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Abstract

Bayesian statistical methods are used to evaluate Community Multiscale Air Quality (CMAQ) model simulations of

sulfate aerosol over a section of the eastern US for 4-week periods in summer and winter 2001. The observed data come

from two U.S. Environmental Protection Agency data collection networks. The statistical methods used here address two

problems that arise in model evaluation: the sparseness of the observational data which is to be compared to the model

output fields and the comparison of model-generated grid cell averages with point-referenced monitoring data. A Bayesian

hierarchical model is used to estimate the true values of the sulfate concentration field. Emphasis is placed on modeling the

spatial dependence of sulfate over the study region, and then using this dependence structure to estimate average grid cell

values for comparison with CMAQ. For the winter period, CMAQ tends to underpredict the sulfate concentrations over a

large portion of the region. The CMAQ simulations for the summer period do not show this systematic underprediction of

sulfate concentrations.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The U.S. Environmental Protection Agency (U.S.
EPA) has a long standing interest in monitoring and
controlling particulate matter levels in the atmo-
e front matter r 2006 Elsevier Ltd. All rights reserved
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sphere. Numerous studies in recent years have
examined the connection between high particulate
pollution levels and human morbidity and mortality
(see, for example, Dominici et al., 2000; Smith et al.,
2000; Styer et al., 1995). Particulate pollution is also
known to contribute to regional climate changes,
visibility impairment, and acidic deposition (U.S.
Environmental Protection Agency, 1995). U.S. EPA
has been mandated by the Clean Air Act (and its
amendments) to develop National Ambient Air
Quality Standards (NAAQS) for particulate matter.

The purpose of the current research is to show
how an advanced statistical technique can be used
to evaluate the ability of an air quality model to
simulate pollution levels in the atmosphere. The
.
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model considered here is the Community Multiscale
Air Quality (CMAQ) model developed by the U.S.
EPA. A complete description of the science con-
tained in CMAQ can be found in Byun and Ching
(1999). For the purposes of this study, we focus on
sulfate aerosol, since typically the distribution of
this pollutant is more homogeneous spatially than
many other pollutants of interest. The gas-phase
and aqueous-phase chemistry of sulfate production
is discussed in detail in Seinfeld and Pandis (1998)
and Finlayson-Pitts and Pitts (2000).

We examine the performance of CMAQ by
comparing the values of the air concentration of
sulfate simulated by CMAQ with the estimates of
sulfate provided by our statistical model based on
the observational data. The statistical model allows
us to account for fine-scale variability and provides
estimates for sulfate levels in areas without moni-
tors. The approach uses Bayesian methods to
explore the spatial correlation structure inherent in
the observational data, so that the estimates can be
made accordingly. Another advantage of this
particular statistical technique is its ability to
quantify the uncertainty in both grid cell and point
estimates. However, our method does not address
aspects of temporal variability or assess correlation
patterns over time.

There have been very few studies addressing
CMAQs ability to simulate spatial trends in sulfate
aerosol. One recent study by Mebust et al. (2003)
evaluated CMAQs skill in simulating observed
visibility indices and aerosol species concentrations.
The speciated aerosol evaluation used observations
of sulfate, nitrate, PM2:5, PM10, and organic carbon.
These observations were obtained from 18 sites in
the Interagency Monitoring of Protected Visual
Environments (IMPROVE) network for June 1995.
Results indicated that of all the constituents, sulfate
was simulated best by CMAQ. The mean bias was
0:15mgm�3, while the normalized mean bias (NMB)
was 3.1%. The authors found that across time the
NMB was within �25% on all but 1 day. Across
space the CMAQ simulation was within �25% at
15 of the 18 monitors. The mean error was found to
be considerably larger than the mean bias. The
normalized mean error (NME) was found to be
within 50% on all but 2 days and at all but two
locations.

