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Abstract An inverse method was developed to integrate satellite observationso
atmospheric pollutant column concentrations with specie concentrations and diree
sensitivities predicted by a regional air quality model in order to discern biases i
the emissions of the pollutant precursors. Using this method, the emission field
were analyzed using a “top-down” approach with an inversion performed b
Discrete Kalman Filter (DKF) and direct sensitivities calculated using the De
coupled Direct Method in 3D (DDM-3D) embedded in the Community Multiscal
Air Quality (CMAQ) model. The system was tested through an experime
focusing on NO, concentrations and emissions of NOX in the southeastern Unite
States. The method reproduced the expected NOx emission fields from initia

perturbed starting values. Responses to different parameters in the system
including assumptions for uncertainties in the emission fields and satelli
observations, were also tested. The method is readily extendable to other pollutant
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1. Introduction

Current regional air quality models rely on well-developed emission inven
with high spatial and temporal resolution. While much work has been done |
the development of such inventories, uncertainties still exist. At the same
retrieval techniques for satellite data have improved and several datasets are av
able for observations of NO,, CO, and some hydrocarbons recorded by sever
satellites in orbit.

A method was developed for using satellite NO, column observations to che
for biases in current emission inventories of NOx with Discrete Kalman filt
(DKF) inversion and sensitivities calculated by the Decoupled Direct Method:
three dimensions (DDM-3D), which had been previously integrated (Cohan eta
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2005; Napelenok et al., 2006) into the Community Multiscale Air Quality (CMAQ)
model (Byun and Schere, 2006). The method was tested using a pseudodata

enario representing hypothetical satellite observations. A base-case CMAQ simu-

n acted as the true representation of the relationship between NOx emissions
d NO, column concentrations in the domain. Ground-level NOx emissions were
n adjusted in pre-defined geographic regions within the modeling domain to
mic possible biases. Finally, the inverse procedure was applied to attempt to
arrive back at the base-case emissions taking into account uncertainties in transport
and chemistry. The method has proved to converge robustly at the correct solution
inonly a few iterations for various spatially distributed emission biases.

Integration of satellite observations of NO; with regional air quality modeling
florts can potentially reduce uncertainty in emission inventories. Retrieval algo-
ms for NO, column densities have been developed for several satellites, includ-
g GOME (Richter and Burrows, 2002), SCIAMACHY (Sioris et al., 2004), and
more recently, OMI (Bucsela et al., 2006). Inverse modeling of NOx emissions has
been applied previously, but typically on a global scale (Martin et al., 2003; Muller
and Stavrakou, 2005) with some efforts on a continental scale (Quelo et al., 2005;
ovalov et al., 2006). In finer scale NO; inverse modeling, the difficulties arise
om the importance of resolving the nonlinearities in chemistry and transport,
Which are overcome in this exercise with the aid of direct sensitivities.

2. Method
L1. Discrete Kalman filter

iverse modeling of the NOx emissions field was performed using Discrete
alman Filter. DKF is an optimization technique used to estimate discrete time
eries and states that are governed by sets of linear differential equations. It has
een frequent use in inverse modeling of emissions on both the global scale and
gional scales for various gaseous and particulate species (Hartley and Prinn,
1993; Chang et al., 1996: Haas-Laursen et al., 1996; Gilliland et al., 2003). Since
hemical transport models also parameterize nonlinear processes, the linearity
sumption is overcome by applying DKF iteratively. This method is also attractive
ir inverse modeling, because it allows for the use of uncertainty information in
oih the emissions fields and the observed pollutant values. A brief overview of

is presented here, while more detailed explanation is available elsewhere
dilliland and Abbitt, 2001).

