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This paper is Part II in a pair of papers that examines the results of the Community

Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential

explanations for the model performance characteristics seen. The focus of this paper is on

fine particulate matter (PM2.5) and its chemical composition. Improvements made to the

dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating

errors in 36-km simulations improved particulate sulfate (SO4
2�) predictions. Large

overpredictions of particulate nitrate (NO3
�) and ammonium (NH4

+) in the fall are likely

due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous

aerosol concentrations are substantially underpredicted during the late spring and

summer months, most likely due, in part, to a lack of some secondary organic aerosol

(SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with

observed PM2.5 mass show mixed seasonal performance. Spring and summer show the

best overall performance, while performance in the winter and fall is relatively poor, with

significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5

mass cannot be explained by summing the model biases for the major inorganic ions plus

carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame

for the errors in total PM2.5 mass predictions, and efforts are underway to identify the

cause of these errors.

Published by Elsevier Ltd.
1. Introduction

This paper is Part II in a pair of papers that present an
operational evaluation of the Community Multiscale Air
Quality (CMAQ) model version 4.5 (v4.5) that was
released in 2005, with the focus of this paper on model
performance for particles with aerodynamic diameter
o2.5 mm (PM2.5). The CMAQ v4.5 results presented here
are from an annual 12-km CMAQ simulation for the
eastern United States. Additional results can be found at
r Ltd.

: +1919 5411379.

Appel).
http://www.cmaq-model.org, where the CMAQ model
source code can be downloaded. Here, the emphasis will
be to present key results that identify performance
strengths, as well as problems warranting further inves-
tigation.

2. Description of CMAQ simulations

In this study, an annual (2001) CMAQ v4.5 simulation
utilizing the CB-IV gas-phase chemistry mechanism (Gery
et al., 1989) was developed with 12 km�12 km horizontal
grid spacing and a 14-layer vertical structure for the
domain covering the eastern United States. The 12-km
simulations were nested within coarse-grid simulations

http://www.cmaq-model.org
www.sciencedirect.com/science/journal/aea
www.elsevier.com/locate/atmosenv
dx.doi.org/10.1016/j.atmosenv.2008.03.036
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(36 km�36 km horizontal grid spacing covering the
continental United States) that used the same model
configurations as the nested simulation. Boundary condi-
tions for the 36-km simulation were obtained from a
global chemical transport model (GEOS-CHEM) (Bey et al.,
2001). The meteorological fields were simulated at both
36 and 12 km (nested within the 36-km simulation) by
MM5, the Fifth-Generation Pennsylvania State University/
National Center for Atmospheric Research (NCAR) Mesos-
cale Model (Grell et al., 1994). The MM5 fields were
processed for CMAQ using version 3.0 of the Meteorology-
Chemistry Interface Program (MCIP) (Byun and Schere,
2006). Full details regarding the specific options and
inputs used for the CMAQ simulations can be found in Part
I (Appel et al., 2007) of this pair of papers which discusses
the ozone performance for the same simulations.
3. Observational data sets

Model performance is evaluated here against atmo-
spheric concentrations of nitric acid (HNO3) and fine
particulate sulfate (SO4

2�), nitrate (NO3
�), ammonium

(NH4
+), elemental carbon (EC), organic carbon (OC), total

carbon (TC), and gravimetric mass (PM2.5). For this
evaluation, observed concentrations are obtained from
the Speciation Trends Network (STN), the Interagency
Monitoring of Protected Visual Environments (IMPROVE)
network and the Clean Air Status and Trends Network
(CASTNet). Some details regarding each of these networks
are summarized in Eder and Yu (2006). Since there are no
calibration standards and each monitoring network has its
own sampling methodology and measurement frequency,
the model results need to be evaluated separately against
each network (Gégo et al., 2005). Additionally, observed
data contain uncertainties; however, these uncertainties
are beyond the scope of this study. Here, observed data are
compared with model results to evaluate model perfor-
mance. Where systematic measurement errors are known
to be present (e.g. CASTNet NO3

� measurements), these
comparisons are either not included or are limited to help
account for the uncertainty in the observations.

