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Abstract 

This work provides a comprehensive view of the process of evaluating regional-scale (~200-

2000 km) three-dimensional numerical photochemical air quality modeling systems, including 

meteorological, emissions, and air quality components.  We have examined approaches to the 

evaluation of regional air quality modeling systems, as they are currently used in a variety of 

applications.  From this examination, we conclude that such models cannot be validated in the 

formal sense, but rather can be shown to have predictive and diagnostic value.  A framework for 

model evaluation is introduced here to provide a context for the evaluation process.  The 

objectives of the model evaluation process include determining the suitability of a modeling 

system for a specific application, distinguishing the performance between different models 

through confidence-testing of model results, and guiding further model development.  The 

evaluation framework presents some methods for operational, diagnostic, dynamic, and 

probabilistic model evaluation.  Operational evaluation techniques include statistical and 

graphical analyses aimed at determining whether the estimated values of the modeled variables 

are comparable to measurements in an overall sense.  Diagnostic evaluation focuses on process-

oriented analyses that determine whether the individual processes and components of the model 

system are working correctly, both independently and in combination.  Dynamic evaluation 

assesses the ability of the air quality model to predict changes in air quality given changes in 

source emissions or meteorology, the principal forces that drive the air quality model.  

Probabilistic evaluation attempts to assess the level of confidence in the model predictions 

through techniques such as ensemble model simulations.  Current and emerging needs for 

observational data from the model evaluation perspective are also discussed, as well as the 
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challenges in using point measurement data in comparisons with volume-averaged model output 

from three-dimensional numerical models. 

 

Keywords:  air quality model, photochemical model, model evaluation, diagnostic evaluation 
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1. Introduction 

 

 Regional-scale (spatial scale on the order of ~200-2000 km) three-dimensional numerical 

photochemical air quality simulation models (AQMs) are being used for air quality management 

decisions and for short-term forecasting of air quality.  These models play a key role in the 

development and implementation of air pollution control rules and regulations in the U.S. and 

elsewhere (Bachmann, 2007).  They are used to inform the selection of particular source 

emissions controls since AQMs can predict the efficacy of different control strategies in reducing 

pollutant concentrations to the level of the relevant air quality standards.  These models are also 

used for tracking and evaluating air quality management programs through accountability 

studies, such as those recently completed on the large NOx emissions reductions from the power 

generation sector in the eastern U.S. (Frost et al., 2006; Gégo et al., 2008, 2007;Gilliland et al., 

2008).  To build confidence in the model estimates, a model must be critically evaluated to 

assess whether it is properly simulating the spatial and temporal features imbedded in air quality 

observations on the scales resolved by the model.  The evaluation also assesses whether the 

physical and chemical processes are simulated correctly in the model, leading to proper model 

response to changes in meteorology and emissions, the principal classes of input data required by 

AQMs.  To this end, a new perspective is needed to establish the best methods for assessing the 

performance of regional-scale AQMs.  

 

 Over the last several decades, there were several workshops and position statements 

discussing the evaluation of AQMs and the importance of better characterizing model 

uncertainties (e.g., Hanna and Gifford, 1971; Fox, 1981, 1984; Demerjian, 1985; Dabberdt et al., 
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2004; NRC, 2007).  Suggestions for model evaluation methods have been provided to account 

for the fact that models do not predict stochastic variations seen in observations (Venkatram, 

1979, 1988; Weil et al., 1992; ASTM, 2005; Dabberdt et al., 2004).  For the most part however, 

previous workshops and position statements have addressed short-range to mesoscale range 

AQMs rather than regional-scale three-dimensional numerical photochemical modeling systems.  

While our scientific understanding, model developments, and computational capabilities have 

grown tremendously over the last few decades, the model performance methodologies set forth 

in the 1980’s and 1990’s still represent the most comprehensive effort to date to provide 

guidance for AQM evaluation.  However, while many of the earlier methods can be extended 

from local and mesoscale AQMs to regional AQMs, there are limitations in the extension of 

some of the evaluation procedures and metrics.  Obviously, the temporal and spatial scales of the 

modeled phenomena are significantly different between these model types, as are the density and 

characteristics of the observations available for model evaluation. 

 

 During August 7-8, 2007 the U.S. Environmental Protection Agency (EPA) and the 

American Meteorological Society (AMS) convened an invited group of nearly 100 experts to a 

Workshop to (a) discuss and determine the most appropriate current methods in use in regional 

AQM evaluation exercises, (b) discuss new approaches to advance air quality and related model 

evaluation methods and procedures, and (c) develop a set of recommendations for model 

evaluation methods, procedures, and metrics for different components of the regional AQMs for 

further testing and use by the air quality modeling community.  Workshop sessions focused on 

topics including: evaluating the performance of meteorological processes within regional-scale 

AQM systems, evaluating the performance of source and sink processes within AQM systems, 
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evaluating the performance of chemistry and aerosol processes within AQM systems, and 

methods and processes for evaluating the performance of AQM system components.  Stemming 

from the discussions at and following this Workshop, this paper discusses current and proposed 

procedures most relevant to the evaluation of regional-scale numerical photochemical AQMs. 

 

2. Model Evaluation Framework 

 

  We begin by agreeing with Oreskes et al. (1994) that, as for all environmental model 

systems, AQMs cannot be validated, in the sense of being proved “true”, since “truth” (i.e., all 

possible conditions) is in principle inaccessible to us.   We do assert, however, that such 

modeling systems do have both predictive and diagnostic (process-oriented) value, and that this 

value must be demonstrated through model evaluation exercises.  Russell and Dennis (2000), in a 

critical review of regional-scale photochemical air quality modeling, define model evaluation as: 

 “ Evaluation: assessment of the adequacy and correctness of the science represented in 

the model through comparison against empirical data, such as laboratory tests, in situ 

tests and the analysis of natural analogs.  Evaluation is a process of model confirmation 

relative to current understanding.  Multiple, confirmatory evaluations can never 

demonstrate the veracity of a model: confirmation is a matter of degree.  However, an 

evaluation can raise doubts about the science in a model.” 

The approach suggests that all models are wrong in some sense, and right in some other sense.  

Our responsibility is to discover in which way(s) our models are “right”, and then only use the 

model in those way(s).  It then becomes clear that utility of a model cannot be established on an 

all-or-nothing basis.  If this were so, establishing complete utility would be tantamount to 
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establishing the “truth” of the model or, conversely, showing that a model has no utility is 

effectively invalidation.  These extremes are logically and philosophically unattainable.  It is 

however, possible to establish that the model has some utility, but it is clear that the utility must 

be a continuously variable measure.   

 

 Three-dimensional time-dependent numerical models of the atmosphere exist for processes 

and phenomena at a wide range of spatial and temporal scales, and are used in widely differing 

applications (from research to policy-making).  For example, Computational Fluid Dynamics 

(CFD) models are applied to domains of a few hundred meters and grid sizes of 1 to 5 m, while 

regional photochemical AQMs are applied to domains of 200 to 2000 km with grid cell sizes 

ranging from 2 to 40 km.  This paper addresses the issues relevant to the regional scale.  Since 

most processes in the atmosphere are scale-dependent, it would be very surprising if criteria for 

evaluating atmospheric models were not also scale-dependent.  It seems inevitable therefore that 

the utility scale will be relative to the temporal and spatial scales at which the model is applied.  

Both Hogrefe et al. (2001) and Beven (2002) provide strong arguments that this should be the 

case. 

 

 Furthermore, keeping in mind the two major uses of a regional AQM, it seems reasonable 

that evaluation requirements for diagnostic uses of an AQM system will be different from those 

of a forecast model.  This should be so since the diagnostic application of models requires that 

the interrelationships between processes and their attendant parameters in the model match those 

discerned from observations.  By contrast, a forecast model will be judged to have utility if the 

temporal evolution of chosen variables (the forecast variables) corresponds to those that actually 
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occur.  While in both cases we want the model to accurately predict the answers for the right 

reasons, the evaluation metrics employed and their interpretation depend upon the application 

endpoints.  We argue therefore that model evaluation criteria should be dependent on the context 

in which they are to be applied.  

 

 What then are the overall primary objectives of AQM evaluation?  There seem to be three 

such objectives: 

 

(1) Determining the suitability of a model system for a specific application and configuration. 

The main goal of a model evaluation exercise (including regional AQMs) is to demonstrate that 

the model is “performing adequately” when compared with observations, for the purposes for 

which the model is applied (Britter et al., 1995).  The last phrase in the previous sentence is 

important because there is always a reason why we are running the model, whether it is run in 

operational mode, forecast mode, or research mode.  The reason should be precisely stated as 

well as the model outputs that are being evaluated (e.g., the daily maximum 8-hr average ozone 

concentration at a routine monitoring site anywhere on the given domain for a particular time 

period).  In the case of research activities associated with model improvements, the model 

outputs may be very specific but need to be precisely stated in any event (e.g. the daily average 

sulfate concentration during the Texas 2000 experiment over the entire given model domain in 

the layer from 100 to 1000 m).  In the case of NOAA-EPA’s ozone forecasting guidance, the 

output of interest may be the number of routine observing sites in the eastern U.S. where the 8-hr 

ozone standard is exceeded on a given day.   
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 Two types of model application are for air quality management and for short-term air quality 

forecasting.  In the former, we are mainly interested in the model’s ability to correctly estimate 

the air quality response to potential source-term emissions reductions.  In this application, 

diagnostic assessments of the model’s individual and interactive processes are desired since we 

are focused on the model response to a change in one of the driving parameters.  Evaluation of 

the outcome state of the model is a necessary, but not sufficient, step in this evaluation.  The 

emphasis in air quality forecasting, by contrast, is chiefly on the outcome state of the model, a 

prediction of next-day (or short-term) air quality.  Criteria for acceptance of model results in a 

particular application may be established a priori, or may be fluid depending upon the needs and 

requirements of the application. 

 

(2) Distinguishing the performance among different models or different versions of the same 

model. 

We are sometimes in a position of determining whether the performance of one model is 

significantly different from that of another model for an intended application when multiple 

models have been employed.  Even more often, we are faced with the question of whether to 

move an application to the latest version of a model when we have already been using the 

previous version of the model for other applications.  Evaluation procedures must to be able to 

distinguish the performance in outcome states among models as compared to observations, with 

specified levels of significance.  Some of the existing AQM evaluation methods (e.g., Chang and 

Hanna, 2004; ASTM, 2005; Irwin et al., 2008) include the ability to determine whether the 

performance measures of two models are significantly different from each other, but there is 

uncertainty about the degrees of freedom to be chosen.  Evaluation procedures must also be 
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available to distinguish among models with respect to their process-level scientific credibility, 

even when outcome state performance is comparable. 

