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Abstract
Unbiased symmetric metrics to quantify the relative bias and error between modeled and
observed concentrations, based on the factor between measured and observed concentra-
tions, are introduced and compared to conventionally employed metrics. Application to the
evaluation of several data sets shows that the new metrics overcome concerns with the con-
ventional metrics and provide useful measures of model performance. Copyright  2006
Royal Meteorological Society
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1. Introduction

The use of models in the simulation of air quality has
seen a rapid increase over the past two decades in not
only the incidence of application but also the scope
of that application. Once used primarily for atmo-
spheric research, these models have had increasing
utility in regulatory application and, most recently,
in air quality forecasting. Regardless of the appli-
cation, it is essential that these models be evalu-
ated against measurements in order to characterize
their performances so that confidence can be devel-
oped within both the air quality regulatory and air
quality forecasting communities. The U.S. Environ-
mental Protection Agency (EPA, 1991) has devel-
oped guidelines, based on Tesche et al. (1990), for
a minimum set of statistical measures to be used
for operational evaluation. Taylor (2001) proposed a
graphical method to summarize multiple aspects of
model performance. Operational evaluations of dif-
ferent air quality models in the past have yielded
an array of statistical metrics that are so diverse and
numerous that it is difficult to judge the overall perfor-
mance of the models (Chang and Hanna, 2004; EPA,
1991; Cox and Tikvart, 1990; Seigneur et al., 2000;
Taylor, 2001; Yu et al., 2003). Additionally, some of
these metrics are inherently deficient in that they are
subject to asymmetry and/or bias. In this study, a

new set of unbiased symmetric metrics for the opera-
tional evaluation is proposed and applied. These new
metrics, which are based on the intuitive and com-
monly used concept of the factor by which the mod-
eled and observed quantities differ, provide statistical
measures of that factor both as an unsigned quan-
tity that gives its mean magnitude and as a signed
quantity that gives both the mean magnitude of the
factor and its sense – modeled greater or less than
measured.

2. An examination of traditional evaluation
metrics

A review of the literature (Chang and Hanna, 2004;
EPA, 1984, 1991; Fox, 1981; Willmott, 1982; Cox and
Tikvart, 1990; Weil et al., 1992; Seigneur et al., 2000;
Yu et al., 2003) reveals a plethora of metrics (sum-
marized in Table I) used to quantify the differences
between simulations and observations. Each of these
metrics assumes the existence of a number N of pairs
of modeled and observed concentrations Mi and Oi ;
the index i might be over time series at a given loca-
tion, or over locations in a given spatial domain, or
both. Two of the more commonly used metrics used to
quantify the departure between modeled and observed
quantities are the mean bias BMB and the mean abso-
lute gross error EMAGE (see definitions in Table I).
The mean bias is a useful measure of the overall
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Table I. Summary of quantitative metrics commonly used in the operational evaluation of air
quality model

Metrics Mathematical expression∗ Range

(1) Correlation

Correlation coefficient r =
∑

(Mi − M)(Oi − O)

{∑
(Mi − M)2

∑
(Oi − O)2

} 1
2

−1 to +1

(2) Difference

Mean bias BMB = 1
N

∑
(Mi − Oi) = M − O −O to +∞

Mean absolute gross error EMAGE = 1
N

∑
|Mi − Oi| 0 to +∞

Root mean square error ERMSE =
[

1
N

∑
(Mi − Oi)

2
] 1

2
0 to +∞

(3) Relative difference

Mean normalized bias BMNB = 1
N

∑(
Mi − Oi

Oi

)
=

(
1
N

∑ Mi

Oi
− 1

)
−1 to +∞

Mean normalized absolute error EMNAE = 1
N

∑ ( |Mi − Oi|
Oi

)
0 to +∞

Normalized mean bias BNMB =
∑

(Mi − Oi)∑
Oi

=
(

M

O
− 1

)
−1 to +∞

Normalized mean absolute error ENMAE =
∑

|Mi − Oi|∑
Oi

= EMAGE

O
0 to +∞

Fractional bias BFB = 1
N

∑ (Mi − Oi)

