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A regional model for atmospheric photochemistry and particulate matter is used to predict
the fate and transport of five trace metals: lead, manganese, total chromium, nickel, and
cadmium over the continental United States during January and July 2001. Predicted
concentrations of the metals are compared to observations. Lead predictions have the
lowest mean differences with observations and the highest correlation coefficients. They
best agree with observations made in January over residential and commercial areas in the
eastern United States and worst with observations over remote forests and deserts located
in the western United States during July. Manganese predictions show similar abilities to
reproduce observations but had larger changes between months. Chromium and nickel
predictions show diminishing ability to reproduce observations over both urban and rural
areas. Cadmium predictions show the least ability to reproduce observations. Potential
causes are examined for the errors in predictions. For errors in lead,manganese and perhaps
chromium predictions, aerial suspension and biomass burning are suspected because
simulations did not include emissions from these sources. Nickel, cadmium and, to a lower
extent, chromium predictions suffer from errors in the emissions that represent current
anthropogenic activities. Predicted concentrations of all metals show errors from not
including sub-grid processes in meteorological and emission rates. Examples include sea
breeze circulation along coastal areas and individual sources in urban areas. These errors
reduce the ability to reproduce the time dependence of observations.
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1. Introduction

Trace metals in particulate matter can have serious health and
environmental effects. Although mercury has received great
amounts of attention recently, lead, a criteria as well as a
Hazardous Air Pollutant (HAP), continues to adversely affect
human health despite decades of control efforts (U.S. EPA,
2006a). Several other metals are classified by the United States
Clean Air Act as HAPs based on known or suspected environ-
mental and ecological effects. For example, studies link
exposure to chromium, manganese, nickel, and cadmium to
chronic health effects such as cancer, asthma and cardio-
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pulmonarydisease (Schlesinger et al., 2006). Exposure pathways
include inhaling ambient air concentrations and consuming
contaminated water, soil and food. Based on inhalation risks to
human health posed by these elements, the United States
Environmental Protection Agency (US EPA) lists these five trace
metals and three others as among the worst urban air toxics
(www.epa.gov/ttn/atw/nata/34poll.html).

These potential health risks motivate research on how air
concentrations of trace metals vary with location and time as
well as what atmospheric processes determine the concentra-
tions. Monitoring sites can be used only to a limited extent.
Theymeasure concentrations at select locations and times but
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cannot be deployed in sufficient number to characterize the
concentrations over large and diverse geographic areas, such
as the United States. Also, monitors only measure current
concentrations and cannot readily predict how concentrations
change for different emissions and meteorological scenarios,
such as in emission control strategies or climate variability.
For these reasons, atmospheric models are important tools for
understanding the fate and transport of tracemetals as well as
predicting air concentrations and atmospheric deposition.

The US EPA has used an atmospheric model to assess
concentrations of trace metals and their health risks, as
reported in the National Air Toxics Assessment (U.S. EPA,
2006b). Previous assessments used ambient air concentrations
estimated by the Assessment System for Population Exposure
Nationwide (ASPEN) model (Rosenbaum et al., 1999). ASPEN
calculates the concentrations by dispersing emissions in a
Gaussian plume such as in the Industrial Source Complex
Long Term (U.S. EPA, 1995) model. ASPEN has several short-
comings. Emissions affect concentrations only up to 50 km
away from the source thereby underestimating concentra-
tions because trace metals exist in Particulate Matter with
diameters less than 2.5 μm (PM2.5). Such aerosols undergo
long-range transport based on their low dry deposition
velocities and sporadic scavenging by precipitation. ASPEN
also assumes a constant sedimentation velocity because it
does not use an aerosol distribution that depends on time and
location. The assumption fails over regional distances and
seasonal periods over which the predicted concentrations are
needed. In future assessments, the EPAwill attempt to remove
these problems, but not all of them, by using an improved
Gaussian plume model called the American Meteorology
Society-Environmental Protection Agency Regulatory Model
(Cimorelli et al., 2005).

The above problems may be overcome by using Eulerian
models that simulate atmospheric photochemistry and parti-
culate matter. Such models determine spatial and temporal
changes in particulate matter with size distributions by
solving mass continuity equations that include emissions,
advection, diffusion, photochemical production, wet, and dry
depositions. Previous studies have used Eulerian models to
simulate trace metals in PM2.5 from global to urban scales.

