# Uncertainty Assessment of CMAQ Dry Deposition Predictions

# Robin L. Dennis Atmospheric Modeling Division

April 5, 2006 Chesapeake Bay Modeling Subcommittee Meeting Annapolis, MD

# Uncertainty Assessment of CMAQ Dry Deposition

- We decided that directly providing dry deposition from CMAQ is the approach with the least introduction of error.
- We are taking advantage of an opening in the schedule to better understand uncertainties in the modeled dry deposition we are passing to the watershed model.
- Emission uncertainties (inputs uncertainties) affect the model output predictions. Here, I am interested in process-level uncertainties that have the potential to create a bias in the values handed off to the Bay models.

- There are two process-level uncertainties that we are aware of (parameterizations in CMAQ) that will affect dry deposition predictions.
  - Heterogeneous conversion of NO<sub>2</sub> to HNO<sub>3</sub> (affects Ox-N)
    - Tied to parameterization of the reaction probability,  $\gamma$ , for the heterogeneous production of HNO<sub>3</sub> from N<sub>2</sub>O<sub>5</sub>. Not well known.
    - We use the most recent (lowest) literature values for γ. Recent field experiments are consistent with model sensitivity analyses to suggest γ should be even lower.
  - Dry deposition flux of  $NH_3$  (affects Red-N)
    - Tied to uncertainty about the ammonia deposition flux due to lack of measurements (very hard to measure flux) and recognition that there is a bi-directional flux from vegetation and also emissions from soils that confound interpretation of data.
    - Almost no reliable North American data. The judgment is that our latest parameterizations in CMAQ result in NH<sub>3</sub> fluxes that are too high. We don't know where the truth is, but have some judgments, based on experiments, about the ballpark of a closer bound.

## Starting Point for the Heterogeneous Production of HNO<sub>3</sub> Issue or (what we call) the N<sub>2</sub>O<sub>5</sub> Issue





 $\gamma$  = reaction probability

- Sensitivity studies with CMAQ indicated reducing γ by a factor of 10 produced marked improvement in the simulation of total nitrate (compared to CASTNet measurements). But a factor of 10 seemed to go too far.
- We defined a sensitivity for Chesapeake Bay where we reduced γ by a factor of 7 (γ/7 Sensitivity).
  - Base = J4f
  - Sensitivity = J4g
- There is a clear improvement in CMAQ's total-nitrate predictions, in every season.

 (NO3 + HNO3) AIR CONCENTRATION (UG/M3)
 (NO3 + HNO3) AIR CONCENTRATION (UG/M3)

 CMAQ (J4f)
 CMAQ (J4g)

 VS. CASTNET (2001–2003 AVERAGED)
 VS. CASTNET (2001–2003 AVERAGED)

 LIMITED TO SITES IN THE EASTERN U.S.
 LIMITED TO SITES IN THE EASTERN U.S.

 ANNUAL
 ANNUAL







REGRESSION THROUGH ORIGIN RUNNING MEDIAN SMOOTH LINE CASTNET SITES IN CHESAPEAKE BAY



### **Comparison of Total-Nitrate Concentrations: Model vs. Obs**

|        | CMAQ Regressed<br>Against CASTNet: | CMAQ Regressed<br>Against CASTNet: |
|--------|------------------------------------|------------------------------------|
|        | Base                               | γ/7 Sensitivity                    |
|        | (slope)                            | (slope)                            |
| Annual | 1.38                               | 1.06                               |
| Spring | 1.35                               | 1.06                               |
| Summer | 1.21                               | 1.07                               |
| Autumn | 1.50                               | 1.15                               |
| Winter | 1.45                               | 1.00                               |