 

(3) Guiding model improvement.  Ultimately, model development and refinement are dependent 

upon model evaluation to guide and inform the process.  Evaluation exercises shed light on the 

systematic biases and errors in model outcome states as well as indicating sensitivities and 

uncertainties in the atmospheric processes simulated within the model.  The results of these 

exercises should lead to new directions in model development and improvement, as well as 

sometimes pointing to the need for additional measurements for better diagnostics in evaluation 

exercises. 

 

 Given these philosophies and objectives of model evaluation, a conceptual framework is 

presented here to guide model evaluation exercises.  Figure 1 presents a model evaluation 

framework, which is based on the purpose and specific questions being asked as part of the 

evaluation.  As a first step in model evaluation, model predictions are compared to observed data 

and some statistical measures are computed to gauge model performance in an overall sense, 

which is referred to here as “operational evaluation.”  However, the ability of a model to 

predict the outcome state pollutant of interest does not address whether the predicted 

concentrations stem from correct or incorrect physical/chemical modelled processes, which 

should be addressed via “diagnostic evaluation”.  For secondary pollutant species that are not 

directly emitted, diagnostic evaluation methods are critical for insuring credibility of the model 

and for identifying potential model improvements.  Figure 1 also includes an evaluation 

approach referred to as “dynamic evaluation” that focuses on the model’s ability to predict 
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changes in air quality concentrations in response to changes in either source emissions or 

meteorological conditions.  This exercise requires historical case studies where known emission 

changes or meteorological changes occurred that could be confidently estimated.  Dynamic 

evaluation also requires that these changes have a discernable impact on air quality.  Operational, 

diagnostic, and dynamic evaluation approaches complement one another by not only 

characterizing how well the model captured the air quality levels at that time, but how well the 

model captures the role and contributions of individual inputs and processes and the ability of the 

AQM to respond properly to changes in these factors.  These three approaches in concert provide 

a comprehensive evaluation of model performance for specific model applications and support 

the priority directions for further model improvement. 

 

 A fourth aspect of model evaluation in Figure 1, referred to as “probabilistic evaluation”, 

attempts to capture the uncertainty or level of confidence in model results for air quality 

management or forecasting applications.  To better determine the significance of the model 

performance, it is necessary to know the uncertainty in the model predictions and in the 

observations.   Many methods exist to estimate the uncertainty (e.g., ensemble runs, direct 

calculation of variances in predicted concentrations, Monte Carlo runs, analytical error 

propagation methods for simple-model algorithms).  A classic example would be ensemble 

modeling being used for meteorological forecasting.  Currently in operational use in several 

national weather services globally, this technique makes use of multiple model runs of different 

models or the same model with different parameter or process choices.  Results from the multiple 

model runs allow the forecaster to describe local and regional forecasts in terms of probability of 

occurrence.  With computer efficiencies improving exponentially, methods such as ensemble 
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modeling that characterize a range of uncertainties in an AQM context, become increasingly 

realistic for decision-making or forecasting.  Probabilistic model evaluation has not been 

extensively used in regional three-dimensional photochemical AQM applications, although such 

methods have been used in plume dispersion modeling for many years (Lewellen et al., 1985).   

Hanna and Davis (2002) showed how the methods could be used to evaluate ozone predictions 

by a regional AQM.  Additional research and advancements are needed to develop innovative 

approaches that consider the confidence in AQM predictions for various applications (see Gégo 

et al., 2003). 

 

3. Evaluation Methods 

 

 In this section, we further describe the elements and approaches of the model evaluation 

framework, providing illustrative examples of their application to regional AQM systems.  

Typically, such systems incorporate models for meteorological characterization or forecasting, 

source emissions estimation, as well as the air quality (i.e., chemical-transport) model itself.  

Where applicable we show the evaluation of each of these components of the AQM system. 

 

Operational Evaluation.  Operational evaluations focus on the direct comparison of model 

outputs with analogous observations.  An operational evaluation makes use of routine 

observations of ambient pollutant concentrations, emissions, meteorology, and other relevant 

variables.  Fortunately, there has been a steady increase in the number of routine pollutant 

concentration and deposition monitoring stations in the U.S. and in the number of chemical 

constituents that are measured.  Emissions estimations have also been steadily improving 
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although there are still few direct continuous measurements of emissions, with the principal 

exception being Continuous Emissions Monitoring Systems (CEMS) on large U.S. electrical 

generating units (http://www.epa.gov/ttnnaaqs/ozone/areas/etscem.htm).  Routine meteorological 

observations have primarily been enhanced with improved surface meso-networks.  However, 

for all variables, there is still a dearth of routinely measured vertical profiles in the lower 

troposphere.  Remote sounders are improving, but few are in place as part of the routine network.  

Typical modeled variables used in operational model exercises for air quality include the 

meteorological state and derived variables: temperature, moisture (humidity), wind speed and 

direction, planetary boundary layer height, surface radiation, clouds and precipitation.  Air 

quality model variables include ozone (O3), carbon monoxide (CO), nitrogen oxides (NO, NOx), 

and fine particulate matter mass and species (PM2.5, SO4, NO3, NH3, OC, EC).  It is 

recommended that the evaluation of meteorological variables be coordinated with air quality to 

determine how errors in the meteorology model affect AQM performance (Seaman, 2000; Hanna 

and Yang, 2001).   

 

 Once the evaluation goals and model outputs of concern are precisely identified, the next task 

in the model evaluation is to “look at” the data (Tukey, 1977).  This should be done prior to 

applying statistical software.  For example, the time series of observed and predicted 

concentrations at a location could be plotted and studied.  Simulated concentration contours can 

be compared with observed patterns.  This allows the scientist to determine if there are any 

obvious biases or problems that the eye can see.  In this manner, outliers can quickly be seen.   
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        The next step is to clearly identify the quantitative performance measures that are to be 

considered in the evaluation and the criteria for deciding whether the model is performing 

adequately for that situation (Cullen and Frey, 1999).  It is usually desirable to calculate 

quantitative statistical performance measures that depend on the model type and the output 

characteristics, as well as the available observations.  These performance measures can be 

compared with those calculated for previous related evaluations, or the performance measures 

for two or more different models or different versions of the same model can be compared (Irwin 

et al., 2008).  There are three performance measures that are commonly used in AQM evaluation 

(and most other types of model evaluation) – the mean bias, the root mean square error, and the 

correlation.  There are various ways of defining these, using different normalizing factors, but 

the basic measures are similar (Weil et al., 1992, Hanna et al., 1993).  In any case, it is important 

to calculate the statistical confidence levels.  Standard statistical tests can be used to answer 

questions such as “Is the model mean bias significantly different from zero at the 95% 

confidence level?”, or “Is the correlation coefficient for one model significantly different from 

the correlation coefficient for another model?”  To use these tests, there are assumptions such as 

the hourly concentrations being independent, and these are not always satisfied.  Appendix A 

provides several standard statistical metrics commonly used in AQM evaluation. 

 

Limitations of Standard Metrics  The standard metrics included in Appendix A do not take into 

consideration that the three-dimensional regional AQM model predictions, iM , are volume- 

averaged concentrations representing ensemble mean conditions, whereas the observations, , 

are point measurements reflecting individual events.  This phenomenon is known as an 

incommensurability or change of support problem.  Because of the spatial averaging (smoothing) 

iO
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inherent in grid cell predictions, it is fundamentally impossible to use the model output to 

determine values that are precisely comparable to point observations.  One way to account for 

the effects of small-scale spatial variability is to use a spatial smoother such as the block-kriging 

technique (Cressie, 1993) on the observed data to produce data-based grid cell values.  The 

comparisons of model and data-based grid-cell values would then be conducted using the 

standard metrics discussed in Appendix A.  Graphical displays such as time series, frequency 

distributions, and concentration isopleths could also be used with modeled values and the data-

based grid cell values.  However, it should be noted that the smoothing technique is a model 

itself, and thus the comparison is tantamount to a comparison of the results of two different 

models, and not a direct comparison of model output and corresponding observations. 

 

 Many of the standard metrics assume that modeled and observed values conform to the same 

distribution (e.g., normal).  While the observations tend to be log-normal, the predictions from 

three-dimensional AQMs appear more normally distributed (averages are normally distributed 

according to the Central Limit Theorem.)  This issue of using the standard metrics in operational 

model evaluations for comparing data sets characterized by different distributions is one that is 

often overlooked. 

 

 It is important to conduct comparisons of the spatio-temporal patterns of the model 

predictions and the observations.  This can be done by simply determining the fractional overlap 

of spatial patterns or time series of predictions and observations (e.g., Chang and Hanna 2004).  

Some methods allow the evaluator to weigh underpredictions (false negatives) more than 

overpredictions (false positives) (Warner et al., 2004).  Or, in some cases, the evaluation could 
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extend to determining whether the scales of variability in the predicted and observed patterns are 

comparable, using, for instance, correlation and spectral analysis.  Differences between maps of 

model predictions and maps computed from data-based grid cell estimates yield a spatial 

difference field.  It is important to study the spatial pattern of these differences (Gégo et al., 

2007).  Investigation of spatial patterns can be done using statistical measures of spatial 

dependency, such as the variogram function (Cressie, 1993), and temporal dependency structure 

can be studied with methods such as spectral analysis.  For example, Rao et al. (1997) and 

Hogrefe et al. (2000) have decomposed the time series of O3 into spectral bands representing 

intra-day, diurnal, synoptic, seasonal, and longer-term fluctuations.  Figure 2 illustrates the 

comparison between these component spectra estimated from 15 years of observed and CMAQ 

model-predicted hourly ozone data.  The figure shows how the model’s fidelity is greatest in 

capturing the variability associated with diurnal and synoptic features in the time series of O3.  