In addition to the information provided in Eder and Yu
(2006) for the STN, it is important to note that while the
STN sampling procedure was developed to closely follow
that of the IMPROVE network (Malm et al., 2004), the
networks use different thermal optical protocols to
quantify EC and OC. Chow et al. (2001) describe the
differences between the IMPROVE thermal optical reflec-
tance (TOR) protocol and the National Institute of
Occupational Safety and Health (NIOSH) protocol which
is used by the STN. They found that NIOSH EC was
typically less than half of IMPROVE EC; however, IMPROVE
and NIOSH TC values are in a good agreement with each
other. For the purposes of the evaluation presented here,
no attempt was made to apply any generalized correction
to EC or OC measurements from either the STN or
IMPROVE network.

Most of the EC and OC emission inputs to the present
CMAQ simulations were computed using speciation
profiles based on the IMPROVE TOR protocol, so a direct
comparison of observations of EC and OC from the
IMPROVE network to simulated concentrations of EC and
OC from the CMAQ model is appropriate. However, the
same direct comparison of simulated EC and OC concen-
trations to observed concentrations from the STN is not
reported here because the speciation profiles are incon-
sistent with STN ambient measurements. Therefore,
comparisons with the IMPROVE network will include EC,
OC and TC, while comparisons with the STN will only
include TC. Comparisons of the TC model predictions
against STN will provide useful information about the
model predictions of the total carbon budget in urban
areas. It is important to note that observations of TC from
the STN have been blank corrected for positive adsorption
artifacts using network-wide, sampler-specific values
(Frank, 2006).

4. Paired analysis methods employed

It is necessary for the CMAQ output to be post-processed
for comparability with each observation network and
species. First, a post-processing program is used to convert
raw model variables into the quantities measured at the
various networks. A list of CMAQ aerosol module variables
can be found in Table 1 of Binkowski and Roselle (2003) and
the sea-salt species have been updated in CMAQv4.5 as
described by Shankar et al. (2005). From these variables,
fine-particle SO4

2�, NH4
+, NO3

�, and EC are approximated by
summing the appropriate Aitken- and accumulation-mode
concentrations. Fine-particle OC is estimated by summing
the modeled concentrations of primary organic aerosol
(POA), anthropogenic secondary organic aerosol (SOA), and
biogenic SOA, in the Aitken and accumulation modes, using
species-specific weighting factors as shown in

OC ¼
1

1:2
POAþ

90

150
SOAanth þ

120

177
SOAbiog (1)

Division of the modeled POA concentration by 1.2
removes the non-carbon organic mass (OM) that is
assumed implicitly in the PM2.5 speciation profiles used
with the 2001 national emission inventory (NEI) (Bhave et
al., 2007). The multiplicative factors applied to each SOA
term in Eq. (1) correspond to the representative carbon
masses in the aromatic (7.5 carbon atoms) and biogenic
SOA precursors (10 carbon atoms) in CMAQ, and mole-
cular weights assumed in the CMAQ model code for
SOAanth (150 g mol�1) and SOAbiog (177 g mol�1). Fine-
particle mass is approximated by summing the modeled
concentrations of all Aitken- and accumulation-mode
species except water, as shown in

PM2:5 ¼ SO4 þ NO3 þ NH4 þ
1:4

1:2
POAþ SOAanth

þ SOAbiog þ ECþNaþ Clþ Unspeciated Mass

(2)

To approximate the oxidation of primary OM that is
believed to occur during atmospheric transport, the
modeled POA is scaled up in Eq. (2) such that the resulting
POA has an OM/OC ratio of 1.4, which is considered
the lowest reasonable estimate for atmospheric OM
(Turpin and Lim, 2001). This factor is applied during
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post-processing because POA oxidation is not treated in
the CMAQ model. After the raw model variables have been
post-processed in the above manner, a second post-
processing program was used to pair observations and
model results in space (no spatial interpolation) and time
(daily or weekly depending on the network).

A variety of statistical metrics are used here to
compare the observed and predicted concentrations. The
median bias (MdnB) and normalized median bias
(NMdnB) are used as measures of model bias. The median
error (MdnE), root mean square error (RMSE) and normal-
ized median error (NMdnE) are used as measures of model
error. NMdnB and NMdnE provide normalized (%) mea-
sures of performance, while RMSE, MdnB and MdnE
provide absolute (mg m�3) measures of performance. The
MdnB, MdnE, NMdnB and NMdnE are defined below as

MdnB ¼medianðCM � COÞN (3)

MdnE ¼medianjCM � COjN (4)

NMdnB ¼
medianðCM � COÞN

medianðCOÞN
� 100% (5)

NMdnE ¼
medianjCM � COjN

medianðCOÞN
� 100% (6)

where CM and CO are modeled and observed concentra-
tions, respectively, and N is the total number of model/ob
pairs. Median is preferred here over mean since observed
PM species are generally not normally distributed, and
therefore median is a better measure of the central
tendency of the distribution than the mean, as the mean
will be influenced by a relatively small proportion of the
large values (in the case of a right skewed distribution) or
small values (left skewed) present in the distribution’s
tail. In the case where the species is normally distributed,
the mean and median would be the same, so either metric
would yield the same result.

