
New Categorical Metrics for Air Quality Model Evaluation

DAIWEN KANG*

Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research
Triangle Park, North Carolina

ROHIT MATHUR AND KENNETH SCHERE

Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, and
National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

SHAOCAI YU*

Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research
Triangle Park, North Carolina

BRIAN EDER

Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, and
National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

(Manuscript received 15 February 2006, in final form 10 August 2006)

ABSTRACT

Traditional categorical metrics used in model evaluations are “clear cut” measures in that the model’s
ability to predict an “exceedance” is defined by a fixed threshold concentration and the metrics are defined
by observation–forecast sets that are paired both in space and time. These metrics are informative but
limited in evaluating the performance of air quality forecast (AQF) systems because AQF generally ex-
amines exceedances on a regional scale rather than a single monitor. New categorical metrics—the weighted
success index (WSI), area hit (aH), and area false-alarm ratio (aFAR)—are developed. In the calculation
of WSI, credits are given to the observation–forecast pairs within the observed exceedance region (missed
forecast) or the forecast exceedance region (false alarm), depending on the distance of the points from the
central line (perfect observation–forecast match line or 1:1 line on scatterplot). The aH and aFAR are
defined by matching observed and forecast exceedances within an area (i.e., model grid cells) surrounding
the observation location. The concept of aH and aFAR resembles the manner in which forecasts are usually
issued. In practice, a warning is issued for a region of interest, such as a metropolitan area, if an exceedance
is forecast to occur anywhere within the region. The application of these new categorical metrics, which are
supplemental to the traditional counterparts (critical success index, hit rate, and false-alarm ratio), to the
Eta Model–Community Multiscale Air Quality (CMAQ) forecast system has demonstrated further insight
into evaluating the forecasting capability of the system (e.g., the new metrics can provide information about
how the AQF system captures the spatial variations of pollutant concentrations).
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1. Introduction

The skill of an air quality forecast system is gauged
by how well the modeling system predicts species con-
centrations in relation to threshold values. These
events, which are referred to as “exceedances” and
“nonexceedances,” can be evaluated using categorical
metrics. Current categorical metrics used in model
evaluations (e.g., Kang et al. 2005) measure the model’s
ability to predict an exceedance using a fixed threshold
mixing ratio (or “clear cut”), and the metrics are cal-
culated using direct observation–forecast pairs in space
and time. However, both the observations and the
model forecasts represent different spatial and tempo-
ral scales. For example, observations are point mea-
surements at fixed locations, whereas model forecasts
represent volume-average mixing ratios. The direct
matching of the point observations to the volume-mean
model forecast may result in misleading conclusions in
model performance evaluations, especially when ex-
ceedances are very sparse spatially.

To avoid the so-called clear-cut effect, three new cat-
egorical metrics—weighted success index (WSI), area
hit rate (aH), and area false-alarm ratio (aFAR)—are
developed as a supplement to the traditional metrics.
As shown in Fig. 1, an observation–forecast scatterplot
is generally classified into four quadrants by threshold
value that marks exceedances. Quadrant A contains
forecast exceedances that were not observed, quadrant
B presents both forecast and observed exceedances, in
quadrant C reside the data points that are both forecast

and observed nonexceedances, and quadrant D holds
the observed exceedances that were not forecast. In the
definition of WSI, credits are given to the observation–
forecast pairs within the observed exceedance region
(but missed forecast) or the forecast exceedance region
(but false alarm) depending on the distance of the data
points from the perfect observation–forecast match line
(i.e., the 1:1 line on a scatterplot). Metrics aH and
aFAR are defined to resemble the manner in which
forecasts are usually issued. In practice, a warning is
issued for a region of interest (such as a metropolitan
area) if an exceedance is forecast to occur anywhere
within the region. So, the aH is defined as a hit if an
observed exceedance is matched within an area (adja-
cent grid cells) surrounding the observation location
(central cell) and the aFAR is defined to reflect number
of false-alarm ratios of the forecast if a forecast exceed-
ance is not paired with an observed one within the area.
In this paper, the use of these metrics is demonstrated
using model guidance from the national air quality fore-
casting system.