There are apparent problems in the model’s simulation of the variability inherent in high-

frequency (hour-to-hour) variations, as well as a tendency for the model to underestimate the 

variability of the seasonal and longer-term O3 signal, possibly due to inaccuracies in the regional 

model’s boundary conditions and representation of the free tropospheric processes.  Empirical 

Orthogonal functions (EOFs) can also be used for analysis of spatial/temporal data (Jolliffe, 

2002).  This approach provides a decomposition of the spatial response surfaces in terms of 

“principal components” that explain the spatial structure at different scales.  For this second 

order assessment (based on the correlation structure), graphical displays can be used such as the 

spatial variogram and estimated temporal spectrum for both model output and data-based grid 

cells, and also for the difference field (differences maps between model and data-based grid 

cells). 
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Graphical Techniques  Some graphical techniques in operational model evaluation have been 

alluded to earlier in conjunction with standard statistical metrics.  Scatter plots of percentile 

values and time-series plots are useful for regional AQM analyses.  If possible, it is useful to 

aggregate the results across coherent space and/or time regions so as to represent distributional 

quantities, and not single point observations.  For instance, O3 concentration distributions over 

all monitoring sites in a region can be plotted as a daily time series over a month period for 

model results and observations.  The hourly O3 concentration values for a month (or a season) at 

a site (or averaged over sites within a subregion) can be used to plot the diurnal variation of 

modeled and observed averages, variances, bias, etc.  Time series of model bias and error 

distributions are also useful.  Pie charts or speciated bar graphs (Appel et al., 2008) are useful for 

comparing simulated and observed chemical constituents of size-segregated particulate matter 

(PM).  Morris et al. (2005) illustrate the use of performance goal plots (“soccer” plots) that 

summarize model performance by plotting performance goals and criteria for fractional bias 

versus fractional error, and concentration performance plots (“bugle” plots) that display 

fractional bias or error as a function of concentration.  Vautard et al. (2007) make use of the 

Taylor diagram (Taylor, 2001) which combines model error and correlation in a single point, and 

is particularly useful for comparing the performance of several models.  Examples of the soccer 

and Taylor plot graphical techniques are illustrated in Figure 3.  In Figure 3(b), the Taylor plot, 

each symbol in the plot represents a distinct model.  The plot shows, for each model, the standard 

deviation of simulated values (radius) and the time correlation between simulated and observed 

values (angle from horizontal).  The standard deviation of observations is shown as the point on 

the horizontal axis, and circles centered on this point represent points of equal simulation error 
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standard deviation.  As shown in the figure, error standard deviations are smallest for models 

with the highest correlations. 

   

 For regional models in particular, a basic comparison of the extent and magnitude of the 

modeled concentration field through a concentration isopleth or colored grid plot overlain with 

the observations or compared with a similarly analyzed field from the data-based grid cell values 

from kriging or other spatial analysis techniques, can often provide a strong initial indication of 

how well the model is predicting the spatial extent and magnitude of the species of interest.  This 

type of screening analysis is often the essential first step in putting into perspective the 

representativeness of the statistical measures and deciding on subsequent steps in the operational 

evaluation.  The spatial extent comparison can be made more objective by using pattern 

comparison techniques, such as the figure of merit (Stohl et al., 1998). 

 

 Before leaving the topic of operational evaluation, the issue of evaluation of source emissions 

inventories and emissions models should be acknowledged.  Emission models are part of 

regional AQM systems.  However, unlike the deterministic meteorology and AQMs whose 

results are based on time-dependent differential equations, emissions models are typically based 

on engineering and empirical approaches using surrogate or indirect measures of real emissions 

fluxes.  Generally, emissions model results are not directly verifiable since emission observations 

do not exist on the regional-scale.  (The sole exception to this general case is the CEMS, 

mentioned earlier, which measure primary pollutant emissions on the tall stacks of large 

electrical generating units.)  These data are used directly in emissions estimates for these point 

sources, and thus are assimilated into the AQM through the emissions inputs.  For other 
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emissions sectors, the primary assessment tool is quality assurance and control of the process, 

such as aggregating emissions estimates by state or by source sector and comparing to previous 

or independent emissions estimates.  Examining statistical distributions of emissions across a 

model domain can help identify outliers or questionable data for further examination.  Studying 

the spatial distribution of emissions surrogates (e.g., population, road networks) or the temporal 

allocation of emissions (e.g., seasonal and daily patterns) may also help spot obvious errors.  

While operational evaluation methods are applicable to only a few limited sets of emissions data 

(see Cullen and Frey, 1999) because of the difficulty of real-world emission measurements for 

AQMs, there are diagnostic methods that may provide insights into biases and errors in the 

emissions.  These techniques will be discussed as part of the next section. 

 

Diagnostic Evaluation.  While the above metrics and comparisons could be applied to any 

chemical trace constituent for which observations are available, the comparisons are traditionally 

focused on the air pollutant endpoint of interest (e.g., ozone, total and individual aerosol species 

that comprise PM2.5).  While these operational evaluations are important to establish model 

performance for the pollutants of concern, the comparisons do not identify whether the modeled 

concentrations are correct for the right physical/chemical reasons, what inputs or processes have 

a strong influence on model performance, and whether the model is capturing these factors well.  

Evaluation approaches that look into these types of questions in light of model evaluation are 

traditionally referred to as diagnostic evaluation methods and cover a wide variety of evaluation 

studies that consider the physical, chemical, meteorological, and/or emissions processes in an 

AQM system.  In simple terms, diagnostic evaluation must consider how the pollutant’s mass 

budget is impacted by the chemical and physical processes and the sources and sinks.  Diagnostic 
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evaluation is a critical piece that brings feedback from model evaluation studies back to 

continued model improvement.   

 

Regional AQM diagnostic evaluations are complicated by the fact that the system is non-

linear.  That is, a change in a given model input does not always lead to the same change in a 

model output.  In some cases, even the sign of the change in the output will switch as the 

magnitude of the input changes (e.g., the effect of changes in NOx emissions on ozone 

concentrations).  

 

In order to proceed into diagnostic evaluation from an operational evaluation of the endpoint 

pollutants, observational data beyond traditional networks that track air quality attainment 

thresholds are often needed.  To focus on the chemical processes, precursor concentrations at 

relatively high temporal resolution (e.g., ten-minute averages) are needed.  For example, hourly 

data such as speciated volatile organic compounds and NOy have been collected at field studies 

focused on ozone chemistry, along with radiation data and photolysis rate estimates.  Diagnostic 

evaluation of aerosol chemistry also requires extensive data for the individual aerosol species, 

their size distributions, and their chemical precursors.  Having measurements of both the 

chemical endpoint(s) of interest and the precursors is also helpful in constraining the emission or 

source/sink budgets, which will be discussed further in a later section.  In addition to the large 

data demands for the chemical species themselves, the direct and indirect roles of the 

meteorology on the chemical concentrations can require data on meteorological parameters that 

are not typically available, such as the planetary boundary layer heights and clouds, both of 

which have a large impact on air quality concentration levels. 
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These types of process-oriented field studies can provide a rich data set, but for very limited 

locations and periods of time due to the resources required.  Some field studies and special data 

sets include both surface data and aloft measurements via aircraft or tower.  Using information 

from such studies can help to evaluate the modeled chemistry and transport processes in the free 

troposphere and focus on larger regional impacts and emission budgets aloft (Hudman et al., 

2007; Brown et al., 2006).  Given the large investments in and limited availability of these field 

studies, many diagnostic evaluation studies are tailored to focus on the information and data 

available from special studies. 

 

Diagnostic Evaluation: Separating roles of model inputs from modeled processes  

 

Rather than presenting a summary of diagnostic evaluation studies, a perspective on the 

challenges and approaches of diagnostic evaluation will be discussed with the motivation of 

identifying where model improvements are needed.  If operational evaluation results show poor 

model performance for an air pollutant of concern, a number of factors could be driving the 

model performance.  (The term poor performance is used here generally.  It could imply poor 

performance as compared to other AQMs, previous versions of the same model, different 

emission or meteorological inputs, etc.)  Even if the evaluation shows good performance, we 

need diagnostic evaluation to help build confidence in model predictions.  One of the first 

challenges as an operational study transitions into diagnosing the cause(s) of model errors is to 

attempt to determine if the model performance issue is driven by inputs, such as meteorology or 
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emissions, or by chemical/physical processes simulated within the AQM.  This is fundamental to 

determining what improvements are needed and what uncertainties are involved.   

 

Sensitivity tests are one of the most common and traditional ways to ascertain whether inputs 

have a notable influence on model performance issues.  A sensitivity test examines the response 

of a model’s outputs to perturbations in the model’s inputs.  A fundamental description of 

sensitivity analyses of environmental models is given by Saltelli et al. (2004), and Cullen and 

Frey (1999) provide specific discussions related to AQMs.  However, as mentioned above, 

because of the nonlinear characteristic of regional AQMs, the sensitivity test may only be valid 

for a certain range of input variables.  As an example of a regional AQM sensitivity study, air 

quality simulations can be performed using multiple meteorological inputs to assess how much 

meteorological model errors and differences impact the air pollutant (e.g., Otte, 2008).  

Emissions have also been varied either through incremental changes to emission inputs or 

comparison across different inventory estimates (e.g. Gilliland et al., 2008, Pinder et al., 2006, 

etc.) to test the impact on air quality endpoints.  Advanced instrumented modeling tools have 

also been introduced into model evaluation research, where contributions from various processes 

or inputs on pollutant concentrations are tracked during the simulation.  The tracking information 

from these instrumented modeling tools can sometimes replace the need for numerous brute-

force sensitivity simulations.  For example, process analysis tools have been embedded into 

AQMs to characterize the impact of transport processes, chemical production and loss pathways, 

and sensitivity to NOx or radical emission sources on ozone concentrations (e.g., Henderson, 

2008; Vizuete et al., 2008a, 2008b).  Figure 4 is an example result from Henderson (2008) where 

contributions from production, loss, emissions, and transport were tracked for two model 
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simulations with different grid cell sizes.  Another example of an instrumented modeling tool is 

the Direct Decoupled Method (DDM) that has been incorporated into the CMAQ modeling 

system, where the integral sensitivity of O3 and PM2.5 predictions to emission precursors, source 

regions and sectors, boundary conditions, and more is calculated during the model simulations 

(e.g., Cohan et al., 2005; Napelenok et al., 2006).  The DDM tools are able to capture both the 

first and second order sensitivities to these inputs, which is important for these non-linear 

chemical systems. 

 

A key purpose of these sensitivity tests and instrumented modeling tools is to identify 

whether the inputs (e.g., emissions, transport, boundary conditions) have a large enough 

influence that known errors in the inputs could be a driving influence on the air quality 

predictions.  If not, a more internal focus on the AQM itself should be the priority; however, 

emissions and/or meteorology are often found to have a dominant influence on air quality 

predictions and warrant improvement.  We will next discuss some examples of diagnostic 

evaluation studies that identified key meteorological and emission issues that can play a strong 

role in AQM performance. 

 

Meteorological models have long been used to forecast weather, but AQM predictions are 

sensitive to a number of different meteorological variables that are not as critical to weather 

prediction.  Evaluation of such models for the purpose of providing weather forecasting guidance 

may not be sufficient to assure their reliable use in air quality applications.  Seaman (2000) 

provided a comprehensive summary of the key meteorological issues most relevant for air 

quality modeling.  Hanna and Yang (2001) evaluated the boundary layer outputs of several 
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mesoscale meteorological models (e.g., MM5, RAMS, OMEGA), stressing meteorological 

variables used by AQMs.  For example, it was found that the rmse of wind speed predictions was 

about 1 or 2 m/s at best, and that the models generally underestimated the strength of nocturnal 

inversions.   For retrospective air quality modeling, meteorological simulations often include 

various approaches for data assimilation or nudging, so that agreement between meteorological 

observations and predictions is optimized.  Otte (2008) provides an example of a diagnostic 

study that demonstrates that assimilation of observations into the meteorological predictions can 

contribute to improved ozone predictions, in addition to improved meteorological predictions.   