Representativeness challenges continue to be present
whenever gridded predictions from a deterministic model
are compared to observed data at a point in time and
space, as deterministic models calculate the average
outcome over a grid for a given set of conditions, while
the stochastic component (e.g. sub-grid variations) em-
bedded in the observations is not accounted for. These
issues are somewhat mitigated for the comparisons made
here, since observations from the STN and IMPROVE
network are daily averages, while the CASTNet observa-
tions are weekly averages and mostly measuring second-
ary products. The longer temporal averaging helps reduce
the impact of stochastic processes, which can have a large
impact on shorter (e.g. hourly) periods of observation.

5. Results

The EPA has developed National Ambient Air Quality
Standards for PM2.5, and has recently designated 39 ‘‘non-
attainment’’ areas across the United States that do not
meet these standards (http://www.epa.gov/air/oaqps/
greenbk/qindex.html). Current regulatory emission con-
trols for PM2.5 focus on the reduction of NOx and SO2
emissions, and therefore primarily on reduction of
inorganic aerosols. After reductions in inorganic aerosols
are considered in the Clean Air Interstate Rule (http://
www.epa.gov/CAIR/), focus on residual non-attainment
areas will then look at reducing organic aerosols and their
emissions sources. It is important for these reasons to
assess the model’s ability to simulate the chemical
composition of PM2.5, not just its total concentration.
5.1. Sulfate (SO4
2�)

Particulate SO4
2�, which is one of the largest contribu-

tors to total PM2.5 mass in the eastern United States,
especially during the warm months, has historically been
simulated well by the CMAQ model (Mebust et al., 2003;
Eder and Yu, 2006; Tesche et al., 2006). Simulations using
CMAQ v4.4 with similar configurations as the v4.5
simulations were conducted for the winter (December,
January and February) and summer (June, July and
August) time periods at both 36- and 12-km horizontal
grid spacing. The CMAQ v4.4 simulations showed a good
performance for SO4

2� at the 36-km grid spacing for the
summer (Fig. 1a); however, a substantial overprediction of
SO4

2�was found with 12-km grid spacing (Fig. 1b). In these
MM5 simulations, precipitation was overpredicted during
the summer at the 36-km grid spacing, while at the 12-km
grid spacing the precipitation performance was nearly
unbiased. The improved precipitation predictions in the
12-km simulation revealed an overprediction of SO4

2� that
was previously masked by the overprediction of precipita-
tion (which resulted in greater wash-out of particulate
SO4

2�) in the 36-km simulation.
Based on the analysis above, several changes were

made to the CMAQ v4.5 code to improve the prediction of
SO4

2�. In the CMAQ model convective cloud module, the
analytical mixing scheme was replaced with a new mixing
scheme based on the asymmetric convective model (ACM)
that was originally developed for planetary boundary
layer (PBL) mixing (Pleim and Chang, 1992). The ACM
simulates a detraining convective plume by non-local
transport from the source layer directly to each model
layer within the convective cloud. An important difference
from the previously used regional acid deposition model’s
(RADM’s) convective cloud model is that downward
mixing in ACM is by gradual layer-by-layer compensatory
subsidence. The RADM-cloud scheme restricts cloud
coverage whenever the modeled mass flux over the 1 h
time step exceeds the available below-cloud mass. This
artificial restriction of cloud coverage is eliminated in the
ACM-cloud scheme by setting a mixing time step accord-
ing to mass flux constraints and iterating up to the
lifetime of the cloud (1 h). Additionally, the ACM sets the
maximum spatial coverage for non-precipitating clouds
within a grid cell at 50% versus 90% for the RADM cloud
scheme, which results in less aqueous production of SO4

