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Abstract 
 

Quantitative assessment of human exposures and health effects due to air pollution 
involve detailed characterization of impacts of air quality on exposure and dose.    A key 
challenge is to integrate these three components on a consistent spatial and temporal basis taking 
into account linkages and feedbacks.  The current state-of-practice for such assessments is to 
exercise emission, meteorology, air quality, exposure, and dose models separately, and to link 
them together by using the output of one model as input to the subsequent downstream model.  
Quantification of variability and uncertainty has been an important topic in the exposure 
assessment community for a number of years.  Variability refers to differences in the value of a 
quantity (e.g., exposure) over time, space, or among individuals.  Uncertainty refers to lack of 
knowledge regarding the true value of a quantity.  An emerging challenge is how to quantify 
variability and uncertainty in integrated assessments over the source-to-dose continuum by 
considering contributions from individual as well as linked components.  For a case study of fine 
particulate matter (PM2.5) in North Carolina during July 2002, we characterize variability and 
uncertainty associated with each of the individual concentration, exposure and dose models that 
are linked, and use a conceptual framework to quantify and evaluate the implications of coupled 
model uncertainties. We find that the resulting overall uncertainties due to combined effects of 
both variability and uncertainty are smaller (usually by a factor of 3-4) than the crudely 
multiplied model-specific overall uncertainty ratios. Future research will need to examine the 
impact of potential dependencies among the model components by conducting a truly coupled 
modeling analysis. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DRAFT MANUSCRIPT: UNDER REVIEW AT ATMOSPHERIC ENVIRONMENT 

 3

1.  Introduction 
 
Human exposures to atmospheric pollutants can be quite complex due to the spatial and 

temporal nature of emissions, meteorology and human activities. Variations in both the ambient 
pollution concentrations and behavioral factors influence individuals contact with pollutants 
found indoors and outdoors. Traditionally, different types of models have been used to provide 
the critical linkages between pollutant emissions from natural and anthropogenic sources, 
concentrations in various media, human exposures to indoor and outdoor pollutants and the 
delivered dose to the body resulting from contact with these pollutants. In order to support its 
actions to protect human health and the environment, the U.S. Environmental Protection Agency 
(EPA) uses a wide range of models in linking air pollution emissions to ambient concentrations 
to human exposures and to delivered pollutant dose to human respiratory system. However, each 
modeling component within the source-concentration-exposure-dose continuum contributes 
imprecision to predictions depending on the complexity of the underlying environmental, 
personal exposure or biological condition represented by each model.  Uncertainty is also 
introduced because of processes or information only available at a higher spatial or temporal 
scale and lack of compatibility of the scales of each model.  Probabilistic human exposure 
models developed by EPA for air pollution, such as the SHEDS-PM, Stochastic Human 
Exposure and Dose Simulation model for Particulate Matter (PM), incorporate the inherent 
variability and uncertainty information in the model inputs, parameters and results (Burke et al. 
2001). In contrast, air emissions and concentrations models by EPA, such as the Sparse Matrix 
Operator Kernel Emissions (SMOKE), National Mobile Inventory Model (NMIM), and 
Community Multi-scale Air Quality (CMAQ) (Byun and Schere, 2006) models are mechanistic 
models that simulate environmental processes in a deterministic fashion.    Previous studies as 
summarized by Hanna et al. (2005) have focused on the uncertainties in concentrations estimated 
by air quality models. However, these studies do not propagate the uncertainties to exposure and 
dose models. One of the key challenges in conducting an integrated source-to-dose modeling is 
the difficulty of quantifying coupled model uncertainties. Here we examine the topic seldom 
addressed, namely the impact of cascading modeling errors, when outputs from models are used 
as inputs into other models, in a sequential manner. We make some simplifying assumptions by 
ignoring small but possible interdependencies or feedbacks between the different models that are 
being coupled. Since each of the individual models used to predict emissions-concentrations, 
concentrations-exposures and exposures-dose relationships have unique characteristics, our 
proposed methodology explicitly characterizes the relative importance of variability vs. 
uncertainty for each of these models in performing an integrated source-dose modeling analysis. 
We demonstrate the application of our approach for conducting coupled model uncertainty 
analysis through a case-study on source-to-dose modeling of population exposures to ambient 
PM2.5 (Particulate Matter < 2.5 microns in aerodynamic diameter) in North Carolina during July 
2002.  
 