Jun and Stein (2004) propose techniques to assess
the ability of CMAQ to capture spatiotemporal
patterns in the variability of sulfate aerosol. In
slightly older work, Haas (1998) provides a Monte
Carlo hypothesis testing methodology which allows
the consideration of a variety of hypotheses
concerning spatiotemporal correlation structure,
spatial or temporal drift, and the adequacy of
particular statistical models. Spatiotemporal ran-
dom field models for sulfate deposition are treated
in detail in Vyas and Christakos (1997).

2. Data

The 2001 calendar year CMAQ simulation run
was done on a 36 km horizontal grid using the
Lambert conformal projection with 14 vertical
layers based on a sigma coordinate system. The
run used the CB-IV gas-phase chemical mechanism.
The meteorological data came from MM5 (Grell
et al., 1994), which was developed cooperatively by
Penn State University and the National Center for
Atmospheric Research. The MM5 output is pro-
cessed by MCIP v2.3 (Meteorology-Chemistry
Interface Processor) to generate inputs to the
chemical transport model processor. Emissions data
came from two sources: the 2001 National Emis-
sions Inventory (NEI) for anthropogenic emissions
and BEIS 3.12 for biogenic emissions (Houyoux,
2004). For more information about CMAQ and
associated modeling systems mentioned here, see
U.S. Environmental Protection Agency (1998, Sec-
tion 2.3).

The observed data come from the monitoring
sites in two U.S. EPA data collection networks: the
Clean Air Status and Trends Network (CASTNet)
and the Speciated Trends Network (STN). The
CASTNet data are weekly aggregated samples,
running from Tuesday morning to Tuesday morn-
ing. The STN data are collected every third or sixth
day. Fig. 1 shows the locations of the monitoring
sites and the bounds of the region used for the
evaluation of CMAQ. The spatial region outlined in
Fig. 1 was selected to encompass a portion of the
major source region and the areas downwind from
that region. This area also has a large number of
monitors.

The observed and CMAQ simulated fields were
averaged over 4-week periods, each of which
constitutes a lunar month. These periods were
chosen to compliment the CASTNet sampling
schedule. This averaging procedure made it possible
to compare the various data sources on the same
temporal scale. Fig. 2 shows the average observed
sulfate for selected sites by lunar month. In this
research, lunar month one (2–30 January 2001) and
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Fig. 1. Monitoring sites and the bounds of the study region.
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Fig. 2. Average observed sulfate by lunar month for selected

sites.
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lunar month eight (17 July 2001 to 14 August 2001)
were used to assess CMAQ. These two periods
provide examples from different seasons and from
lower and higher sulfate levels.

3. Methodology

In comparing the CMAQ output with the
monitoring data, we are faced with two major
problems. One is the availability of only sparse
observational data from limited monitoring net-
works to compare with an extensive structure of
CMAQ grid cells. Since many common model
evaluation methods (for example, Mebust et al.,
2003) compare each monitoring value with the
output given by CMAQ for the grid cell in which
the monitor lies, the sparseness of the data means
that the model’s performance can only be ascer-
tained for a small subset of grid cells. Our objective
is to use statistical methods with the monitoring
data to estimate the ‘‘true’’ concentration of sulfate
aerosol at sites or grid cells for which we have no
monitoring data.

A related concern is the practice of comparing an
observation taken at a particular monitoring site
with the average given by CMAQ for the grid cell in
which the monitor lies (Mebust et al., 2003; Jun and
Stein, 2004). Even if CMAQ is performing perfectly,
we should not expect that an observation at a single
point within a 36 km2 region will be exactly equal to
the grid cell average given by CMAQ. This issue is
sometimes referred to as a ‘‘change of support’’
problem (Gelfand et al., 2001). Since we are
focusing on sulfate aerosol, which has a smoothly
varying distribution (Jun and Stein, 2004) across
our study region, the support issue may not have a
large impact on the statistical estimates obtained.
However, the errors associated with estimates for
grid cell averages vs. point-referenced locations
differ somewhat even in the case of the relatively
smooth distribution of sulfate aerosol; accounting
for this allows us to obtain a more accurate estimate
of variability.