2�

as compared to RADM.
There were also changes made to the aerosol dry

deposition velocity in CMAQ, which affected PM2.5 pre-
dictions (including SO4

2�). These include a new form of the
impaction term, restoration of the impaction process to

http://www.epa.gov/air/oaqps/greenbk/qindex.html
http://www.epa.gov/air/oaqps/greenbk/qindex.html
http://www.epa.gov/CAIR/
http://www.epa.gov/CAIR/
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RMSE NMdnB NMdnE MdnB MdnE
IMPROVE 2.89 3.8 27.6 0.15 1.06

STN 3.04 5.5 31.3 0.22 1.26
CASTNet 1.66 −2 13 −0.12 0.83

RMSE NMdnB NMdnE MdnB MdnE
IMPROVE 3.16 −12.6 28.7 −0.49 1.11

STN 2.89 −8.1 28.3 −0.33 1.14
CASTNet 2.32 −17.1 17.9 −1.1 1.15

RMSE NMdnB NMdnE MdnB MdnE
IMPROVE 2.92 1 26.1 0.04 1.01

STN 3.11 10.1 31.5 0.41 1.28
CASTNet 1.64 0.2 14 0.01 1.91

RMSE NMdnB NMdnE MdnB MdnE
IMPROVE 3.65 17.6 0.69 1.3

STN 4.08 22.4 0.91 1.57
CASTNet 2.72 21.6 1.4 1.47
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Fig. 1. Scatter plots (with 1:1 line) of monthly average SO4
2� for the summer (June, July and August) 2001 for IMPROVE (red square), STN (blue triangle)

and CASTNet (green cross) for (a) CMAQ v4.4, 36-km horizontal grid spacing (b) CMAQ v4.4, 12-km horizontal grid spacing (c) CMAQ v4.5, 36-km

horizontal grid spacing and (d) CMAQ v4.5, 12-km horizontal grid spacing. Also shown are summary statistics of RMSE, normalized median bias (NMdnB;

%), normalized median error (NMdnE; %), median bias (MdnB; mg m�3) and median error (MdnE; mg m�3) for each network.
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coarse mode and the replacement of the equation for
combining turbulent deposition fluxes and gravitational
settling. The original form of the impaction term was
observed to change too abruptly as aerosol size decreases,
resulting in dry deposition velocities in the accumulation
mode that are too small. The new form of the equation is
based on a form of the impaction term suggested by
Giorgi (1986). Using this new modally integrated impac-
tion term, deposition velocities are greater in the
accumulation mode. Additionally, the dry deposition
velocity equation was updated to the form suggested by
Venkatram and Pleim (1999), resulting in a small
difference in aerosol dry deposition velocities.

These changes in cloud treatment and aerosol dry
deposition in CMAQ v4.5 improved the model performance
of fine-particulate SO4

2� at the 12-km grid spacing (cf. Fig. 1d
and b). SO4

2� performance at the 36-km grid spacing suffered
slightly as a result of the changes, with NMdnB increasing
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from nearly unbiased using CMAQ v4.4 to between �8%
(STN) and �17% (CASTNet) for CMAQ v4.5. This increase in
bias can be attributed largely to precipitation biases in the
36-km inputs discussed above. Fig. 2a and g shows the SO4

2�

monthly domain-wide MdnB and NMdnB, respectively, for
the various networks for the 12-km simulation using CMAQ
v4.5. SO4

2� is underpredicted in the winter at the rural
IMPROVE and CASTNet sites, and overpredicted in the fall,
most notably at the urban STN sites. The bias is relatively
small in the spring and summer.

These results are consistent with those of Tesche et al.
(2006), who found that their CMAQ v4.4 simulation
underpredicted particulate SO4

2� in the winter and spring
and overpredicted SO4

2� in the summer and fall. Tesche
et al. (2006) did note that their MM5 simulation had a
positive wet bias during the spring, summer and fall,
which may have been compensating for the errors in the
cloud treatment and dry deposition in CMAQ v4.4. Eder
and Yu (2006) found a larger underprediction of particu-
late SO4

2� in the winter than shown here and nearly no
bias in the summer, which is attributable to the changes
made in the CMAQ model code that directly affected SO4

2�

predictions and the overprediction of precipitation in the
36-km meteorology. It is important to note that while
Tesche et al. (2006) and Eder and Yu (2006) provide
convenient references for the performance seen here,
there are significant differences between the CMAQ
simulations evaluated in each study that impact the
results of the model performance. Aside from both studies
using an older version of CMAQ (v4.4), Tesche et al. (2006)
examined a simulation for a different year (2002) that
used significantly different emissions and meteorology
than were used in the current study, while Eder and Yu
(2006) examined a simulation for the same year (2001)
that used the same emissions and meteorology as were
used here but presented performance results for the 36-
km simulation.