2.  Methodologies for Estimating Modeling Uncertainties 
  
2.1 Sources of variability and uncertainty  
 

  Models are hypotheses regarding how a system behaves in response to changes in its 
inputs.  Model development involves choices regarding what to include and at what level of 
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detail.  Sources of uncertainty include measurement error, statistical sampling error, non-
representativeness of data, and structural uncertainties in scenarios and models. Scenarios are 
assumptions regarding the factors that define the scope of the assessment, such as the averaging 
time, geographic and temporal scale, exposed population of interest, and others.  If the modeling 
approach omits any of the elements of the scenario of interest, then the estimates could be biased.  
Model uncertainty is influenced by the extent of verification and validation, whether the model is 
extrapolated beyond the range of its evaluation, and whether there are alternative theories upon 
which alternative modeling approaches could be developed (e.g., Cullen and Frey, 1999). 
 Variability arises from true heterogeneity across people, places, or time.  Variability is 
an inherent property of the system being modeled.  Some types of variability cannot be reduced 
(e.g., characteristics of individuals vary with respect to age and gender).  In these cases, 
variability can be stratified into more homogeneous subgroups and an analysis can focus on the 
strata of most interest.  In other cases, it may be possible to control or alter the range of 
variability (e.g., lowering peak values of ambient pollutant concentration by controlling 
emissions).  Some variation arises because of stochastic processes, such as turbulent eddy 
diffusion.  Knowledge of variability is critical to decision making regarding risk management, 
such as regarding how to reduce variations in exposures or reduce the frequency and magnitude 
of high exposures. 
 In some cases, variability and uncertainty might be difficult to separate (e.g., stochastic 
variability that also leads to lack of knowledge regarding the true average concentration for a 
short time period at a specific location) or it may not be necessary to separate them (e.g., if one 
were to estimate exposure for a randomly selected individual).  Here, our goal is to explicitly 
consider factors that lead to spatial and temporal variations in ambient concentration, exposure, 
and dose as variability, and factors that lead to lack of knowledge regarding the true value of 
concentration, exposure, and dose at a given time and location as uncertainty. 
 Uncertainty arises because of lack of knowledge regarding factors affecting exposure or 
risk. Typically, there is a trade-off between the value of additional information (i.e., in terms of 
ability to make a decision with less potential for error) versus the potential downside risks of 
decision-making under the current state of knowledge. 

 
2.2 Variability and uncertainty in individual model predictions  
 

In modeling ambient PM2.5 concentrations, air quality models incorporate emissions and 
meteorological data in characterizing complex atmospheric physical and chemical processes by 
mathematical parameterization. Ambient PM2.5 levels are influenced by direct emissions of 
particulate matter, as well as, emissions of precursors such as NOx, VOCs, SOx, and ammonia. 
For anthropogenic emission sources, inter-source variability in emissions arises because of 
differences in design, feedstocks, ambient conditions, and maintenance practices. The 
uncertainty in an inventory depends on the geographic area, averaging period, time of year, types 
of emission sources, and other factors (NARSTO, 2005).  In addition to emissions, there are also 
uncertainties in the structure of air quality models, including the formulation of the  advection, 
dispersion, gas-phase chemistry, aerosol thermodynamics, mass-transfer and deposition 
processes.  
 Uncertainties in the exposure and dose model predictions, such as those based on the 
SHEDS-PM model, are also influenced by parameter and structural model uncertainties. 
Common input or parameter uncertainties with the SHEDS-PM model, include imprecision in: 
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(a) the parameters used to estimate concentrations in the various locations individuals spend time 
(outdoors, indoors and in vehicles), such as indoor infiltration, deposition, and emission rates for 
PM and information on the type and use of mechanical ventilation; (b) the mobility and time-
activity information for the different population cohorts, and (c) the parameters for estimating 
pulmonary deposition of size-specific PM by age, gender, activity level and susceptibility status. 
Even though current probabilistic human exposure or dose models incorporate the important 
behavioral and physical processes influencing exposures to PM of outdoor origin (Burke et al., 
2001; Georgopoulos et al., 2005), due to lack of appropriate data, structural uncertainties with 
these models have not been adequately evaluated.  However, model intercomparisons would be 
valuable for providing estimates of structural model uncertainties for these types of models 
(Driver and Zartarian, 2008).  
 

 
2.3 Estimating coupled model uncertainties  

 
Fig. 1 demonstrates the informational connections between the main components of an 

integrated source-to-dose assessment.  For example, the assessment of emissions needs to be 
based on influential factors (e.g., human activity) as well as support downstream analysis of air 
quality impacts.  Emissions need to be estimated at spatial and temporal resolutions, and for 
appropriate speciation of chemicals and agents of health concern, that support downstream 
analysis of air quality impacts.  However, there is also coupling between key inputs to both the 
emissions and air quality assessment, such as meteorological or climatologic factors that affect 
both emissions and pollutant transport and transformation (e.g., temperature, humidity, 
barometric pressure, rain, snow, storms, etc.).   

