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Abstract This paper presents three simple techniques for fusing observations and
numerical model predictions. The techniques rely on model/observation bias being
considered either as error free, or containing some uncertainty, the latter mitigated
with a Kalman filter approach or a spatial smoothing method. The fusion tech-
niques are applied to the daily maximum 8-hour average ozone concentrations
observed in the New York state area during summer 2001. Classical evaluation
metrics (mean absolute bias, mean squared error, correlation, etc.) show that fused
predictions are not better than a simple interpolation of observations. However.
fused maps better reproduce the spatial texture of the model predictions.
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1. Introduction

Because of their adverse effects on human health, a diverse suite of air con-
taminants is routinely monitored in the United States. Ozone concentrations, for
instance, are recorded at more than 1,000 locations. In addition to the rich data base
of observations, air contaminant concentrations can be reproduced by photo-
chemical simulation models, numerically transcripting our scientific understanding
of atmospheric chemistry and transport processes. The shortcomings of both
observational and numerical information are well known. While considered un-
biased. ozone measurements are spatially sparse point estimates. Extrapolation of
observational information to unmonitored locations leads to smooth spatial images.
Maps derived from numerical models. to the contrary, are spatially continuous and
detailed but biased. In this context. we compare three simple, flexible and easy to
implement techniques for fusing observations and numerical model outputs for the
purpose of producing detailed spatial/temporal air contaminant concentration fields
that are consistent with both observational and numerical information. Among the
potential users of detailed air contaminant information is the public health research
community that will be able to refine the exposure fields currently derived from air
contaminant observations. The methods are applied to the daily maximum 8-hour
average ozone concentrations in a 660 x 828 km rectangular domain centered on
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the state of New York, and on the three month period from June 1 to August 31,
2001. Figure 1a shows the domain of interest and the monitoring sites.

2. Ozone Information
2.1. Numerical model estimates

The ozone predictions used in this study were produced by the EPA photochemical
simulation system CMAQ (Byun and Schere, 2006). For the application utilized
(Appel et al., 2007), CMAQ was set to simulate most of the Eastern United States
from January 1-December 31, 2001 with a horizontal grid size of 12 km. Only the
predictions for the June 1-August 31 period in the domain of interest, i.e., a block
of 55 model rows and 69 columns are utilized here.

2.2. Observations

Measurements collected at 191 sites located within the model domain or in its
immediate vicinity (36 km wide strip surrounding the domain) were retrieved from
the U.S. EPA Air Data or the NAPS (National Air Pollution Surveillance program
of Canada) data bases. The hourly concentrations were used to calculate the daily
maximum 8-hour average ozone concentrations for each of the 92 days of interest
and each site. Clustered data from sites that fall in the same model cell (15 pairs
of sites) were averaged prior to any further operation, leaving a total of 176
‘unclustered” locations. Synthetizing the observation and model information, Figure
1 shows the mean of the daily maximum 8-hour average ozone concentration
calculated for each site in the domain (panel a) and by CMAQ (panel b) from June
I to August 31, 2001. Panel ¢ presents the time series of the spatially-averaged
averaged 8-hour mean daily maximum concentrations in the domain for the obser-
vations and CMAQ estimates. It appears that CMAQ underestimates ozone levels
on episodic days, illustrating the need to intregrate model results and observations.

3. Methods

Three simple fusion techniques are considered for this study, all of which aim at
determining spatial/temporal bias fields which, when applied to CMAQ predictions.
will result in unbiased maps having spatial texture approaching that of CMAQ.
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Fig. 1 Site specific (panel a) and CMAQ (panc! b) mean daily maximum 8-hour average ozone
concentrations during the June 1% to August 31* . 2001 period: Daily mean of daily maximum
s-hour average ozone concentrations (panel c) measured at all 176 locations during the June
| -August 31 . 2001 period (blue line) and CMAQ estimate (red line)

3.1. Method 1: Inverse Distance Weighted (IDW) of bias fields

Method 1 considers ozone observations error free. Bias is simply defined, therefore,
as the difference between model prediction and observation at the 176 monitoring
cites. Inverse distance weighting (IDW) method is used to produce spatially
continuous 12 x 12 km resolution (CMAQ resolution) bias fields. Fused maps
cqual CMAQ minus the computed bias field. Preliminary investigation (not included
here) showed that the IDW technique led to results as reliable as those obtained
by kriging the bias but without the burden of identifying variograms for each
<imulated day. It also showed that utilizing the ten observations nearest the location
being estimated was sufficient to obtain precise estimates.