 

Another example is the growth and evolution of the planetary boundary layer (PBL) and 

entrainment of pollutants trapped aloft in the nighttime residual layer as the PBL grows during 

the day.  These entrained pollutants can be transported long distances downwind by the nocturnal 

jets and can have a distinct impact on near-surface concentrations of air pollutants the next day 

(Zhang and Rao, 1999).  While observations of the evolution of the PBL are very limited, recent 

measurement studies have demonstrated new approaches that can provide these critical data 

(e.g., Emeis et al., 2004) on PBL heights and growth.  With this information, the importance of 

PBL heights for hourly AQM predictions can be investigated more thoroughly.  Without these 

data, inferences about hourly air quality predictions and how they relate to PBL evolution (e.g., 

rate of rise of the PBL in the morning, decay of the PBL in the afternoon) could be incorrect.  

The time evolution of the mixing height growth in the morning and the PBL decay in the 

afternoon is a significant determinant of near-surface pollutant concentrations.  The interactions 

of pollutant emissions at key times, such as rush hour traffic emissions, into reduced mixing 

layers can have major impacts not only on the direct primary emitted pollutant concentrations 
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(e.g., CO, NOx, VOCs, NH3, PM) but also on the secondary pollutants produced from chemical 

reactions among the primary pollutants (e.g., O3, secondary organic aerosol, nitrate aerosol).   

 

Regarding the role of emissions in air quality predictions, “top-down” diagnostic evaluation 

studies consider predicted concentrations and infer what the emissions should have been.  

Inverse modeling, indicator ratios, and source apportionment are all examples of top-down 

emission evaluation methods that use information outside of the emission inventories to evaluate 

and inform current emission estimates (Parrish, 2005).  Inverse modeling (e.g., Gilliland et al., 

2003, 2006; Napelenok et al., 2008) uses methods to estimate what emissions would result in the 

minimum least squares error in the resulting concentration indicator.  Indicator ratios may be 

used to estimate how much of an emitted pollutant comes from one source type versus others 

(e.g., NOx/CO ratios in Parrish et al., 2002).  Receptor models estimate, based on pre-determined 

chemical speciation profiles for different sources and observed concentrations at the receptor, the 

relative contribution of various source types (e.g., Wittig and Allen, 2008).  All of these types of 

analyses can provide important insights about the magnitude, location, and/or sector(s) 

contributing to emissions and can be complementary to one another.  In all cases, the methods 

rely on observational data to constrain the conclusions, and models or assumptions are 

introduced as part of the emission estimation.   

 

Since space limitations do not allow for a detailed discussion of these top-down approaches 

to evaluate emissions, the emphasis here is on the value and requirements of top-down 

approaches to evaluate emissions.  For observationally-based methods such as receptor models, 

speciated observations are needed on shorter time scales in order to decipher the source 
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signatures to distinguish between different source types.  In many cases, the data are only 

available for limited time periods and specific locations.  However, receptor models can be the 

first major step to understanding the types of sources contributing to air pollution at a given 

location and can also help to inform the emission inventory of potential missing sources.  Inverse 

modeling also can be limited by data if the network does not provide high-resolution spatial and 

temporal data or if the observed species does not provide a conservative indicator for the emitted 

species (e.g., ammonium is not a conservative indicator for ammonia emissions).  Additionally, 

since inverse modeling relies on the AQM to estimate the relationship between the emissions and 

the resulting concentration, model error should be included in the calculations whenever 

possible, and such methods are only helpful if the known emission uncertainties are much larger 

than the error intrinsic to the AQM processes that also impact the concentrations.  Recent 

advances have introduced approaches that integrate receptor modeling methods into AQMs (e.g., 

Bhave et al., 2007) and used detailed tracking of emission contributions across space for inverse 

modeling (e.g., Napelenok et al., 2008).  In all cases, top-down methodologies can inform 

continued improvement to the bottom-up inventories that are critical for AQM performance. 

 

These types of diagnostic studies often demonstrate the important influence that 

meteorological predictions and emission inventories can have on air quality predictions; 

however, improvements can also be found in the chemical or physical processes within the 

AQM.  Evaluation of the chemistry in AQMs has benefited greatly from observed measurements 

of O3 precursors and indicator ratios.  For example, a number of different indicators have been 

used to evaluate the oxidant chemistry as simulated in AQMs.  Probing indicators related to the 

total oxidized nitrogen include the ratio of total nitrogen species to NOy (Parrish et al., 1993; 
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Trainer et al., 1993), the photochemical age ratio ((NOy-NOx)/NOy), and the (O3 versus (NOy-

NOx) (i.e., NOz)) ratio (Arnold et al., 2003).  These indicators all can be used with available 

observations to assess whether the oxidant chemistry as simulated in the model is similar to the 

observed chemical oxidant state.  

 

A key application of AQMs is to estimate O3 and/or PM2.5 changes in response to emission 

changes.  Many traditional and more recent diagnostic probes focus specifically on the potential 

response of model predictions to emission changes.  For example, the indicator ratios of 

H2O2/HNO3 (Sillman, 1995; Sillman et al., 1998; Kleinman, 1994; Kleinman et al., 1997), and 

O3/NOx (Tonnesen and Dennis, 2000a,b; Arnold et al., 2003) are both response-surface probes 

that have been used to characterize how O3 will change with NOx and VOC levels in a given 

area.  More recently, the potential for nitrate replacement and less reduction in total PM2.5 than 

anticipated with SO2 emission reductions has been studied using the Gas Ratio, which is a ratio 

of free ammonia to total nitrate (Ansari and Pandis, 1998; Pinder et al., 2008; Dennis et al., 

2008).  By comparing modeled results to observations from special field studies, these types of 

diagnostic probes help to extend diagnostic evaluation from assessment of predicted 

concentrations to evaluation of the model’s ability to respond correctly to emission changes. 

 

Dynamic Evaluation     A new area of model evaluation referred to as “dynamic evaluation” 

looks at a retrospective case(s) to evaluate whether the model has properly predicted air quality 

response to known emission reductions and/or meteorological changes.  The change in 

concentration is being evaluated instead of the “base” concentration itself, unlike operational and 

diagnostic aspects of model evaluation.  This method is used in addition to traditional indicator 
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ratios that focus on a model’s potential response to a change in emissions through chemical 

relationships (e.g., O3/NOy).  An example of dynamic evaluation would be modeling assessments 

of the weekday/weekend model predictions where mobile source emissions are known to 

significantly change (Chow, 2003).  These studies can provide insight into the ozone response to 

NOx emissions in core urban areas with very dense mobile emissions.  However, there can be 

fairly substantial uncertainty in the estimate of these mobile emissions as well as in modeling the 

impacts of roadways in a regional model.  More recently, an evaluation of an AQM’s response to 

a regulatory emission reduction program has been assessed (Gilliland et al., 2008).  Figure 5 

illustrates principal findings from that study.  The “NOx SIP Call” was an unusual example of an 

emission control program that required a large reduction in emissions in a short span of time 

from the electricity generating sector.  Since those emissions are monitored with Continuous 

Emission Monitoring Systems, it was a unique opportunity for dynamic evaluation where the 

emission change could be directly measured and then tested in an AQM.  Evaluation of the 

model’s prediction of air quality response to such emission changes is challenged by the question 

of whether the year to year changes are also being influenced by different meteorological 

conditions from one year to another.  In a multi-year simulation, one could examine how the 

seasonality and trends in the air quality data are simulated by the model.  Additional work in this 

area of dynamic evaluation should include sensitivity studies with varying meteorology with the 

same emission reductions, as well as statistical methods that are traditionally used to adjust 

observed pollutant concentrations for meteorological influences (e.g., Porter et al., 2001; 

Camalier et al., 2007).   
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Probabilistic Evaluation All regional numerical AQM systems use first-order closure.  That 

is, the variables that are being solved are the ensemble means.  It is of course possible to write 

the model system and solve the equations using second-order or higher closure.  For example, 

the SCIPUFF model (Sykes et al, 2007) uses second-order closure.  Thus the model solves for 

the ensemble mean and the variance.  A distribution shape is assumed (the clipped normal) and 

thus the full distribution is obtained.  If regional AQMs were to use second-order closure, the run 

times would be much larger.  Thus the current crop of first-order closure regional AQMs are 

inherently deterministic (for a given scenario with a given set of inputs, the same concentrations 

are predicted).   They also do not explicitly account for underlying uncertainties in the data, 

science process algorithms, or numerical routines that constitute the modeling system. 

 

Probabilistic model evaluation should allow quantification of the confidence in regional 

AQM-predicted values and determination of how observed concentrations compare within an 

uncertainty range of model predictions.  There are no widely-used prescribed methods for 

determining such confidence through a probabilistic evaluation.  A method was suggested by 

Lewellen et al. (1985) that depends on knowledge of the probability distribution function (pdf) of 

the AQM predictions.  As stated above, their AQM, named Second Order Closure Integrated 

Puff (SCIPUFF; Sykes et al., 1984, 1988, 2007), assumes a pdf shape (the clipped normal) and 

automatically predicts both the mean and the variance of the concentration distribution.    The 

Lewellen et al. (1985) probabilistic model evaluation methodology was applied by Hanna and 

Davis (2002) to regional AQM (UAM-V) predictions of ozone in the eastern U.S.  It was shown 

that, across the full distribution range for all observing sites, the observations generally fell 

within the 95% confidence bounds of the regional AQM predictions. For that exercise, the pdf of 
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the model predictions was determined from a previous Monte Carlo uncertainty study for that 

model on that domain and episode.  Also, Irwin et al. (1987) used the Monte Carlo approach to 

propagate meteorological input uncertainty, using pdf’s, to air quality predictions. 

 

 As described by Lewellen et al. (1985), in order to carry out a probabilistic AQM evaluation, 

it is necessary to somehow “know” the pdf of the model outputs.  The pdf can be estimated by 

many methods.  For example, the simplest way is to assume the same pdf everywhere at all times 

– such as an exponential distribution shape with the standard deviation equal to the mean, or a 

clipped normal distribution shape with an assumed standard deviation and mean (can be 

prescribed independently).  Or, the shape can be prescribed and then the model calculates the 

variance along with the mean (as done in SCIPUFF).  Another method, as described by Hanna 

and Davis (2002) involves a long Monte Carlo exercise with over 100 model runs.  Yet another 

technique uses an ensemble of modeling methods to define the pdf.  The ensemble method is a 

subset of a full Monte Carlo uncertainty exercise, where a few model runs are made using 

varying inputs and other assumptions in hopes that the limited number of runs will “cover” the 

full uncertainty range.  The use of the ensemble method with prognostic meteorological models 

linked with SCIPUFF was tested by Warner et al. (2002), who showed that the method was able 

to adequately account for the uncertainties in the concentration pdf due to mesoscale and 

regional meteorological variations.  It should also be mentioned that earlier works started down 

this path in the early 1980s (e.g., Lamb and Hati, 1987; Schere and Coats, 1992).  Lamb and Hati 

proposed using several (an ensemble, although they did not use that word) possible mesoscale 

regional wind fields to drive a regional ozone model, and therefore produce the desired estimate 

of uncertainty.  

