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ABSTRACT 10 

Because all models are a simplification of the phenomenon they aim to represent, it is 11 

often more useful to estimate the probability of an event rather than a single “best” model 12 

result.  Previous air quality ensemble approaches have used computationally expensive 13 

simulations of separately developed modeling systems.  We present an efficient method 14 

to generate ensembles with hundreds of members based on several structural 15 

configurations of a single air quality modeling system.  We use the Decoupled Direct 16 

Method in 3D (DDM-3D) to directly calculate how ozone concentrations change as a 17 

result of changes in input parameters.  The modeled probability estimate is compared to 18 

observations and is shown to have a high level of skill and improved resolution and 19 

sharpness.  This approach can help resolve the practical limits of incorporating 20 

uncertainty estimation into deterministic air quality management modeling applications. 21 

 22 
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1. Introduction 23 

Atmospheric chemical and physical processes are complex.  Air quality models offer a 24 

simplified representation of the fate and transport of air pollutants that can be used to 25 

manage and gain insight into air quality problems.  Such models rely on parameterization 26 

in order to make the mathematical solutions tractable and the results intelligible.  Despite 27 

these simplifications, air quality models remain computationally intensive.  Continental-28 

scale spatial domains are necessary in order to capture long-range transport of ozone.  On 29 

such a scale, sources of air pollution range from organic gases from natural forests to 30 

thousands of automobile tailpipes trapped in suburban congestion.   Direct measurement 31 

of all of these sources is impossibly expensive, so most applications rely on relatively 32 

few observations and many extrapolations.     33 

Because of the necessary parameterizations and extensive data requirements, it is not 34 

possible to eliminate uncertainty in air quality modeling.  However, air quality modeling 35 

is still a critical component of air quality management decision support tools.  When 36 

weighing the societal benefits of different air quality management options, policy-makers 37 

need quantitative information about the relative risks and likelihood of success to guide 38 

their decisions.  Developing an air quality modeling approach that can estimate both the 39 

probability of an event, as well as a single “best-estimate”, would advance the current air 40 

quality tools available for these management decisions.   41 

Many have shown in air quality forecasting applications that an ensemble of 42 

deterministic models can be used to estimate a probabilistic range [1, 2].  Previous work 43 

has explored structural uncertainty related to the form of the model [3-6], parametric 44 

uncertainty related to the inputs to the model [7] or both [8-11]. 45 
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The challenge with these approaches is that air quality models require significant input 46 

data and computational resources to complete a single simulation.  Some of the more 47 

successful ensemble results have been generated using a collection of modeling systems 48 

developed by independent institutions [3-5].  Developing, maintaining, and meeting the 49 

input data requirements for multiple modeling systems is time consuming, expensive, and 50 

redundant.  Is it possible to achieve similar success with an ensemble of multiple 51 

configurations of a single air quality model? 52 

Additionally, traditional ensemble modeling efforts still do not fully address the range 53 

of possible uncertainties involving emissions, which is one of the largest parametric 54 

uncertainties.  Practical constraints have limited the degree to which emission 55 

uncertainties, or other parametric uncertainties, can be addressed.  For example, the 56 

emissions data for a one month of simulation of the Eastern United States domain 57 

typically has 26 species, 720 hourly time steps, and a horizontal grid of 205 by 199 cells 58 

with 9 vertical layers, yielding on the order of 109 input values.  These models are 59 

computationally intensive, so repeated sampling of the uncertain input space is costly.  In 60 

theory, to consider uncertainty in all of the inputs, ensemble populations need to be large.  61 

Improved sampling methods can reduce the number of simulations [12, 13], but for many 62 

air quality practitioners, such additional computational expenses are not feasible.  Is it 63 

possible to more efficiently create an ensemble of members that reflect the uncertainty in 64 

the input data? 65 

In the approach presented here, our goal is to develop an engineering approach that can 66 

accurately and efficiently estimate the probability of exceeding an ozone concentration 67 

threshold.  We use several configurations of a single air quality model and the Decoupled 68 
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Direct Method in 3-D (numerous references available in Cohan et al. [14]) to 69 

simultaneously calculate the impact of uncertainty in the model form and input values.  70 