2. Existing categorical metrics

For the categorical forecast evaluation, the model’s
accuracy, bias, hit rate H, false-alarm ratio (FAR), and
critical success index (CSI) are typically examined using
the National Ambient Air Quality Standards
(NAAQS) as the thresholds to define exceedance val-
ues. As presented in Fig. 1 [using the NAAQS for
ozone (O3)], a represents the number of forecast 8-h
exceedances (O3 mixing ratios � 85 ppb) that were not
observed (i.e., data pairs in quadrant A), b represents
the number of correctly forecast 8-h exceedances (data
pairs in quadrant B), c represents the number of cor-
rectly forecast 8-h nonexceedances (data pairs in quad-
rant C), and d represents the number of observed 8-h
exceedances that were not forecast (data pairs in quad-
rant D). The number of model–observation pairs in A,
B, C, and D form the basis for calculating the categori-
cal evaluation metrics. If the denominator in any of the
definitions is 0, then it is considered to be not appli-
cable.

The FAR measures the percentage of times an ex-
ceedance was forecast and did not occur:

FAR � � a

a � b� � 100%. �1�

Smaller values of FAR are desirable: for example, a
FAR of 0% indicates no false alarms and a FAR of
50% indicates that one-half of the forecast exceedances
were not observed.

FIG. 1. Example scatterplot for the definition of traditional
categorical metrics.
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The CSI indicates how well exceedances were pre-
dicted by considering false alarms and missed forecasts
of exceedances:

CSI � � b

a � b � d� � 100%. �2�

The CSI is not influenced by correctly forecast non-
exceedances, which can be disproportionately large
for some species. A CSI of 50% indicates that one-
half of the forecast and observed exceedances were cor-
rect.

Metric H, which is similar to the CSI and is often
called the probability of detection, indicates the per-
centage of actual exceedances that are correctly fore-
cast:

H � � b

b � d� � 100%. �3�

3. New categorical metrics

The categorical statistics discussed in section 2 are
defined by the numbers of paired data points found in
the quadrants defined by threshold values T as shown
in Fig. 1. Although informative, each metric can only
represent the model’s performance limited to some as-
pects. To illustrate some of the limitations of traditional
categorical statistics, consider x(O, M) (Fig. 2), which
represents a paired data point (O is the observed value
and M is the modeled value) that lies within quadrant A
(forecast exceedance that did not occur) but also lies

within a factor line f (fixed M/O value) inside a triangle
designated as P. In comparing model forecasts with ob-
servations, f is often used to represent reasonable
model performance and reflects inherent uncertainties
in both the model and measured values. This individual
forecast, though considered a “failure” or false alarm
using traditional categorical metrics, in actuality may
be considered a “success” if inherent uncertainties
associated with representing the variability associated
in comparing grid and point values, as well as intrinsic
model process representation and measurements,
are factored into the analysis. The same is true for
points falling into quadrant D but within the lower fac-
tor line (triangle Q). In accord with this concept, three
new metrics are proposed (based on traditional cat-
egorical metrics) to account for the uncertainties asso-
ciated with both model process representation and
measurements.

a. Weighted success index

The WSI gives credit for points located in the tri-
angles P and Q that are formed by the threshold lines T
and the factor line f (Fig. 2). The choice of f is empirical
and is based on rules of thumb (Hanna 2006). Analysis
of real-time O3 forecasts for the past 2 yr has shown
that about 80% of the data points are located within a
factor of 1.5 on prediction–observation scatterplots;
thus, in this study, f is set to 1.5.

If a data point x(O, M) is within P (M � T � O and
M � fT), the length L of the line that passes through x
and intersects both T and f can be computed as

L � T � �1�f �M. �4�

Length L can then be used to define an intermediate
parameter (IP) that represents WSI on the prediction
side:

IP � 1 �
T � O

L
� 1 �

T � O

T � �M�f �
�

M � fO

M � fT
.

�5�

The values of P are between 0 and 1.
In a similar way, for points in Q (O � T � M and

O � fM)—that is, an observed but not forecast exceed-
ance—IP is defined as

IP �
O � fM

O � fT
. �6�

For any other conditions, IP � 0.0. Then the WSI is
defined as

FIG. 2. Example scatterplot for the definition of WSI (see text).
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WSI �

b � 	
1

n

IP

a � b � d
� 100%, �7�

where n is the number of data points. Values of WSI
range from 0% (worst possible forecast) to 100% (per-
fect forecast). As seen from the definitions, both WSI
and CSI have the same denominator, but the numera-
tor in the WSI definition contains the intermediate
term that credits the points within the triangles P and Q
(Fig. 1). For a perfect forecast or for a no-event (neither
observed nor forecast exceedances exist) forecast, WSI
and CSI are the same.