 30



 

 

 The ensemble method is a quite simple “brute force” approach where a number, N, of model 

runs are made for the same scenario.  Widely used for numerical weather prediction, applications 

for air quality modeling are only recently being reported (Galmarini et al., 2004a,b; McKeen et 

al., 2005; Mallet and Sportisse, 2006a,b; DelleMonache et al., 2006a,b; Zhang et al., 2007).  The 

concept behind ensemble modeling is that uncertainties in model inputs and model formulations 

cause uncertainties in the predicted pollutant concentration fields.  The model runs may be made 

with different models, different algorithms in the same model, or different boundary and initial 

conditions, to name a few.  The ensemble method is based on similar principles as the Monte 

Carlo model uncertainty method, which is widely used for other environmental and risk analysis 

models.  The main difference is the ensemble method uses far fewer model runs, carefully 

chosen so that the full uncertainty range is retained.   By performing multiple simulations with a 

set of different model inputs and model parameterizations, the impact of their uncertainties on 

the resulting model predictions can be quantified by providing a range of model predictions.  

Computational resource limitations typically constrain the number of discrete simulations 

populating an ensemble.  Ensemble members must be carefully chosen such that each member of 

the ensemble, among other criteria, must be shown to “perform well”.  Thus, the method is 

empirical with some arbitrariness. 

 

 In weather forecasting, ensembles of meteorological model simulations are routinely used 

operationally for mesoscale weather predictions, including for predicting the track and strength 

of hurricanes.  Ensembles are often constructed using different large-scale fields for initialization 

as well as selecting different cumulus and boundary layer parameterizations within the 
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meteorological model (e.g. Jones et al., 2007), or using different meteorological models (Biswas 

and Rao, 2001).  For air quality modeling applications, sensitive input fields and model 

parameters in addition to the meteorological fields include anthropogenic and biogenic 

emissions, photolysis rates, and chemical mechanism (e.g. Hanna et al., 2001; Della Monache et 

al., 2006a,b; Carvalho et al., 2007).  The most sensitive parameters can be determined through 

sensitivity runs (use of different physics options, chemical mechanisms, grid resolution, etc.) or 

in a more formal way through adjoint modeling studies (Menut, 2003; Menut et al., 2000).  

Realistic distributions for these sensitive parameters can then be obtained through literature 

review and expert solicitations (e.g. Hanna et al., 2001; Fine et al., 2003).  Pinder et al. (2008) 

describe a technique for generating ensemble members based on discrete model simulations of a 

single AQM system, in combination with a direct sensitivity technique, that can efficiently 

produce hundreds to thousands of ensemble members.  Figure 6 illustrates a month-long time 

series of daily 8-hour maximum O3 concentrations from a 200-member CMAQ model ensemble 

along with the observed concentration time series for this single observation site.  This technique 

is useful for diagnosing structural process-based errors in the AQM system.  When the envelope 

of ensemble results brackets the observations there is more confidence that the modeled system 

processes can replicate reality.  On the other hand when the observations fall outside of or barely 

within the ensemble envelope there is an indication that the model is biased across many process 

combinations with respect to replicating reality. 

 

 The ranges of model predictions stemming from ensembles can be utilized in a number of 

ways.  For example, in forecasting applications for discrete events such as the occurrence of 

rainfall or the exceedance of a threshold concentration for a certain pollutant, one can estimate 
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the probability of that event occurring by determining in how many ensemble members the event 

occurs or does not occur.  From a model evaluation perspective, if an observed value falls within 

the range spanned by the ensemble predictions, this can be interpreted as there being no 

discernable difference between the observed quantity and model predictions given the underlying 

uncertainty of model predictions.  In this context, the comparison of observations and ensemble 

predictions is also important to evaluate and refine the design of the ensemble experiment itself.  

In order for ensembles to provide useful information, it is necessary to determine whether the 

predicted spread is a true measure of underlying model uncertainty. This can be assessed for 

example through Talagrand diagrams (Delle Monache et al., 2006b; Vautard et al., 2006) 

constructed from raw or bias-adjusted ensemble members and observations.  Deviations from the 

flat shape of an ideal Talagrand diagram can indicate whether the spread of the ensemble is too 

small because the observed event often falls outside the range of values sampled by the ensemble 

or whether the ensemble forecasts are systematically biased toward overprediction or 

underprediction. 

 

 It is important to note the distinction between a true measure of model uncertainty and the 

results obtained from a finite set of model simulations to create an ensemble.  The former 

describes the full spectrum of the population of results constituting model uncertainty based 

upon data and model formulation/parameterization uncertainties.  The latter is a limited view of a 

portion of the uncertainty spectrum; in a sense it is a measure of the “spread of our ignorance”.  

Techniques to formally propagate uncertainty through AQM systems are not commonly used 

owing to the non-linearities inherent in AQM formulations and the difficulty of uncertainty 

propagation through non-linear systems that also contain parametric algorithms.  Some studies 
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have relied on Monte Carlo techniques (Hanna et al., 1998; Hanna and Davis, 2002) to estimate 

model uncertainties.  The Monte Carlo method is based on probabilities and nonparametric 

statistical methods amenable to standard statistical analysis.  However, the variables in AQM 

systems (including meteorological, emissions, and air chemistry) are not all independent from 

each other, making Monte Carlo techniques problematic to apply and interpret results from such 

exercises.  It is possible to account for correlations among input variables in the Monte Carlo 

methods, but the magnitudes of these correlations are not well known, thus limiting the 

usefulness of Monte Carlo techniques for quantifying regional AQM uncertainty.  As numerical 

air quality simulation models are used as surrogates for the real chemical atmosphere, they defy 

attempts to estimate “true” uncertainty since the grid-based formulation resolves only a limited 

set of spatial/temporal scales.  The true stochasticity of the atmosphere is not captured.  For 

example, if the same conditions were used to repeatedly run a model simulation, the same results 

would be obtained with each run of the model.  However, in the real atmosphere, the “same” 

conditions existent on different days would not result in the same weather or air quality 

conditions given the stochastic variations across the spectrum of scales intertwined in nature. 

 

 Information from ensembles can also be used to estimate distributions of model-observation 

differences that can guide the interpretation of modeled concentration endpoints (e.g. predicted 

daily maximum 1-hr ozone concentrations) in particular applications.  For example, Biswas and 

Rao (2001) and Rao et al. (2001) used a number of different meteorological and photochemical 

modeling configurations to simulate daily maximum 1-hr ozone over the eastern U.S. during 

multiple high-ozone episodes during the summer of 1995.  Their results showed that the choice 

of modeling options typically introduces a variability of 20% of simulated individual daily 
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maximum 1-hr ozone concentrations, suggesting that this value could be viewed as an empirical 

lower bound on the model’s uncertainty in simulating this quantity.  Another potential use of this 

information is in designing statistical tests that can then be used to address the question of 

whether a difference between observed and simulated concentration is significant at a certain 

confidence level given the estimated error distribution. 

 

 For many air quality planning applications, the quantity of greatest interest is the modeling 

system’s relative response to emission reductions (U.S. EPA, 2007).  Therefore, to estimate the 

effect of model uncertainties on this quantity, ensembles can be constructed in which this 

response is calculated using a variety of meteorological and photochemical models and modeling 

options.  To this end, two simulations have to be carried out by each ensemble member; one 

reflecting the base case emission scenario and the other reflecting the control case emission 

scenario.  In a series of studies, Hogrefe and Rao (2001), Sistla et al. (2004), Jones et al. (2005), 

and Hogrefe et al. (2008) have shown that the effect of model-to-model uncertainty on the 

simulated response to emission reductions is typically on the order of a few percent of daily 

maximum 8-hr ozone concentrations, much smaller than the effect on absolute concentrations for 

the “base case” simulation.  

 

 Another potential approach to the probabilistic evaluation of AQMs is the use of rank order 

statistics and extreme value theory to compare the tail of observed and simulated concentration 

distributions. For some applications, we are particularly interested in the modeling system’s 

ability to simulate a specific aspect of the observed distribution, such as the 4th-highest daily 

maximum ozone concentration over a summer season.  In addition to directly comparing the 
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observed and simulated 4th-highest concentrations, one can utilize statistical theory to estimate 

the probability that the observed or simulated 4th-highest concentration exceeds a certain 

concentration threshold (say 84 ppb) or to estimate the 95% confidence bounds of the observed 

and simulated 4th-highest concentrations given the other sample values of the observed and 

simulated distributions. For example, if at a station the observed and simulated 4th-highest ozone 

concentration were 92 and 87 ppb, respectively, but the width of the 95% confidence interval 

was 5 ppb in both cases, one might conclude that these two values are not significantly different 

given the discrete observed and modeled sample distributions. An illustration of this approach 

and an application to air quality planning is provided in Hogrefe and Rao (2001). 

 

 There are challenges in using observational data for probabilistic model evaluations.  The air 

quality observed on a given day is a sample or individual event from a larger population.  For 

example, the air quality on July 1 this year might be a member of an ensemble consisting of the 

set of air quality observations on July 1 from Yi-5 to Yi+5, where Yi is the current year.  Since it 

may not be practical to model the air quality on July 1 over this temporal range, another 

possibility is to seek multiple days over a shorter time window when the meteorological (and 

emissions) conditions are “similar” to July 1.  The distribution of modeled results for these days 

and the distributions of the observations can then be compared.   

 

 Fuentes and Raftery (2005) developed a new Bayesian approach to evaluate the spatial 

pattern of concentrations simulated by AQMs, and showed how it can also be used to remove the 

spatial bias in model output.  The Bayesian approach is ideal for this application because it 

provides a natural framework to compare data from very different sources taking into account 
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different uncertainties, and it also provides posterior distributions of quantities of interest that 

can be used for scientific inference.  They do not treat monitoring data as the “ground truth”.  

Instead, they assume that there is some smooth underlying (but unobserved) field that measures 

the “true” concentration/flux of the pollutant at each location.   Monitoring data are these “true 

values” plus some measurement and representativeness errors.  The AQM output can also be 

written in terms of this true underlying (unobservable) process, with some parameters that 

explain the bias and microscale error components in the model.  The truth is assumed to be a 

smooth underlying spatial process with some parameters that explain the large-scale and short-

scale dependency structure of the air pollutants.  They evaluate the model by comparing the 

distribution of the monitoring data at a given location, to the predictive posterior distribution of 

the model at that given point in space.  The bias in the AQM result is removed by obtaining the 

posterior distribution of the bias parameters given monitoring data and model output.  This 

technique does not account for the temporal dependence in the data; more recent research efforts 

in adapting Bayesian approaches are focusing on space-time data fusion of model results and 

observations (Gégo et al., 2007). 