Furthermore, air quality can also affect human activity.  For example, modification of 
human behavior in response to air quality advisories would lead to changes in activity, which 
could affect emissions, air quality, and exposure, and which in turn could affect dose and risk 
characterization. Likewise, there is a critical need to properly integrate the air quality and 
exposure components.  Human activities, as well as building ventilation practices may change as 
a function of season, outdoor temperature and meteorology. Although many of these linkages 
between temperature, meteorology, human activity and exposures may be modest, nevertheless 
there is some possibility of significant interdependencies among them. However, this issue has 
not yet been addressed fully.  Finally, in terms of producing appropriate modeling results for 
sub-acute or chronic health effects applications, averaging time(s) other than the 24-hr averages 
considered here may be needed.  

Ideally, uncertainties resulting from coupling multiple models should be studied by 
performing a joint sensitivity and uncertainty analysis of the different models included within the 
integrated modeling framework.  At this time, however, the state-of-the-art models for each of 
the emissions, air quality, exposure and dose components have not yet been directly coupled, 
even for providing deterministic point estimates. Therefore, the approach taken here is to assess 
the typical ranges and distributions of variability and uncertainty for the air quality, exposure, 
and dose components individually within a linked source-to-dose modeling analysis, over the 
shaded area shown in Fig.1. To simplify our analysis, an assumption is made that there are no 
structural uncertainties in the scenario, and that model uncertainties can be quantified 
probabilistically in terms of precision and accuracy of the model output. 
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The air quality model estimates hourly average ambient PM2.5 concentrations that were 
aggregated to daily average values for specific grid cells based on input data for emissions, 
meteorology, chemistry, and initial and boundary conditions. The air quality model produces an 
estimate of concentration at a given location and time. The exposure model produces an estimate 
of inter-individual and intra-individual variability in exposure that is dependent, in part, on 
ambient concentrations and the averaging time used.  The dose model produces an estimate of 
dose that is dependent on the estimated exposure for each individual.  The estimated dose is 
based on coupling of the air quality (C), exposure (E), and dose (D) models, which is represented 
conceptually, as: 
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where, 
 C = daily average ambient concentration from the output of an air quality model (ug/m3); 
 E/C = the ratio of daily average exposure to daily average ambient concentration, based 
on an exposure model; 
 D/E = the ratio of average daily dose to daily average exposure, based on a dose model. 

 
In the simplified situation in which each of these three models components contributes 

both variability and uncertainty, the overall variability and uncertainty in dose is a multiplicative 
combination of the three components (denoted by the Variable Xi  in Eqs. (2)-(4) below). For 
independent Xi, the variance in the dose, Var(Y), can be linearly approximated based on Taylor 
series expansion, as: 
 

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

≈
n

i
iXVar

iX
YYVar

1

)(
2

)(               (2) 

where, 
 Y = Output of coupled model framework (i.e. Dose) 
 Xi = Outputs of individual models in a coupled framework (e.g., C, E/C, D/E) 
 

Thus, the basic conceptual framework for estimating the overall variability and 
uncertainty used in this analysis can be expressed as: 
 

321 XXXYDose ××== , or                          (3) 
 

( ) ( ) ( )332211 εεε ×××××= XXXY                          (4) 
  
where,  

X1, X2, X3 are the normalized variables (i.e., each variable value divided by its arithmetic 

mean) corresponding to C, 
C
E  and

E
D , respectively; and 21 ,εε  and 3ε  are the associated 

prediction error terms.   
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In Eq. (4) the variances of the Xi terms represent variability and the variances of the εi 

terms represent uncertainty.  Multiplicative errors are assumed since prediction errors are often 
proportional to the magnitude of the quantity being measured. 

 
Based upon typical ranges of variability and uncertainty associated with each of the three 

model components, a numerical simulation was conducted in which both variability and 
uncertainty were quantified for each component and propagated to the output using a two-stage 
Monte Carlo methodology. Analytical probability distributions, mainly lognormal or normal 
distributions are fit to represent the variability or the uncertainty for each of the three coupled 
modeled variables. The best statistical fits for the variability distributions were found to be 
lognormal distributions. For uncertainty distributions we assumed multiplicative normal 
distributions with mean equal to1, except for cases in which the coefficient of variation (CV) was 
greater than 0.3, where we chose a lognormal distribution.  The CV is equivalent to the standard 
deviation (σ ) divided by the arithmetic mean.  To avoid estimating negative values for highly 
uncertain quantities, lognormal distributions were used in these cases. Since the variables are 
normalized first, all of the variability distributions have arithmetic means of 1 and are thus 
represented, as: 
 
 ),(~ igi xLnX σ  or ),1(~ ii NX σ  and ),1(~

i
Ni εσε            (5) 

where, 
xg denotes the geometric mean 

iσ  or 
iε

σ denote either the geometric or arithmetic standard deviations of the underlying 
variability and the uncertainty distributions.  

 
In conducting our coupled uncertainty calculations we used Crystal Ball Version 7.0 software 

to simulate over 100,000 iterations of variability and uncertainty simulations using the fitted 
normal or lognormal distributions with arithmetic mean=1, and the calculated CV (in this case 
equal to σ  since the mean is equal to 1 for the normalized data).  
 