Finally, we apply methods from the air quality forecasting community and observed 71 

ozone concentrations to evaluate the quality ensemble for use as air quality management 72 

and decision making tools.     73 

2. Methods 74 

Our method for efficiently developing an ensemble of air quality simulations consists 75 

of seven steps shown in Figure 1. The models, relevant datasets, and each of the steps are 76 

described in detail below.   77 

2.1 Air Quality Model and Inputs Description 78 

We employ the Community Multiscale Air Quality (CMAQ) model to simulate the 79 

chemical concentrations and deposition over a continental-scale region using an Eulerian 80 

grid structure [15].  The inputs include chemical emissions and a representation of the 81 

atmosphere from a numerical weather simulation model.  Important processes are 82 

dispersion, gas-phase chemistry, aerosol thermodynamics and mass-transfer, and 83 

deposition.  The horizontal resolution is 12 x 12 km and there are 14 vertical layers from 84 

the surface to 100 hPa.  Meteorological inputs are from the PSU/NCAR 5th generation 85 

mesoscale model, also known as MM5 [16]. We simulate the time period from June 24, 86 

2002 to July 28, 2002.  The first seven days are excluded from the analysis to eliminate 87 

sensitivity to initial conditions.  The spatial domain includes most of the Eastern United 88 

States (Figure S2 in Supplemental Information).  Emissions are generated using the 89 

SMOKE emissions processing system (http://www.smoke-90 

model.org/version2.3.2/html/ch02s16.html).  Year 2002 specific emissions data for motor 91 
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vehicles are from MOBILE 6 (http://www.epa.gov/otaq/m6.htm); power plant emissions 92 

are from Continuous Emission Monitors (http://www.epa.gov/camddataandmaps/).  93 

Biogenic volatile organic carbon and NOx emissions are simulated using BEIS v.3.13 94 

[17] and are derived using the same meteorological fields as the air quality simulations.  95 

All other emission sources are from the 2001 National Emission Inventory 96 

(http://www.epa.gov/ttn/chief/net/critsummary.html). 97 

The Higher-Order Decoupled Direct Method in three dimensions [14, 18] is 98 

implemented in CMAQ version 4.5 (CMAQ-DDM-3D [19]) for CB-IV and SAPRC99 99 

chemical mechanisms.  Our study is focused on the Atlanta and Birmingham 100 

metropolitan areas; therefore, for the nested CMAQ-DDM-3D simulations, we use a sub-101 

domain over the Southeastern United States (map in Figure 2).  This sub-domain includes 102 

a region-wide episode of high ozone during the first two weeks and a period of variable 103 

clouds and precipitation that cause low ozone concentrations during the third and fourth 104 

week.  The emission inputs to CMAQ-DDM-3D are as described above; the 105 

meteorological inputs, boundary conditions and initial conditions are from the structural 106 

uncertainty simulations, described in Section 2.2. 107 

Our analysis focuses on the hourly-average ozone concentrations reported at Air 108 

Quality System (AQS) monitoring stations (http://www.epa.gov/air/data/aqsdb.html) in 109 

the Birmingham and Atlanta metropolitan areas.  The location of these 38 monitors and 110 

the location of the 97 monitors used to estimate the uncertainty in the boundary 111 

conditions are shown in Section S1 in the Supplemental Information. 112 

2.2 Structural Uncertainty 113 
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Structural uncertainty refers to a lack of knowledge about the fundamental mechanisms 114 

underlying the environmental process.  This kind of uncertainty can be addressed by an 115 

ensemble that includes multiple representations of a single process.  To build our six 116 

structural uncertainty cases, we develop three different configurations of the 117 

meteorological model and two different gas-phase chemical mechanisms.  After an 118 

analysis of previous meteorological model configurations and sensitivity tests, we 119 

determined that the choice of land surface model (LSM) and the planetary boundary layer 120 