The statistical methods we propose for model
evaluation address both of these concerns. We
employ a Bayesian hierarchical model, based on
that used by Fuentes and Raftery (2005), to estimate
the sulfate concentration field from the observa-
tional data. Emphasis is placed on understanding
the spatial dependence of sulfate values across the
region, and on using this dependence structure to
estimate the values for specific locations or grid
cells. Using the ideas of Fuentes and Raftery (2005)
and Gelfand et al. (2001), we adjust for the change
of support by adding estimates of the dependence
between point observations and grid cells based on a
suitable sample of points within each grid cell.

3.1. Statistical model description

Our analysis makes use of a Bayesian hierarchical
model which takes into account parameters for
trend estimation, spatial dependence, and small-
scale error; it can be viewed as a type of Bayesian
kriging technique. Similar models have been used by
numerous Bayesian practioners; for example, Hand-
cock and Stein (1993) focus on the subject of
Bayesian kriging, and Banerjee et al. (2004, Section 5.1)
provide a good explanation of Bayesian hierarchical
spatial models. A key difference between Bayesian
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and classical statistical inference is the Bayesian
treatment of all unknown parameters as random
variables. This facilitates the incorporation of
previous scientific knowledge into the model
through prior distributions on these parameters
and allows us to better ascertain uncertainty
associated with certain model components. After
data are obtained, we update these prior distribu-
tions using this data and Bayes’ Theorem. The
resulting posterior distribution can then be used to
give estimates about the values of the parameters
and the uncertainty associated with them. Refer-
ences describing the general principles of Bayesian
inference are numerous; these might include, but are
not limited to, Lee (1997) and Gelman et al. (1995).

We begin by representing the observed data,
denoted by the vector y, as a sum of the vector of
‘‘true’’ values z and fine-scale ‘‘error’’ or variability,
�. Assuming that these errors are independent and
normally distributed with variance s2, we can write

yjz; s2�Nðz;s2IÞ, (1)

where I is the identity matrix. Our likelihood is then
given by Eq. (1); this forms the top level in the
model’s hierarchical structure. It is worthwhile to
note that this likelihood could be extended to
account for additive or multiplicative biases in the
observed data by adjusting the mean in Eq. (1); a
similar approach was used by Fuentes and Raftery
(2005).

In the next level, we define the prior distribution
for the parameter z, which is the chief parameter of
interest

zjb; y1; y2�NðXb;SÞ. (2)

The mean Xb serves to capture a trend component
(linear in b) that exists between covariate informa-
tion and the sulfate aerosol field. Such covariates
might include the location coordinates of the
monitors, elevation, or other information. Each of
these covariates is stored in a column of the X

matrix, so that the b vector contains a coefficient for
each covariate.

The covariance matrix S is calculated based on a
model which captures the spatial dependence
among the sulfate observations. Based on our
preliminary analyses, we assume that the correlation
structure is stationary and isotropic. Many possible
covariance models could be used for S, but
probably the most common way to choose such a
model is to select the one that most closely fits the
empirical variogram. In our case, a good fit was
provided by the exponential covariance structure,
which is easy to implement and adequately captures
the dependence in this and many similar situations.
This covariance model depends only on two
governing parameters (y1 and y2) and the distance
between each pair of monitoring locations. For
more details concerning variogram fitting, see
Banerjee et al. (2004, Chapter 2.1.4) or Cressie
(1993, Chapter 2.6). For more information about
stationarity and isotropy, and a list of other
common choices for covariance models, see Bane-
rjee et al. (2004, Chapter 2) or Cressie (1993).

