between the 

eastern and western tropical Pacific (typically between Darwin and Tahiti) and is 

characterized by changes in tropical atmospheric flow patterns which are caused by and 

can enhance tropical Pacific SST variations. These tropical atmospheric circulation 
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changes can alter both the intensity and tracks of North American storms. For example, 

El Niño is often associated with heavy winter rains in southern California.  
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The nature of ENSO has varied considerably through time. Strong ENSO events occurred 

with regularity from the late 19th Century through 1925 and again after 1950. Between 

1976 and 1977 rapid warming occurred in the Tropical Pacific with concurrent cooling in 

the Central Pacific that has been termed the climate shift of 1976/1977 (Trenberth 1990, 

Miller et al. 1994). The shift has been associated with increased El Niño activity, changes 

in storm tracks, increased storm intensity and is at the start of the period of rapid 

warming in global temperatures, and the 1997-1998 El Niño was the strongest on record. 

 

The North Atlantic Oscillation (NAO) 

The NAO is the most important mode of winter climate variability in the North Atlantic 

region and is measured by an index that is based on air pressure differences between 

Iceland/Greenland and the Azores in the north Atlantic. As Figure 2.29 illustrates, high 

values of the NAO index are associated with intensified westerly winds around the arctic. 

Changes in the strength and location of the westerlies produce characteristic shifts in 

temperature, rainfall, and winds. Low NAO values correspond with cold extremes in 

central North America and high NAO index values increase the chances of warm winter 

extremes. Proxy and instrumental data show evidence for intervals of decadal and longer 

positive and negative NAO index in the last few centuries (Cook et al., 2002; Jones et al., 

2003). A reversal occurred from minimum winter index values in the late 1960s to 
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strongly positive NAO index values in the mid-1990s but since have declined to near the 

long-term mean. 
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Atlantic Multidecadal Oscillation (AMO) 

The Atlantic Ocean meridional overturning circulation carries warm salty surface waters 

into far-northern latitudes around Greenland where it cools, sinks, and returns cold deep 

waters southward across the equator. An oscillating pattern of SSTs in the northern 

Atlantic that is related to this overturning circulation, called the Atlantic Multidecadal 

Oscillation (AMO), has been identified by a number of researchers (Delworth and Mann, 

2000; Folland et al., 1986; Mann and Park, 1994). The AMO is commonly identified by 

subtracting a linear trend from a time series of the North Atlantic SST. This trend 

subtraction is intended to remove, or at least reduce, the influence of greenhouse-gas 

induced global warming from the AMO so that the bulk of the variability in the 

remainder is due to natural causes. The warm phase, the decades when the temperature is 

above the trend line, is associated with increased Atlantic hurricane activity, and the cool 

phase is associated with reduced Atlantic hurricane activity. Instrumental data has been 

used to identify warm phases roughly between 1860-1880, 1930-1960, and one beginning 

in the mid-1990s which continues to present. Cool phases were present during 1905-1925 

and 1970-1990 (Schlesinger and Ramankutty, 1994). 

 

Some scientists, however, question the validity of subtracting a linear trend from a time 

series created by non-linear forcings and wonder if the AMO as commonly calculated is 

primarily an artifact of this creation process rather than a real change in the ocean 
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circulation. Some suggest that subtracting the global SST time series from the North 

Atlantic SST time series removes a global climate change signal better than subtracting a 

linear trend and produces a very different historical AMO record (Trenberth and Shea, 

2006). Proxy and modeling studies have identified an AMO-like signal and found that 

multidecadal eras in hurricane activity in the North Atlantic are correlated with the AMO 

(Bell and Chelliah, 2006). No matter how it is calculated, the AMO has such a long 

period that the observational SST data only records about 1.5 cycles which makes it 

difficult to determine whether the AMO is truly a natural oscillation or caused in whole 

or at least in part by greenhouse-gas induced climate change. 
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Pacific Decadal Oscillation (PDO) 

The Pacific Decadal Oscillation (PDO) is a multidecadal pattern of monthly SST 

anomalies in the North Pacific Ocean poleward of 20°N. Two full PDO cycles occurred 

through the twentieth century with each phase persisting for 20 to 30 years. The typical 

spatial pattern of the “warm” phase of the PDO has negative SST anomalies in the central 

and eastern North Pacific and positive SST anomalies along the coast of North America. 