The Meteorological Synthesizing Centre — East model
simulated fate and transport of mercury, lead, and cadmium
emissions over Europe (Ilyin et al., 2005, 2006). Results were
used to examine the roles of trans-boundary transport versus
emissions and have concluded that simulations need to
include natural emissions such as aerial suspension of dust
and sea salt. Over North America, the Global and Regional
Atmospheric Heavy Model (Dastoor and Larocque, 2004)
simulated atmospheric mercury to provide boundary condi-
tions for nested simulations by several air quality models
including a version of Community Multi-scale Air Quality
(CMAQ) modeling system for atmospheric mercury (Bullock
and Brehme, 2002). Their predictions were used for an inter-
comparison between regional mercury models (Bullock et al.,
2006). The Comprehensive Air Quality Model with extensions
(CAMx) was used to estimate the amounts of hexavalent
chromium, total chromium and diesel emissions found in
PM2.5 over southern California (Marshall et al., 2006) in order to
assess exposure from ambient and indoor concentrations.
We have adapted the CMAQ modeling system (Byun and
Ching, 1999; Byun and Schere, 2006) to simulate air concentra-
tions and deposition of HAPs, including several trace metals.
The adapted model is part of version 4.6 of the modeling
system and is available from the Community Modeling and
Analysis System (http://www.cmascenter.org). To test the
model, we completed simulations over the continental United
States and compared predicted concentrations to observations
of five trace metals: lead, manganese, chromium, nickel and
cadmium. We also attempt to demonstrate the model and to
explore problems in simulating tracemetals over themodeling
domain. The following sections describe the model, simula-
tions and comparison to observations. The final sections
discuss potential reasonswhy predictions differ from observa-
tions and suggest how simulations could be improved.
2. Modeling

Our study uses version 4.6 of the CMAQ modeling system that
simulates urban and regional air quality. The Chemical Trans-
portModel inCMAQ(CCTM)usesoneof twomechanisms for the
photochemistry for HAPs: either the Carbon Bond Mechanism
version 05 (Luecken et al., in press; Yarwood et al., 2005) or the
SAPRC99 mechanism (Carter, 2000) modified to include addi-
tional species. The additional species represent HAPs as solely
gas or aerosol phase compounds. Our study uses the supple-
mented version of SAPRC99 called SAPRC99TX3 in CMAQ
version 4.6. Luecken et al. (2006) described how themechanism
was supplemented with gas phase HAPs and evaluated predic-
tions for some of these pollutants. To simulate aerosol phase
HAPs, we adapted the aerosol module within the CCTM that
uses three lognormal modes to simulate aerosol microphysics
and chemistry (Binkowski and Roselle, 2003). Aerosol phase
HAPs track components within particulate matter and are
treated as chemically inert but undergo the samemicrophysical
processes and deposition rates determined within the aerosol
module. This paper considers five trace metals: cadmium,
chromium (trivalent and hexavalent), lead, manganese, and
nickel. Each metal is treated as aerosol phase HAP within the
CCTM. Trivalent and hexavalent chromium likely violate the
assumption about being chemically inert because research
(Kotas and Stasicka, 2000; Zhang, 2000; Seigneur and Constan-
tinou, 1995) indicates that reversible changes occur between
valencestatesof chromiumvia chemistrywithinclouddroplets.
However, thekinetics arenotwell understood so theCCTMdoes
not simulate the chemical process. Neglecting it should not
affect predictions for total chromium because valence changes
do not alter the volatility of chromium. Hence, this paper
presents observations andpredictions for total chromium.Total
concentrations were calculated after model simulations.

Simulations were performed for two periods covering
January and July 2001. The computational grid used 147 by
112 grid cells with horizontal dimensions equal to 36×36 km2

covering the continental United States. Vertically, the model
domain spanned from the surface to 104 Pa (≈12 km) and
divided the distance into 14 layers based on sigma pressure
coordinates. Simulations used meteorological data produced
by the Penn State/NCAR Mesoscale Model (MM5) (http://box.
mmm.ucar.edu/mm5/), version 3.6.1. McNally (2003) and
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Gilliam et al. (2006) describe the configuration used inMM5. To
create meteorological inputs for the CCTM, MM5 results were
processed through the Meteorology-Chemical Interface Pro-
cessor (MCIP), version 3.2, part of the CMAQmodeling system.
The horizontal and vertical advection used an advection
method based on Yamartino (1993). Horizontal diffusion used
the multi-scale method while vertical diffusion was based on
the Atmospheric Convection Mechanism (Pleim, 2007).