(Mi + Oi)/2
−2 to +2

Fractional absolute error EFAE = 1
N

∑ |Mi − Oi|
(Mi + Oi)/2

0 to 2

∗ M = 1
N

∑
Mi, O = 1

N
∑

Oi .

over- or underestimation by the model; the quantity
is expressed in the units of the measurement (e.g.
µg m−3) making it useful especially for considerations
of air quality. Measures other than the bias are use-
ful to characterize the spread of the departure between
the model and observations, analogous to the stan-
dard deviation of the departure in addition to the mean
departure. For this reason, alternative metrics such as
the mean absolute gross error EMAGE are commonly
employed in addition to the bias.

It is also frequently desirable to provide a measure
of the relative or fractional difference between the
model estimations and observations; this is generally
achieved through some sort of normalization. Relative
measures are particularly useful in comparing the per-
formance of models for different substances for which
concentrations are normally quite different. Histori-
cally, most such relative differences are normalized by
the observed quantities. Examples include: the mean
normalized bias (BMNB), the mean normalized abso-
lute error (EMNAE), the normalized mean bias (BNMB)
and the normalized mean absolute error (ENMAE) (see
Table I for definitions). There are two concerns asso-
ciated with these approaches to normalization that can
result in misleading conclusions. This first concern
is asymmetry. The values of both BMNB and BNMB
can grow disproportionately as a consequence of the

fact that model overestimates are unbounded whereas
underestimates (for quantities such as concentrations)
are bounded by – 100%. The second concern is infla-
tion. The values of both BMNB and EMNAE can be
greatly inflated by a few instances in which the
observed quantity in the denominator of the expres-
sion is quite low relative to the bulk of the observa-
tions. Such a situation is not uncommon, especially
when dealing with particulate matter and/or toxins.
The asymmetry issue has been addressed by the intro-
duction of the fractional bias BFB and fractional abso-
lute error EFAE (Seigneur et al., 2000; see Table I).
Although BFB and EFAE can overcome the problem of
asymmetry between model over- and underestimation,
the significance of the metrics BFB and EFAE is con-
founded because the modeled quantity is not evaluated
against the observed quantity alone, but rather against
an average of observed and modeled quantities. This
approach thus deviates from the traditional concept of
evaluation in which the observations are considered
truth. A further concern is that the scales of BFB and
EFAE are seriously compressed beyond ±1 as BFB and
EFAE are bounded by −2 and +2, and by 0 and +2,
respectively.

These considerations have prompted the definition
of new, symmetric, unbiased metrics of model perfor-
mance that may be suitable for evaluations of the skill
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of air quality models and for the comparison of the
skill of multiple models.

3. Development of new metrics

In this study, we introduce new metrics that over-
come the asymmetry problem between overestima-
tion and underestimation. These metrics are based on
the intuitive and commonly used factor Fi between
the observed and modeled quantity. Specifically, Fi
is defined here as the ratio of modeled quantity to
observed quantity if the modeled quantity exceeds the
observed, whereas it is defined as the negative of the
ratio of observed to modeled quantity if the observed
quantity exceeds the modeled, i.e. Fi = Mi/Oi if Mi ≥
Oi and Fi = −Oi /Mi if Mi < Oi . Note that the magni-
tude of Fi is always greater than or equal to unity and
that the sign of Fi gives the sense of the departure: pos-
itive denotes modeled quantity greater than observed
and negative denotes modeled less than observed.
According to this definition Fi = 1 denotes perfect
agreement; Fi = 2 denotes the model is a factor of 2
greater than observation; Fi = −2 denotes the model
is a factor of 2 less than observation.