3. Model Descriptions and Inputs 
 
3.1   Air Quality Model 
 

The Community Multiscale Air Quality (CMAQ) model was used to simulate the PM2.5 
concentrations using an Eulerian grid structure.  The model inputs include chemical emissions 
and the results from a numerical weather simulation model.  CMAQ simulates advection, 
dispersion, gas-phase chemistry, aerosol thermodynamics and mass-transfer, and deposition.  We 
simulated the time period from June 24, 2002 to July 30, 2002.  The first seven days were 
excluded from the analysis to eliminate sensitivity to initial conditions. The spatial domain 
included most of the Eastern United States at a 12 km horizontal resolution and 14 vertical layers 
up to 100 mbar.  Meteorological inputs are from the PSU/NCAR mesoscale model, also known 
as MM5 (Grell et al., 1994).  Emissions were generated using the SMOKE emissions processing 
system (http://www.smoke-model.org/version2.3.2/html/ch02s16.html).  Emissions data for 
motor vehicles are from MOBILE 6 (http://www.epa.gov/otaq/m6.htm); power plant emissions 
were from Continuous Emission Monitors (http://www.epa.gov/camddataandmaps/).  Biogenic 
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volatile organic carbon and NOx emissions were simulated using BEIS v.3.13 (Schwede et al., 
2005) and are derived using the same meteorological fields as the air quality simulations.  All 
other emission sources were from the 2001 National Emission Inventory 
(http://www.epa.gov/ttn/chief/net/critsummary.html).  

A variety of different physical and chemical parameterizations were available for CMAQ 
and the models used to generate the inputs.  An ensemble of these modeling options was used to 
approximate the uncertainty inherent in the structure of the model.  We selected a subset of 
twelve different model configurations known to have the largest impact on air quality simulation 
(Hogrefe et al., 2001; Gilliam et al., 2006), including three configurations of the planetary 
boundary layer / land surface model, two convective mixing schemes, and two chemical 
mechanisms.  The combinations of planetary boundary layer model (PBL) and land surface 
model (LSM) are the Asymmetric Convective Model (PBL) (Pleim and Chang, 1992) and Pleim-
Xiu LSM (Xiu and Pleim, 2001), the Medium Range Forecast PBL (Hong and Pan, 1996) and 
Noah LSM (Ek et al., 2003), and the Mellor-Yamada-Janjic PBL (Janjic, 1994) and Noah LSM 
(Ek et al., 2003).  The two convective mixing schemes are Kain–Fritsch (Kain, 2004) and the 
Grell Cumulus Convective Scheme (Grell, 1993).  We selected the Carbon Bond IV (Gery et al., 
1989) and Carbon Bond 2005 (Sarwar et al., 2008) chemical mechanisms.  

 
3.2   Exposure and Dose Model 
 

The Stochastic Human Exposure and Dose Simulation Model for Particulate Matter 
(SHEDS-PM) uses a probabilistic approach to simulate the time-series of inhalation exposure 
and dose for individuals that demographically represent a population of interest based on PM 
concentrations supplied as input to the model.  The generation of the time-series involves 
stochastic processes utilizing numerical Monte-Carlo sampling techniques to characterize the 
variability within an individual over time and between individuals across a population.  
Uncertainty in the model output is estimated by incorporating the knowledge- or measurement-
based uncertainty associated with the inputs through multiple iterations of the model. The overall 
structure of the SHEDS-PM model has been described in detail elsewhere (Burke et al., 2001; 
Georgopoulis et al., 2005).   The SHEDS-PM model estimates the contribution of PM from 
ambient or outdoor air separately from the contribution of PM from other sources (e.g., 
smoking).  This separation is maintained throughout the exposure and dose calculations, 
producing results for the daily-averaged exposure and total daily dose due to PM from outdoor 
sources (ambient PM exposure and dose) versus that due to indoor PM sources (non-ambient PM 
exposure and dose) for each simulated individual. 