5.2. Ammonium (NH4
+)

Fig. 2b and h shows the monthly domain-wide MdnB
and NMdnB for NH4

+, respectively. Model performance for
NH4

+ is relatively good throughout the year, except for the
fall, when a large overprediction is present. Overpredic-
tions in fall have been attributed to biases in the seasonal
distribution of the NH3 emissions (Gilliland et al., 2006).
While the NH4

+ performance is similar to that found by
Eder and Yu (2006), the results differ from those of Tesche
et al. (2006), where they found a large overprediction of
NH4

+ from November through February and an under-
prediction in the summer (June–August) at the CASTNet
sites. The likely reason for the difference is the use of
different seasonal distributions of NH3 emissions, as here
NH3 emissions were based on seasonal estimates from
Gilliland et al. (2006).

5.3. Nitrate (NO3
�)

Particulate NO3
� is overpredicted across all networks in

March, October and November and underpredicted in the
summer (Fig. 2c and i). Diagnostic investigations by Yu et
al. (2005) show that a large source of error in predicting
aerosol NO3 across the eastern United States stems from
errors in the 3-D model predictions of NHx (NH4

++NH3),
SO4

2�, and, to a lesser extent, TNO3 (NO3
�+HNO3). Observa-

tions of NHx are not available at routine monitoring sites,
so that dependency is difficult to explore in the present
study. However, the gross overestimation of NH3 emis-
sions in the fall months discussed above is indicative of
NHx overpredictions during that season. Excess quantities
of NHx in the CMAQ simulations lead to NO3

� over-
predictions in October and November (Fig. 2c and i). An
example of the influence of SO4

2� errors on NO3
� perfor-

mance can be seen in February and March (Fig. 2a and c)
where underestimates of SO4

2� result in excess NH3

available for NO3
� formation, which leads to NO3

� over-
predictions. As shown in Fig. 2d and j, TNO3 is over-
predicted during 9 out of 12 months across the CASTNet,
most notably in June-December. Overpredictions of TNO3

occur due to overestimated NH3 emissions and higher
values of the N2O5 uptake coefficient. Overpredictions of
TNO3 during October and November are partly a side
effect of the overestimated NH3 emissions, because the
artificially enhanced NO3

� concentrations are removed
more slowly by dry deposition than HNO3 (Dennis et al.,
2008), while the overpredictions in February and March
are likely due to the overprediction of NO3

� formation via
heterogeneous hydrolysis of N2O5. The cause of TNO3

overpredictions from June through September is unclear.
5.4. Carbonaceous aerosols

Fig. 2e and k shows monthly domain-wide MdnB and
NMdnB, respectivlely, of EC, OC and TC for the IMPROVE
network sites and TC for the STN sites. EC and OC at the
rural IMPROVE sites are underpredicted from May through
August, although biases in EC are small due to the small
absolute concentrations of EC (observed concentrations
normally range between 0.15 and 0.55mg m�3 in the
summer). Performance of TC at the urban STN sites is
similar to that of TC at the IMPROVE network sites from
March through November, with relatively large under-
predictions (0.6–1.2 mg m�3) for May through August.
However, unlike the IMPROVE network, TC performance
at the STN sites during the winter is poor, with relatively
large overpredictions in January and February as com-
pared to IMPROVE network sites. One contributing factor
to the large bias in January and February may be increased
variability in the observations during the instrument
‘‘burn-in’’ period as the STN was being established.
Alternatively, this may be indicative of excessive emis-
sions estimates from residential wood combustion in the
NEI. Simulations performed for 2002 using CMAQ v4.6
and an updated version of the NEI show a similar pattern
to the TC bias at STN sites but with much lower bias in
winter, particularly in January and February.