The ith row and jth column of the matrix S gives
the covariance between the true sulfate concentra-
tion at point i and point j. Note that S must be a
symmetric matrix, since Covðzi; zjÞ ¼ Covðzj ; ziÞ.
Using an exponential covariance structure, we have

Sij ¼ Covðzi; zjÞ ¼
1

y1
exp �

dij

y2

� �
, (3)

where dij is the distance between any two locations i

and j. This covariance structure for z can also be
expressed in semivariogram form

gðdÞ ¼
1

y1
1� exp �

d

y2

� �� �
, (4)

where y1 may be referred to as the reciprocal of the
sill and y2 as the range. The nugget parameter is not
needed in this covariance model, because the
variance associated with the fine-scale error is
accounted for by the s2 in the likelihood. For
further explanation of these parameters, see Bane-
rjee et al. (2004, Section 2.1.3) or Cressie (1993,
Section 3.2.1).

Our prior for z introduced three new parameters,
b, y1, and y2, which introduce an additional level in
the hierarchy. We also have not yet addressed the
prior for s2, introduced in Eq. (1). The prior
distributions for these parameters complete the
hierarchy of the model. Our implementation makes
use of the following prior distributions; however,
choice of the prior can be changed to better reflect
the state of knowledge available in a given situation

s�Uð0:05mgm�3; 0:2mgm�3Þ,

y1�Gð1m6 mg�2; 0:005m6 mg�2Þ,

y2�Uð50 km; 500 kmÞ; b�Nð0; 2500IÞ.

Our prior for s reflects the relatively small level of
measurement error and fine-scale variability ex-
pected in the observations taken by the monitors.
We have very little information about y1, so we use



ARTICLE IN PRESS
J.L. Swall, J.M. Davis / Atmospheric Environment 40 (2006) 4883–4893 4887
a conjugate prior with large variance. Similarly, for y2
(the range parameter) we also allow a wide range of
possible values. The elements of the vector b are
assumed a priori to be independent, all with zero
mean and large variance to reflect our uncertainty
about these values. As is the case with regression
models, the units for each element of b depend on the
units of the covariate for which it is the coefficient.

3.2. Estimation using the model

Estimation is performed by applying Bayes’ Theo-
rem, a basic law of probability that dictates how
probabilities should be updated on the basis of new
information. Using this theorem, we can obtain the
distribution of each parameter based on the data and
the other parameters in the model. We summarize this
procedure for the main parameter of interest, z.

Using Bayes’ Theorem, we have

pðzjy; s2; b;SÞ / pðyjz;s2Þpðzjb;SÞ. (5)

Note that we can make use of the ‘‘/’’ symbol here,
because the denominator specified by Bayes’ Theo-
rem is not a function of z. Leaving out the
multiplicative terms that do not depend on z, we
can continue in this vein, noting that the expressions
on the right side of the / symbol require continua-
tion onto additional lines:

pðzjy;s2;b;SÞ

/ exp �
1

2
ðy� zÞT

1

s2
I

� �
ðy� zÞ

� �

� exp �
1

2
ðz� XbÞTS�1ðz� XbÞ

� �

/ exp �
1

2
�yT 1

s2
I

� �
z� zT

1

s2
I

� �
y

��

þzT
1

s2
I

� �
z

��

� exp �
1

2
½zTS�1z� zTS�1Xb� ðXbÞTS�1z�

� �
.

Recall that, as in Eq. (1), I represents the identity
matrix. After rearranging the terms, we recognize
the kernel of this distribution for z as multivariate
normal, so that

pðzjy;s2;b;SÞ ¼ ð2pÞ�n=2
jV j�1=2

� exp �
1

2
½z� Vm�TV�1½z� Vm�

� �
,

where

V ¼
1

s2
I þ S�1

� ��1
; m ¼

1

s2
I

� �
yþ S�1Xb

and n is the length of the vector z. So, we can say
that, given the other parameters and the data, z

follows the distribution:

zjy;s2; b;S�NðVm;V Þ. (6)

Using the same method, we can obtain the
conditional distributions (at least up to a constant
factor) for each of the other parameters.