## Dry deposition of Ox-N did not change as much as might be expected by considering Total-nitrate alone.



| NITROGEN DEP | OSITION TO THE CHESA | APEAKE BAY (LA  | ND + WATER)     |
|--------------|----------------------|-----------------|-----------------|
|              | CMAQ 36km - J4f an   | d J4g           | ,               |
|              | NO BIAS ADJUSTM      | ENTŠ            |                 |
|              | ANNUAL               | Base            | Sensitivity     |
|              |                      | J4f             | J4g             |
| MAIN         | SPECIES              | (lbs)           | (lbs)           |
| 1) DRYOX_N   | DRYNO2_N             | 31,967,088      | 34,243,019      |
|              | DRYNO_N              | 9,273,265       | 9,597,669       |
|              | DRYN2O5_N            | 8,671,448       | 16,414,557      |
|              | DRYHNO3_N            | 121,266,418     | 99,518,580      |
|              | DRYHONO_N            | 262,290         | 271,378         |
|              | DRYNO3T_N            | 3,577,350       | 2,652,012       |
|              | DRYORGNO3T_N         | 3,627,020       | 3,713,229       |
|              | DRYPANT_N            | 11,920,777      | 12,189,141      |
|              |                      |                 |                 |
| 1) DRYOX_N   |                      | 190,565,657     | 178,599,585     |
| 2) WETOX N   | WETN2O5 N            | 6,803           | 11,798          |
| , _          | WETNO3T_N            | 108,311,822     | 105,550,661     |
| 2) WETOX N   |                      | <br>108,318,625 | <br>105,562,458 |
| , <u> </u>   |                      |                 |                 |
| 3) TOTALOX_N | TOTALOX_N            | 298,884,282     | 284,162,044     |



DRY OXIDIZED NITROGEN DEPOSITION (N-KG/HA) CMAQ (J4g) VS. CMAQ (J4f) LIMITED TO NADP SITES IN THE EASTERN U.S. SUMMER



WINTER





AUTUMN



### **Change in Dry Deposition Associated with γ/7 Sensitivity**

|        | Ox-N Dry<br>Deposition | Red-N Dry<br>Deposition |
|--------|------------------------|-------------------------|
| Annual | -6.3%                  | 3.8%                    |
| Spring | -5.1%                  | 3.8%                    |
| Summer | -1.4%                  | 0.3%                    |
| Autumn | -5.6%                  | 5.5%                    |
| Winter | -16.0%                 | 13.2%                   |

DRY OXIDIZED NITROGEN

CMAQ 2001 - J4g / J4f ANNUAL





#### DRY OXIDIZED NITROGEN



In terms of the total nitrogen deposition to the Chesapeake Bay watershed, the uncertainty in the heterogeneous production of  $HNO_3$  does not contribute a significant degree of uncertainty to the input of total N.



Uncertainty: Heterogeneous conversion of NO<sub>2</sub> to HNO<sub>3</sub> (affects Ox-N)

- This uncertainty is not a serous source of ox-N deposition uncertainty.
- This uncertainty/bias is much smaller than the estimated spatially-associated uncertainty in NOx emissions of roughly ±40-45%.
- We expect CMAQ to update over time to move in the direction represented by this sensitivity.
- The impact of the expected improvements to CMAQ deposition predictions passed to the Chesapeake Bay Program are expected to be small.

# 2. Dry deposition flux of NH<sub>3</sub>

 Deposition Flux is conceptually represented as: Flux = [Concentration] x Vd,

> where Vd is a derived deposition velocity based on a resistance-to-uptake paradigm

- The Extended RADM NH<sub>3</sub> Vd had been boosted to get it closer to the published European values.
- The CMAQ NH<sub>3</sub> Vd was updated to address the earlier RADM issues and to now include the effects of water/dew on surfaces. This boosted the CMAQ NH<sub>3</sub> Vd significantly. Many average NH<sub>3</sub> Vd's now look high relative to European averages.

#### Average Deposition Velocity Across Spatial Domain June 25, 2002



The CMAQ  $NH_3$  Vd is now between that of  $HNO_3$  and  $SO_2$  in agreement with conventional wisdom.



- Recent North American flux measurements and greater understanding about the bi-directionality of ammonia airsurface exchange, suggests the NH<sub>3</sub> flux should be closer to SO<sub>2</sub> and could be even lower over some agricultural areas.
- What the ammonia flux should be is not well established and is an area of investigation. What we can do is make an educated guess as to a definable lower bound for our work as a sensitivity study to bring us closer to what we think is the truth. But truth still eludes us.
- We defined a sensitivity in which the current CMAQ NH<sub>3</sub>
   Vd was made equal to the SO<sub>2</sub> Vd. The spatial pattern remains close to what it was.
  - Base = J4f
  - NH<sub>3</sub> Sensitivity = J4fs