Sea level pressure (SLP) anomalies during the warm phase tend to have a basin-scale low 

centered over the Aleutian Islands and high sea-level pressure over western North 

America. The cool phase of the PDO has SST and SLP patterns that are essentially the 

opposite of the warm phase. Because the PDO influences various weather systems it can 

affect the chances of, for example, winter temperatures cold enough to cause mountain 

pine beetle mortality in British Columbia (Stahl et al., 2006). When an El Niño event 

occurs during a warm phase of the PDO, the characteristic El Niño-related temperature 
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and precipitation anomalies in North America tend to be accentuated. The PDO had 

extended periods of negative values indicative of weakened circulation from 1900 to 

1924 and 1947 to 1976, and positive values indicative of strengthened circulation from 

1925 to 1946 and 1977 to 2005. The 1976-1977 climate shift in the Pacific described 

above was associated with a phase change in the PDO from negative to positive 

(Trenberth et al., 2002; Deser et al., 2004). 
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Pacific North American Pattern (PNA) 

The PNA can be defined as a secondary pattern in the variability of monthly atmospheric 

pressure anomalies for the latitude range 20-90°N. When the PNA is positive, the mid-

tropospheric winds over North America and the North Pacific have a strong meridional 

(north-south) wave pattern while the negative PNA has more zonal (west to east) flow. 

Strong wave patterns tend to bring extreme weather; whether the extremes are warm, 

cold, wet or dry at a particular location depends on the shape of the wave. A positive 

PNA is associated with El Niños and negative PNA is associated with La Niña.  

 

The Madden-Julian Oscillation (MJO) 

The atmospheric response to convection on the equator, which heats the atmosphere, is 

the creation of circulation cells, which then move eastward. These cells have a period of 

about 50 days and either enhance tropical convection or help suppress it. Referred to as 

the Madden-Julian Oscillation (MJO), after the two scientists who discovered it (Madden 

and Julian, 1971 and 1972), it is the dominant source of tropical atmospheric variability 

on intraseasonal time scales. The MJO is related to North American extremes through its 
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influence on the dynamics of tropical cyclone formation (Hartmann and Maloney, 2001; 

Maloney and Hartmann, 2000a; 2000b, 2001) as well as western North American winter 

rainfall variability. The MJO can enhance or suppress either depending on which part of 

the circulation cell is active in the region. 
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As the climate changes, some of the atmospheric circulation patterns or modes of 

atmospheric variability described above have changed as well. However, only one 

circulation pattern, the MJO, would not be expected to have long-term changes since it is 

a localized circulation response to convection on the equator.  

 

2.3 Key Uncertainties Related to Measuring Specific Variations and Change 

In this section we review the statistical methods that have been used to assess 

uncertainties in studies of changing extremes. The focus of the discussion is on 

precipitation events, though similar methods have also been used for temperature. 

 

2.3.1 Methods Based on Counting Exceedances Over a High Threshold 

Most existing methods follow some variant of the following procedure, given by Kunkel 

et al. (1999). First, daily data are collected, corrected for biases such as winter 

undercatchment. Only stations with nearly complete data are used (typically, “nearly 

complete” means no more than 5% missing values). Different event durations (for 

example, 1-day or 7-day) and different return periods (such as 1 year or 5 years) are 

considered. For each station, a threshold is determined according to the desired return 

value – for example, with 100 years of data and a 5-year return value, the threshold is the 
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20th largest event. The number of exceedances of the threshold is computed for each year, 

and then averaged either regionally or nationally. The averaging is a weighted average in 

which, first, simple averaging is used over climate divisions (typically there are about 7 

climate divisions in each state), and then, an area-weighted average is computed over 

climate divisions, either for one of the nine U.S. climate regions or the whole contiguous 

U.S. This averaging method ensures that parts of the country with relatively sparse data 

coverage are adequately represented in the final average. Sometimes (e.g. Groisman et al. 

2005, Kunkel et al. 2007a) the climate divisons are replaced by 1o by 1o grid cells. Two 

additional refinements used by Groisman et al. (2005) are (i) to replace the raw 

exceedance counts for each year by anomalies from a 30-year reference period, computed 

separately for each station, (ii) to assess the standard error of the regional average using 

spatial statistics techniques. This calculation is based on an exponentially decreasing 

spatial covariance function with a range of the order 100-500 km. and a nugget:sill ratio 

(the proportion of the variability that is not spatially correlated) between 0 and 85%, 

depending on the region, season and threshold.  
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Once these spatially averaged annual exceedance counts or anomalies are computed, the 

next step is to compute trends. In most studies, the emphasis is on linear trends computed 

either by least squares regression or by the Kendall slope method, in which the trend is 

estimated as the median of all possible slopes computed from pairs of data points. The 

standard errors of the trends should theoretically be corrected for autocorrelation, but in 

the case of extreme events the autocorrelation is usually negligible (Groisman et al., 

2004). 
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One of the concerns about this methodology is the effect of changing spatial coverage of 

the data set, especially for comparisons that go back to the late years of the 19th century. 