Initial and boundary concentrations used represent clean air
concentrations (Gipson, 1999) and did not have values for the
tracemetals simulated. Observations of tracemetals have been
collected over the remote marine boundary layer (Witt et al.,
2006; Spokes et al., 2001). For the metals that are being studied,
the total observed concentrations varied from 0.010 to 0.200 ng/
m3 and concentrations in PM2.5 were less than 0.050 ng/m3. As
shown in Table 1, PM2.5 concentrations in themarine boundary
layer are generally below the lowest concentrations observed
over rural locations in the United States that include the
agricultural areas, forests and deserts. Predicted concentrations
should not significantly alter if observations in the marine
boundary layer were used as boundary conditions.

Simulationsusedhourly emissions of the tracemetals, other
HAPs, Volatile Organic Compounds and inorganic compounds
based on annual emissions in the 1999 National Emission
Table 1 – Comparison statistics based on all observations

Metal Month Location #
Observations

Observed
averagea

(observed S.D.)

Me
(mean

Cd Jan Rural 3 0.000 (0.000) 0.13
Cd Jul Rural 140 0.972 (1.953) −0.89
Cr Jan Rural 922 0.488 (0.945) −0.29
Cr Jul Rural 1219 0.630 (2.052) −0.38
Mn Jan Rural 922 0.827 (1.847) 0.03
Mn Jul Rural 1219 1.252 (1.949) −0.48
Ni Jan Rural 922 0.251 (0.873) 0.05
Ni Jul Rural 1219 0.492 (1.101) −0.21
Pb Jan Rural 922 0.999 (1.564) −0.00
Pb Jul Rural 1219 1.247 (1.971) −0.43
Cd Jan Suburban 99 1.124 (1.759) −0.89
Cd Jul Suburban 467 1.188 (2.087) −1.02
Cr Jan Suburban 99 1.266 (1.474) 0.50
Cr Jul Suburban 467 1.325 (2.312) 0.50
Mn Jan Suburban 99 3.524 (5.199) 0.17
Mn Jul Suburban 467 3.780 (3.638) −1.70
Ni Jan Suburban 99 3.043 (5.651) −1.93
Ni Jul Suburban 467 2.930 (4.720) −1.85
Pb Jan Suburban 99 7.233 (6.837) −3.47
Pb Jul Suburban 467 5.475 (10.740) −1.72
Cd Jan Urban 133 1.291 (2.309) −1.07
Cd Jul Urban 342 1.249 (2.244) −1.09
Cr Jan Urban 133 1.467 (2.048) −0.28
Cr Jul Urban 360 1.528 (2.290) −0.68
Mn Jan Urban 133 3.629 (9.565) −0.77
Mn Jul Urban 360 4.512 (10.310) −2.39
Ni Jan Urban 133 12.970 (66.830) −11.59
Ni Jul Urban 360 2.863 (3.467) −1.77
Pb Jan Urban 133 9.033 (10.000) −0.69
Pb Jul Urban 360 4.501 (7.759) −0.14

a Observed average and standard deviation (S.D.) are in ng/m3.
b Mean bias equals 1=Nð ÞPN

i¼1 predictedi � observedið Þ and relative mean bia
c Normalized model S.D. uses the observed S.D. as the normalization con
Inventory (NEI) version 3 (http://www.epa.gov/ttn/chief/net/
1999inventory.html#final3haps). The NEI provided the best
inventory available. We expect small differences between 1999
and 2001 emissions. Biogenic emissions were calculated with
the Biogenic Emissions Inventory System (BEIS) version 3.12
(http://www.epa.gov/asmdnerl/biogen.html). The SparseMatrix
Operator Kernal Emissions (SMOKE) version 2.0 (http://cf.unc.
edu/cep/empd/products/smoke/index.cfm) was used to pro-
duce emission files for the CCTM simulations.
3. Observations

To evaluate predictions, we obtained observations ofmetals in
PM2.5 from the US EPA's Air Quality System database (AQS) (U.
S. EPA, 2006c). Observations come from local, state and federal
agencies. They cover a national scale (Fig. 1) and have an
averaging period equal to 24 h. Sampling frequencies range
from several days to a week. Measurements of metals come
from several types of monitors that have detection limits
around 0.005 ng/m3. Measurements equal to zero are actually
below this limit. Such observations happen frequently and
make difficult the comparison between predictions and
observations because the predictions are always nonzero.
an biasb

relative bias)
Model S.D.