## Dry deposition of Red-N did change significantly.





| NITROGEN DEPOS | SITION TO THE CH | IESAPEAKE BAY   | (LAND + WATER) |
|----------------|------------------|-----------------|----------------|
|                | CMAQ 36km - J4   | If and J4fs     |                |
|                | NO BIAS ADJUS    | STMENTS         |                |
|                | ANNUA            | L               |                |
|                |                  | J4f             | J4fs           |
| MAIN           | SPECIES          | (lbs)           | (lbs)          |
| 1) DRYOX_N     | DRYNO2_N         | 31,967,088      | 31,995,216     |
|                | DRYHNO3_N        | 121,266,418     | 115,857,579    |
|                | DRYNO3T_N        | 3,577,350       | 4,382,215      |
| 1) DRYOX_N     |                  | <br>190,565,657 | 186,050,956    |
| 2) WETOX_N     |                  | 108,318,625     | 109,603,205    |
| 3) TOTALOX_N   | TOTALOX_N        | 298,884,282     | 295,654,161    |
| 4) DRYRED_N    | DRYNH3_N         | 76,448,294      | 47,658,106     |
|                | DRYNH4T_N        | 16,539,245      | 18,793,707     |
| 4) DRYRED_N    |                  | 92,987,539      | 66,451,812     |
| 5) WETRED_N    | WETNH4T_N        | 101,750,572     | 113,825,595    |
| 6) TOTALRED_N  | TOTALRED_N       | 194,738,111     | 180,277,407    |







### Change in Dry Deposition Associated with SO<sub>2</sub> Vd Sensitivity

|        | Red-N Dry<br>Deposition | Ox-N Dry<br>Deposition |
|--------|-------------------------|------------------------|
| Annual | -28.5%                  | -2.4%                  |
| Spring | -27.1%                  | -3.6%                  |
| Summer | -27.8%                  | -0.7%                  |
| Autumn | -31.7%                  | -2.7%                  |
| Winter | -30.3%                  | -3.0%                  |

## DRY REDUCED NITROGEN

CMAQ 2001 - J4fs / J4f ANNUAL



#### DRY REDUCED NITROGEN

CMAQ 2001 - J4fs / J4f SUMMER



#### DRY REDUCED NITROGEN

CMAQ 2001 - J4fs / J4f WINTER





# Uncertainty: Dry deposition flux of NH<sub>3</sub> (affects Red-N)

- The NH<sub>3</sub> deposition velocity uncertainty does create a modest uncertainty in red-N dry deposition, given our judgment of using the SO<sub>2</sub> deposition velocity as an indicator of the domain of truth.
- This uncertainty/bias is smaller than the estimated spatially-associated uncertainty in ammonia emissions/ deposition of roughly ±55% (±50% for deposition).
- We do not expect any upgrades to CMAQ in the next couple of years until we collect more field study data (starting this summer) and analyze it. This uncertainty or bias will stay with us for a while.



The two uncertainties will not combine linearly. The combined effect will be less. Thus the overall bias we are estimating here is roughly 7% of the total atmospheric N input into the Watershed model, with most of it coming from the ammonia Vd uncertainty, except in winter.

# Establishing the Way Forward

- The potential biases are smaller than typical uncertainties. They appear tolerable. (Especially relative to total N dep.)
- We, in general, do not know where truth really is. We only have judgments about where it might be. Any bias adjustment would be a judgment call. The judgments do not have much literature support.
- CMAQ will be used for regulatory applications (most likely) without any bias adjustments. Consistency is desirable.
- The prudent approach seems to be to use the CMAQ results as is. We can perform sensitivity calculations later to see the effect on strategy delta changes.
- Recommendation: move forward with CMAQ scenarios with present system and outputs.

# **Planned CMAQ Scenarios**

- 2010 CAIR+CAMR+BART
  - End of April
- 2020 CAIR+CAMR+BART (new growth projections to take into account)
  - End of May
- 2020 Allocation of State Responsibility
  - PA, VA, MD, WV, and NY
  - PA, VA, MD, WV, NY and DE as a single set
    - End of November
- 2020 Sector Responsibility
  - EGU, Mobile and Industry (other by subtraction)
    - End of January 2007
  - - - may run into an issue of money by this point - - -
- 2020 LOT (from OAQPS)
  - End of February 2007
- 2030 Long-Range Projection (from OAQPS)
  - End of March 2007