 

 In an example illustrating the spatial Bayesian approach, observed values of SO2 weekly 

averaged (week of July 11, 1995) concentrations at six selected CASTNet sites that are 

representative of different meteorological, land use, and altitude conditions are used.  Figure 7 

shows the predictive posterior distribution (ppd) of the CMAQ model interpolated output at the 

six CASTNet locations for SO2 (ppb).  The circle in each graph indicates the CASTNet value at 

the given site.  As expected, large uncertainty at the Indiana site is obtained.  This site is very 

close to several coal-fired power plants, and so the SO2 levels can be very high or very low 
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depending on wind speed, wind direction, and on the atmospheric stability, so there is more 

variability. Taking into account this variability and other sources of uncertainty as characterized 

by the corresponding ppds, the CASTNet value at this site is not significantly different than the 

CMAQ output.  The sites in Maine and Florida have the lowest SO2 levels and variability.  The 

agricultural site in Illinois and the site in North Carolina have similar behavior in terms of SO2 

levels.  The site in North Carolina is not far from the Tennessee power plants, and the site in 

Illinois is also relatively close to some Midwestern power plants.  The site in Michigan, which is 

very close to Lake Michigan and relatively far from power plants, also has low SO2 levels.  By 

using a Bayesian approach for model evaluation, we can characterize different sources of 

uncertainty in CMAQ model estimates and CASTNet observations that should lead to a more 

reliable and accurate evaluation of the CMAQ model. 

 

4. Data Needs for Model Evaluation 

 

Model evaluations often rely on observational data sets that are not designed to support 

modeling assessments.  Consequently, there are numerous incommensurabilities between model 

evaluation needs and observations.  However, there does exist an enormous body of routine air 

quality observations (Figure 8), which combined with periodic intensive field campaigns and 

satellite missions, provides compositional, temporal and vertical data often mined for operational 

and diagnostic model evaluations.  This section examines the data needs for model evaluation 

with regards to the available observational datasets. 
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Meteorological Data.  While there is a wealth of surface-based observations, vertical profiles of 

temperature, winds and planetary boundary layer (PBL) heights are most relevant to diagnosing 

physical processes in large Eulerian modeling systems.  Constructing the spatial distribution and 

temporal evolution of the PBL is a fundamental need for model evaluation.  PBL height is a 

derived quantity based largely on vertical temperature profiles and refractive index structure 

parameters, Cn2.   The National Weather Service’s (NWS) radiosonde network’s twice daily 

soundings at nearly 100 locations across the U.S. lack adequate temporal resolution to 

characterize the diurnal development and decay of the PBL.  Radar profilers are capable of 

providing the necessary temporal resolution. NOAA has deployed 35 unmanned Doppler Radar 

sites (NPN - http://www.profiler.noaa.gov/npn/) profiling the troposphere (10-15 km).  The 

NPN, concentrated in the central United States, is designed for violent weather forecasting.  

While there is lack of a consensus methodology to synthesize raw radar profiler data into 

temporal observation patterns for model evaluation, the main issue is deployment to provide 

adequate spatial coverage.  The Photochemical Assessment Measurement Stations (PAMS) 

program and a variety of State funded programs support over 30  boundary layer radar profilers 

(http://www.madis-fsl.org/cap/profiler.jsp) that provide highly resolved wind profiles and Cn2 

coefficients of the boundary layer (up to 5 km).   The boundary layer radar profilers, especially 

when complemented by temperature profiles generated by a Radio-Acoustic Sounding System 

(RASS), offer a source of relatively untapped data for model evaluation which would benefit 

from an organized data synthesis effort for selected model evaluation applications. 

 

Emissions Data.  Emission inventory evaluation should address improving emissions of 

relatively inert pollutants relating to physical processes (e.g., elemental carbon (EC) and CO) as 
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well as precursor emissions driving chemical transformation of ozone and aerosols (e.g., nitrogen 

oxides, NOX, ammonia, NH3, sulfur dioxide, SO2, and volatile organic compounds, VOC).  

Accuracy for these gases is required, given the multiple interactions across pollutant species.  

From an evaluation perspective, natural emissions should be considered as important as 

anthropogenic sources as all emission fields affect the modeling system’s predicted 

concentrations.  These needs are consistent with the recommendations in the recent NARSTO 

emission inventory assessment (NARSTO, 2006) but with less emphasis on toxic and hazardous 

air pollutants.  Direct measurement of emissions is ideal, such as CEMs on major point sources 

(e.g., power plants).  Otherwise, engineering and emission model estimates need to be 

independently evaluated.  Evaluation through measurement programs can be broken into four 

categories:  (1) direct near-source measurements; examples include ammonia flux measurements 

(Aneja et al., 2008) and remote sensing of roadway emissions through open path FTIR methods 

(Bradley et al., 2000), (2) dedicated mass balance studies in controlled environments such as 

roadway tunnels (e.g., Gertler et al., 1997), (3) inference analysis based on ambient 

measurements, typically in the form of statistical relationships through source apportionment 

models or simple ratio analysis (e.g., Parrish et al., 2002) and (4) inverse modeling using ambient 

measurements at the surface or from satellites with assumed well characterized model physics 

(Gilliland et al., 2003; Napelenok et al., 2008).  Overlaps exist across these methods as well as 

between source methods (ammonia flux measurements) used to develop emission factors and 

evaluate emissions.  These approaches need to continue to be improved and expanded.   

 

Ambient Air Quality Data.   

 40



 

Conservative Tracers.  Very useful conservative tracers for evaluation and interpretation of 

physical and PBL processes are CO and EC.  Total oxidized nitrogen, NOY, can also be useful.  

There are, however, overlaps between evaluating emissions and PBL processes.  Each is 

dependent on the other and judgment plus additional evidence is required.  Measurements of 

conservative tracers need to be hourly for best interpretive support.  While a useful conservative 

tracer, EC is defined by measurement and analysis protocols which are not uniform across the 

networks and are subject to periodic modification.  In addition, EC typically is a 24-hour average 

value.  Hourly EC measurements would be very useful.  The new NCore network (U.S. EPA, 

2006) will provide an initial 75 stations measuring hourly trace level concentrations of CO and 

NOY.  

 

Key Chemical Indicator Species.  Fast reacting oxidizers [e.g., hydroxyl (OH•), hydroperoxy 

(HO2•), organicperoxy (RO2•) and nitrate (NO3•) radicals] and key species associated with their 

production [e.g., O3, formaldehyde (HCHO), nitrous acid (HONO), and true nitrogen dioxide 

(NO2)] and their termination products [e.g. HNO3, peroxyacetyl nitrate (PAN), plus higher 

PANs, and hydrogen and organic peroxide (HOOH, ROOH)] as well as photochemically-aged 

products [e.g., total oxidized nitrogen (NOY), and NOZ (NOY-NOX)] are key to diagnosing the 

oxidative capacity of the atmosphere, the resultant photochemical production and the sensitivity 

of O3 and aerosol production to NOX and VOC controls.  Despite the importance of these 

indicator species for diagnostic model evaluation, the general difficulty of accurately measuring 

these species, due to limited atmospheric lifetimes and analytical interferences, prevents 

incorporation into traditional networks.  For example, routine network NO2 measurements are 

confounded by interferences from various oxidized nitrogen compounds.  These species are 
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measured in intensive field campaigns, but seldom is a sufficiently complete set measured to 

fully support diagnostic evaluation, a long standing model evaluation need that should be 

addressed.  

 

Species Involved in Physics and Chemistry.  Secondarily formed species such as ozone, organic 

carbon, sulfate, nitrate, ammonium and mercury are of direct relevance to operational and 

probabilistic evaluations.  Current networks provide relatively rich spatial coverage for these 

species, although more than one network is involved.  (Since different measurement protocols 

may be used in different networks, care must be taken in using data across networks for model 

evaluation (for example, Gégo et al., 2005))  Mercury and ammonium are limited to precipitation 

networks and both the long time averaging periods and artifacts associated with filter-based 

measurements need to be taken into account.  For dynamic and interpretive evaluations, 

complete gas plus particle budgets are needed (e.g., SO2 plus sulfate, HNO3 plus nitrate, NH3 

plus ammonium, and NOY) as well as primary aerosols and precursor organic species and 

speciated organic aerosols.  NCore will augment current networks with CO, SO2, NH3 and NOY 

at 75 sites across the U.S., addressing some, but not all, of the gas plus particle budget needs.  

The major NOY species of PAN and HNO3 will still not be measured in routine networks.  

Speciated organic aerosol measurements remain limited to specialized research field campaigns.  

Ambient speciated mercury (Hg0, Hg+2 gases and particulate Hg) observations are key for mass 

balance interpretation and dynamic evaluations, but are only available in region-specific efforts, 

such as the Southeastern Aerosol Research and Characterization Study (SEARCH).  Precipitation 

chemistry networks such as the National Atmospheric Deposition Program (NADP) and Mercury 

 42



 

Deposition Network (MDN) provide relatively adequate coverage of nitrogen and sulfur and 

improving coverage of mercury aqueous phase ions.  

 

Vertical Profiles.  Moving beyond surface observations into the mixed layer and the free 

troposphere is becoming increasingly important as the ozone air quality standard is lowered.  

Vertical information regarding O3, NOY and its constituents, SO2 and sulfate, and fine particles, 

is very important to this end.  Vertical O3 profiles through ozonesondes often are deployed 

during intensive field campaigns or for limited periods (e.g., NASA’s IONS); however routine 

operations generally are conducted at remote locations through NOAA’s global monitoring 

efforts (http://www.esrl.noaa.gov/gmd/ozwv/ozsondes/index.html).  Aircraft-derived trace gas 

profiles from intensive field campaigns provide an important component for model evaluation 

efforts.  Satellites are an emerging source of total atmospheric column information.  However, 

there are still large uncertainties in the retrieval algorithms, which are themselves models.  

Continued advances are expected from studies based on the 2004 launching of NASA’s Aura 

platform (http://aura.gsfc.nasa.gov/) with multiple trace gas capability, including glyoxal, a 

relatively stable VOC.  The wealth of aerosol optical depth information from numerous satellite 

platforms has been applied to evaluating AQMs (Mathur, 2008).  The proposed addition of future 

geosynchronous satellite missions measuring trace gases and aerosol properties focused on North 

America, anticipated through NASA’s GEOCAPE project in the 2015 timeframe, would add a 

nearly continuous stream of data greatly extending the current twice-daily scans from polar 

orbiting satellite platforms. 
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Intensive Field Campaigns.   Intensive field campaigns are critical tools for probing specific 

processes and often are the only sources of vertical profile and highly resolved chemical and 

temporal information.   However, model evaluation often is a secondary objective of intensive 

studies which typically are focused on characterizing a specific process (e.g. chemical processing 

in clouds, missing chemical production, transoceanic fate and transport).  Well-conceived field 

campaigns focused on model evaluation can illuminate and make quantitative the impact an 

improved process module can impart to a fully integrated modeling system.   