(normalized model S.D. c)
r2 (95%

confidence limits)

4 (#N/A) 0.113 (#N/A) #N/A (#N/A, #N/A)
4 (−91.98%) 0.112 (5.71%) 0.011 (−0.155, 0.176)
8 (−60.91%) 0.368 (38.90%) 0.142 (0.078, 0.204)
3 (−60.78%) 0.487 (23.74%) 0.172 (0.117, 0.226)
4 (4.09%) 1.516 (82.08%) 0.117 (0.053, 0.180)
9 (−39.08%) 1.595 (81.84%) 0.253 (0.200, 0.305)
7 (22.69%) 0.665 (76.13%) 0.319 (0.260, 0.376)
5 (−43.69%) 0.490 (44.51%) 0.361 (0.311, 0.409)
8 (−0.82%) 2.534 (162.02%) 0.408 (0.352, 0.460)
8 (−35.12%) 1.331 (67.53%) 0.372 (0.323, 0.420)
0 (−79.14%) 0.345 (19.58%) 0.227 (0.031, 0.406)
8 (−86.53%) 0.348 (16.69%) −0.003 (−0.093, 0.088)
5 (39.86%) 1.995 (135.35%) 0.264 (0.070, 0.438)
9 (38.42%) 2.151 (93.04%) 0.154 (0.064, 0.242)
8 (5.04%) 5.172 (99.48%) 0.079 (−0.120, 0.272)
9 (−45.21%) 2.777 (76.33%) 0.183 (0.094, 0.269)
3 (−63.52%) 1.186 (20.99%) 0.056 (−0.143, 0.250)
2 (−63.21%) 0.809 (17.15%) 0.205 (0.116, 0.290)
9 (−48.10%) 3.666 (53.62%) 0.321 (0.132, 0.487)
8 (−31.56%) 6.921 (64.44%) 0.405 (0.326, 0.478)
7 (−83.42%) 0.242 (10.49%) 0.061 (−0.111, 0.229)
6 (−87.75%) 0.160 (7.11%) 0.044 (−0.062, 0.149)
5 (−19.43%) 1.563 (76.32%) 0.114 (−0.057, 0.279)
0 (−44.52%) 0.851 (37.17%) 0.022 (−0.081, 0.125)
7 (−21.42%) 3.025 (31.63%) 0.116 (−0.055, 0.281)
1 (−52.99%) 2.053 (19.91%) 0.236 (0.136, 0.331)
0 (−89.36%) 1.602 (2.40%) 0.140 (−0.031, 0.303)
1 (−61.86%) 1.466 (42.28%) 0.060 (−0.044, 0.162)
1 (−7.65%) 14.350 (143.50%) 0.422 (0.271, 0.552)
6 (−3.23%) 6.928 (89.29%) 0.407 (0.317, 0.490)

s equals the mean bias divided by the observed average.
stant.
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Fig. 1 –The points show locations of monitors for cadmium, chromium, lead, manganese and nickel in PM2.5 during 2001. Sites
are plotted based on their surroundings or land use: forest ( ), desert (�), agriculture (♦), residential ( ), commercial ( ), mobile
(■) and industrial ( ). A letter above each site states whether the location is rural (R), suburban (S), and urban (U).
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Under these circumstances, the comparisons give inaccurate
positive values for the model biases because the actual
observation lies below the detection limit by an uncertain
amount. As shown later, such errors occur at rural locations
such as desert, forests and agricultural areas. We assess how
the zero concentrations affect the comparison to observations
by presenting two sets of statistical summaries. One set which
this paper predominantly uses is computed based on all
observed concentrations. The second set is computed based
on observed and predicted concentrations that both exceed
0.005 ng/m3. A separate problem creates uncertainties on how
the comparison changes betweenmonths because many sites
in forests reported observations only during July. We address
the last problem by comparing predictions to observations
based onmonth, land use and geographic location after giving
statistical summaries for each metal.
4. Results