model (PBLM) are among the meteorological factors that have the largest impact on the 121 

air quality simulation [20, 21].  These processes control the mixing depth, mixing 122 

intensity, and temporal evolution of the surface mixed layer.  The three configurations are 123 

the Pleim-Xiu (P-X) LSM with the Asymmetric Convective Model (ACM) PBLM, the 124 

Noah LSM with Medium Range Forecast (MRF) PBLM, and Noah LSM with Mellor-125 

Yamada-Janjic (M-Y-J) PBLM.  Each meteorological simulation is constrained using 126 

analysis nudging that employs the three hourly National Centers for Environmental 127 

Prediction (NCEP) Eta Data Assimilation System (EDAS) analysis.  This reduces 128 

simulation errors but restricts the variability between the three cases.  We also select two 129 

different gas-phase chemical mechanisms, Carbon Bond IV (CB-IV) and SAPRC99.  In 130 

the CMAQ implementation, these mechanisms have similar representation of the 131 

inorganic reactions; however, the grouping and reactivity of the organic gases differ 132 

significantly.  The supplemental information contains the details of the model 133 

configurations, relevant references, and spatial maps of ozone anomalies. 134 

2.3 Parametric Uncertainty 135 
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 Parametric uncertainty refers to uncertainty in the inputs and parameter values.  To 136 

address this type of uncertainty, CMAQ-DDM-3D is used to estimate a reduced form 137 

model of ozone concentration.  While there are many sources of uncertainty, we limit this 138 

study to NOx emissions (ENOx), VOC emissions (EVOC), and ozone boundary 139 

conditions (BO3).  Previous work has shown these to be among the inputs that have the 140 

most significant impact on ozone concentration [22, 23].  Our calculations are with 141 

respect to temporally-invariant, domain-wide changes in these inputs.  We select a range 142 

of scaling factors from 0.4-1.2 for uncertainty in NOx emissions and a range of 0.5-1.5 143 

for uncertainty in VOC emissions.  Because these scaling factors represent domain-wide 144 

bias in the emission inventory over the entire simulation period, we selected from the 145 

lower range of emission uncertainty estimates for a particular source or location as 146 

estimated in [24].  Based on a previous study that found that the urban NOx emissions are 147 

over estimated for this domain, NOx emission uncertainty is not centered at zero [25].  148 

For ozone boundary conditions we select a range of 0.62-1.12, based on the distribution 149 

of errors for 97 ozone monitoring sites near the border of our sub-domain, as described in 150 

the Supplemental Information. 151 

To estimate the range of ozone concentrations that result from these uncertainties, we 152 

use CMAQ-DDM-3D to directly calculate the sensitivity of ozone concentration to a 153 

change in the input values.  Following the approach and notation of Cohan et al [14], we 154 

first define the semi-normalized first-order sensitivity S(1) and second-order sensitivity 155 

S(2) as 156 
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where εj is a constant scaling factor applied to the CMAQ inputs, and the subscript j and k 159 

refer to one of ENOx, EVOC, or BO3. The ozone concentration matrix, C, and sensitivity 160 

matrices, S, are calculated across the spatial domain, x, and for each hour of the 161 

simulation, t.  We use a Taylor Series expansion to estimate the change in ozone 162 

concentration due to simultaneous changes in multiple parameters.  Equation 3 describes 163 

the reduced form model, where m refers to BO3, j refers to ENOx, and k refers to EVOC: 164 
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Terms higher than second-order are neglected, which is sufficient to reproduce the brute-166 

force simulated ozone concentration to within a few percent [14].  We found that the 167 

cross sensitivities of emissions to boundary conditions and second-order boundary 168 

condition sensitivities are small, so they are excluded from this analysis.   169 

The first- and second-order sensitivities are calculated using CMAQ-DDM-3D for 170 

