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Abstract Numerical air quality models are being used to understand the complex
interplay among emission loading, meteorology, and atmospheric chemistry leading
10 the formation and accumuiation of pollutants in the atmosphere. A model eva-
luation framework is presented here that considers several types of approaches.
referred to here as the operational evaluation, diagnostic evaluation, dynamic evalu-
ation, and probabilistic evaluation. The operational evaluation is used to reveal the
overall performance of the model, and diagnostic evaluation approaches are then
used to identify what processes and/or inputs significantly influence the predict-
ted concentrations and whether they are simulated correctly. Dynamic evaluation
entails assessing a model’s ability to reproduce observed changes in pollutant con-
centrations stemming from changes in weather and emissions. Probabilistic evalu-
ation approaches will provide the confidence that can be placed on model results
for air quality management or forecasting applications. Here, we present example
results from several different model evaluation studies that consider questions
related to the operational, diagnostic, and dynamic evaluation of a model, and discuss

their complementary goals toward model improvements and characterization of

model performance.
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1. Introduction

Photochemical air quality models are being used to simulate ozone (Os), particulate
matter <2.5 pg m™ (PM,s), and other pollutants across regional domains. Perfor-
mance evaluations play a critical role in both regulatory and research applications
of the models. For example, air quality model simulations must be evaluated against
observational data prior to using the model to make decisions about emission control
strategies. In research, improvements to process-level model algorithms or inputs
are in part judged based on whether these changes improved model performance. in
model applications that have either or both regulatory and research purposes, models
can further be used to infer relationships between atmospheric pollutant concen-
trations and relevant processes, meteorology, and emissions. Given the influence
that model evaluation results can have on regulatory decisions and scientific
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nclusions about air pollution, it is critical that model evaluation studies are
mprehensive and characterize model performance in insightful ways that not
ly reveal how well model predicted pollutant levels compare to observed data,
t also increase confidence in the inputs (e.g., meteorology and emissions) and the
odelled processes. Here, a model evaluation framework is presented that orga-
zes evaluation approaches to represent how they differ and complement one
wother. and a few examples are discussed.

. Proposed Air Quality Model Evaluation Framework

1 Figure 1, we present a framework for model evaluation approaches, which is
ased on the purpose and specific questions being asked as part of an analysis.
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Iig. 1 A suggested framework for organizing and identifying the purpose and questions addressed
in various evaluation analyses

As the first step in model evaluation, model predictions are compared to observed
data and statistical metrics are computed, which is referred to here as “operational
cvaluation.” Typically, most of the observational data is focused on the endpoint
pollutants that are monitored for air quality, such as Oz or PMa;s and component
species of PM,s. However, the ability of a model to predict the endpoint pollutant
of interest does not address whether the predicted concentrations result from correct
or incorrect processes, which is commonly referred to as diagnostic evaluation.
I'or secondary pollutant species that are not directly emitted, diagnostic evaluation
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methods are critical for insuring confidence in a model as a tool and for identifying
model improvements. Figure 1 also includes a new evaluation approach referred to
as “dynamic evaluation” that focuses on the model predicted change in air quality
concentrations in response to either emission or meteorological changes. This requi-
res historical case studies where known emission changes or meteorological changes
occurred that could be confidently estimated, and dynamic evaluation also requires
that these changes had an observed impact on air quality. Operational, diagnostic,
and dynamic evaluation approaches complement one another by not only char-
acterizing how well the model captured the air quality levels at that time, but how
well the model captures the role and contributions of individual inputs and pro-
cesses and the air quality responses to changes in these factors. For the remainder
of this discussion, examples will be shown of how these three approaches in con-
cert capture a more comprehensive evaluation of model performance for specific
model applications and support the priority of further model improvement.

A fourth aspect of model evaluation in Figure 1, referred to as probabilistic eva-
luation, attempts to capture the level of confidence in model results for regulatory
or forecasting applications, and a classic example would be ensemble modelling
for meteorology forecasting. With computer efficiencies improving exponentially,
methods such as ensemble modeling that introduce a range of uncertainties into air -
quality model predictions become increasingly realistic for decision-making or
forecasting. This topic of model evaluation is only included here in a very limited
extent, but additional research and advancements are needed to develop more inno-
vative and creative approaches that consider the confidence in air quality models
for various applications (see Gégo et al., 2003).

The following examples illustrate how these evaluation approaches can help
provide increased confidence that model performance is well characterized and sui-
table for air quality regulatory and forecast application. Example results are shown
using the Community Multiscale Air Quality (CMAQ) model version 4.5 (Byun
and Schere, 2006) For the purpose of illustration, only scatterplot illustrations are
shown, but it is of course critically important to examine the full range of spatial and
temporal scales.

3. Operational and Diagnostic Evaluation Methodologies:
Complementary Roles

Previous studies have provided operational model evaluation results for O; for both
retrospective and forecasting cases (e.g., Eder et al., 2006; Tesche et al., 2006).
While the results on average show quite good performance in most studies, the re-
sults are often based on more than 500 observational sites and extremely large sub-
continental regions. An example of typical operational evaluation results for O; are
shown in Figure 2, where results from a summer 2002 CMAQ model simulation are
compared against observational data. If one looks only at the scatterplot and statis-
tical metrics, it gives the impression that the model performance is very good.
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However, further analysis of the operational model evaluation results for O;
vlucidates that model performance for Oj is not equally good across all conditions.
I or example, Appel et al. (2007) compared model performance at different ranges
ol Qs levels as well as evaluation under different synoptic meteorological regimes
and demonstrated that the model’s underpredictions are associated with high
pressure, stagnant conditions typical of high O; events in the U.S and over-
predictions are associated with frontal passages. Hogrefe et al. (2001) have also
shown that the model predictions of Os are challenged most for the high-frequency
variations that occur below the diurnal time scales. These types of evaluation
results are needed to identify specific conditions associated with meteorological
forcing that need further diagnostic evaluation for model improvements.