The daily average PM2.5 concentrations in North Carolina from CMAQ for a one month 
time period (July 1-30, 2002) described above were used as the input PM2.5 concentration data 
for SHEDS-PM (version 3.5).  The 12x12 km2 gridded data from CMAQ was interpolated to the 
census tract centroids of all 1563 census tracts within North Carolina. A representative 
population for the simulation was generated using demographic proportions for each census tract 
from US Census 2000 data (gender, age, employment status, and worker commuting census 
tract).  One percent of the total population of North Carolina (all gender-age combinations) was 
simulated for a total of 81,266 individuals across all of the census tracts in North Carolina. This 
translated to a total of 2,437,980 person-days over the 30-day simulation period, which was 
determined to be a large enough sample size to produce numerically stable results for variability. 
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Each simulated individual was randomly assigned a longitudinal time series of location 
and activity information for the 30 day simulation using human activity diaries from EPA’s 
Consolidated Human Activity Database (CHAD) (http://www.epa.gov/chadnet1/). Diaries were 
randomly assigned to each simulated individual from those matching gender, age, and 
employment status from available CHAD diaries collected during the summer season (defined as 
June, July and August).  A different CHAD diary was assigned for each individual for weekdays, 
Saturdays, and Sundays. The PM2.5 concentration for each individual’s CHAD diary locations 
was calculated using the interpolated CMAQ concentration for their home census tract, and 
distributions of indoor/outdoor PM2.5 concentration relationships for different diary locations 
(home, office, school, store, restaurant/bar, other indoor, and in vehicles).  A mass balance 
equation was used to calculate indoor PM concentrations for the home location that included 
parameters for air exchange, penetration, and deposition, as well as emission strengths for indoor 
PM sources (e.g., cooking). PM concentrations for the other indoor locations were calculated 
using equations developed from regression analysis of available indoor and outdoor 
measurement data for offices, schools, stores, and restaurants/bars as described in Burke et al., 
(2001) that accounted for both the ambient and non-ambient contributions to PM levels in these 
indoor locations.  For vehicles, both the elevated roadway concentrations and removal efficiency 
for PM were accounted for in the regressions.  The impact of commuting was included for 
employed individuals, using a database of home-work census tract commuting proportions from 
the US Census 2000 to randomly assign the individual to a different census tract during diary 
activities corresponding to “work”.  The PM concentration for the work census tract was used to 
calculate the location concentration during work activities only. 

Daily-average PM2.5 exposure for each individual was estimated using the calculated 
PM2.5 concentration and time spent in different locations from the assigned CHAD diary 
locations.  Total daily PM2.5 deposited dose was also estimated for each simulated individual 
using the PM2.5 exposure, activity level-specific inhalation rates based on the activities in the 
assigned diaries (McCurdy, 2000), and cumulative deposition to various regions of the 
respiratory tract based on empirical equations from the ICRP model (ICRP, 1994).  A bimodal 
particle size distribution was simulated for PM2.5 based on data for the eastern US (US EPA, 
2004).  A density of 1 g/cm3 was used to convert particle counts by size to mass.  
 
4.   Results 
 
4.1   Variability and uncertainty in the concentration predictions  
 

CMAQ PM2.5 model results for July 2002 were examined in multiple ways. We calculated both 
spatial and temporal CDFs (cumulative distribution functions) and CVs (Coefficient of Variation or 
standard deviation divided by the arithmetic means) based on the baseline ensemble member or mean 
of the 12 ensembles across the nearly 1000 model grid cells in North Carolina.  We did not observe 
any significant variation in the temporal CVs in NC. We also assessed whether spatial variability 
differs from one day to another (or by day of the week). In order to match the specifications of the 
SHEDS model these values were also interpolated at 1,563 census tract centroids in North Carolina. 
The overall (i.e., across all 30 days and 1,563 census tracts) normalized concentration values were fit 
well by a lognormal distribution with a CV of 0.52. A similar fit of 30-day averages of model results 
by each of the 100 counties resulted in a lower variability CV of 0.18.  
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For quantifying the CMAQ model uncertainties we performed inter-ensemble comparisons, as 
well as, comparing the model results with the 32 daily average PM2.5 concentrations observed at Air 
Quality System (AQS) monitoring stations (http://www.epa.gov/air/data/aqsdb.html) in North 
Carolina.  We compared model CDFs to corresponding measurement data from the 32 monitoring 
stations operating in North Carolina during the study period. A typical comparison for Raleigh area is 
shown in Fig. 2. Approximately 10 days of daily average PM2.5 data were available from each station.  
We estimated the distribution of the percentage difference in modeled versus measured values. Based 
on the inter-ensemble analysis we found the CMAQ model uncertainties to be about CV=0.15. 
However, as shown in Fig. 2, the observed value does not always fall within the ensemble range; there 
are sources of uncertainty beyond the differences in model representation.  This ensemble does not 
comprise a probability sample, and thus may not represent the entire range of possible outcomes.  To 
generate a more comprehensive estimate of uncertainty, we calculated the model error when compared 
to the observed values (Hanna and Davis, 2002).  The CV of the model error is 0.30 and is calculated 
as  

 

nsobservatio

nsobservatiomodel

μ
σ −=CV                          (6) 

 
where σ is the standard deviation of the model error and μ is the arithmetic mean of the observations.  

The resulting variability and uncertainty CVs were used as the base case during coupled model 
runs (Table 1). Since the model prediction uncertainties varied somewhat by time period or geographic 
location, we also chose a range of low, mixed and high uncertainty values shown in Table 1. Fig. 3(a) 
shows the overall variability in the predicted CMAQ PM2.5 concentrations. The variability in PM2.5 
concentrations between dates is also shown in this figure.  For example, the 95th percentile for PM2.5 
concentrations across North Carolina on each of the 30 days in July 2002 ranged from 11 to 48μg/m3.  
As part of ongoing work, the use of data fusion and Bayesian model averaging techniques are being 
used to make combined inferences from both model predictions and monitored data. 
 