ENOx, EVOC, and BO3 for each time and grid cell and for each of the six structural 171 

uncertainty cases over the SE US sub-domain.  We use the reduced form model described 172 

by Equation 3 to calculate the ozone concentration at each hour and grid cell after the 173 

emissions inputs and the boundary conditions from the base model have each been 174 

increased or decreased by a constant factor. 175 

2.4 Monte Carlo Methods 176 
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A single ensemble member consists of the 8-hour maximum ozone for each location at 177 

each day, given a level of NOx emissions, VOC emissions, ozone boundary conditions, 178 

and a specific structural uncertainty case.  First, we randomly select one of the six 179 

structural uncertainty cases.  The NOx emission, VOC emission, and ozone boundary 180 

condition scaling factor are sampled from a uniform distribution that spans the range of 181 

uncertainty described in Section 2.3.  Using the sensitivities relevant to that structural 182 

uncertainty case, we calculate the ozone concentration at each monitoring location for 183 

each hour of the simulation.  We then repeat this process 40,000 times to build a 184 

population of results, and find that a 1,000-member ensemble achieves sufficient 185 

convergence. 186 

2.5 Evaluating the Ensemble Quality 187 

  To test the properties of this ensemble technique, we devise three test cases:   188 

Structural Ensemble: A six-member ensemble that includes each of the 189 

structural uncertainty cases and no parametric uncertainty 190 

Range Ensemble: A 54-member ensemble that includes the six structural cases 191 

each with eight combinations of the maximum and minimum range for each of the 192 

parametric uncertainty parameters ( 48623 =× members) plus an additional six 193 

structural case simulations using the central value of each parametric uncertainty 194 

distribution: BO3 = 0.88, ENOx = 0.8, EVOC = 1.0. 195 

Full Ensemble: A 1,000-member ensemble that includes both structural and 196 

parametric uncertainty, generated using Monte Carlo methods described in 197 

Section 2.4 198 
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For n different parametric uncertainty ranges, the range ensemble requires 2n + 1 times 199 

more computation time than the structural case. For the full ensemble with α parameters 200 

with negligible second derivatives and β parameters with non-negligible second 201 

derivatives (α + β = n), the number of sensitivity calculations is  202 

∑
−

=

++
1

1

2
β

βα
i

i
 (4) 203 

In the full ensemble where α = 1 and β = 2, 6 sensitivity calculations (the S terms in 204 

Equation 3) are required. These calculations require 6.8 times more computational time 205 

than a single CMAQ run.  The full ensemble is 1 – (6.8 / 9) = 24% more efficient than the 206 

range case; for an ensemble study where n = β = 10 the full ensemble is an order of 207 

magnitude more efficient. 208 

For each of the ensemble members in each case for each monitoring location and day, 209 

we calculate the observed and simulated mean concentration from 9 am to 5 pm local 210 

time.  These values are used for all statistical calculations described here.  For each 211 

ensemble case at each location and day, we calculate the probability of exceeding the 212 

ozone concentration threshold of 68 ppb, which is equal to one standard deviation (14 213 

ppb) greater than the observed mean ozone concentration (54 ppb).  As a reference, we 214 

calculate the climatological frequency (0.17) as the mean observed frequency of 215 

exceeding this threshold over the 38 locations and 28 days in our modeling domain.  For 216 

a given location and time, the ensemble estimated probability of exceeding the threshold 217 

is the number of ensemble members greater than 68 ppb divided by the total number of 218 

members.  This assumes that each ensemble member has equal likelihood.    219 
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The probability that a particular location will exceed a threshold ozone concentration 220 

on a specific day can not be directly measured – we can only measure the outcome.  To 221 

evaluate the model estimated probability, it is useful to define three properties of 222 

ensembles frequently used by the meteorological forecasting community: reliability, 223 

resolution, and sharpness [2].  Reliability refers to the skill of the ensemble-estimated 224 

probability. To calculate reliability, we aggregate together all of the locations and times 225 

with a similar estimated probability of exceeding a threshold and compare with the 226 

observed frequency.  That is, for all locations and times where the model estimated 227 

probability of exceeding 68 ppb is 20%, is the observed frequency of exceeding 68 ppb at 228 