Modeling PM, s introduces many additional challenges since it is comprised of a
number of aerosol chemical species such as sulphate, nitrate, ammonium, organic
and elemental carbonaceous materials and because the emission inputs are largely
uncertain for many agricultural and diffuse sources. Continued research is needed
to refine the modelled representation of the chemical transformation processes
as well as the influences of emissions and meteorology. Operational evaluations
of PM,s components such as sulphate aerosol concentrations compare reasonably
on the seasonal time scale compared to other aerosol species such as nitrate and
carbonaceous aerosols where scientific advancements and model improvements are
needed (e.g., Morris et al., 2006).

For model improvement of nitrate, as an example, diagnostic evaluations are
needed to identify the factors that contribute to model deficiencies. Bhave et al.
(2006) provide a summary of recent diagnostic work to understand and improve
nitrate predictions related to chemical transformation processes, specifically the
heterogeneous N,Os pathway for HNO; production. Gilliland et al. (2003, 2006)
and Pinder et al. (2006) demonstrate how critical NH; emissions as well as the
heterogeneous N»,Os pathway can be to nitrate aerosol predictions. Here, an ex-
ample is shown of additional diagnostic evaluation work that is ongoing to look
more carefully at the role of meteorological forcing to wintertime nitrate pre-
dictions. Figure 3 illustrates that meteorological model inputs can have a substantial
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impact on model’s predictions of total nitrate, and demonstrates the need for im-
proving the estimated removal via wet and dry deposition.
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4. Dynamic Evaluations: Challenges and Relevance

The previous examples provide illustrations of how operational and diagnostic
evaluation studies can provide initial characterization of model performance issues
and direction for model improvement. More uncommon are dynamic evaluation
studies that explicitly focus on the model-predicted pollutant responses stemming
from changes in emissions or meteorology.

Gilliland et al. (2008) provide the most direct example of a dynamic evaluation
study, where air quality model simulations were evaluated before and after major
reduction in the NOx emissions. The U.S. Environmental Protection Agency’s NOx
SIP Call required substantial reductions in NOx emissions from power plants in the
Eastern U.S. during summer O; seasons beginning in June 2004. Gégo et al. (2007)
and USEPA (2006) offer examples of how observed O; levels have decreased
noticeably after the NOx SIP Call was implemented. Since air quality models are
used to estimate how air quality will change due to various emission control strat-
egies, the NOx SIP Call is an excellent opportunity to evaluate a model’s ability to
simulate the response of O; to known and quantifiable O; changes. Figure 4 provides
an example from this study where changes in O; are compared from before
(summer 2002) and after (summers 2004 and 2005) the NOx emission reductions
occurred. Meteorological differences were much greater between 2002 and 2004
than 2002 and 2005, and, hence, larger O; decreases in 2004 were also due to the
cooler/wetter conditions in 2004. Figure 4 also illustrates model underestimation of
O; decreases as compared to observations, which could be due to either the under-
estimation of NOx emission reductions or a dampened chemical response in the
model to those emission changes, or other factors. Analysis methods such as the
e-folding distances (Godowitch et al., 2007; Gilliland et al., 2008) have been used
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. show that NOx emissions in these simulations are not impacting O; levels as far
ywnwind as observations suggest, which could be a factor here.

Dynamic evaluation approaches introduce several new challenges. First, retro-
sective case studies are needed that offer observed changes in air quality that can
2 closely related to known changes in emissions or meteorology. The NOx SIP
all has offered a very strong case study to test model responses via dynamic eva-
iation, but next steps must include further diagnostic evaluation to identify what
hemical, physical, or emission estimation uncertainties are contributing to the
urrent model results. Findings from additional analysis of this case study can ulti-
jately lead to model improvements that are directly relevant to the way air quality
10dels are used for regulatory decisions.
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Fig. 4 Summer (2004-2002) and (2005-2002) comparison of the average of upper 95th% of
naximum daily 8-hour average O; values at the Air Quality System (AQS) network sites in the
Eastern U.S. Results are shown using both the CMAQ CB4 and SAPRCY9 chemical mechanisms.
See Gilliland et al. (2007) for further description

5. Summary

The topic of this paper, evaluation of regional air quality models, is indeed
challenging and broad. The intention here is to present a perspective about how
many different studies all contribute to a multi-faceted area of research referred to
as regional photochemical air quality model evaluation. It can be challenging to
characterize model performance for a number of air pollutants via operational
methods, but we encourage analyzing model results in ways that characterize model
performance across a range of scales and dis-aggregation. Diagnostic evaluation
perspectives are needed to extend operational results to the next stage of identifying
processes or model inputs that have an influential role on model predictions and
how they compare to observations. The model’s sensitivity to meteorological and
emission uncertainties should also be addressed within a diagnostic evaluation con-
text, as well as the more traditional diagnostic studies such as chemical indicators
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that consider the chemical state within the model simulation. As a next challenge
to traditional evaluation studies, we introduce dynamic evaluation to stress-test
the model’s ability to reproduce known changes in air quality “forcings” such as
meteorological and emission changes that can directly impact the way that air
quality models are used in regulatory decision making.
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