DKF evolves the emission vector, F, according to the following:

Eun=Eu+6, (" - 2™ (n

il iteration k+/ and time 1, the emissions vector is altered based on the gain

—obs

natrix, G 14 » and the difference between the vectors of observations, ¥, , and
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—mod
modeled values, 7, . The gain matrix is defined in terms of the matrix of partial
derivatives of the change in concentration with respect to emissions, P,, the matrix
of the covariance of the error in the emissions field, C,4, and the noise matrix, N,
such that:

21 T i !
G:_k _C:J:Pf (PJC!,I:P! +Nr) (2)
The covariance of error matrix also evolves with subsequent iterations according
to:

C:,k+l = Cr.k _G:,kP.'Cf,ic (3)
The covariance functionally determines the degree to which the emissions vec-
tor is allowed to deviate from its initial values. As iterations are progressed,
the covariance is reduced according to Eq. (3) and subsequent differences bet-
ween Ey 1 and Ex are smaller in a mathematically stable system. In this appli-

cation, the initial covariance of the error in the integrated emissions estimates,
C,i - ¢, was based on an estimate of the normalized uncertainty in the emissions,
Uy, according to the following:

Ca= (UE,I y E,-')z (4a)

2
Uy, +U;, 'EJ+EkJ ol

ka,,uk = [0-1' ) )

Similarly, the noise matrix was based on the estimated normalized uncertainties in

the observations, U, according to:
N, = MaxE.S, (U ol y l (53)
NJ,.,‘J,EJr =0.0 (5b)

Theoretically, the noise matrix, N,, can account for both errors in observations, as it
does here, and also errors in the modeling system. The minimum value of 0.5 (10"
molecules/cm®)’ was imposed to prevent mathematical instability.

2.2. Decoupled direct method in 3D

The relationship between precursor emissions and resulting pollutant concentra-
tions was represented using sensitivities calculated using the Decoupled Direct
Method in 3D. DDM-3D is an efficient and convenient way to calculate responses
in the outputs of an air quality model to perturbations in various combinations
of input parameters (Dunker, 1981; Yang et al,, 1997). DDM-3D propagates sen-
sitivities using some of the same algorithms that are in place to solve the atom-
spheric diffusion equation:

8C; 3

vegde ~V(uC,)+V(KVC,)+R +E, , ©)
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where C, is the concentration of species i, u is the fluid velocity, K is the diffusivity
tensor, R is rate of chemical generation, and E is the emissions field. An analogous
equation is developed to calculate sensitivities:

a_astﬂ; =-V(us, )+ V(KVS, )+ /.S, +E,, ™

‘where J, is the ith row vector in the Jacobian matrix J, which represents the
chemical interactions between species (J, = OR, /0C,), and &, is defined as the

change of a pollutant / in space, X, and time, £, in respect to a perturbation in some
model parameter, (emission rate, initial condition, etc.):

s, (x.t)= oY) @®)

op,

Implementation of DDM-3D for the CMAQ model has been evaluated pre-
viously for both gaseous and particulate species and has been shown be suitable for
producing NO, sensitivities to NOx emissions as compared to discrete difference
sensitivity methods (Cohan et al., 2005; Napelenok et al., 2006).

3. Pseudodata Analysis

To evaluate the inverse modeling system, a pseudodata scenario was developed
in a sample domain centered on the southeastern United States. Emissions source
regions were defined based on similar spatial emissions patterns of ground-level
NOx during the summer months of 2004 and included the urban areas of Memphis,
TN Nashville, TN; Birmingham, AL; Atlanta, GA; and Macon, GA, as well as the
rural areas approximately covered by the states of Tennessee, Mississippi, Alabama,
and Georgia (Figure 1). A 144 km wide margin was left around the source regions
in order to completely resolve sensitivity fields originating from the defined regions.

Fig. 1 Source region definitions and average ground-
level hourly NOx emissions (moles/s) on August 1,
2004

CMAQ with DDM-3D simulated base concentration fields of NO, and sen-
sitivities to NOx emissions from each source region. Sensitivities to the emissions
from the surrounding “border” region and to the boundary conditions were also
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calculated and were found to have negligible impact on NO, column densities in
the inner region (Figure 2).