Following this concept, the mean normalized factor
bias (BMNFB), the mean normalized absolute factor
error (EMNAFE), the normalized mean bias factor
(BNMBF) and the normalized mean absolute error factor
(ENMAEF) are proposed and defined for a number N of
pairs of modeled and observed concentrations Mi and
Oi :

BMNFB = 1

N

∑
Gi , where Gi =

(
Mi

Oi
− 1.0

)

if Mi ≥ Oi and Gi =
(

1.0 − Oi

Mi

)
if Mi < Oi

(1)

EMNAFE = 1

N

∑
|Gi | (2)

BNMBF =
∑

Mi∑
Oi

− 1 =
∑

(Mi − Oi )∑
Oi

= M

O
− 1, if M ≥ O, and

=

1 −

∑
Oi∑
Mi


 =

∑
(Mi − Oi )∑

Mi

=
(

1 − O

M

)
, if M < O (3)

ENMAEF =
∑

|Mi − Oi |∑
Oi

= EMAGE

O
if M ≥ O, and

=
∑

|Mi − Oi |∑
Mi

= EMAGE

M
, if M < O (4)

where M = 1
N

∑
Mi , and O = 1

N
∑

Oi . In BMNFB

the terms that comprise the sum are positive if Mi ≥
Oi and negative if Mi < Oi . The values of BMNFB and
BNMBF are not bounded (range from −∞ to +∞).
The values of EMNAFE and ENMAEF range from 0 to
+∞. The above equations can be rewritten in a form
that can be conveniently used to code a program when
these metrics are applied making use of the quantities
Si ≡ (Mi − Oi )/|Mi − Oi | and S ≡ (M − O)/|M −
O |, which denote the sense of the ratio between the
modeled and observed quantities; Si is equal to +1
or −1, depending on whether Mi > Oi or Mi < Oi ,
respectively, and similarly for S . Thus

BMNFB = 1

N

∑
Si

[
exp

(∣∣∣∣ln
(

Mi

Oi

)∣∣∣∣
)

− 1
]

(5)

EMNAFE = 1

N

∑ |exp (|ln(Mi/Oi )|) − 1| (6)

BNMBF = S


exp




∣∣∣∣∣∣ln
∑

Mi∑
Oi

∣∣∣∣∣∣

 − 1




= S
[
exp

(| ln M /O
) | − 1

]
(7)

ENMAEF =
∑ |Mi − Oi |(∑

Oi

)[1+S ]/2 (∑
Mi

)[1−S ]/2 (8)

In Equation (8) the exponents [1 + S ]/2 and [1 −
S ]/2 select which of the two quantities is to appear
in the denominator: for S = 1 or −1, [1 + S ]/2 = 1
or 0, respectively, and conversely for [1 − S ]/2. As
with the BMNB and EMNAE, both BMNFB and EMNAFE
exhibit another general problem when observed values
(denominator) are very small, resulting in the inflation
of these metrics.

The above formulas for BNMBF and ENMAEF can be
rewritten as follows:

For the M ≥ O case (i.e. overestimation):

BNMBF =
∑

Mi∑
Oi

− 1 =
∑

(Mi − Oi )∑
Oi

=
∑ 

 Oi∑
Oi

(Mi − Oi )

Oi


 (9)

ENMAEF =
∑

|Mi − Oi |∑
Oi

=
∑ 

 Oi∑
Oi

|Mi − Oi |
Oi


 (10)
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For the M < O case (i.e. underestimation):

BNMBF = 1 −
∑

Oi∑
Mi

=
∑

(Mi − Oi )∑
Mi

=
∑ 

 Mi∑
Mi

(Mi − Oi )

Mi


 (11)

ENMAEF =
∑ |Mi − Oi |∑

Mi

=
∑ 

 Mi∑
Mi

|Mi − Oi |
Mi


 (12)