Table 1 summarizes the comparison between observations
and predictions. For both months, the predictions under
estimate observed concentrations (negative biases) and have
a weak ability to match the time dependency of observations
(low correlation coefficients). Lead predictionsmatch observa-
tions within 50% at all locations. Manganese and chromium
predictions have similar skills only at urban and suburban
locations while nickel predictions match observations within
50% only at rural locations. Predictions for cadmium are
completely unable to match observed concentrations within a
factor of two. Regarding how the comparison changes
between months, all predictions have lower errors at rural
locations during January but only manganese predictions
have lower errors at all locations during the month. The
opposite or weak trends exist in the change of monthly errors
in the predictions for lead, nickel and chromiumpredictions at
suburban and urban locations. While all the metals predicted
have problems matching how observations change over time,
lead predictions best match the range of observed concentra-
tions and have the highest correlation coefficients.

Table 2 shows the number of nonzero concentrations and
demonstrates how excluding zero concentrations changes the
comparison.At rural locations, zero concentrationsoccur inmore
than 50% of the collected concentrations except for lead. If the
comparison between observations and predictions excludes zero
concentrations at rural locations, the mean relative biases show
larger underestimates because overestimating zero concentra-
tions compensate for underestimating nonzero values. Table 2
also shows that the normalized standard deviations increase at
rural locations becausepredictions cannot reproduce the range of
observed concentrations if the comparison includes zero con-
centrations (Table 1). At urban and suburban locations, zero
concentrations occur in less than 20% of the comparisons except
for cadmium. The mean biases and squared errors are more
independent fromzero concentrations at these locations. Exclud-
ing zero concentrations has little effect on the correlation



Table 2 – Comparison statistics based on nonzero concentrations

Metal Month Location #
Observations

Observed
averagea

(observed S.D.)

Mean biasb

(mean relative bias)
Model S.D.

(normalized model S.D. c)
r2 (95%

confidence limits)

Cd Jan Rural 0 #N/A #N/A #N/A #N/A (#N/A, #N/A)
Cd Jul Rural 51 2.476 (2.517) −2.415 (−97.54%) 0.080 (3.16%) 0.319 (0.048, 0.547)
Cr Jan Rural 251 1.653 (1.087) −1.447 (−87.54%) 0.365 (33.57%) 0.459 (0.355, 0.551)
Cr Jul Rural 376 1.998 (3.298) −1.598 (−79.98%) 0.686 (20.81%) 0.117 (0.016, 0.215)
Mn Jan Rural 343 2.199 (2.478) −1.222 (−55.57%) 1.592 (64.25%) 0.163 (0.058, 0.264)
Mn Jul Rural 566 2.688 (2.076) −1.788 (−66.52%) 2.015 (97.06%) 0.319 (0.243, 0.391)
Ni Jan Rural 298 0.750 (1.406) −0.260 (−34.68%) 0.687 (48.88%) 0.462 (0.367, 0.547)
Ni Jul Rural 680 0.877 (1.355) −0.496 (−56.55%) 0.555 (40.92%) 0.346 (0.278, 0.410)
Pb Jan Rural 781 1.176 (1.638) −0.035 (−2.97%) 2.724 (166.30%) 0.389 (0.328, 0.447)
Pb Jul Rural 1188 1.276 (1.988) −0.469 (−36.72%) 1.337 (67.25%) 0.379 (0.329, 0.426)
Cd Jan Suburban 50 2.226 (1.920) −1.994 (−89.58%) 0.353 (18.38%) 0.413 (0.153, 0.620)
Cd Jul Suburban 203 2.724 (2.416) −2.563 (−94.09%) 0.324 (13.39%) −0.007 (−0.145, 0.131)
Cr Jan Suburban 94 1.333 (1.483) 0.497 (37.30%) 2.022 (136.35%) 0.246 (0.045, 0.427)
Cr Jul Suburban 411 1.504 (2.410) 0.329 (21.89%) 2.113 (87.68%) 0.172 (0.077, 0.264)
Mn Jan Suburban 89 3.920 (5.342) −0.118 (−3.01%) 5.374 (100.60%) 0.069 (−0.142, 0.273)
Mn Jul Suburban 457 3.863 (3.634) −1.761 (−45.59%) 2.797 (76.97%) 0.174 (0.083, 0.261)
Ni Jan Suburban 95 3.171 (5.734) −2.033 (−64.11%) 1.203 (20.98%) 0.043 (−0.160, 0.243)
Ni Jul Suburban 450 3.041 (4.774) −1.951 (−64.16%) 0.811 (16.99%) 0.200 (0.110, 0.287)
Pb Jan Suburban 95 7.537 (6.812) −3.742 (−49.65%) 3.712 (54.49%) 0.319 (0.125, 0.489)
Pb Jul Suburban 413 6.191 (11.230) −2.252 (−36.38%) 7.269 (64.73%) 0.403 (0.319, 0.481)
Cd Jan Urban 66 2.601 (2.713) −2.355 (−90.54%) 0.261 (9.63%) −0.024 (−0.264, 0.220)
Cd Jul Urban 153 2.710 (2.645) −2.537 (−93.62%) 0.180 (6.79%) −0.022 (−0.180, 0.137)
Cr Jan Urban 120 1.626 (2.096) −0.405 (−24.89%) 1.606 (76.62%) 0.101 (−0.079, 0.275)
Cr Jul Urban 323 1.675 (2.356) −0.814 (−48.60%) 0.789 (33.49%) 0.026 (−0.083, 0.135)
Mn Jan Urban 119 4.056 (10.030) −1.070 (−26.38%) 3.127 (31.18%) 0.102 (−0.079, 0.277)
Mn Jul Urban 336 4.563 (9.513) −2.374 (−52.03%) 2.063 (21.69%) 0.286 (0.185, 0.381)
Ni Jan Urban 123 14.030 (69.400) −12.610 (−89.88%) 1.577 (2.27%) 0.143 (−0.035, 0.312)
Ni Jul Urban 342 3.000 (3.495) −1.912 (−63.73%) 1.412 (40.40%) 0.071 (−0.036, 0.175)
Pb Jan Urban 128 9.386 (10.030) −0.801 (−8.53%) 14.570 (145.26%) 0.414 (0.260, 0.549)
Pb Jul Urban 311 5.210 (8.124) −0.581 (−11.15%) 7.381 (90.85%) 0.399 (0.301, 0.488)