Kunkel et al. (2007a) generated simulations of the 1895-2004 data record by first 

randomly sampling complete years of data from a modern network of 6351 stations for 

1971-2000, projecting to a random subnetwork equivalent in size and spatial extent to the 

historical data network, then using repeat simulations to calculate means and 95% 

confidence intervals for five 22-year periods. The confidence intervals were then 

superimposed on the actual 22-year means calculated from the observational data record. 

The results for 1-year, 5-year and 20-year return values show clearly that the most recent 

period (1983-2004) has the highest return values of the five periods, but they also show 

the second highest return values in 1895-1916 with a sharp drop thereafter, implying a 

still not fully explained role due to natural variability. 

 

Some issues that might justify further research include the following: 

1. Further exploration of why extreme precipitation apparently decreases 

after the 1895-1916 period before the recent (post-1983) rise when they exceeded 

that level. For example, if one breaks the data down into finer resolution spatially, 

does one still see the same effect? 

2. What about the effect of large-scale circulation effects such as ENSO 

events, AMO, PDO, etc? These could potentially be included as covariates in a 

time series regression analysis, thus allowing one to “correct” for circulation 

effects in measuring the trend. 
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3. The spatial analyses of Groisman et al. (2005) allow for spatial correlation 

in assessing the significance of trends, but they don’t do the logical next step, 

which is to use the covariance function to construct optimal interpolations (also 

known as kriging) and thereby produce more detailed spatial maps. This is 

something that might be explored in the future. 
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2.3.2 The GEV Approach 

An alternative approach to extreme value assessment is though the Generalized Extreme 

Value (GEV) distribution68, and its variants. The GEV combines together three “types” 

of extreme value distributions that in earlier treatments were often regarded as separa

families (e.g. Gumbel 1958). The distribution is most frequently applied to the annual 

maxima of a meteorological or hydrological variable, though it can also be applied to 

maxima over other time periods (e.g. one month or one season). With minor changes in 

notation, the distributions are also applicable to minima rather than maxima. The 

parameters may be estimated by maximum likelihood, though there are also a number of 

more specialized techniques such as L-moments estimation. The methods have been 

applied in climate researchers by a number of authors including Kharin and Zwiers 

(2000), Wehner (2004,2005), Kharin et al. (2007).  

 

 
68 The basic GEV distribution is given by the formula (see, e.g. Zwiers and Kharin (1998)) 
F(x) = exp{-[1-k(x-ξ)/α]1/k} in which ξ plays the role of a centering or location constant, α determines the 
scale, and k is a key parameter that determines the shape of the distribution. (Other authors have used 
different notations, especially for the shape parameter.) The range of the distribution is  
x<ξ+α/k when k<0, x>ξ+α/k when k<0, -∞<x<∞ when k=0, in which case the formula reduces to F(x) = 
exp{-exp[-(x-ξ)/α]} and is known as the Gumbel distribution. 
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The potential advantage of GEV methods over those based on counting threshold 

exceedances is that by fitting a probability distribution to the extremes, one obtains more 

information that is less sensitive to the choice of threshold, and can also derive other 

quantities such as the T-year return value XT, calculated by solving the equation F(XT)=1-

1/T. Trends in the T-year return value (for typical values of T, e.g. 1, 10, 25 or 100 years) 

would be particularly valuable as indicators of changing extremes in the climate. 
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Direct application of GEV methods is often inefficient because they only use very sparse 

summaries of the data (typically one value per year), and need reasonably long time 

series before they are applicable at all. Alternative methods are based on exceedances 

over thresholds, not just counting exceedances but also fitting a distribution to the excess 

over the threshold. The most common choice of distribution of excess is the Generalized 

Pareto distribution or GPD, which is closely related to the GEV (Pickands 1975, Davison 

and Smith 1990). Some recent overviews of extreme value distributions, threshold 

methods, and a variety of extensions are by Coles (2001) and Smith (2003). 