 

Spatial and Temporal Gaps.  Operational evaluations require the best spatial or horizontal-scale 

information feasible, including information on subgrid variability of concentrations.  These 

measurement needs are associated with regional and urban spatial scales, with some attention to 

hemispheric transport scales for boundary conditions.  The demand on models to address near-

field characterizations to support human exposure assessments, near-roadway phenomena and 

urban residuals remaining after implementation of region-wide emission strategies will require 

attention.  Diagnostic (and potentially dynamic) evaluations require hourly data for all species 

simultaneously.  These needs are not met with current routine monitoring networks.  In general, 

U.S. air quality networks include an abundance of surface-based measurements, many of which 

are collected over 24 hour (chemical speciation networks) or even weekly (CASTNET) 

averaging periods.  Ground-based enhancements in deployment of continuous sulfate, carbon 

and nitrate aerosols, ammonia and nitric acid gases are obvious temporal gaps that remain.  

 

5. Summary and Outlook 
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 We have examined approaches to the evaluation of regional air quality modeling systems, as 

they are currently used in a variety of applications.  It is evident from this examination that 

model evaluation exercises are based on a set of presumptions which are often not explicitly 

stated.  These premises are: 

• Observations of air pollution reflect influences of all possible sources and scales of 

source variation in time and space; have measurement uncertainties; and are 

measurements at specific points. 

• Eulerian grid modeling results have stochastic and deterministic uncertainties resulting 

from the emission and meteorological inputs; have deterministic uncertainties in the 

modeling algorithms; and provide volume-average estimates. 

• It should be recognized that even with perfect model inputs and perfect model science 

and numerical algorithms, there will be differences between model output and 

observations because of fundamental differences between model output and observations. 

 Our examination of modeling practices leads us to conclude that models cannot be validated 

in the formal sense, but rather can be shown to have predictive and diagnostic value.  The 

process whereby this value is demonstrated is called model evaluation.  The model evaluation 

process includes model-observation and model-model comparisons, and employs a range of 

standard metrics to quantify the comparison.  Because the evaluation criteria appear to be 

different in different applications, we argue that the criteria for “success” should be context-

relative as described by Steyn and Galmarini (2008). 

 

 Our review of current practices reveals that model evaluation is driven by three broad 

objectives: to determine model suitability for an intended application; to distinguish between 
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models, and to guide model development.  These objectives are achieved in four types of model 

evaluation: Operational Evaluation, in which model predictions are compared with data in an 

overall sense using a variety of statistical measures; Diagnostic Evaluation, in which the relative 

interplay of chemical and physical processes captured by the model are analyzed to assess if the 

overall operation of the model is correct; Dynamic Evaluation in which the ability of the 

modeling system to capture observed changes in emissions or meteorology is analyzed; and 

Probabilistic Evaluation in which various statistical techniques are used to capture joint 

uncertainty in model predictions and observations. 

 

 There exist many measures and techniques for quantifying model performance in an 

operational sense.  These measures (which we have called “standard metrics”) are often used in 

combinations, and have varying levels of utility and interpretations.  A fundamental difficulty 

lies in the fact that model output (based on volume averages) and observations (based on point 

measurements) are in principle incommensurable, and that model predictions represent 

population averages whereas observations reflect individual events out of a population.  This 

fundamental problem is generally ignored in the first three types of model evaluation, 

necessitating the need for probabilistic evaluation.  

 

 In order to conduct diagnostically-oriented model evaluations, high-quality data on ambient 

air quality, emissions and meteorology are needed.  These data needs are often quite extensive, 

and in many cases not fully met.  Hence, most model evaluations begin and end with operational 

evaluation.  An outstanding example of the inadequacy of evaluation data sets is the need to 

resolve three-dimensional pollution fields, when only two dimensional data are available.  Our 
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understanding of pollutant transport aloft and re-entrainment in the PBL requires these 3-D 

datasets.  Similarly, process evaluation of chemical sub-models often requires measurements of 

chemical species that are only available in specialized research studies, and not generally in 

routine environmental monitoring programs. 

 

 Our review of recent model evaluation literature leads to two general conclusions: 

 

• Most of the published evaluations of photochemical grid models compute and interpret 

model evaluation metrics without recognizing that perfect agreement is impossible. 

• There are few (if any) published evaluations of inter-comparisons of photochemical grid 

models on a common domain that address all the premises listed above.  It is unclear 

what the consequence would be if we were to more comprehensively address the 

premises listed above.  Presently, we do not have sufficient information to answer this 

question and consequently we are not able to provide a specific set of evaluation 

procedures and metrics that can be generally recommended. 

 

 Our review of approaches and techniques used in the evaluation of regional AQMs indicates 

that there is much interest in evaluations of these models, primarily because of model application 

in the policy realm.  It also indicates that there are many different approaches, and as yet, 

incomplete consensus on many central issues.  We believe our categorization of model 

evaluation types, motives and metrics will help lead to much needed common approaches to this 

important problem.  Despite the lack of consensus on particular approaches to regional scale 

model evaluation, there has emerged an agreement on the value of the process of evaluation, 
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including aspects of each of the four types of evaluation: operational, diagnostic, dynamic, and 

probabilistic.  A specific model application and evaluation exercise should endeavor to employ 

several methods from these evaluation categories consistent with the available observational 

databases and the goals of the model application.  Components of regional air quality modeling 

systems (emissions model, meteorological model, air quality model) should be evaluated as 

interdependent components all affecting the final air quality model estimates.  A robust 

evaluation outcome relies on the use of several evaluation categories and methods providing 

different perspectives on model performance.  No one method, metric, statistic, or graph is likely 

to provide a complete model evaluation.  The model evaluation process is likely to involve a 

nonlinear path, with the results of a given analysis suggesting follow-on analyses that may be 

unique to a particular model application.  Of note is the growing interest in probabilistic 

evaluation and the use of modeling ensembles, and the possibility of incorporating more 

sophisticated space-time analysis approaches than have been used in the past.  Further research is 

encouraged in the development, application, and refinement of such probabilistic evaluation 

methods. 
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Appendix A. Statistical Metrics Commonly Used in Regional Air Quality Model 
Operational Evaluations 
 

Standard metrics   Standard metrics for air quality performance evaluation focus on measures 

that compare the observed value and modeled quantity at a number of locations across space 

and/or time.  Each of these metrics assumes the existence of a number N of pairs of modeled and 

observed concentrations iM  and  where the index i might vary across time at a given location, 

or across space for a given time, or both.  Definitions and discussions of the standard metrics are 

contained in several widely-used papers on AQM evaluation, including Fox (1984), Venkatram 

(1979, 1988), Hanna (1989), Weil et al. (1992), Chang and Hanna (2004), and ASTM (2005).  

The metrics used for small and mesoscale models are also valid for regional models, in most 

cases.  An important concern that is unique to 3-D (grid volume) regional models is that the 

model prediction represents an average over the grid volume whereas the observation is at a 

single point. 

iO

 

Metrics based on differences 

This first section concerns metrics that have the dimensions of the concentrations themselves, 

with no normalizing by terms such as the average concentration. 

 

 The mean bias function, defined as,
 

(
1

 = )MB iM
N iB O−∑  is a measure of the average over-

or-under estimation of the model for all of the data considered.  Note that the mean bias can be 

calculated as i) the average of the differences or ii) the difference of the average modeled and 

observed concentration.  For the mean bias metric, individual positive and negative errors tend to 

compensate (i.e., cancel) each other.  Thus, if the model over-estimates at some locations and 
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under-estimates at others within a region, the overall bias averaged over the region may be 

relatively small, even if the magnitude of the local errors are relatively large.   

 

 The  mean absolute gross error and the Root Mean Square Error (RMSE) are measures of the 

scatter.  As mentioned above, it is possible to have an excellent (near-zero) mean bias but still 

have much scatter.  The mean absolute gross error is defined as 1
MAGE i iN

E M O= −∑ .  It 

characterizes the average spread of the departure between model predictions and observations.  

In this metric, errors cannot compensate each other; it therefore provides an additional useful 

measure of the model agreement with observations.  The RMSE is similar to the absolute gross 

error except, instead of using the absolute values of the differences between observed and 

modeled values, the squares of those differences are used: 
1

2 21[ ( ) ]ORMSE i iE M
N

= −∑ . This 

metric is more heavily influenced by a few large errors.  Thus EMAGE is more robust than ERMSE, 

since large differences between observed and modeled values at some isolated pairs have less 

impact on EMAGE.    

 

Normalized Metrics for Mean Bias 

The differences between observed and modeled values can be normalized in several ways as 

discussed by Weil et al. (1992), Chang and Hanna (2004) and ASTM (2005).  A simple way of 

doing this is to normalize the concentration difference by a combination of the observed and/or 

predicted concentrations.  For example, the mean normalized bias contains the observed 

concentration as the divisor, 1 i i
MNB

i

B
N

M O

O

−
= ∑

 
.  This is the mean of the relative model bias.  
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This metric has the undesirable characteristic that, if the values of the individual observations are 

very small, then very large numbers can be obtained.   The possibility of very large numbers can 

be partially eliminated by normalizing by the mean observed concentration, yielding the 

normalized mean bias 
( )i i

NMB
i

M O
B

O
−

= ∑
∑

 .  As for the dimensional bias described earlier, 

positive and negative errors tend to compensate each other in any mean bias calculation.   

 

 The measures of scatter avoid compensating errors.  For example, one could use the mean 

normalized absolute error 1 i i
MNAE

iN
M O

E
O
−

= ∑ , or the normalized mean absolute error, 

i i
NMAE

i

M O
E

O
−

= ∑
∑

.   The latter metric is less influenced by large outliers. 

 

 With the metrics in the above paragraph, overpredictions are artificially given more weight 

than underpredictions, as MNBB  and NMBB  are bounded by -1 for underpredictions and EMAGE and 

ENMAE are bounded by 0 for underpredictions; thus these are asymmetric metrics.  Note that if the 

normalization is by the predicted concentration, the same type of asymmetry would result.  