The results from comparisons to the IMPROVE network
sites are similar to Tesche et al. (2006), where they found
EC and OC were underpredicted throughout the year, with
the largest underpredictions occurring in the summer and
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Fig. 2. Monthly (2001) average median bias (MdnB; mg m�3) and normalized median bias (NMdnB; %) for CMAQ (v4.5 12-km) predicted (a) and (g) SO4
2�;

(b) and (h) NH4
+; (c) and (i) NO3

�; (d) and (j) CASTNet TNO3 (green triangles) and HNO3 (blue diamonds); (e) and (k) EC (blue diamonds), OC (green squares)

and TC (yellow triangles for IMPROVE, red squares for STN); (f) and (l) PM2.5. In figures (a), (b), (c), (f), (g), (h), (i) and (l), IMPROVE is shown as blue

diamonds, STN is shown as red squares and CASTNet is shown as green triangles. Month is shown along the abscissa. MdnB (mg m�3) is shown in figures

(a) through (f), while NMdnB (%) is shown in figures (g) through (l).
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fall. EC and OC performance for the CMAQ v4.5 36-km
simulation (not shown) are notably different than the
12-km simulation. For the 36-km simulation, OC is
overpredicted throughout the majority of the year, with
the exception of June and November, when OC is under-
predicted. EC tends to be slightly underpredicted through-
out the majority of the year, except for January and
August, when EC is largely overpredicted. The overpredic-
tion of EC in January and August is largely due to the
overprediction of EC at sites in the west. When the
analysis of the 36-km grid is limited to only the sites
present in the 12-km domain, the overprediction in
January and August largely disappears and the results
become consistent with the 12-km grid results. Overall,
the 36-km simulation results are consistent with the
results of Eder and Yu (2006) for their CMAQ v4.4 36-km
simulation.

A natural starting point for identifying potential causes
of the seasonal biases in carbonaceous aerosol predictions
is the emissions inventory. Since EC is commonly used as a
tracer for carbon emitted from combustion sources, the
underpredictions in EC suggest that the TC emission
inventory is too low in the summer season. Bhave et al.
(2007) found that modeled contributions of TC from
vehicle exhaust and biomass combustion, the two largest
sources of primary carbon, are unbiased across the
southeastern United States during the summer. This
implies that the summertime underpredictions of TC in
the Southeast are not dominated by emission errors.
Similar evaluations of the TC inventory in other parts of
the eastern United States are warranted.

Another possible explanation for the underestimations
of TC and OC during summer months is the likely
underestimation of secondary organic aerosol (SOA) in
the eastern United States. As discussed by Morris et al.
(2006), the standard CMAQ model does not include SOA
formation resulting from the oxidation of isoprene or
sesquiterpenes, both of which may contribute substantial
quantities to the ambient OC concentration in the
eastern United States. Efforts are underway to implement
these SOA formation pathways in the next version of
CMAQ (Edney et al., 2007). Based on tests by Morris et al.
(2006), including these SOA pathways could entirely
mitigate the summertime underpredictions in OC across
the east, though overpredictions in the west may be
exacerbated.
Fig. 3. States defining the regions for PM2.5 analysis.
5.5. Total PM2.5 mass

On average, total PM2.5 mass tends to be overpredicted
in the fall and winter, underpredicted in the summer and
relatively unbiased in the spring (Fig. 2f and l). The
overprediction in the fall and winter is greatest at the
urban STN sites; while the underprediction in the summer
is greatest at the rural IMPROVE network sites. Note that
in Fig. 2f the scale is much larger than for the other
species, indicating that the bias in total PM2.5 mass cannot
be explained by summing the bias in the major inorganic
and carbon species. Additionally, the correlation in bias
throughout the year between the STN and IMPROVE
network sites, with the STN bias consistently higher than
the IMPROVE bias, indicates a systematic bias in the rural
(IMPROVE) versus urban (STN) predictions. While the
results of comparisons of PM2.5 mass from the STN and
IMPROVE network sites to predictions from the 36-km
simulation (not shown) are consistent with the results of
Eder and Yu (2006), they are notably different from the
results from the 12-km simulation, where the bias at STN
sites is much larger in the winter for the 12-km simulation
than the 36-km simulation.