These equations indicate that if M ≥ O, BNMBF and
ENMAEF are identical with BNMB and ENMAE, respec-
tively. Equations (9) and (10) show that BNMBF and
ENMAEF are actually the result of summing the indi-
vidual mean normalized factor biases (BMNFB) and
errors (EMNAFE) with the observed concentrations as
a weighting function, respectively. For the case of
M ≤ O (i.e. underestimation case), Equations (11)
and (12) show that BNMBF and ENMAEF are the results
of summing the individual mean normalized factor
biases (BMNFB) and errors (EMNAFE) with the mod-
eled concentrations as a weighting function, respec-
tively. BNMBF and ENMAEF have the advantage of both
avoiding inflation due to low values of observations
in normalization (like BNMB and ENMAE) and main-
taining adequate evaluation symmetry like BFB and
EFAE. Both BNMBF and ENMAEF are also much easier
to interpret than BFB and EFAE. For example, BNMBF
can be interpreted as follows: if BNMBF is positive,
the model overestimates the observations by a fac-
tor of BNMBF + 1; e.g. for BNMBF = 1.2, the model
overestimates the observations by a factor of 2.2.
If BNMBF is negative, the model underestimates the
observations by a factor of 1 − BNMBF; for exam-
ple, BNMBF = −1.2 indicates that the model underes-
timates the observations by a factor of 2.2. Thus, the
metric BNMBF indicates both the magnitude of the fac-
tor between the modeled and observed quantities and
the sense of that factor (greater or less than unity).
The metric ENMAEF can be interpreted as follows:
if ENMAEF = 1.8, this means that the absolute gross
error is 1.8 times the mean observation and model
prediction for overprediction (BNMBF ≥ 0, or M ≥
O) and underprediction (BNMBF ≤ 0, or M ≤ O),
respectively.

4. Illustrations of the new metrics

In order to test the robustness of these new met-
rics against the more commonly used metrics (listed
in Table I), we applied them to two different model
simulations. In the first simulation, a scatter plot of

Figure 1. Comparison of modeled (Mi) and observed (Oi)
aerosol NO3

− concentrations. The 1 : 1, 2 : 1 and 1 : 2 lines are
shown for reference

the modeled versus observed aerosol NO3
− concen-

trations was divided into four regions as shown in
Figure 1 (i.e. region 1 for 0 < Mi /Oi < 0.5, region 2
for 0.5 < Mi/Oi < 1.0, region 3 for 1.0 < Mi/Oi ≤
2.0 and region 4 for 2.0 < Mi/Oi ). Then, the conven-
tionally employed metrics in Table I, along with the
several new metrics, were calculated using different
combinations of data in each of the four regions of
Figure 1. Table II compares the several metrics of
model bias and error for the several cases. For the
case using only data from region 1, in which the model
underestimated each of the observations by more than
a factor of 2, the values of the conventional mea-
sures of model bias, the mean normalized bias BMNB,
the normalized mean bias BNMB and the fractional
bias BFB, are −0.82, −0.78, −1.43, respectively. With
the new metrics introduced here, the mean normal-
ized factor bias BMNFB and the normalized mean bias
factor BNMBF were −36.67 and −3.58, respectively.
The value for BNMBF (−3.58) indicates that the model
underestimated the observations by a factor of 4.58 for
this case, providing the most meaningful description
of model performance of the several metrics. Simi-
larly, for the case with data only in region 4, in which
the model overestimated all observations by more than
a factor of 2, the values of BMNB, BNMB, BFB, BNMFB,
and BNMBF are 4.27, 2.25, 1.06, 4.27 and 2.25, respec-
tively. The normalized mean bias factor BNMBF again
provides the most meaningful description of the per-
formance; i.e. that the model overestimated the obser-
vations by a factor of 3.25. It is especially interesting
to see the results of each metric on a case combin-
ing the two regions 1 and 4, i.e. regions of sub-
stantial model underestimation and substantial overes-
timation. Here BMNB, BNMB, BFB, BNMFB, BMNFB and
BNMBF are 1.50, 0.06, −0.27, 0.06, −18.02 and 0.06,

Copyright  2006 Royal Meteorological Society Atmos. Sci. Let. 7: 26–34 (2006)
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Table II. Results of the different metrics in Table I for different combinations of datasets in Figure 1

Combinationa 1 2 3 4 1 + 3 1 + 4 2 + 3 2 + 4 1 + 2 + 3 + 4

O 1.92 2.15 2.11 0.88 2.00 1.45 2.13 1.36 1.72
M 0.42 1.58 2.94 2.88 1.49 1.54 2.39 2.39 1.88
N 903 450 663 755 1566 1658 1113 1205 2771
r 0.79 0.97 0.97 0.90 0.54 0.32 0.90 0.63 0.51