4.2   Variability and uncertainty in the exposure and dose predictions 
 

SHEDS-PM produced distributions of personal exposures to PM2.5 as well as PM2.5 dose for 
North Carolina during July 2002. Summary statistics for the daily PM2.5 concentration, exposure, and 
dose across all simulated individuals over the 30 day simulation are shown in Table 2.  The SHEDS-
PM model results for ambient PM2.5 exposure and dose were used to provide the exposure to 
concentration (E/C) and dose to exposure (D/E) ratios needed for the coupled model uncertainty 
analysis described above. These ratios were analyzed in a number of different ways to understand the 
variability in the results.  Figs. 3(b)-(c) show variability distributions for the SHEDS PM2.5 E/C and 
D/E ratios, respectively, for all individuals combined as well as for selected age groups that illustrate 
the variability within and between age groups. Differences between age groups were greater for the 
D/E ratios than for the E/C ratios, indicating that physiological differences across ages impacts the 
variability in PM2.5 dose. Statistical frequency distributions were then fit to the normalized E/C and 
D/E values by each of the three metrics of interest (i.e., overall, county and individual) as shown in 
Table 1. The base case overall variability distribution for E/C was best fit by a normal distribution 
with a CV of 0.23. The base case overall D/E variability distribution was best fit by a lognormal 
distribution with a CV of 0.53. When the SHEDS-PM results were averaged by county the variability 
in both the E/C and D/E ratios was quite low (CV of 0.01 and 0.03 respectively).  When averaged by 
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individual, the variability in the E/C and D/E ratios was similar to that overall (CV of 0.12 and 0.46 
respectively), indicating that inter-individual differences were a major contributor to the overall 
variability. 

The uncertainty distributions were derived from both the results from the 2-D Monte-Carlo 
parameter uncertainty analysis runs and from the comparison of predicted SHEDS results with 
measured total personal PM exposures for a PM panel study conducted in Raleigh, NC (Burke et al., 
2002). The parameter uncertainty values were found to be fairly small, around CV=0.15 (Fig. 4). 
Furthermore, the measured vs. predicted for total PM2.5 exposures were also small for the Raleigh PM 
panel data (around CV=0.15). However, since we needed the uncertainty for the E/C ratios in this 
analysis we calculated the sum of the two variances for E and C in estimating a CV of 0.30 for E/C as 
a base case. We were not able to perform a parameter uncertainty analysis for the dose module of the 
SHEDS model at this time. We assumed for the base case overall uncertainty simulations can be 
represented by a normal distribution with a CV of 0.40. In order to examine the impact of likely ranges 
in our base case assumptions, we also added four more uncertainty specifications to address the likely 
ranges in the uncertainty specifications (i.e., low, two mixed and a high case) as shown in Table 1. 
 
4.3   Variability and uncertainty in coupled model predictions 
 
  Table 3 provides the results from the coupled model uncertainty analysis for each of the 
base and alternative simulation cases described above. These case studies assume that either 
there is no bias (systematic error) or that such biases have been corrected in a prior step.  For 
each analysis we provide three different measures of either variability or uncertainty combined. 
Specifically, three ratios are calculated using the various points (A, B, C, D) selected from the 
50th or 95th percentiles of the simulated variability or uncertainty distributions shown in Fig. 5(a), 
as follows:  
 

Variability Ratio = 
A
B  

 

Uncertainty Ratio =
A
C  

 

Overall Uncertainty Ratio = 
A
D  

 
The variability ratio represents the ratio of 95th percentile of variability to central 

tendency (i.e., 50th percentile of uncertainty for the 50th percentile of variability). The uncertainty 
ratio represents the ratio of 95th percentile of uncertainty for the central tendency to central 
tendency. The overall uncertainty ratio is a measure of the combined effect of both variability 
and uncertainty, and represents the ratio of 95th percentile of uncertainty for the 95th percentile of 
variability to central tendency. Table 3 provides for each of the case studies evaluated how this 
and other variability or uncertainty ratios change as models are sequentially combined.  Note that 
these results are expressed in a nondimensional form relative to a mean value for each selected 
output.  Namely, C alone (only one individual model), then C and E/C coupled (two models 
coupled) and then C and E/C and D/E combined (three models coupled).  Figs. 5(a)-(c) show 
how the base case variability and uncertainty distributions expand as three models are 
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sequentially coupled together. For the base case simulations the overall uncertainty ratio 
increases from 3.2 to 4.5 and then to 8.7 when all three models are coupled. The latter value is 
still about 3 fold less than the “crude uncertainty ratio” of 29.3, if one were to crudely estimate 
this overall ratio simply by multiplying each model’s overall ratios together. Table 3 also shows 
that coupled model uncertainties can be greater than the base case if the assumed uncertainties in 
each of the models are higher than the base case simulations. The high uncertainty case study 
yields an overall uncertainty ratio of 18.4 compared to a corresponding “crude uncertainty ratio” 
of 80.7. In general, however, the coupled model uncertainties, across all simulation case studies, 
are usually about 3-4 times less than the corresponding crude ratios. For the three models 
combined, we found a nearly perfect linear fit (R2=0.98) to these data, represented by the 
regression model: 