3.2. Method 1I: Inverse Distance Weighted (IDW)
of Kalman-smoothed bias fields

Method 11 uses the Kalman filter algorithm (Kalman, 1960) to create an optimal
ostimate of the true ozone state from observations and model outputs. Primarily
designed for time domain applications, the Kalman algorithm recursively estimates
a state variable (in this case, model bias) at discrete time increments based on a
state equation that describes the temporal evolution of the state variable, and on a
series of measurements. Both the state equation and ozone measurements are as-
sumed to be uncertain with respect to true concentrations. The Kalman filter inter-
weaves model and observation uncertainty (varyand vare, respectively) to produce
ihe best linear estimate of the state variable.
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The relative strength of the state and observation uncertainties, var, and var,
respectively, is a key element of a Kalman filter application. If the measurements
are believed more precise than the state estimates, the state estimate will be
modified to fit the measurement more closely. Conversely, if the uncertainty of the
state equation is insignificant in comparison to that of the measurement, the latter is
ignored. In this study, the state variable defines the ‘true’ correction to be brought
to model estimates and its temporal evolution is defined as a random walk. Two
scenarios characterize uncertainty. In the first, the ratio of state to measurement
variance (varyvare is fixed at 0.06, a value found by Kang et al. (2007) to be
optimal for reducing the ozone forecast error of a photochemical model. In the
second, varyvar, is fixed at 1. The second setting therefore strengthens the corres-
pondence between the estimated state and the measurements while the first setting
mostly trusts the state equation. The filter is successively applied to smooth the
92-day time series of observed biases at each measurement location. Following
temporal smoothing, fused (spatial) maps are created using the IDW scheme, as in
Method 1.

3.3. Method III: spatially-smoothed bias fields

In this scenario, observation/model bias is computed at spatial scales on the order
of 200 km. The regional signals are extracted from the original signal using an
iterated moving average scheme. More specifically, the calculation window is a 60
* 60 km window (5 x 5 model cells) progressively moved throughout the domain;
the averaging process is repeated three times. This method can be seen as the
spatial equivalent of the KZ filter originally defined for time series analysis (see
Rao et al., 1997 for details). Like the KZ filter, the method can be applied to fields
having empty cells, i.e., grid cells that do not contain a monitoring site, an
interesting property for treatment of the observations. The correction to be brought
to the original model fields are calculated by the difference between the spatially
averaged model predictions and the spatially averaged observations.

4. Evaluation of Fused Fields

Comparison of the fused maps generated by the three methods presented above is
performed from two perspectives. First, a cross-validation exercise is performed to
assess the similarities between the fused data and the original ozone observations.
Second, the textures (relief) of the fused ozone fields are compared to those of the
initial CMAQ results.
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4.1. Calculation of evaluation metrics

I'he comparability of the fused data with the original ozone observations is assessed
using a cross-validation scheme whereby information is omitted one site at time
.nd re-estimated from the remaining data. The procedure is successively repeated
lor each observation site. The cross validation set up is also utilized to assess the
adequacy of ozone concentrations estimated with the IDW method applied to the
measurements, hereafter referred to as ‘IDW observations’. Strictly speaking, IDW
observations are not ‘fused’. However, they characterize the quality of maps that
are obtained without utilizing model predictions. Mean absolute bias (MAB), root
mean squared error (RMSE), and the squared correlation coefficient (R?) were the
metrics of choice in comparing observations and fused data. These statistics were
calculated for the ozone predictions generated with the three fusion techniques, as
well as for the IDW observations and the original CMAQ estimates, the two latter
heing good benchmarks.

4.2. Texture comparison of fused maps and CMAQ maps

The evaluation statistics described earlier allow assessment of the quality of ozone
predictions at observation sites. However, they do not inform on the texture (relief)
of the fields produced, an important feature of spatial information. ‘Relief” was
Jdefined as the standard deviation of a 60 60 km window (5 x 5 grid cells)
progressively moved (Increment: 12 km or 1-cell increment) to cover the entire
Jomain. Because of the limited spatial extent utilized for its calculation, the
standard deviation computed in this manner is referred to as the local standard
deviation.

5. Results

5.1. Evaluation statistics

Table 1 shows the evaluation metrics (MAE, RMSE, R?) calculated from the
16,192 (92 days X 176 locations) ‘estimate-observation’ pairs available for each
prediction method. The best and poorest values for all three evaluation statistics are
found for the IDW observations and CMAQ predictions, respectively. The per-
formances of all fusion methods except Method 11 utilized with the error ratio
var-nvar,; = (.06 are quite similar to that of the IDW observations. Table 1 indicates
that, although not detrimental. fusion techniques do not lead to better corres-
pondence between predictions and observations than that obtained with IDW of
observations only.
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Table 1 Evaluation statistics for CMAQ, the interpolated observations (IDW) and the fused
predictions.

