Minnesota's Impaired Waters Upper Mississippi River Bacteria TMDL Project

Barb Peichel TMDL Project Manager, MPCA NPS Miss River Forum 4/24/09

Outline

- 1. Minnesota's Impaired Waters
 - 2. TMDL Study Process
 - 3. UMR Bacteria TMDL Project

Clean Water Act (1972)

Goal - Restore and maintain the chemical, physical, and biological integrity of U.S. waters

Section 303 of CWA

- 1. <u>Assess State Waters</u> meet water-quality standards?
- 2. <u>List Impaired Waters</u> 303(d) List
- 3. Conduct TMDL Studies set pollutant reduction goals

Water Quality

Protecting

Improving

Watershed Framework: One Water

Integrates Watershed Monitoring, Planning, & Implementation Efforts

- 10-year cycle
- Major watershed scale (8-digit HUC scale)
- Identify all impairments & waters that need protection
- Coordinates agency/local efforts – monitoring/water planning
- Track trends over time

Beneficial Use Classifications

Use Class	Beneficial Use		
Class 1	Drinking Water		
Class 2	Aquatic life and recreation		
2A	Cold water fisheries, trout waters		
2Bd	Cool and warm water fisheries, drinking water		
2B	Cool and warm water fisheries		
2C	Indigenous fish and associated aquatic community		
2D	Wetlands		
Class 3	Industrial uses and cooling		
Class 4A	Agriculture and wildlife uses		
Class 5	Aesthetics and navigation		
Class 6	Other uses		
Class 7	Limited resource value waters		

Water Quality Standards

Aquatic Recreation (1° and 2° body contact)

Bacteria Standard	Units	Notes	Assessment
E. coli	126 orgs per 100 ml	Indicator	Geometric mean of

MN Impaired Waters

2008 Impaired Waters 303(d) List

All impaired waters = 2,575

Impaired waters (lakes, rivers, wetlands) need a TMDL = 1,475

Impairments by Parameter

- Nutrients (Phosphorus) 208
- Bacteria (*E. coli*) 139
- Impaired Biota (Fish/Aquatic Insects) 144
- Low Dissolved Oxygen 54
- PCBs 141
- Mercury 1,312
- Others (pH, Chloride, Toxics, Temp) 34

- About 14% streams & 18% lakes have been assessed in MN
- Of those waterbodies assessed, about 40% of the lakes and streams are impaired for a designated use

Examples of Impairments

Outline

1. Minnesota's Impaired Waters

- 2. TMDL Study Process
- 3. UMR Bacteria TMDL Project

Total Maximum Daily Load (TMDL)

A TMDL Study -

- 1. Identifies pollutant sources
- 2. Determines pollution reduction needed to restore the water quality

TMDL Process

Determine Sources Causing Impairment

Analyze existing data & conduct monitoring

■ Identify stresses & develop pollutant loads

*Deliverable: TMDL Report

Develop Implementation Strategies/Plan

■ Identify leads/partners & monitoring plan

*Deliverable: Implementation Plan

Quantifying a TMDL Number

Sum of the allowable loads of a single pollutant from all contributing permitted and non-permitted sources

$TMDL = \Sigma WLA + \Sigma LA + MOS + RC$

WLA = Wasteload Allocation, "permitted sources"

LA = Load Allocation, "non-permitted sources"

MOS = Margin of Safety, "uncertainties"

RC = Reserve Capacity, "future growth"

Progress to Date in Developing TMDL Studies in Minnesota

What do TMDL Projects mean for Stakeholders?

Increased funding opportunities for implementation activities & improved WQ

Better understanding of links between water quality monitoring data and potential pollutant sources

Possible changes in permits

Outline

- 1. Minnesota's Impaired Waters
- 2. TMDL Study Process

Upper Mississippi River Bacteria TMDL Project

Overall Goal

Improve and restore the water quality of the Upper Mississippi River

Joint Effort

- MPCA & MDH, Partners, EOR
- > Beneficial use designation
- MDH Source Water Protection/MPCA TMDL

Draft Timeline

- > 2008 Project Start (Work Plan, Stakeholder Meetings)
- > 2012-2014 Draft TMDL/Implementation Plan

Upper Mississippi River Bacteria Impairments

Upper Mississippi River Bacteria TMDL Project

Major Project Objectives

- Summarize Existing Data
- E. coli ~ pathogens/sediment
- Monitoring Plan
- CWA/SDWA Policies
- Additional Monitoring
- Bacteria "Hot Spots" & Sources
- Special Studies
- Refine Project Scope
- TMDL bacteria reductions
- Implementation Activities

Bacteria TMDL Projects

Monitoring Data

 Stream flow, bacteria concentrations, precipitation, land use, subwatershed size

Potential sources

- Septic systems
- Livestock operations
- Stormwater (various sources)
- Wildlife and pet populations
- Wastewater treatment facilities
- Manure spreading & storage

Potential Sources of Bacteria

Best Management Practices: Bacteria Removal

Potential solutions

Potential sources

Septic systems

- Enforce compliance for failing septic systems

- Livestock operations
- Reduce feedlot/pasture runoff in priority areas (fencing, buffers)

■ Stormwater (sources vary)

Filter stormwater (rain gardens, infiltration basins), reduce sediment (street sweeping)

Best Management Practices: Bacteria Removal

Potential sources

Wildlife and pet populations

 Evaluate pet waste & wildlife feeding ordinances, create educational materials

Potential solutions

Wastewater treatment facilities

Identify illicit sewer connections

Manure spreading & storage

 Reduce bacteria from land application of manure (stream/ditch buffers, immediate incorporation, conservation tillage, lined structures)

For More Information

> TMDL Protocols, Training Modules, 303d list, Projects Underway

www.pca.state.mn.us/water/tmdl