Once we have stepped through the above process
for each of the parameters, we make use of Markov
Chain Monte Carlo (MCMC) methods to sample
from the joint posterior distribution of all the
parameters. It is worth noting that these samples,
since they come from the joint distribution, will
reflect any correlations that exist between the
parameters. Given our parameters and the priors
we have chosen, our procedure makes use of both
the Gibbs sampler, when feasible, and the Metro-
polis algorithm otherwise. For more information
about MCMC methods and their implementation,
references include Gelman et al. (1995), Gilks et al.
(1998), and Gamerman (1997).

It is instructive to consider a bit more closely the
parameters s2, b, y1, and y2. Though these
parameters are not the focus of interest, their
distributions will also be updated either directly
based on the data through the likelihood (s2) or
through their relationship with z. Unlike the
classical kriging strategy, the parameters which
govern the covariance structure are not estimated
using a variogram and then assumed known for the
remainder of the analysis. The ‘‘true’’ sulfate field,
the trend, and the covariance structure are esti-
mated at the same time, and the range of possible
values is explored. This allows for a more thorough
and accurate accounting of variability and error at
the end of the estimation process.

3.3. Estimation of sulfate levels for unobserved

locations and for grid cells

In addition to estimating the values of the
parameters z, s2, b, y1, and y2, we would like to
make statistical predictions. In other words, based
on the values of the parameters as estimated using
the observed monitoring data, we would like to
predict the ‘‘true’’ concentration of sulfate over each
grid cell or at unobserved point locations.
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Fig. 3. Sulfate monitoring data (winter).
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In the case of predictions of ‘‘true’’ sulfate
concentrations to be made at point locations, the
procedure is similar to that used by many other
authors (e.g. Handcock and Stein, 1993; Gelfand
et al., 2001), and it also shares some of the features
of classical kriging. For the purposes of this section,
we denote the concentrations at these prediction
locations as z2, and we denote the concentrations at
the observed locations (for which we earlier
calculated the full conditional in Eq. (6)) as z1.

Samples from the predictive distribution, z2, can
be estimated conditionally on the estimated values
z1 at each step of the MCMC routine. Recalling Eq.
(2), we remember that the concentration field is
assumed multivariate normal, so that

z1

z2

 !
�N

X 1b

X 2b

 !
;

S11 S12

S21 S22

 ! !
. (7)

This partitioning is based on standard multivariate
normal theory (Anderson, 1984, Chapter 2.5).
Again using properties of the multivariate normal,
we can write the predictive distribution as

z2jz1; b;S�NðX 2bþ S21S�111 ðz1 � X 1bÞ,

S22 � S21S�111 S12Þ. ð8Þ

Here, X 2 represents the values of the covariates for
the prediction locations, and S22 represents the
covariance among the prediction locations, based
on the values y1, y2, and the distances among the
locations, as given in Eq. (3). Lastly, S21 ¼ ST

12 gives
the covariance between the prediction locations and
the observation locations, also based on Eq. (3).
Samples are taken from this predictive distribution,
based on the posterior joint distribution of the other
parameters. Further inspection shows that the mean
of the distribution given in Eq. (8) is similar to the
predictor obtained using simple kriging. However,
this Bayesian method takes into account the
variability in the predictive distribution and the
distributions of the other parameters.

To predict the average sulfate concentration for a
grid cell volume, we need to adjust our method, with
particular focus on the covariance structure. Now,
S12 (and its transpose, S21) represent covariances
between cell averages and pointwise values, while
S22 represents covariances among the cells. As
explained by Gelfand et al. (2001) and Fuentes
and Raftery (2005), for each grid cell, we take a
sample of points from within it. In the case of the
covariance between a monitoring site and a cell, we
then calculate the covariances between each sample
point in the cell and the monitoring site. We then
average these covariances to obtain an estimate for
the covariance between the grid cell and the
monitoring location. For two grid cells, we calculate
and then average the covariances for all pairings of
the sample points between the two cells. The
predictive distribution still has the form given in
Eq. (8); it is only our method for calculating the
partitions of S that must change.
4. Results