those times and locations also 20%?  Resolution is a measure of differentiation – how 229 

well does the ensemble sort observed events into groups that are different from each 230 

other?  Lastly, sharpness is the extent to which the ensemble deviates from the 231 

climatological average.  Sharpness is an inherent feature that is not dependent on the 232 

observed values.  We calculate sharpness as the absolute mean difference between the 233 

ensemble-estimated probability of exceeding 68 ppb and the climatological average.  In a 234 

trivial example, if the ensemble estimated probability always equaled the domain average 235 

climatological frequency, then the ensemble estimate would be very reliable, but would 236 

not be useful at capturing the day to day and location to location changes.  Such an 237 

ensemble estimated probability would have poor resolution and poor sharpness.  A key 238 

challenge is to develop a probabilistic system that expresses all three properties.   239 

When calculated with respect to the climatological probabilities, the Brier Skill Score 240 

(BSS) is often used as a scalar representation of the skill of the ensemble.  It is expressed 241 

as a percentage improvement over climatological probability.  The BSS can be calculated 242 
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as the difference between the resolution score and the reliability score (here a low 243 

reliability score implies high reliability).  The derivation of this decomposition is 244 

described by Wilks [2].  These metrics are used to assess the quality of the three 245 

ensemble test cases (structural, range, and full).   246 

Another test of the quality of the uncertainty estimates is the spread-skill relationship, 247 

defined as the correlation of the spread of the ensemble with the error in the mean 248 

estimate.  When the uncertainty is large, the ensemble members should diverge and the 249 

spread should increase.  We calculate the spread-skill relationship as the correlation 250 

between the standard deviation of the ensemble members and the mean absolute error in 251 

the ozone concentration. 252 

3. Results 253 

3.1 Ozone Concentrations and Sensitivity 254 

The differences between the structural uncertainty simulations are small.  The average 255 

ozone concentration anomaly, defined as the difference from the mean of all six structural 256 

cases, is shown in the Supplemental Information Figure S2.  The largest difference is due 257 

to the chemical mechanism:  SAPRC99 has higher ozone concentrations compared to 258 

CB-IV.  The different meteorological options impact the spatial distribution of the ozone. 259 

There are also minor structural differences in the sensitivity results, shown in Figure 2.  260 

The highest NOx sensitivity gradients are in and around the urban core of large cities, 261 

such as Atlanta.  The urban center has considerably lower NOx emission sensitivity, but 262 

higher VOC sensitivity.  This feature is more exaggerated in the SAPRC99 chemical 263 

mechanism simulations.  The absolute value of the VOC emission sensitivities (first-264 

order, second-order, and cross-sensitivities) are largest in the MRF configurations.  The 265 
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diversity in the results is due to structural differences in the simulation of key physical 266 

and chemical processes.  However, compared to the total uncertainty and un-captured 267 

variability, this diversity is small. 268 

Each of the three ensemble test cases (structural, range, and full), have differing 269 

properties.  For illustration, the observed concentrations and ensemble values for a single 270 

ozone monitoring site near Atlanta, Georgia is shown in Figure 3.  The structural 271 

ensemble (blue open circles) is biased high; over all of the monitoring locations, only 272 

24% of the observations fall within the bounds of the highest and lowest ensemble 273 

members.  The range ensemble (orange) has the largest spread, with 64% of observed 274 

values falling within the 25th and 75th inter-quartile range and 96% are between the 275 

highest and lowest members.  The full ensemble (grey box-whisker) has less spread than 276 

the range case but captures 42% of all observed values within the 25th and 75th inter-277 

quartile range and 94% are between the highest and lowest members. 278 

3.2 Ensemble Evaluation Metrics: Resolution, Reliability, & Sharpness 279 

     The reliability diagram (Figure 4) is used to assess the skill of the ensemble 280 

estimated probability: for all times and locations when the ensemble estimated 281 

probability of exceeding the threshold is p (the x-axis), is the observed frequency of 282 

exceeding the threshold at those times and locations also p (the y-axis)?  The x-axis of the 283 