a Observed average and standard deviation (S.D.) are in ng/m3.
b Mean bias equals 1=Nð ÞPN

i¼1 predictedi � observedið Þ and relative mean bias equals the mean bias divided by the observed average.
c Normalized model S.D. uses the observed S.D. as the normalization constant.
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coefficients except for chromium and nickel at rural locations
during January. The uncertainties in correlation correlations
support the conclusion because the coefficients in Tables 1
and 2 have ranges that overlap within the 95% confidence limits.

Fig. 2 further examines the biases in Table 1 by calculating
the mean relative biases based on the land use over which the
observation took place. For lead predictions, rural concentra-
tionshavea largernegative biasduring Julybecause the forests –
where most rural observations occurred (Fig. 1) – have larger
under estimates. Lead predictions improve at suburban and
urban location during July mostly because they better match
observations over commercial and residential categories where
most suburban and urban observations occurred. Chromium
and nickel predictions have similar characteristics over these
land use categories. In contrast, manganese predictions are
better over forest, urban and suburban locations during January
than July. Cadmium predictions have poor overall quality
because they underestimate observed concentrations over all
categories bymore than 70%. Because the cadmiumpredictions
have biases that almost completely miss observations over all
land use categories, cadmium predictions are less discussed in
the remaining comparison to observations.

We next examine how biases change with geographic
location between the months. Predictions of lead (Fig. 3) and
manganese (Fig. 4) show similar trends. Most predictions
under estimate observations approximately within 50% over
the Atlantic and Gulf coast during January. During July, errors
roughly double and predictions under estimate observations
in some urban areas by 100%. Over the Tennessee valley,
predictions tend to over estimate observed concentrations
during January but over estimates decrease in number during
July and disappear for lead. In these eastern regions, most
monitors exist in residential and commercial areas where
anthropogenic sources dominate. Though several sites exist in
forests, they are probably not located in remote areas because
the average concentration (1.5 to 8 ng/m3) are two to three
time averages over forests in more pristine locations such the
Rocky Mountains and Pacific Northwest (0.5 to 4 ng/m3). This
western region provides a contrast because most average
concentrations are low and show weak influences from
anthropogenic emissions. A zone around Salt Lake City is an
exception because observed averages have values similar to
over the eastern United States (1.5 to 8 ng/m3). The zone exists
because it contains larger population and anthropogenic
emissions. Over this western region, predictions mostly miss
observations by 75% to 100% from January to July, respectively.
Nickel over the western region differs from lead and manga-
nese because many predictions over estimate observations