Difference
BMB −1.50 −0.57 0.83 1.99 −0.52 0.09 0.26 1.04 0.16
EMAGE 1.50 0.57 0.83 1.99 1.22 1.73 0.72 1.46 1.32
ERMSE 4.25 1.07 1.29 2.70 3.33 3.62 1.20 2.23 2.91

Relative difference
BMNB −0.82 −0.27 0.43 4.27 −0.29 1.50 0.14 2.57 0.96
EMNAE 0.82 0.27 0.43 4.27 0.65 2.39 0.36 2.78 1.58
BNMB −0.78 −0.26 0.39 2.25 −0.26 0.06 0.12 0.76 0.09
ENMAE 0.78 0.26 0.39 2.25 0.61 1.19 0.34 1.07 0.77
BFB −1.43 −0.33 0.33 1.12 −0.68 −0.27 0.06 0.58 −0.13
EFAE 1.43 0.33 0.33 1.12 0.96 1.29 0.33 0.83 0.90
BMNFB −36.67 −0.43 0.43 4.27 −20.96 −18.02 0.08 2.52 −10.75
EMNAFE 36.67 0.43 0.43 4.27 21.32 21.91 0.43 2.84 13.28
BNMBF −3.58 −0.36 0.39 2.25 −0.35 0.06 0.12 0.76 0.09
ENMAEF 3.58 0.36 0.39 2.25 0.82 1.19 0.34 1.07 0.77

a Combinations 1, 2, 3 and 4 represent the data in regions 1, 2, 3 and 4 of Figure 1, respectively. Combination ‘1 + 3’ represents the data in region 1
and region 3 in Figure 1.

respectively. Both BNMB and BNMBF show that the
model slightly overestimated the observations, by a
factor of 1.06, whereas the values of BFB (−0.27) and
BMNFB (−18.02) are negative, indicating underestima-
tion. This shows that the values of BFB and BMNFB can
at times provide misleading (and in the case of BMNFB,
inflated) conclusions, in large part because of their use
of both model estimations and observations in the nor-
malization. Although the model mean (1.54 µg m−3)
is close to that of the observation mean (1.45 µg m−3)
and the values of BNMB and BNMBF are small (0.06),
both ENMAE and ENMAEF (1.19) show that the absolute
factor error between observations and model results is
1.19 times the mean observation. This indicates that
assessment of model performance requires considera-
tion of both relative bias (BNMBF) and relative absolute
error (ENMAEF).

For the combination of areas 2 and 3, the values of
the different metrics tend to converge; all measures of
error are between 0.33 and 0.43, and all measures of
bias are positive and between 0.06 and 0.14. For the
entire dataset, the values of BMNB, BNMB, BFB, BMNFB
and BNMBF are 0.96, 0.09, −0.13, −10.75 and 0.09,
respectively. Both BNMB and BNMBF show that the
mean model overestimated the mean observation by
a factor of 1.09, but the values of BFB and BMNFB are
once again negative (−0.13, −10.75) and in the case
of BMNFB greatly inflated.

As a second example, the metrics were applied to
evaluate the performances of 11 different chemical
transport models (Table III) simulating annual aver-
age concentration of nonseasalt (nss) SO4

2− at sev-
eral island and coastal locations in the North and
South Atlantic, as compared with measurements in
Figure 2. These comparisons illustrate that conven-
tional metrics can yield misleading results, which are