b. Area hit rate

The H defined by Eq. (3) indicates the percentage of
observed exceedances that were forecast, where the
forecast exceedances are only from the grid cell in
which the monitor is located. In some cases, the moni-
tor may be located just at the edge or corner of the
model grid cell, which may not best represent the con-
ditions of the observation site. The air quality model
forecast will also reflect spatial and temporal errors in
the simulation of meteorological features (frontal sys-
tems, precipitation, cloud cover, etc.), especially with
increasingly finer model resolutions. On the other
hand, air quality forecasts are typically issued for re-
gions such as metropolitan areas. Wherever an exceed-
ance is forecast to occur within the area, a warning of
the exceedance will be issued for the whole area. As
illustrated in Fig. 3, it is often the case that observed
exceedances (red or orange diamonds) are only one or
two grid cells away from the model forecast exceed-

ances (dark or light background). From this practical
consideration, a new aH metric is developed that re-
flects both the spatial uncertainties of the model fore-
cast and practical considerations typically employed by
a local forecaster.

Area hit is defined as

aH � � Ab
Ab � Ad� � 100%, �8�

where Ab is the number of exceedances that are both
observed and forecast but the forecast is any exceed-
ance that occurs in the designated area centered at the
monitor location. Parameter Ad is the number of ob-
served exceedances that are not forecast within the des-
ignated area centered at the monitor location. In this
illustration, the area includes the grid cell in which the
monitor resides (i.e., the center cell) and the adjacent
cells (Fig. 4). The value of aH depends on the size of the
selected area. If the area only covers the center cell,
then aH collapses to H. In general, the larger the size of
the chosen area is, the larger the aH values will be.
However, the concept of area hit rate also intrinsically
incorporates the uncertainties associated with grid reso-
lution. For a grid resolution of 
, features occurring on
spatial scales of less than 2
 cannot be resolved by the
model. Thus, as an initial demonstration of the appli-
cation of the metrics, we examine them on model–ob-
servation pairs on scales of 2
 and 3
. For the Eta
Model–Community Multiscale Air Quality (CMAQ)
forecast system with a 12-km horizontal grid spacing,
the area includes either one or two cells on each side of
the central cell; in this way the area covers 9 and 25 grid
cells and forms a square of 36 km � 36 km or 60 km �

FIG. 3. Sample predicted (background) and observed (diamond overlay) maximum 8-h O3

mixing ratios (ppb).
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60 km (Fig. 4), respectively. However, if the observa-
tion site is located at the edge or the corner of the
modeling domain, then only the adjacent cells that re-
side within the domain are counted.

c. Area false-alarm ratio

The aFAR is defined using the same spatial concept as
that of aH. In mathematical terms, aFAR is defined as

aFAR � � Aa
Aa � Ab� � 100%, �9�

where Aa is the number of forecast area exceedances
that were not observed and Ab is the number of fore-
cast exceedances that were observed. When an area
contains multiple observation sites, all of the observa-
tion sites within the selected area will be considered in
aFAR; if no exceedances are observed at any sites lo-
cated within this area, false alarms are recorded (all of
the sites contribute to Aa). If an exceedance is recorded
at any of the observation sites, then no false alarm is
counted, even for the sites that did not observe exceed-
ances (i.e., all sites contribute to Ab).When the area
only includes the cell that contains the monitor, aFAR
becomes FAR.

4. Case study

The new categorical metrics (WSI, aH, and aFAR)
are compared with their traditional counterparts (CSI,
H, and FAR) using the Eta Model–CMAQ real-time
O3 forecasts for the period from 13 June to 31 July
2005. The national air quality forecasting (AQF) sys-
tem is based on the National Centers for Environmen-
tal Prediction (NCEP) Eta Model (Black 1994; Rogers