As discussed in Section 2, we apply this method to
sulfate concentrations averaged over a 4-week
period in winter and a 4-week period in summer.
Fig. 3 shows the averaged monitoring data in our
region for the winter period. This figure, as well as
all those that follow, remain in the original units of
mgm�3. Further examination of the figure shows
that for the most part, the sulfate concentrations
seem to be higher as we move in a more northerly
direction. It also appears that observations taken in
the Appalachians tend to be a bit lower. As a result,
we include elevation and the y-coordinate of the
locations as covariates in the model.

When applied to this data, our statistical model
yielded the estimates shown in Fig. 4. It should be
noted that the values shown are the estimated
posterior mean values for the predictive distribution
of the sulfate concentrations for the grid cells. These
grid cells have the same boundaries as those used by
CMAQ, so we can directly compare our model’s
estimate of the ‘‘true’’ concentrations with those
simulated by CMAQ, which can be found in Fig. 5.
Fig. 6 displays the differences between the CMAQ
output and estimates made by our Bayesian model.
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Fig. 4. Statistical estimates (winter).
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Fig. 5. CMAQ output (winter).
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Fig. 7. Sulfate monitoring data (summer).
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This last figure indicates that CMAQ is tending to
underpredict the sulfate concentration over the
majority of the region in winter. Exceptions can
be found in much of the Appalachian mountains,
where the discrepancies between CMAQ output and
the statistical estimates based on the observations
are smaller.
For the summer period of 17 July 2001 through
13 August 2001, the CMAQ model performs quite
well. Sulfate concentrations observed at the moni-
tors and averaged over this period are displayed in
Fig. 7. The presence of substantially more monitors
is noticeable when comparing this figure with the
observed concentrations during the winter period in
Fig. 3. This is due largely to the fact that a larger
number of STN monitors were operational by the
second half of 2001. As with the winter time period,
we see a general tendency for sulfate concentrations
to be higher in the more northerly areas of the
region, so the y-coordinate of each location is again
included as a covariate. There also appears to be
some reason to include the x-coordinate as a
covariate, since values along the coast are a bit
lower than values further inland. Interestingly, we
do not observe notable differences in the Appala-
chian region in this summer time span. Runs of the
model were performed with and without elevation
as a covariate, with little discernible difference in the
estimates. The results that follow correspond to the
estimated model without elevation as a covariate.

The mean predicted sulfate concentrations as
estimated by our statistical model are shown in
Fig. 8. These statistical estimates can be compared
with the CMAQ output averaged over the same
summer period in Fig. 9. The CMAQ output and
the estimates are similar enough that it is hard to see
noticeable differences at a first glance. It should be
noted that the differences in summer are larger than
those in winter, in absolute terms, but still small
relative to the range of sulfate values observed in the
summertime. A glance at Fig. 10 also reveals that
these differences do not indicate a more systematic
underestimate of sulfate concentrations in the
region, as we saw in the winter (compare with
Fig. 6).
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Since there is error inherent in all statistical
estimates, we may ask whether the differences
between CMAQ output and the estimates are
significant, or whether they may be attributed solely
to error. One advantage of the Bayesian model we
have implemented is the ease with which this error
can be estimated by using the predictive distribution
in Eq. (8). Figs. 11 and 12 display the standard
deviation of the predictive distribution for each grid
cell for the winter and summer time periods,
respectively. As we would expect, the variability of
the predictive distribution is lowest for grid
cells which are near monitoring sites, and highest
for grid cells which are far from monitors. Also, as
we observed earlier, the standard deviations
tend to be higher in the summer time period,
since sulfate values take a larger range during this
time.