overcome by the metrics introduced here. For exam-
ple, the correlation coefficient r can be near unity
despite systematic model underestimate (Model A);
the systematic model underestimation is well captured
by the metrics BNMBF and ENMAEF. A model such as
F, which arguably does comparably to or better than
Model D in capturing the observations as shown in
Figure 2, exhibits much greater BMNB and EMNAE val-
ues as a consequence of inflation due to low observed
values; in contrast, the metrics BNMBF and ENMAEF
clearly indicate that Model F does only slightly bet-
ter than Model D. For illustrative purposes, results
from three fictitious model simulations were also eval-
uated: Model ‘L’ underestimates the observations by
100% (modeled concentrations are all zero); Model
‘M’ systematically overestimates the observations by
100% or a factor of 2; and Model ‘N’ assumes that
all of the modeled values are +∞. The conventional
metrics BMB, EMAGE, ERMSE, BMNB, EMNAE, BNMB and
ENMAE result in a great asymmetry between the model
over- and underestimation. For example, the metric
BNMB is the same in magnitude, differing only in sign,
for overestimation by a factor of 2 and underestima-
tion by a factor of ∞ (model results uniformly zero)
(cases M and L), despite considerable model skill in
the first instance and no model skill whatsoever in the
second instance. In contrast, the newly proposed statis-
tical metrics, BNMBF and ENMAEF, provide much more
meaningful measures of the relative performance of
these models, i.e., infinite error for model estimation
zero and +1 (100%) for model estimation a factor of
two high. For the criteria of model performance taken
as: |BNMBF| ≤ 25% and ENMAEF ≤ 35%, only Models
E, G, and H satisfy these criteria, with the best per-
formance being exhibited by Model H and the worst
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Table III. Results of different metrics in Table 1 for the performances of different models on non-seasalt sulfate in Figure 2

Models∗ A B C D E F G H I J K L M N

O 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
M 0.35 1.37 1.19 1.34 1.22 1.16 1.19 1.02 0.79 1.23 0.67 0.00 1.95 +∞
N 9 9 9 9 9 9 9 9 9 9 9 9 9 9
r 0.96 0.84 0.74 0.78 0.84 0.77 0.95 0.98 0.61 0.69 0.77 0.00 1.00 0.00

Difference
BMB −0.63 0.40 0.21 0.37 0.24 0.18 0.21 0.05 −0.19 0.25 −0.31 −0.98 +0.98 +∞
EMAGE 0.63 0.46 0.42 0.52 0.34 0.42 0.24 0.14 0.42 0.52 0.41 0.98 +0.98 +∞
ERMSE 0.79 0.55 0.52 0.70 0.49 0.48 0.37 0.16 0.58 0.63 0.55 0.98 +0.98 +∞
Relative Difference
BMNB −0.65 1.23 0.91 0.38 0.70 1.40 0.34 0.33 0.19 0.75 −0.06 −1.00 +1.00 +∞
EMNAE 0.65 1.26 1.01 0.60 0.80 1.58 0.39 0.39 0.59 0.94 0.52 1.00 +1.00 +∞
BNMB −0.64 0.41 0.22 0.38 0.25 0.18 0.21 0.05 −0.20 0.26 −0.32 −1.00 +1.00 +∞
ENMAE 0.64 0.47 0.43 0.53 0.34 0.43 0.25 0.15 0.44 0.53 0.42 1.00 +1.00 +∞
BFB −1.00 0.53 0.37 0.16 0.30 0.35 0.22 0.16 −0.04 0.30 −0.24 −2.00 +0.67 +∞
EFAE 1.00 0.56 0.48 0.45 0.43 0.56 0.27 0.24 0.47 0.53 0.53 2.00 +0.67 +∞
BMNFB −2.81 1.23 0.89 0.27 0.66 1.35 0.34 0.32 0.02 0.70 −0.34 −∞ +1.000 +∞
EMNAFE 2.81 1.26 1.02 0.70 0.84 1.63 0.39 0.40 0.76 1.00 0.80 +∞ +1.000 +∞
BNMBF −1.81 0.41 0.22 0.38 0.25 0.18 0.21 0.05 −0.24 0.26 −0.46 −∞ +1.000 +∞
ENMAEF 1.81 0.47 0.43 0.53 0.34 0.43 0.25 0.14 0.54 0.53 0.61 +∞ +1.000 +∞
∗ The units of O, M, BMB, EMAGE and ERMSE are µg m−3.

Figure 2. Comparisons of annual average concentrations of nonseasalt sulfate from 11 chemical transport models with
observations at a series of island and coastal stations in the North and South Atlantic. Data are from Penner et al. (2001)

performance being exhibited by Model A; these met-
rics are consistent with the scatter plots of Figure 2.