et al. 1996) and the U.S. Environmental Protection
Agency (EPA) CMAQ modeling system (Byun and
Ching 1999; Byun and Schere 2006). The Eta Model
provides the meteorological fields for input to CMAQ.
The processing of the emission data for various pollut-
ant sources has been adapted from the Sparse Matrix
Operator Kernel Emissions (SMOKE) modeling sys-
tem (Houyoux et al. 2000) using input from the EPA
national emission inventory. The Carbon Bond chemi-
cal mechanism (version 4.2) is used to represent the
photochemical reactions. Detailed information on
transport and cloud processes in the CMAQ is de-
scribed in Byun and Ching (1999). For this application,
O3 mixing ratios are forecast for the eastern United
States using a 12-km horizontal grid. There are 22 sigma
layers extending from the surface to 100 hPa. The
chemical fields for CMAQ are initialized using the pre-
vious forecast cycle. The primary Eta Model–CMAQ
model forecast for next-day surface layer O3 is based on
the current day’s 1200 UTC cycle. The target forecast
period is from local midnight through local midnight
(the hours beginning 0400–0300 UTC for the eastern
United States). Hourly, near-real-time O3 observations
obtained from the EPA’s “AIRNow” program (at the
time of writing, information was available online at
http://airnow.gov) are used in this study. Additional de-
tails can be found in Otte et al. (2005).

The forecast domain covers the eastern United
States, which includes more than 850 AIRNow moni-
toring sites. During this forecast period, 1083 exceed-
ances (maximum 8-h O3 mixing ratios � 85 ppb) were
observed, which resulted in a CSI of 19.2% and a WSI
of 59.8% when the factor f (Fig. 2) is set at 1.5 (80% of
the observation–forecast pairs are within a factor of
1.5). This apparent increase in skill with WSI (when
compared with CSI) indicates that there are many ob-
servation–forecast pairs in P and Q (see Fig. 2) that the
CSI metric categorizes as failures. When the proximity
of these data points to the acceptable factor line is
taken into consideration by the weighting associated
with the WSI, a more representative measure of the
model’s performance is obtained.

As seen from Fig. 5, about 40% of the exceedances
during this period are forecast if aH is calculated like H
(i.e., using an area of 1 � 1 grid cell). If the area is
expanded to 3 � 3 grid cells, then the aH increases to
about 70%. About 30% of the observed exceedances
are forecast in a grid cell that is adjacent to the cell in
which the monitor is located. When the area is ex-
panded from 3 � 3 to 5 � 5 grid cells, the aH is in-
creased by another 10%. This result indicates that the
majority of exceedances are captured by the forecast
system within the 3 � 3 grid cell area. The values of

FIG. 4. Illustration of the “area” categorical metrics: the grid cell
in which an observation site is located is marked with a letter “O,”
the dark-gray cells are the adjacent cells one cell away from the O
cell, and light-gray cells are the adjacent cells two cells away from
the O cell.
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aFAR are smallest when it is calculated over a 3 � 3
grid cell area but increase when calculated over the 5 �
5 grid cell area. These results are consistent with analy-
ses by Rao et al. (1997) that demonstrate that ambient
O3 mixing ratios and its exceedances have a spatial
scale of 15 km. The 3 � 3 grid cell area roughly covers
the spatial scale of 18 km around a monitoring station.

In addition to evaluating the air quality forecasts
over the entire model domain, the forecast system is
examined over urban and suburban areas where most
of the human activities take place and on which air
quality forecasts are primarily focused. Of the 1083 ex-
ceedances observed during the study period, 637 were
observed in urban or suburban sites. Both the CSI
(18.0%) and WSI (59.2%) in urban and suburban re-
gions are slightly lower than those (19.2% and 59.8%)
calculated over all sites in the modeling domain. This
result indicates that the success rate of detecting ex-
ceedance events is slightly lower over urban and sub-
urban regions than over rural locations. This, in part, is
related to the inability of the model resolution to rep-
resent the spatial inhomogeneity in nitrogen oxide lev-
els in urban areas; spatial analysis of ozone data by Rao
et al. (1997) suggests a resolution of about 5 km to
capture such spatial variability in ozone exceedance in
urban areas. Similar to Fig. 5, Fig. 6 shows the aH and
aFAR values for the urban and suburban sites calcu-
lated over different area sizes. As seen in Fig. 6, there
are no statistically significant differences between the
aH values in urban and suburban areas and those with
all of the measurement sites (Fig. 5) when calculated
over the same area size. The aFAR value in urban and
suburban areas is 6.5% lower than that over the entire
domain when calculated over the 5 � 5 grid cells, and
the aFAR values over the 1 � 1 and 3 � 3 grid cells are
about 2%–3% larger in urban and suburban areas than
those over the entire domain.

As discussed earlier, air quality forecasts are typically
issued for a functioning region, for example, a city, a

metropolitan area, or an industrial region. The practical
extension of the proposed new categorical metrics aH
and aFAR is expected to provide a more representative
indication of model forecast performance when com-
pared with the traditional categorical evaluation met-
rics.