 
Overall Uncertainty Ratio= 2.7 + (0.19) x (Crude Uncertainty Ratio) + Error           (7)  

 
5. Summary and Conclusions  
  
 Understanding the influence of variability and uncertainty in model inputs and structure 
is important for characterization of the accuracy and precision of model results. Most of the 
environmental, exposure and dose models used in the analysis of source-to-dose relationships for 
environmental pollutants are quite complex. These models rely upon many types of physical, 
chemical, behavioral or biological information with varying degrees of inherent variability or 
uncertainty. In addition to understanding the nature and impact of these various sources of 
variability or error within each model, it is also essential to understand how these errors 
propagate, as multiple models are linked together in an integrative assessment. We studied this 
problem by focusing on human exposures to ambient PM, which is relevant not only to the 
investigations of health effects of PM but to many other chemical-specific exposure or risk 
assessments. Our case study of PM in North Carolina combined three distinct types of models: 
concentration, exposure and dose models. We used a 2-Dimensional Monte-Carlo simulation 
methodology to numerically calculate the propagation of errors, when one, two or three models 
are combined. We found that as more models are coupled together both the variability and 
uncertainty in the resulting model predictions increases. However, for the models that we 
selected, the increase in either the variability or in the uncertainty ratios separately, were found 
to be small (factor of 2 or less). On the other hand, the increase in the joint variability and 
uncertainty or the overall uncertainty ratio was somewhat higher (about factor of 2-3). In 
comparison, crude uncertainty ratios, where individual overall model uncertainties are directly 
multiplied, where much greater (about a factor of 3-4) than our predicted overall uncertainty 
ratios.  These findings are generally consistent with statistical expectations when either basic 
normal or lognormal distributions are linearly multiplied or added.  

These results have important implications for integrative assessments that need to 
estimate the overall accuracy and precision in the predictions when multiple models are 
combined. We recommend that a special effort be made to estimate the variability, uncertainty 
and overall uncertainty ratios for each of the models used in the chain of calculations. In 
particular, the overall ratio is a good measure of a conservative range of errors associated with 
each of the models. Short of repeating the simulations performed here, we suggest using an 
estimate based on Eq. (6) or an approximate factor of 2-3 (as opposed to the crude uncertainty 
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ratio of about a factor of 5) to estimate the likely range of overall coupled model uncertainties, 
when three models are linked together.  

We recognize also some of the limitations of our analysis. In particular, potential 
relationships or feedbacks between the various models or model elements may result in 
collinearities among the different variables. However, the numerical simulation approach 
adopted here can be used to explore the impact of such correlations by using correlated draws. A 
more complicated future analysis may attempt to differentiate the sources of uncertainties in 
modeled ambient concentrations, such as due to emissions, meteorology, transport, 
transformation and deposition. In this paper we studied modeling uncertainties dealing with 
exposures to ambient PM only. The study of exposures to both indoor and outdoor PM would 
pose similar additional complexities due to the fact that the total exposures / ambient 
concentration variable will be correlated with ambient concentrations. The simulations for 
exposures to total PM would necessarily have to incorporate such dependencies or correlations 
explicitly. In general, chemicals with indoor or multiple sources will require a more complex 
analysis of factors influencing the underlying variability and uncertainty distributions and the 
resulting modeling errors. However, most of these are tractable problems which can be addressed 
with currently available numerical analysis tools. Finally, we recommend performing a set of 
truly coupled modeling analyses, in order to evaluate our results by jointly characterizing the 
variability and uncertainties in the overall model predictions. 
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Table 1 
Coefficients of Variation for Variability and Uncertainty for Alternative Input Assumptions used 
in Coupled Model Uncertainty Analysis*  
 
Description Case C E/C D/E 

Base 
(Individuals) 

0.52 0.23 0.53 

Alternative-1 
(County) 

0.18 0.01 0.03 

Variability (Base) 

Alternative-2 
(Individual) 

0.17 
(Census Tract) 

0.12 
(Individual) 

0.46 
(Individual) 

   Base 0.3 0.3 0.4 
   Low 0.25 0.2 0.3 
   High 0.45 0.4 0.5 
   Mixed-1 0.25 0.3 0.5 

Uncertainty 

   Mixed-2 0.3 0.3 0.3 
*Numbers shown in bold are treated as lognormal distributions others are fit to normal 
distributions 
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Table 2   
Summary statistics for daily PM2.5 Concentration, Exposure and Dose for North Carolina during 
July 1-30, 2002. 