Fig. 4 shows seasonal stacked bar charts of STN
observed total PM2.5 mass and CMAQ predicted total
PM2.5 mass for four regions (Fig. 3), with each of the
individual particulate species (SO4

2�, NO3
�, NH4

+, TC and
PMOther) color coded to show its contribution to the total
PM2.5 mass concentration. The best agreement between
predicted and observed total PM2.5 mass is in the spring
(Fig. 4a) and summer (Fig. 4b), when predicted values are
generally within 2.0–4.0mg m�3 of the observations. Total
PM2.5 mass is underpredicted in the spring in the Atlantic
and South regions, mostly due to underpredictions in TC
and PMOther. A slight overprediction in total PM2.5 mass is
noted in the northeast region in the spring, while there is
a very good agreement between the observed and
modeled species in the Great Lakes region. In the summer,
total PM2.5 mass is slightly overpredicted in the Great
Lakes region and underpredicted in the other three
regions. SO4

2� is overpredicted in the summer in all
regions, while NO3

� and TC tend to be underpredicted for
all the regions. PMOther is overpredicted in the Great Lakes
region and underpredicted to varying degrees in the other
regions in the summer.

In the fall (Fig. 4c) and winter (Fig. 4d), total PM2.5

mass is almost always overpredicted in all regions (the
exception being the Atlantic region in the fall), with the
best agreement to observed PM2.5 mass in the Atlantic
region, where the overprediction is o3 mg m�3. For the
other regions, the overprediction is much larger, generally
between 5 and 8mg m�3, and is dominated by over-
predictions of PMOther. Ignoring the contribution of
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Spring

Summer

 Fall

Winter

Fig. 4. Stacked bar charts of total PM2.5 mass for the northeast, Great Lakes, Atlantic and South PCA regions (STN left, CMAQ v4.5 12-km right) for (a)

spring (b) summer (c) fall and (d) winter. Concentration (mg m�3) is shown along the abscissa. The individual aerosol species comprising the total PM2.5

mass are shaded: SO4
2� (sulfate; yellow); NO3

� (nitrate; red); NH4
+ (ammonium; orange); TC (total carbon; gray); PMOther (brown). Included next to each

species is the percent it contributes to the concentration of total PM2.5 mass.
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PMOther to total PM2.5 mass, the agreement between
observed and predicted PM2.5 mass would be considerably
better, with predicted values within roughly 3mg m�3 of
the observations for all regions. The large overprediction
in PMOther in the northeast and Great Lakes regions
during the winter may be at least partially due to
emissions of residential wood combustion that were too
high in the emissions inventory. Corrections have
since been made to the residential wood combustion in
the NEI. Simulations using the corrected version of the NEI
showed a small improvement in the PMOther bias;
however, large overpredictions in PMOther in the northeast
and Great Lakes regions during the winter and fall were
still present.
5.6. PMOther

The analysis above illustrates how PMOther can make a
significant contribution to total PM2.5 mass. In the CMAQ
output, PMOther consists of the non-carbon atoms asso-
ciated with OC as well as particulate emissions that are
not explicitly speciated in the SMOKE processor, which
includes trace elements (e.g. Fe, Si, K, etc.), primary NH4

+

and other unidentified mass in the speciation profiles. The
observed PMOther, which is computed as the gravimetric
mass minus the sum of TC, NH4

+, NO3
� and SO4

2�, similarly
contains trace elements, the non-carbonaceous portion of
OC and some mass from water. In the winter and fall, the
large overprediction in total PM2.5 mass is largely driven
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by the overprediction in PMOther. Since the majority of
predicted PMOther from CMAQ consists of primary emis-
sions, major biases are likely in some of the unspeciated
primary emissions. Efforts are underway to subdivide
the unspeciated emissions into trace elements using
new speciation profiles available in the SPECIATE
4.0 database (Hsu et al., 2006). Once these emissions
can be tracked in the CMAQ model, they can then be
compared to observations of trace elements at the STN
and IMPROVE network and any temporal biases in specific
elements that contribute to the seasonal biases in PMOther

can be identified. Given its large contribution to total
PM2.5 mass, the PMOther will be a focus of future diagnostic
analyses.

Several other issues could be affecting the model
performance as presented in the stacked bar charts. First,
primary emissions of NH4

+ are not speciated in SMOKE,
and as a result CMAQ predictions of NH4

+ contain only
secondary NH4

+, while primary emissions of NH4
+ are

lumped in the PMOther category. Observed concentrations
of NH4

+ contain both primary and secondary contributions.
Second, several studies (Chow et al., 2005; Hering and
Cass, 1999) have shown losses of NO3

� during and after
sampling can be on the order of several micrograms
during summer. Additionally, the predicted PM2.5 mass
does not include any contribution from water mass. While
the STN filters are dried to remove the bulk of the water
mass from the filter, there can be residual particle bound
water that can positively bias the concentration of total
PM2.5 mass measured on the filter relative to a completely
dried sample. Frank (2006) found that the monthly
average concentration of STN water mass varied between
approximately 0.5 and 3.0 mg m�3 as a function of the
monthly average concentration of the sum of the
measured SO4

2� and NH4
+.