Fig. 2 Fractional contribution of total NO; column sensitivity to NOx emissions only from (a) 144

km “border™ region and (b) boundary conditions. The total NO, column sensitivity is the sum of
sensitivities to each source in addition to (a) and (b)

The emission rates in each source region were then arbitrarily adjusted by factors
ranging between 0.6 and 1.7 and the simulation repeated with the assumption that
the emissions were homogeneous within the region. NO, concentrations and sen-
sitivities from each simulation were aggregated to column values to more closely
mimic the type of available satellite data. The perturbed emissions vector and the
corresponding gridded NO, column values became the a priori estimate for the

— —mod
inverse method ( £, and X. ), while the base-case NO, columns were used as

—obs
the representation of the “truth” in the inverse ( X: ). DKF was then applied
iteratively, recalculating concentration and sensitivity fields for each .

During this exercise, the uncertainties in the emissions were set to be relatively
high (Ux = 2.0) to allow a large range of deviation from the a priori emissions
vector in the subsequent estimations. The uncertainty in observations was set low
(Unhs = 0.1) to allow the modeled values to closely approach the observations. This
combination of uncertainty parameters allows for the best test of the robustness of
the system at arriving at the correct solution.

The application of this pseudodata scenario revealed that the proposed inverse
method was able to reproduce the original base-case emissions vector within on ly a
few iterations (Figure 3). The corresponding NO, fields were also nearly
completely corrected (within 1%) after just four iterations (Fig. ).
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‘The response of the system to uncertainty assumptions was also evaluated by
nalyzing the predicted regional emissions adjustment after the first DKF iteration
1). In this pseudodata scenario, the acceptable solution was found immediately
ier the first iteration (Figure 1); thus it was not necessary to carry the solution
er for this analysis. As expected, large uncertainties in the observations that
ad to larger values in the noise matrix (V,) do not allow for large adjustments to
e emissions fields, while large uncertainties in the a priori emissions estimates
low for larger adjustments through increasing the values in the initial covariance
error matrix C; - o (Figure 5). Actual uncertainties in the NO, column density
easurements from the SCIAMACHY and GOME satellite have been shown to be
proximately 0.5 x 10'° molecules em™ +30% from various assumptions in the
rieval algorithms (Martin et al., 2002; Boersma et al., 2004) suggesting values at

lower end of the tested range. It is more difficult to arrive at estimates of
nissions uncertainties in specific geographic regions, but it was shown that if
e are no mathematical instabilities, larger values should be selected to arrive at
asolution in fewer iterations.

Atlanta fi0)=0.6 Macon H{0)=1.7
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Fig. 5 Regional emissions after the first DKF Ms f(0)=0.7 Nashvie K0)=1.6
ion normalized by their corresponding base-

s¢ values as a function of uncertainties in obser- 5
tions and uncertainties in emissions. White areas
immediate near perfect prediction. Initial
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4. Discussion

Ly

proposed method was successful at reproducing correct regional emissions
values in the pseudodata exercise. The translation to actual satellite measurements
s likely to be more complex due to the limited coverage of the observations. When
retrieval is not disrupted by heavy cloud cover that the instruments are unable
fo penetrate, the geographical extent of what is observed is relatively small. In
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the pseudodata test, all grid cells in the domain were allowed to represent an
“observation point,” thus avoiding difficulties that can arise with real data resulting
in the system being mathematically ill-posed and therefore unconstrained. Other
regional scale inverse modeling attempts have used fairly long averaging periods to
allow for enough satellite observations to populate the domain (Konovalov et al.,
2006). The more recently available OMI satellite has significantly better overpass
frequency than older instruments and should help alleviate this problem.

Furthermore, the presented method assumes that the discrepancies in the
modeled and observed NO, concentrations are due solely to estimates of emissions
at the ground level. Uncertainties in the chemical processes, emissions aloft from
lightning sources and airplanes, and meteorological predictions also contribute to
differences between modeled concentrations of NO, and satellite observations.
These uncertainties should be quantified and included in the noise matrix. The
presented pseudodata analysis tests the reliability of the method before adding these
complexities.

Overall, the method is computationally efficient due to the ability to calculate
sensitivities directly using DDM-3D and the fact that the matrix operations required
by DKF are computationally insignificant. It promises to be directly applicable to
NOx emissions inventory analysis and extendable to other species.
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