 

Much of the recent research (e.g. Wehner 2005, Kharin et al. 2007) has used model 

output data, using the GEV to estimate for example a 20-year return value at each grid 

cell, then plotting spatial maps of the resulting estimates. Corresponding maps based on 

observational data must take into account the irregular spatial distribution of weather 

stations, but this is also possible using spatial statistics (or “kriging”) methodology. For 

example, Cooley et al. (2007) have applied a hierarchical modeling approach to 

precipitation data from the Front Range of Colorado, fitting a GPD to threshold 

exceedances at each station and combining results from different stations through a 
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spatial model to compute a map of 25-year return values. Smith et al. (2007) applied 

similar methodology to data from the whole contiguous U.S., producing spatial maps of 

return values and also calculating changes in return values over the 1970-1999 period.  
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Table 2.1  Regressions for the decadal trends of increasing wave heights measured off the 

Washington coast (NDBC buoy #46005). [after Allan and Komar (2006)] 
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—————————————————————————————— 

 Wave Heights  Rate Ratio of Rate to Statistical 

  (m/yr) Annual Average Significance* 

—————————————————————————————— 

 Annual Average 0.024 1.0 SS 

 Winter Average 0.032 1.3 SS 

 Five Largest 0.095 4.0 SS 

 Three Largest 0.103 4.3 NSS 

 Maximum  0.108 4.5 NSS 

 100-yr Projection 0.13 ≈ ≈5.5 estimate 5128 

5129 

5130 

—————————————————————————————— 

  SS = statistically significant at the 0.05 level; NSS = not statistically significant. 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 210 of 389 Public Review Draft 

 5131 

 5132 
5133 
5134 

5135 

5136 

 
Figure 2.1  Changes in the percent of days in a year above three thresholds for North 

America for daily high temperature (top) and daily low temperature (bottom) from 

Peterson et al. (2007). 
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Trends in Number of Days With Unusually Warm Daily Low 
Temperature 
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Figure 2.2  Trends in the number of days in a year when the daily low is unusually warm 

(ie. In the top 10% of warm nights for the 1950-2004 period). Grid boxes with green 

squares are statistically significant at the p=0.05 level, (from Peterson et al. 2007). A 

trend of 1.8 days/decade translates to a trend of 9.9 days over the entire 55-year (1950-

2004) period, meaning that 10 days more a year will have unusually warm nights. 
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Figure 2.3  Time series of (a) annual values of a U.S. national average “heat wave” 

index. Heat waves are defined as warm spells of 4 days in duration with mean 

temperature exceeding the threshold for a 1 in 10 year event. (updated from Kunkel et al. 

1999); (b)Area of the U.S. (in percent) with much above normal daily high temperatures 

in summer; (c) Area of the U.S. (in percent) with much above normal daily low 

temperatures in summer. Blue vertical bars give values for individual seasons while red 

lines are smoothed (9-yr running) averages. 
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U.S. Frost-Free Season Length
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Figure 2.4  Change in the length of the frost free season averaged over the U.S. (from 

Kunkel et al. 2003). The frost-free season is at least 10 days longer on average than the 

long-term average. 
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Changes in the Daily Range of Temperature for Mexico  5161 
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Figure 2.5  Change in the daily range of temperature (difference between the daily low 

and the daily high temperature) during the warm Season (June-Sept) for Mexico. This 

difference is known as a Diurnal Temperature Range (DTR). The recent rise in the daily 

temperature range reflects hotter daily summer highs. The time series represents the 

average DTR taken over the four temperature regions of Mexico as defined in Englehart 

and Douglas, 2004. Trend line (red) based on LOWESS smoothing (n=30). 
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Figure 2.6  the area (in percent) of area in severe to extreme drought as measured by the 

Palmer Drought Severity Index for the U.S. (red) from 1900 to present and for North 

America (blue) from 1950 to present. 
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Western U.S. Drought Area for the last 1200 years 5197 
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.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7  Area of drought in the western U.S. as reconstructed from tree rings (Cook et 

al. 2004). 
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Figure 2.8  Regions where disproportionate increases in heavy and very heavy 

precipitation during the past decades were documented compared to the change in the 

annual and/or seasonal precipitation. Because these results come from different studies, 

the definitions of extreme precipitation vary. (a) annual anomalies (% departures) of 

heavy precipitation for northern Canada. (b) as (a), but for southeastern Canada. (c) the 

top 0.3% of daily rain events over the central United States and the trend (22%/113 yrs) 