Finally, the STN uses a sharp cutoff at 2.5 mm to
separate fine particles (o2.5mm) from the larger particles.
CMAQ, however, outputs mass concentrations of the
various PM species within three log-normal size distribu-
tions, referred to as modes (Binkowski and Roselle, 2003).
While the first two modes, Aitken and accumulation, are
typically summed together to estimate PM2.5, the tail end
of the accumulation mode can exceed the 2.5 mm cutoff.
Using a method proposed by Jiang et al. (2006), a modified
discrete cutoff was applied to the CMAQ model output to
mimic the sharp cutoff of the observations. Efforts are
underway to apply adjustments to the CMAQ predictions
to account for the various issues discussed above and
examine the impact the changes have on model perfor-
mance results.
6. Summary

This paper examines the results of CMAQ version 4.5,
utilizing model simulations at 36- and 12-km horizontal
grid spacings. Several changes in CMAQ v4.5 affected the
prediction of particulate SO4

2�. Specifically, a new mixing
scheme based on the ACM was introduced into the
convective cloud module, along with the inclusion of a
new calculation for aerosol dry deposition velocity. These
changes resulted in an improvement in particulate SO4
2�

predictions over the previous version of the CMAQ model
for the 12-km simulation, where modeled precipitation
was nearly unbiased. Particulate SO4

2� performance for the
36-km simulation is slightly degraded by the changes in
CMAQ v4.5. However, this degradation in performance is
related to a systematic overprediction of precipitation by
MM5 for the 36-km horizontal grid spacing. The changes
represent an improvement over the previous version of
the model.

Performance for NH4
+ was relatively good throughout

the year, except in the fall where large overpredictions
were observed, which are likely due to biases in the
seasonal distribution of NH3 in the emissions inventory.
Particulate NO3

� is overpredicted in the spring and
fall and underpredicted in the summer. Recent diagnostic
investigations by Yu et al. (2005) show that model
performance for NO3

� is strongly dependent on model
performance for NHx, SO4

2�, and TNO3. Excess quantities of
NHx in the CMAQ predictions in the fall lead to NO3

�

overpredictions.
Based on both IMPROVE and STN data, model predic-

tions of carbonaceous aerosols show substantial under-
predictions during the late spring and summer months.
Some biases are suspected in the primary OC emissions
during these time periods, and underpredictions in EC are
most likely related to emission biases. Further work is
essential to evaluate and refine the emission inventories
for EC and primary OC. The standard CMAQ model does
not include SOA formation resulting from the oxidation of
isoprene or sesquiterpenes, both of which may contribute
substantial quantities to the ambient OC concentration in
the eastern United States. A new SOA mechanism will be
incorporated into the next version of the CMAQ
model, which may also improve model performance for
OC and TC.

Comparisons of CMAQ total PM2.5 mass predictions to
observed PM2.5 mass from the STN sites showed mixed
seasonal performance. Spring and summer had the best
overall performance, while the performance in the winter
and fall was rather poor, with significant overpredictions
of total PM2.5 mass in those seasons. The largest
contributor to the overpredictions in the winter and fall
is from large overpredictions in PMOther (unspeciated
components of PM2.5 mass). These results are consistent
with those of Mathur et al. (2008), who found the
operational version of the CMAQ model largely over-
predicted PMOther in the winter. It is likely that errors in
the primary emissions that comprise the PMOther are
responsible for the majority of the bias. Several diagnostic
evaluations are being performed to address the over-
predictions in PMOther, such as an effort to subdivide the
primary unspeciated emissions in the CMAQ system that
account for the bulk of the concentration of PMOther, in
order to identify specific trace elements that are respon-
sible for the large differences in observations versus
predictions seen in the PMOther species. A correction to
the residential wood combustion in the emissions in-
ventory resulted in a small improvement in the PMOther

predictions; however, large overpredictions in PMOther

were still present in the fall and winter.
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