Fig. 2 –For January (top) and July (bottom), themean relative biases are shown for the land use categories. The values are plotted
against the average concentration for the category that is normalized to the monthly average for the given metal. The dashed
lines show when predictions match observations on average within 50%.
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during January (Fig. 5). The last noteworthy region is over
California. For lead, manganese and nickel, predictions range
between high positive and negative biases during bothmonths.
The errors probably exist because the area mixes high anthro-
pogenic emissions and complex terrain that provide subscale
processes within the grid cells of simulations. Few conclusions
are made about the Great Lakes and South Western United
States because simulations did not include emissions from
Canada andMexico.We believe that the omission should cause
large under predictions over these regions.

Bias maps show simpler trends for chromium (Fig. 6). Over
the Rocky Mountains, Pacific Coast and Southwestern states,
most predictions under estimate observations during January
and July.Overaband that spans fromthewesternGulfofMexico
to the mid-Atlantic, January predictions match observations
within 25% on average while July predictions under estimate
concentrations between 75% and 100%. Southeastern and New
England states contain under estimated observations that
increase between 25% and 50% from January to July. Similar to
the predictions for other metals, chromium predictions have
biases over the Tennessee Valley that change from positive to
negative values from January to July.

The last comparison highlights why predictions have
problems matching observations at individual sites. Problems



Fig. 3 –The plots give relative mean bias from comparing predictions to observed lead concentrations during January (top) and
July (bottom). The letter above a point gives the land use category of the monitoring site.
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Fig. 4 –The plots give relative mean bias from comparing predictions to observations for manganese concentrations during
January (top) and July (bottom). The letter above a point gives the land use category of the monitoring site.
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Fig. 5 –The plots give relative mean bias from comparing predictions to observed concentrations for nickel during January (top)
and July (bottom). The letter above a point gives the land use category of the monitoring site.
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Fig. 6 –The plots give relative mean bias from comparing predictions to observed concentrations for chromium during January
(top) and July (bottom). The letter above a point gives the land use category of the monitoring site.
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Fig. 7 –The time series show the predicted and observed concentrations over residential sites located in the eastern and central
portions of the United States. The Maryland site is a suburban location two miles east of Baltimore, MD. The Missouri site is
located in urban St. Louis, MO.
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appear to be based on whether a site exists in a populated area
and perhapswhere it is geographically located. Populated areas
such as residential areas show periods when the observations
and predictions agree regarding the phase in concentration
changes (Figs. 7 and 8) but may not agree in the amplitude of
change or mean concentration. Agreement breaks down when
observations suddenly change by a large amount. These
problems appear larger over the central and western states.
Less populated areas such as forests also show that predictions
have less ability tomatch observationsmoving fromwestern to
central states. They fail to reproduce observed changes that
suddenly increase fromnear zero concentrations (Figs. 9 and10).
Overall, lead predictions appear to have the best skill at
producing changes in observed concentrations. Chromium
predictions have the worst skill. Over the eastern states,
manganese predictions have more skill reproducing the
observed changes during January. Nickel predictions often fail
to match observation regarding timing of observed changes.
5. Discussion

Predictions bettermatch observations that smoothly vary over
time and they often fail to match observations that have large
and rapid increases. The latter conclusion is apparent over
forests located in the western states and the former over
residential areas in the eastern states. A possible cause is that
meteorological inputs omit processes such as a sea breeze
fronts, valley winds, and urban canopies because the grid cells
are too large to resolve such processes. Predicted concentra-
tions will not show how these sub-grid processes disperse
pollutants around the monitoring site. Besides affecting the
range of predicted concentrations, sub-grid processes produce
differences between when predicted and observed concentra-
tions change. The residential site in Texas illustrates this error.
The site resides near the coastline and shows influences from
the propagation of sea breeze fronts during July. The front
affects observations of eachmetal differently because eachhas
emission sources at different locations relative to the front.

Poor resolution further affects emission processes because
grid cells use hourly rates that are composites of many
sources. The simplification removes how individual sources
affect concentrations based on its time dependent emissions
and location relative to monitoring site. Composite sources
produce larger errors in grid cells where individual sources
have large and chaotic changes in emissions such as densely
populated residential areas in urban locations. For example,
theMissouri residential site is located in the urban center of St.
Louis. Observed concentrations reflect unpredictable activity
in adjacent automotive traffic, construction and businesses.