(updated from Groisman et al. 2005). (d) as for (c), but for southern Mexico. (e) change 

of intensity of the upper 5% of daily rain events in the core monsoon region of Mexico, 

relative to the 1961-1990 base period. (Cavazos et al., 2007) (f) upper 5%, top points, and 

upper 0.3%, bottom points, of daily precipitation events and linear trends for British 

Columbia south of 55°N. (g) upper 5% of daily precipitation events and linear trend for 

Alaska south of 62°N.  
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Figure 2.9  Frequency (expressed as a percentage anomaly from the period of record 

average) of excessive precipitation periods of 90 day duration exceeding a 1-in-20-year 

event threshold for the U.S. Annual values have been smoothed with a 9-yr running 

average filter. The black line shows the trend (a linear fit) for the annual values. 
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Figure 2.10  Average (median) percentage of warm season rainfall (May-November) 

from Hurricanes and tropical storms affecting Mexico and the Gulf Coast of the United 

States. Figure updated from Englehart and Douglas 2001. 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 220 of 389 Public Review Draft 

 5249 
5250 

5251 

5252 

5253 

 

Figure 2.11  Variations and linear trend in various characteristics of the summer 

monsoon in southern Sonora, Mexico, including (a) the mean start date June 1 = Day 1 

on the graph; (b) the mean wet spell length defined as the mean number of consecutive 

days with mean regional precipitation >1mm; and (c) the mean daily rainfall intensity for 

wet days defined as the regional average rainfall for all days with rainfall 

5254 

> 1mm. 5255 
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Figure 2.12  Trends in hurricane/tropical storm rainfall statistics at Manzanillo, Mexico, 

including (a) the total warm season rainfall from hurricanes/tropical storms; (b) the ratio 

of hurricane/tropical storm rainfall to total summer rainfall; and (c) the number of days 

each summer with a hurricane or tropical storm within 550km of the stations 
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Figure 2.13  Sea surface temperatures (blue) correlated with the Power Dissipation Index 

for North Atlantic hurricanes (Emanuel, 2007). Sea Surface Temperature is from the 

Hadley Centre dataset and is for the Main Development Region for tropical cyclones in 

the Atlantic, defined as 6-18°N, 20-60°W. The time series have been smoothed using a 1-

3-4-3-1 filter to reduce the effect of interannual variability and highlight fluctuations on 

time scales of 3 years and longer.  
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Figure 2.14  Century changes in the intensity of North Atlantic tropical cyclones, 

hurricanes and major hurricanes. Also shown are all individual tropical cyclone 

intensities. (From Holland and Webster 2007). 
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Figure 2.15  Combined annual numbers of hurricanes and tropical storms for the North 

Atlantic (black dots), together with a 9-year running mean filter (black line) and the 9-

year smoothed sea surface temperature in the eastern North Atlantic (red line). Adapted 

from Holland and Webster (2007).  
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Figure 2.16  Atlantic hurricanes and tropical storms for 1878-2006, using the adjustment 

method A for missing storms described in the text. Black curve is the adjusted annual 

storm count, red is the 5-yr running mean, and solid blue curve is a normalized (same 

mean and variance) 5-yr running mean sea surface temperature index for the Main 

Development Region of the tropical Atlantic (HadISST, 80-20W, 10-20N; Aug.-Oct.). 

Green curves show the adjustment that has been added for missing storms to obtain the 

black curve, assuming two simulated ship-storm “encounters” are required for a modern-

day storm to be “detected” by a historical ship traffic for a given year. Dashed green 

curve is an alternative adjustment sensitivity test requiring just one ship-storm simulated 

encounter for detection. Straight lines are least squares trend lines for the adjusted storm 

counts. (Adapted from Vecchi and Knutson, 2007). 
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Figure 2.17 Counts of total North Atlantic basin hurricanes (black), major hurricanes 

(red) and U.S. landfalling hurricanes (blue) based on annual data from 1851 to 2006 and 

smoothed (using a 5-year running mean). Asterisks on the time series indicate years 

where trends beginning in that year and extending through 2005 are statistically 

significant (p=0.05) based on annual data; circles indicate non-significant trend results. 
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Figure 2.18 Changes from average (1959-1997) in the number of winter (Nov-Mar) 

storms each year in the Northern Hemisphere for (a) high latitudes (60o-90oN), and (b) 

mid-latitudes (30o-60oN), and the change from average of winter storm intensity in the 

Northern Hemisphere each year for (c) high latitudes (60o-90oN), and (d) mid-latitudes 