5. Applications of new metrics using CMAQ
simulations

Further illustration of the utility of the newly proposed
metrics is provided for a simulation of annual mean

concentrations of SO4
2− and NO3

− carried out with
the U.S. EPA Models-3/Community Multiscale Air
Quality (CMAQ) model (2004 release; version 4.4).
Further information about the simulations, includ-
ing details on the networks used in the evaluation
(Clean Air Status and Trends Network (CASTNet),
Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) and Speciated Trends Network
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Figure 3. Scatter plot of SO4
2− between the CMAQ model (Mi) and observation (Oi) (upper panel), and spatial distributions of

BNMBF and BNMAEF over the US for different networks for 2001 simulation. The 1 : 1, 2 : 1 and 1 : 2 lines are shown for reference in
the scatter plots

(STN)) can be found in Eder and Yu (2006). Table IV
reveals that for SO4

2− concentrations the vast majority
of the simulations agree with the observations within
a factor of 2 (Figure 4). The BNMBF values for each
of the three networks tend to be small and nega-
tive, ranging from −0.02 (STN) to −0.06 (IMPROVE)
and −0.11 (CASTNet). This indicates that the CMAQ
model underestimated SO4

2− concentrations by factors

ranging from 1.02 to 1.11. Examination of the BNMBF
as a function of location (Figure 3) reveals better per-
formance over the eastern half of the domain, where
the majority of the BNMBF values lie within ±0.50.
Performance degrades somewhat in the West, espe-
cially in California, where values of BNMBF are often
below −1.00, indicating that the model underestimates
by more than a factor of 2.
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Figure 4. Same as Figure 3 but for NO3
−

For aerosol NO3
−, the BNMBF values associated

with the CASTNet and IMPROVE networks are small
and positive, ranging from 0.04 (IMPROVE) to 0.05
(CASTNet). They are negative and somewhat larger
for STN sites (−0.19). This indicates that CMAQ
slightly overestimates NO3

− concentrations by factors
of 1.04 and 1.05 for IMPROVE and CASTNet, respec-
tively, while underestimating against STN sites by a
factor of 1.19. When examined over the spatial domain
(Figure 4), large differences in performance become

evident. For example, CMAQ tends to overestimate
NO3

− concentrations in the eastern portion of the
domain, where BNMBF often exceeds +0.50, while
it tends to underestimate in most western locations,
where BNMBF falls below −0.50 (factors of 1.5 over-
and underestimations, respectively). Exceptions to this
general east versus west difference do exist, most
notably for locations along the Gulf of Mexico, where
the model underestimates by more than a factor of 2,
and in Washington and Oregon, where the model over-
estimates. The very large values of ENMAEF for aerosol
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Table IV. Statistical metrics associated with an annual simulation (2001) of the 2004 release of
models-3 CMAQ

SO4
2− NO3

−

Network CASTNet IMPROVE STN CASTNet IMPROVE STN

O 2.88 1.60 3.33 1.04 0.50 1.48
M 3.21 1.69 3.40 0.99 0.48 1.77
N 3736 13447 6970 3735 13398 6130
r 0.92 0.85 0.77 0.67 0.52 0.37
BMB −0.32 −0.09 −0.07 0.05 0.02 −0.29
EMAGE 0.80 0.66 1.43 0.70 0.46 1.42
BNMBF −0.11 −0.06 −0.02 0.05 0.04 −0.19
ENMAEF 0.28 0.41 0.43 0.71 0.94 0.96

NO3
− in Figure 4 and Table IV indicate the spread of

departure between the model and observations.

6. Summary

In addition to some commonly used metrics, four new
symmetric metrics are introduced, two of which (i.e.
BNMBF and ENMAEF) are found to be statistically robust
measures of the factor by which the model results
differ from the observations and of the sense of that
factor. These two new metrics provide readily inter-
pretable measures of model performance, which are
symmetric and avoid inflation that may be caused by
low values of the observed quantities. These metrics
use only observed data as the model evaluation, and
thus serve as the basis for a rigorous evaluation of
model performance.
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