diagram is ensemble estimated probability of exceeding the threshold, grouped into seven 284 

ascending bins.  For each of the times and locations grouped in these bins, the observed 285 

frequency of exceeding the threshold is plotted on the y-axis.  The grey shaded area 286 

represents ensemble estimates that have overall skill greater than a climatological 287 

estimate, denoted by the dotted lines as the observed probability of exceeding the 288 
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threshold (0.17).  The structural ensemble (blue) overestimates the probability of 289 

exceeding the threshold.   The range ensemble (orange) and full ensemble (black) have 290 

similarly improved performance.  The range ensemble performs better for higher 291 

probabilities, while the full ensemble performs better for lower probabilities.  Further 292 

analysis using the Rank Histogram is available in Section S3 of the Supplemental 293 

Information. 294 

The BSS and its relative decomposition into the resolution and reliability components 295 

underscore the key differences between the full and range cases.  As shown in Table 1, 296 

both cases have relatively similar BSS, but the decomposition is quite different.  The full 297 

case has lower reliability and higher bias, due to asymmetry in the relative impact of 298 

changes in BO3, ENOx, and EVOC.  However, the full case has higher resolution and is 299 

also sharper than the range case.  With more individual members that further resolve the 300 

uncertainty space, the full ensemble can more effectively differentiate between high and 301 

low ozone events (Supplemental Information Figure S4).  Finally, the full ensemble has 302 

the highest spread-skill correlation at 0.45, followed by the structural and range cases 303 

with 0.39 and 0.37, respectively.   304 

4. Discussion 305 

We have demonstrated that a single air quality modeling system can combine aspects 306 

of structural and parametric uncertainty to provide reliable estimates of the probability of 307 

exceeding an ozone threshold concentration.  By directly calculating the sensitivities, it is 308 

possible to generate large ensembles that have similar skill but greater resolution and 309 

sharpness compared to simply simulating the bounds of the uncertainty range.  Future 310 

work should focus on improving the calibration and reliability, potentially by pairing this 311 
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method with an ensemble weighting scheme (such as Raftery et al. [26]).  Future work 312 

should also explore additional sensitivities such as chemical rate parameters and spatially 313 

variable emissions sensitivities.   314 
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Figure 1. Flowchart to generate ensemble including structural and parametric uncertainty 322 

using a direct calculation of higher-order sensitivities 323 

 324 

 325 

 326 
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Figure 2.  The first-order (Sj
(1)), second-order (Sj

(2)), and cross-sensitivity (Sjk
(2)) of the 327 

ozone concentration to ozone boundary concentrations (BO3), NOx emissions (ENOx), 328 

and VOC emissions (EVOC) for each of the six structural uncertainty cases, averaged 329 

over the entire simulation period. 330 

 331 

 332 
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Figure 3. For a location near sub-urban Atlanta, observed (red) and ensemble ozone 333 

concentrations as estimated by including only structural uncertainty (blue), both 334 

structural and the bounds of the parametric uncertainty (orange: box = 25th and 75th 335 

percentile, crosses = range), and 1,000 member ensemble composed of sampling both the 336 

structural cases and from the range of uncertain input parameters (grey:  box = 25th and 337 

75th percentile, dashed line = range, open circles = outliers). 338 

 339 

 340 
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Figure 4. The Reliability Diagram 341 

 342 

 343 

 344 
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Table 1. Ensemble performance metrics 345 

Case 
Structural 
Ensemble 

Range 
Ensemble 

Full Ensemble 

Mean 
Correlation 

0.73 0.70 0.71 

Mean Error 
(ppb) 

11 1.3 3.2 

Mean Standard 
Deviation (ppb) 

4.2 11 7.1 

Spread-skill 
Correlation 

0.39 0.37 0.45 

Brier Skill Score -0.15 0.36 0.35 

Reliability 0.47 0.019 0.14 

Resolution 0.32 0.38 0.49 

Sharpness 0.36 0.19 0.24 

 346 

 347 
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