(30o-60oN). [Adapted from McCabe et al. 2001]. 
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Fig. 2.19 Extreme wind speed (meters per second), number of winter storms, and number 

of intense (≤980 hPa) winter storms for the Pacific region (20o-70oN, 130oE-112.5oW; 

panels a-b-c) and the Atlantic region (20o-70oN, 7.5oE-110oW; panels d-e-f):. The thick 

smooth lines are the trends determined using a Bayesian spline model, and the thin 

dashed lines denote the 95% confidence intervals. [Adapted from Paciorek et al. 2002].
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Figure 2.20 Cumulative extreme Non-Tide Residuals (NTR) (water level) exceeding the 

98th percentile level of hourly NTR levels at San Francisco, during winter months (Dec-

Mar), with the 5-yr running mean (red line). Least squares trend estimates for the entire 

winter record (light dashed line) and since 1948 (bold dashed line), the period covered by 

NCEP reanalysis and ERA-40 data used in most ETC studies. [Adapted from Bromirski 

et al. 2003]. 
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Figure 2.21 Seasonal totals (gray line) covering the period of 1951-1997 for (a) all East 

Coast Winter Storms (ECWS; top curve) and strong ECWS (bottom curve), (b) northern 

ECWS (>35oN), and (c) those ECWS tracking along the full coast. Data points along the 

5-yr moving average (black) correspond to the middle year. [Adapted from Hirsch et al. 

2001]. 
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Figure 2.22 Track of the October 1991 “Perfect Storm” (PS) center showing the east-to-

west retrograde propagation of a non-typical Nor’easter. The massive ETC was 

reenergized as it moved southward by absorbing northward propagating remnants of 

Hurricane Grace, becoming unnamed Hurricane #8 and giving rise to the name “Perfect 

Storm” for this composite storm. Storm center locations with date/hr time stamps at 6-hr 

intervals are indicated by stars. Also shown are locations of open ocean NOAA buoys 

that measured the extreme waves generated by these storms. [Adapted from Bromirski 

2001]. 



CCSP SAP 3.3  August 16, 2007 
 

Do Not Cite or Quote 232 of 389 Public Review Draft 

 5340 
5341 
5342 

5343 

 
Figure 2.23 Increases in the summer, hurricane-generated wave heights of 3 meters and 

higher significant wave heights (from Komar and Allan 2007, and in review). 
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Figure 2.24 Number of significant wave heights measured by the Cape Hatteras buoy 

during the July-September season, early in its record 1976-1991 and during the recent 

decade,1996-2005 (from Komar and Allan 2007a,b). 
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Figure 2.25 (a) Location of the NOAA Atlantic and Gulf buoys discussed. Bathymetric 

contours identify the continental shelf boundary. (b) Total number of significant wave 

events per hurricane season. (c) Total number of wave events identified during each 

month of the June-November hurricane season for all buoy data available from NOAA’s 

National Ocean Data Center (NODC) from 1978-2006. Panels (b) and (c) show the 
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number of wave events associated with hurricanes/tropical storms with wave heights that 

exceeded 3 m at a minimum of one of the buoys in each group. Each event was counted 

only once, even if observed at multiple buoys in a group. No data were available from 

NODC for any of the Atlantic buoys during the 1979 hurricane season. [Adapted from 

Bromirski, 2007b] 
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Figure 2.26 A measure of the total annual tropical cyclone wave power in the western 

North Atlantic and Gulf regions obtained as the mean of the available annual deep water 

wave power (the wave power index, WPI). Longer period variability is emphasized by 

lowpass filtering the annual data with three iterations of a 1-2-1 smoothing operator, 

giving the Atlantic and Gulf region WPI (thick lines). [Adapted from Bromirski, 2007b) 
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Figure 2.27 The trends of increasing wave heights measured by NOAA’s National Data 

Buoy Center (NDBC) buoy #46005 off the coast of Washington [after Allan and Komar 

(2006)] 
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Figure 2.28 Tornado reports in official database in USA from 1954-2004. Open circles 

are raw reports, solid line (linear regression) is the trend for raw reports, solid circles are 

reports adjusted to 2002 reporting system. The adjusted data show little or no trend in 

reported tornadoes. The trend in raw reports reflects an increasing density of population 

in tornado-prone areas, and therefore more opportunity for sightings, rather than a real 

increase in the occurrences of tornadoes. 
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Figure 2.29 Schematic of the North Atlantic Oscillation (NAO) showing its effect on 

extremes. Illustrations by Fritz Heidi and Jack Cook, Woods Hole Oceanographic 

Institution. 