We also use the predictive distribution to find
the 95% Bayesian credible interval, which gives
the interval within which 95% of the density of the
predictive distribution falls. In particular, we are
interested in grid cells in which the CMAQ
simulated value falls outside of the 95% credible
interval, because the statistical model can be said to
strongly indicate an error in CMAQ for these
locations. Figs. 13 and 14 show, for the winter and
summer periods, the differences between CMAQ
output and our mean statistical estimate only for
grid cells at which the CMAQ output falls outside
the 95% credible interval.
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Fig. 13 shows that in the winter period, the
CMAQ simulated sulfate values differ substantially
from our statistical estimates based on monitoring
data. This is true for most of the region under
consideration, with the exception of the mountai-
nous areas of North Carolina and southwestern
Virginia. This is consistent with our initial compar-
isons of Figs. 3 and 5, in which CMAQ appeared to
be underestimating sulfate levels during this Jan-
uary period throughout most of the region. In the
summer period, we have only a very small area
which the statistical model indicates as a possible
area for further investigation. This consists of a
small area in northeastern West Virginia, where the
CMAQ model is slightly underestimating sulfate
levels.

5. Discussion

There are notable discrepancies between the
CMAQ simulated sulfate concentrations and the
estimates made based on the observational data in
the January time period, but very few such
discrepancies in the summer time frame. The good
performance of CMAQ during the latter period is
consistent with the findings of others, such as
Mebust et al. (2003), who also confirmed CMAQs
ability to simulate sulfate in a summer time period
(June 1995). However, the systematic underestima-
tion of sulfate during the winter time period in this
region is more perplexing. It is unlikely that
emissions are the cause, since CMAQ incorporates
the continuous emissions monitoring (CEM) data
into the model runs. These data account for the
majority of sulfur dioxide emitted into the atmo-
sphere. It is more likely that the cause lies within the
aqueous chemical mechanisms used in the model,
and with the model simulation of precipitation. An
examination of these causes is beyond the scope of
this work. The papers by Dennis (1991) and Dennis
et al. (1993) should be consulted. To investigate the
winter underestimation problem further, one strat-
egy is to use a different year for another retro-
spective study. In 2002, for example, more STN
monitors were available; additional observational
data would tend to improve the statistical estimates
as well.

The Bayesian method utilized in this work has
two main advantages: (1) its use of the sparse
observational data to estimate sulfate levels over the
entire region and (2) its ability to account for the
differences between point-referenced and grid cell
averages. By using the available monitoring data to
estimate the parameters governing the covariance
structure, the microscale error, and the true sulfate
levels, we are able to make statistically justifiable
estimates of the sulfate level for both unobserved
sites and for CMAQ grid cell averages. In addition
to making sulfate estimates, Bayesian analysis
enables us to obtain information about the posterior
distributions for each of the parameters, allowing us
to better quantify the uncertainty associated with
those estimates and to identify areas in which
differences between estimates based on monitoring
data and CMAQ output are significantly different.

Another advantage of our statistical model is its
flexibility. For instance, our situation allowed use of
a simple isotropic and stationary covariance model
(the exponential). In other situations, in which this
assumption may not be appropriate, we could
substitute other, less simple covariance models,
which allow for anisotropy or nonstationarity.

Compared to classical kriging, our method
is much more computationally intense. In the
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traditional approach, the parameters of the covar-
iance structure are estimated at the beginning of
the analysis (typically through a variogram), and
treated as if known for the remainder of the
analysis. Using MCMC, the Bayesian approach
samples these parameters at the same time as the
sulfate values are estimated. This requires multiple
calculations of the covariance matrix S, as y1 and
y2 are repeatedly sampled. When there is a large
amount of monitoring data or a large number
of grid cells at which to make predictions, the
calculations involved can progress slowly, owing
largely to the need to invert the covariance matrix
S, or its partitions. (See Eqs. (6) and (8).) Together
with the stationarity assumption (as mentioned
above), the computational demands limit the size
of the region over which CMAQ can be evaluated
using this method.
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