Statistic  CMAQ IDW Fused estimates

observ.
Method1  Method 1
Method 111
var, /var, =1 vary, /var, =0.06 eihod
MAE 9.47 5.81 597 707 8.67 6.54
RMSE 12.49 8.07 8.49 9.62 11.52 835
R’ 0.55 0.81 0.80 0.75 0.62 0.84

A detailed inspection in time and in space of the evaluation statistics indicates that
(not shown): (1) spatial-outliers, i.e., locations where measurements stand apart
from their neighbours, are least well reproduced, whatever the estimation techni-
ques; and (2) for all techniques, high ozone concentrations days are also high MAE
and RMSE days.

5.2. Spatial texture

Figure 2 displays maps of the maximum 8-hour average ozone concentrations
predicted by CMAQ and the IDW observations for August 2, 2001 (day chosen at
random). Focusing on the texture of each map, one may see that high concentration
zones are more sharply delineated by CMAQ map than by the IDW interpolation
(Figure 2¢ and d). '

g

Fig. 2 Map of the predicted maximum 8-hour average ozone concentrations (ppb) for August 2.
2001 by CMAQ (panel a), and by IDW observations (panel b): local standard deviation of C MAQ
(panel c) and of the IDW observations (panel d)

Figure 3 shows maps the maximum 8-hour average ozone concentrations predicted
by the three fusion techniques for the same day as displayed on Figure 2 (2 August
2001, with method 11 var,var, = 1) (panels a—c), and the corresponding local
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standard deviations (panels d—f). All ozone concentration maps (panels a—c) display
the relief seen in the original CMAQ estimates combined with the effect of fusing
10 better fit the observations. High variability zones on panels d and e mostly match
those of CMAQ (panel c of Figure 2), meaning that modification of CMAQ values
1o create fused estimates does not fundamentally alter the basic relief features. It
appears that fusing may even have accentuated that relief, probably by establishing '
ozone levels similar to the observations. Note that the dark spots in panel c
correspond to ‘empty cells’ for which method 111 did not lead to a numerical value,
because these cells are too spatially isolated from any observation site.
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Fig. 3 Map of the predicted maximum §-hour average ozone concentrations (ppb) for August 2,
2001 obtained by application of fusion method 1 (panel a). method 11 {panel b) and method 111
(panel ¢) and corresponding local standard deviations (panels d-1)

Generalizing the texture concepts illustrated in Figures 2 and 3 to the entire period,
Table 2 presents the overall average (all days and cells included) of the local
standard deviations characterizing CMAQ, the interpolated observations and the
three fusion techniques, as well as their ratios to the CMAQ mean local standard
deviation. The results presented clearly show that spatially interpolating the ob-
servations leads to smoother relief than that modeled by CMAQ. To the contrary,
the three fusion techniques have a tendency to slightly accentuate CMAQ relief,
with Method 2 and CMAQ average relief being remarkably similar.

Table 2 Average local standard deviations of C MAQ. IDW observations and the three fusion
techniques and their ratios to the C MAQ mean local standard deviation.

CMAQ IDW observ.  Fused results
Method | Method 2 Method 3
Mean 2.44 1.34 2.76 2.62 334

Ratio 1.00 0.63 1.13 1.06 1.36
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5. Summary and Conclusion

The objective of this paper is to present three simple techniques for fusing
observations and numerical model estimates. Spatial fields were obtained by: (1)
spatially interpolating the observed biases with the inverse distance weights method
(10 neighbours), (2) spatially interpolating smoothed biases, the Kalman filter
being used for the smoothing, and (3) calculating spatially-smoothed bias fields
with an iterative moving average technique. The methods were applied to the
observed and modeled daily maximum 8-hour average concentrations in a 660 »
828 km domain centered on New York States from June 1 to August 31, 2001. The
model estimates were obtained with CMAQ.

The fusion techniques were abie to maintain the texture of CMAQ estimates
while reducing observation/model bias. In terms of classical comparative metrics
(mean absolute bias, the root mean square error and the coefficient of determina-
tion between the predicted values and the corresponding observations), fused
predictions are not better than simply interpolated observations (IDW method).
However, the texture of fused maps is comparable to that of CMAQ in contrast 10
the smooth nature of interpolated observations.

Disclaimer The research presented here was performed under the Memorandum of
Understanding between the U.S. Environmental Protection Agency and the U.S.
Department of Commerce’s National Oceanic and Atmospheric Administration and
under the agreement number DW13921548. This work constitutes a contribution to
the NOAA Air Quality Program. Although it has been reviewed by EPA and
NOAA and approved for publication, it does not necessarily reflect their policies or
VIEWS.
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