 
PM2.5  Variable Mean Std. Dev. 

Ambient Concentration (ug/m3) 17.22 9.05 

Exposure (ug/m3)   

         Total 14.40 8.21 
         Ambient 10.96 6.34 
Dose (mg)   
        Total 0.286 0.257 
        Ambient 0.196 0.169 
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Table 3 
 Predicted Variability and Uncertainty for Coupled Models under Alternative Input Assumptions 
 

Variability Uncertainty 

No. of 
Coupled 
Models 

Variability 
Ratioa 

Uncertainty 
Ratiob 

Overall 
Uncertainty 

Ratioc 

“Crude” 
Uncertainty 

Ratiod 
1 2.2 1.4 3.2  
2 2.4 1.9 4.5 6.8 

Base 

3 3.2 2.7 8.7 29.3 
1 2.2 1.5 3.4  
2 2.4 1.6 3.8 6.7 

Low 

3 3.2 2.0 6.6 22.7 
1 2.2 2.3 5.2  
2 2.4 2.6 6.2 14.5 

High 

3 3.2 5.7 18.4 80.7 
1 2.2 1.4 3.2  
2 2.4 1.7 4.2 7.4 

Mixed-1 

3 3.2 2.8 9.1 36.5 
1 2.2 1.5 3.3  
2 2.4 1.9 4.7 7.1 

Base 

Mixed-2 

3 3.2 2.5 8.2 24.7 
1 1.4 1.4 1.9  
2 1.4 1.7 2.4 2.8 

Alternative 
1 

Base 

3 1.4 3.1 4.2 5.9 
1 1.3 1.4 1.8  
2 1.4 1.7 2.4 3.3 

Alternative 
2 

Base 

3 2.2 2.1 4.8 12.5 
 
a Ratio of 95th percentile of variability to central tendency (i.e., 50th percentile of uncertainty for 
the 50th percentile of variability) (see Fig. 5-a). 
b Ratio of 95th percentile of uncertainty for the central tendency to central tendency (see Fig. 5-
a). 
c Ratio of 95th percentile of uncertainty for the 95th percentile of variability to central tendency 
(see Fig. 5-a).  
d Crude ratio is based on the product of the “overall ratio” for each of the models included in the 
coupled model analysis.  
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List of Figure Captions:  
 
 
  
Figure 1. Factors relevant to linking source-to-dose models (shaded area indicates focus of this 
paper). 
 
 
 
Figure 2. Ensemble CMAQ simulated and observed concentrations near Raleigh, NC. Large 
deviations on July 3-9 are due to wildfire events that are not captured by the emission inventory. 
 
 
Figure  3. Variability in the modeled daily average: concentrations (a), exposure/concentration 
ratios (b), and dose/exposure ratios (c). 
 
 
Figure 4.  Distribution for parameter uncertainty in the SHEDS-PM daily average 
exposure/concentration ratios. 
 
 
Figure 5.  Two-Dimensional Probabilistic Representation of Variability and Uncertainty in 
Outputs of Coupled Models:  Base Case Variability and Base Case Uncertainty Assumptions. 
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Fig. 1. Factors relevant to linking source-to-dose models (shaded area indicates focus of this 
paper) 
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Fig. 2. Ensemble CMAQ simulated and observed concentrations near Raleigh, NC.  Large 
deviations on July 3-9 are due to wildfire events that are not captured by the emission inventory. 
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(a) Distributions of daily average CMAQ PM2.5 concentrations- overall with 5th and 95th 
percentile across the 30 days in July 2002 
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(b) Distributions of SHEDS-PM daily average ambient PM2.5 exposure/concentration ratios – all 
individuals compared to selected age groups 
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(c) Distribution of SHEDS-PM daily average ambient PM2.5 dose/exposure ratios – All 
individuals compared to selected age groups 
 
Fig.  3. Variability in the modeled daily average: concentrations (a), exposure/concentration 
ratios (b), and dose/exposure ratios (c). 
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Fig. 4.  Distribution for parameter uncertainty in the SHEDS-PM daily average 
exposure/concentration ratios. 
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(a) Air Quality Concentration Model Outputs (C) 
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(b) Coupled Result for Air Quality Concentration Model (C) and Exposure Model (E/C) 
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(c) Coupled Result for Air Quality Concentration Model (C), Exposure Model (E/C), and Dose 

Model (D/E) 
 

Fig. 5.  Two-Dimensional Probabilistic Representation of Variability and Uncertainty in Outputs 
of Coupled Models:  Base Case Variability and Base Case Uncertainty Assumptions  