5. Summary

Three categorical metrics, WSI, aH, and aFAR, are
developed to evaluate model performance in forecast-
ing exceedance events. These new metrics supplement
the traditional categorical metrics (CSI, H, and FAR)
and provide a more relaxed but practical way to evalu-
ate model performance when compared with the exist-
ing counterparts. The new metrics not only evaluate the
exceedances and nonexceedences as their existing
counterparts do for the clear-cut match, but also evalu-
ate the “effort” or “potential” of the forecast system.

The application of the aH and aFAR metrics also
reveals useful spatial performance information of fore-
cast systems when the evaluating area expands from the
1 � 1 grid cell to the 5 � 5 grid cells. The case study
shows that approximately 40% hit occurred in the di-
rect match (1 � 1 grid cell), about another 30% hit
occurred in the immediately adjacent cells (3 � 3 grid
cells), and only about 10% hit would be gained by ex-
panding to 5 � 5 grid cells.

In practice, if the information about the coverage of
local forecasts is available, aH and aFAR can be calcu-
lated for the actual area over which local forecasts are
issued (such as a metropolitan area). When the area
included in the statistic is extended from the adjacent
grid cells to local forecast regions, then the “area” or
“a” in aH and aFAR is not arbitrary but rather repre-
sents actual forecast areas. Future research will include
the application of these metrics to actual forecast areas.
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FIG. 5. The aH and aFAR for all observations calculated by
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(5 � 5) during the period from 13 Jun to 31 Jul 2005.

FIG. 6. As in Fig. 5, but for only the urban and suburban
regions.

554 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 46



comments on initial drafts of this manuscript. The re-
search presented here was performed under the
Memorandum of Understanding between the U.S. En-
vironmental Protection Agency (EPA) and the U.S.
Department of Commerce’s National Oceanic and At-
mospheric Administration (NOAA) and under Agree-
ment DW13921548. This work constitutes a contribu-
tion to the NOAA Air Quality Program. Although it
has been reviewed by EPA and NOAA and approved
for publication, it does not necessarily reflect their poli-
cies or views.

REFERENCES

Black, T., 1994: The new NMC Mesoscale Eta Model: Description
and forecast examples. Wea. Forecasting, 9, 265–278.

Byun, D. W., and J. K. S. Ching, Eds., 1999: Science algorithms of
the EPA Models-3 Community Multiscale Air Quality
(CMAQ) modeling system. U.S. Environmental Protection
Agency Science Doc. EPA-600/R-99/030, 727 pp.

——, and K. L. Schere, 2006: Review of the governing equations,
computational algorithms, and other components of the
Models-3 Community Multiscale Air Quality (CMAQ) mod-
eling system. Appl. Mech. Rev., 59, 51–77.

Hanna, S. R., 2006: A review of uncertainty and sensitivity analy-
sis of atmospheric transport and dispersion models. Preprints,
28th NATO/CCMS Int. Technical Meeting on Air Pollution
Modeling and Its Application, Leipzig, Germany, NATO/
CCMS, 225–237.

Houyoux, M. R., J. M. Vukovich, C. J. Coats Jr., N. M. Wheeler,
and P. S. Kasibhatla, 2000: Emission inventory development
and processing for the Seasonal Model for Regional Air
Quality (SMRAQ) project. J. Geophys. Res., 105, 9079–9090.

Kang, D., B. K. Eder, A. F. Stein, G. A. Grell, S. E. Peckham, and
J. McHenry, 2005: The New England air quality forecasting
pilot program: Development of an evaluation protocol and
performance benchmark. J. Air Waste Manage. Assoc., 55,
1782–1796.

Otte, T. L., and Coauthors, 2005: Linking the Eta Model with the
Community Multiscale Air Quality (CMAQ) modeling sys-
tem to build a national air quality forecasting system. Wea.
Forecasting, 20, 367–384.

Rao, S. T., I. G. Zurbenko, R. Neagu, P. S. Porter, J. Y. Ku, and
R. F. Henry, 1997: Space and time scales in ambient ozone
data. Bull. Amer. Meteor. Soc., 78, 2153–2166.

Rogers, E., T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M.
Baldwin, N. W. Junker, and Y. Lin, 1996: Changes to the
operational “early” Eta analysis/forecast system at the Na-
tional Centers for Environmental Prediction. Wea. Forecast-
ing., 11, 391–413.

APRIL 2007 N O T E S A N D C O R R E S P O N D E N C E 555