 

 To overcome the asymmetry of the previous normalized metrics, one could normalize by the 

average of the observed and predicted concentrations.  This leads to the fractional 

bias,
2

(
(

)1
) /

i i
FB

i i

M

M

O
ON

B −=
+∑  , taking values between −2 and +2.  A more widely used metric is 

the normalized mean fractional bias where the overall mean of (Mi+ Oi) is used as the 

normalizing factor. 
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     Many AQM evaluation experts prefer the symmetry offered by the geometric mean, MG = 

exp(<ln(Mi/Oi)>), where <> represents an average (see Weil et al., 1992; Chang and Hanna, 

2004).  With MG, a factor of 100 underprediction has symmetry with a factor of 100 

overprediction.  As shown by Chang and Hanna (2004), all of these metrics are strongly 

influenced by what is used for the minimum or threshold concentration, which is determined by 

the background and the instrument response uncertainty. 

 

Normalized Metrics for Scatter 

     A simple and robust normalized measure of scatter is FAC2, or the fraction of predictions 

within a factor of two of observations.  This measure is insensitive to very large outliers. 

Sometimes FAC5 or FAC10 are used, too. 

 

   In keeping with our earlier definitions, to avoid compensating positive and negative errors, 

one could use the fractional absolute error (

1
) /

i i
FAE

i iMN 2

M O
B

O
−

=
+

∑
 , which takes values between 

0 and 2.  These two metrics are very compressed beyond  ±1. Or, the Normalized Mean Square 

Error (NMSE) is defined as the root mean square of all of the (Mi-Oi), divided by the average of 

(Mi- Oi)/2.   

 

    Here too, many model evaluation experts prefer the geometric variance, VG = exp 

(<(ln(Mi/Oi)2>)1/2, as explained by Weil et al. (1992).  MG concerns the mean bias and VG 

concerns the scatter, and both are symmetrical.  A perfect model would have MG = VG = 1.0.  
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Factor-based metrics 

Another method, using factor-based metrics, to overcome the asymmetry problem has recently 

been introduced by Yu et al. (2006).  They suggest using a ratio between modeled and observed 

quantities that would be defined differently if the observed quantity exceeds the modeled than if 

the modeled exceeds the observed.  They define /i iF M Oi=  if the modeled value is greater or 

equal than the observed, and  otherwise.  The sign of the function Fi would give the 

sense of the departure, and its absolute value the magnitude of the departure.  They calculate 

the

/i iF O M= − i

MBB , MAGEE  metrics using a function of the factor  rather than differences between 

observed and modeled values, obtaining then, the mean normalized factor bias, and the mean 

normalized absolute factor error: 

'iF s

                                                   
1

MNFB iN
B G= ∑

, 

          
1

MNAFE iN
E G= ∑

 

where ( 1i
i

i

MG
O

= − ) i if iM O≥  and (1 )i
i

i

OG
M

= − otherwise.  They define another factor-based 

metric that depends not o lationship between n the re iM and  at each location, but on the overall 

magnitude of the m

iO

odel bias.  They use M  to deno le mean of the modeled values, 

and 

te the samp

O  to denote the sam ean of the observed v  they calculate the normalized 

mean bias factor: 

                     

ple m alues.  Then,

( )i i
NMBF

i

M OB
O
−

=
∑

∑
 

if ,M O≥  and 
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( )i i
NMBF

i

M OB
M
−

= ∑
∑  

otherwise.  This is a generalization of the metric NMBB  but introducing a normalizing 

function that is different when ,M O≥  than when OM < .   

 

 The normalized mean absolute error factor would be a generalization of  to account NMAEE

for the lack of symmetry; it is defined as i i
NMAEF

i

M O
E

O
−

= ∑
∑

, if ,M O≥  and 

 i i
NMAEF

i

M O
E

M
−

= ∑
∑

, otherwise. 

 

 All these factor-based metrics overcome the asymmetry problem between overestimation and 

underestimation. 

 

Categorical metrics   A model’s ability to correctly predict the exceedance of a threshold value of 

a variable can be measured by a series of categorical metrics (Joliffe and Stephenson, 2003; Eder 

et al., 2006).  The threshold is typically set at some meaningful value that is proportional to a 

health or welfare effect in the case of meteorological and AQMs.  For example, Figure A-1 

illustrates a scatter plot of modeled and observed maximum 8-hr O3 concentrations, with the 

threshold of 85 ppb (level of the U.S. National Ambient Air Quality Standard) indicated by solid 

line boundaries separating the plot into four quadrants (a, b, c, d).  Traditional measures of 

categorical performance include Accuracy %)100( ⎟
⎠
⎞

⎜
⎝
⎛

+++
+

=
dcba

cbA , Bias )( ⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
db
baB , 
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False Alarm Ratio %)100( ⎟
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⎝
⎛

+
=

ba
aFAR , Critical Success Index %)100⎟
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⎞

⎜
⎝
⎛

++
=

dba
bCSI( , 

and Hit Rate %)100( ⎟
⎠
⎞

⎜
⎝
⎛

+
=

db
bH .  A measures the percentage of modeled estimates that 

correctly predicts the exceedance or non-exceedance of the measured variable.  This metric can 

be greatly influenced by the non-exceedance category where exceedance is a clear minority 

event.  B indicates fractional levels of model underprediction or overprediction of the threshold 

value (<1 indicates underprediction; >1 indicates overprediction).  The FAR measures the 

percentage of time a threshold exceedance was modeled but did not actually occur in the 

observations.  The CSI indicates how well the exceedances were estimated by considering false 

alarms and missed forecasts of exceedances; it is not skewed by the number of correctly forecast 

non-exceedances, as can happen with A.  Finally, H, also known as the probability of detection, 

indicates the percentage of actual exceedances that are correctly estimated by the model. 

 

 These categorical metrics traditionally have been used with paired data, model/observations 

paired in space/time or at least in space.  Forecasts from regional AQMs are often evaluated on a 

regional or metropolitan scale rather than at a single monitor, so the use of the above metrics can 

be limiting for that purpose.  More recently a set of new categorical metrics has been 

demonstrated based on area-weighting concepts (Kang et al., 2007).  For example, the area-

weighted A and FAR metrics are defined by matching observed and modeled threshold 

exceedances within an area (i.e., model grid cells) surrounding the observation location.  This 

new concept for application of categorical metrics better represents how air quality forecasts are 

issued in practice. 

 



 

Metrics for determining the ability of the model to match space and time variations of the 

observed data   The Figure of Merit (FOM) has been used for over 30 years and the Measure of 

Effectiveness (MOE) is a more recent metric for assessing the ability of the model to match 

observed space and/or time patterns.   

 

 FOM is a simple measure where fractional overlap is calculated of the areas enclosed by a 

modeled and observed contour corresponding, for example, to the NAAQS.   For some problems, 

it is easy for a small 20 degree error in wind direction to cause the observed and modeled areas 

to not overlap at all, even though they are close to each other and have the same area.  If 

agreement in time is also required, a slight error in timing can cause the modeled and predicted 

contours to miss each other.  This was seen in the European Tracer Experiment (ETEX), where a 

cloud of tracer material was released in France and tracked for 2000 km and three days (Girardi 

et al., 1998).  After three days the cloud was about 1000 km in diameter.  Twenty regional linked 

meteorological and dispersion models were tested, and in many cases, the modeled and observed 

clouds “looked” about the same, but FOM in space and/or time was small because the observed 

cloud was displaced a few hundred km in space or a few hours in time. 

 

 MOE (Warner et al., 2004) is similar to FOM but allows for different weighting for false 

negatives (large underpredictions) versus false positives (large overpredictions).  It is worse for a 

model to have false negatives because in that case the public would be told that they have no 

cause for alarm and it would happen that concentrations were high.   
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Determining statistical confidence limits on any metric  Once a set of observed concentrations is 

available and sets of one or more model predictions are also available for the observed locations 

and times, it is possible to carry out statistical analyses with the paired data.  For example, if Oij 

represents the observation at location i and time j, and Mijk represents the modeled value for 

model k at location i and time j, then at each i and j there is a set (Oij, Mij1, Mij2, …MijK), where K 

is the number of models.  ASTM (2005), Efron (1983), and Hanna (1989) describe how 

bootstrap resampling and jackknife techniques can be used to determine statistical confidence 

limits on any metric and on the difference in the metrics calculated for pairs of models.  The 

most common use of the method is, for example, to determine whether or not one model’s mean 

bias is significantly different from zero at the 95% confidence level.  Another widely-used test is 

to determine whether the difference between two models’ metric is significantly different from 

zero at the 95% confidence level.  For example, if model 1 has a FAC2 of 0.72 and model 2 has a 

FAC2 of 0.75, is this difference statistically significant?  
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Figures 
 

Figure 1. A suggested framework for organizing and identifying the purpose and questions 
addressed in various regional air quality model evaluation analyses. 

 
Figure 2.  Spectral decomposition of O3 time series from CMAQ model results (blue line) and 
observations from ground monitoring networks (red line).  Time series of model and observed 
data used in the analysis covers a 15-year period ending in 2005. 
 
Figure 3. (a) Example of soccer plot illustrating CMAQ model performance for sulfate 
particulates (SO4) for summer 2002 using monitoring data from several surface networks across 
the U.S.  Dashed lines indicate various levels of performance “goals”.  (b) Taylor diagram for 
model results in Paris region for 1999.  Symbols represent results for distinct models.  Values 
along axes are in ppb.  
 
Figure 4.  An example of using process analysis within an air quality model to track the influence 
of different model processes including emissions, transport, chemical production and loss on 
ozone concentrations.  This illustration comes from Henderson (2008), where grid resolution 
differences (4 km, 1 km grid cells) in these process contributions were compared. 
 

Figure 5.  Example of dynamic evaluation of an air quality model-predicted change in ozone 
concentrations from summer 2002 to 2005 from Gilliland et al. (2008).  The results illustrate the 
relative change in ozone when comparing the ≥95th % daily 8-hour maximum levels from the two 
summers.   

 
Figure 6.  Time series of daily maximum 8-hour O3 concentrations (ppb) for July 2002 at a 
monitoring site located in the Birmingham, Alabama metropolitan area.  Gray lines are results 
from individual members of a 200-member CMAQ model ensemble; black line/symbols are 
observed data from the monitor.  
 
Figure 7.  Distribution of CMAQ model output at six CASTNet locations for SO2 (ppb). The 
circle in each graph indicates the CASTNet value at the given sites. 
 
Figure 8.  Aggregation of United States surface air monitoring stations.  
 
Figure A-1.  Example scatterplot used in categorical model forecast evaluation of 8-hr maximum 
O3 concentrations, illustrating four quadrants formed from the threshold boundaries (lines 
indicated as T).   
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 72



 

 73

 
 
Figure 4. 
 



 

Figure 5. 
 

 74



 

 

 
 
Figure 6.

 75



 

 76

 

Florida site Michigan site 

North Carolina site Indiana site 

Maine site Illinois site 

 
 
Figure 7. 



 

 
 

 
 
Figure 8. 

 77



 

 78

 
 
 
 
 
 
 

              
Figure A-1. 
 
 
 