Other errors omit anthropogenic emissions over Canada and
Mexico andmay explainwhy predictions have large biases over
the north eastern and south western United States. The errors
are difficult to quantify but a global inventory of lead emissions,



Fig. 8 –The time series show the predicted and observed concentrations over residential sites located in the central andwestern
portions of the United States. The Texas site is located in a suburb west of Port Arthur, TX and several miles inland. The Utah
site is a suburban location in Salt Lake City, UT.
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collected for the Global Emissions Inventory Activity (Pacyna
et al., 1995, http://www.ortech.ca/cgeic/), provides clues. In
Canada, territories adjacent to the international border contain
areaswhere leademissionsaregreater than104 kg/yr. InMexico,
states south of the border are carpeted with areas where lead
emissions are greater than 104 kg/yr. The omitted emissions are
comparable to rates over the United States and imply that the
two nations also emit significant amounts of manganese,
chromium, nickel and cadmium.

The NEI, itself, likely contains errors in HAP emissions that
are larger than for the criteria pollutants. Except for the mobile
sources, the HAP emissions depend on the Toxics Release
Inventory (TRI) compiled by the US EPA and state agencies. de
Marchi and Hamilton (2006) found that the TRI underestimates
lead emissions by as much as 50% and suspected that it
underestimates emissions formost other HAPs. The conclusion
was based on comparing observations to adjacent sources.
Underestimates were proposed to exist due to a combination of
several reasons. Reporting HAP emissions for the TRI is
voluntary. Regulatory agencies do not audit or verify reports
perhaps because HAPs, unlike criteria pollutants, do not have
national air quality standards with regulatory penalties if
violated. Lastly, businesses submitting reports wish to reduce
thepossibility of environmental lawsuits basedon their reports.
Koehler and Spengler (2007) indicated that the TRI has both
positive and negative biases between reported to actual
emissions because how businesses estimate emissions and
report them. Businesses often standardize the estimation
method when they have multiple facilities. The methodology
may ignore how an individual facility uniquely generates
emissions. In reporting emissions, businesses can report their
emissionsas fallingwithin a range if their emissionsare belowa
given value. Subsequently, the TRI uses a single value to
represent the range and does not accurately represent the
population of emission rates within the range. Overall, Koehler
andSpengler (2007)believed that theTRI tends tounderestimate
actual emissions based on their analysis of emissions for
Polycyclic Aromatic Compounds from the aluminum produc-
tion industry. Errors in lead emissions reported by de Marchi
and Hamilton (2006) infer errors in the emissions for the other
metals studied because thesemetals have similar sources from
industrial processes that involve high temperature processes
suchasmetal smeltingand fuel combustion (Pacynaetal., 1995).

Emission errors include natural and anthropogenic sources
over or near the United States not in the NEI. Manganese has
sources from the aerial suspension of sea droplets and dust
particles based on abundance in sea water and soil (Seinfeld
and Pandis, 1998). Nriagu (1989) calculated that the same
sources are important for chromium. Other metals have
similar sources from the re-suspension from contaminated
areas (Lough et al., 2005). Lead may have sources from re-
suspending atmospheric deposition based on its historical

http://www.ortech.ca/cgeic/


Fig. 9 –The time series show the predicted and observed concentrations over forested sites located in the eastern and central
portions of the United States. The Virginia site is in a rural location approximately 40 miles north east of Roanoke, VA. The
Tennessee site is located neat the Great Smoky Mountains National Park.

176 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 6 ( 2 0 0 8 ) 1 6 4 – 1 7 9
emissions frommobile and industrial sources (U.S. EPA, 2006a;
Harris and Davidson, 2005). Sources driven by wind speed will
have significant effects over the remote locations such as
forests and deserts located in the Rocky Mountains (Pace,
2005). They may explain the large increases in observed
concentrations especially during summer months that have
lower soil moistures, lower snow coverage, and higher wind
speeds. Forest and brush fires, both wild and prescribed, also
produce such episodes (Sillanpää et al., 2005; Breulmann et al.,
2002; Yamasoe et al., 2000). Simulations did not include this
type of biomass burning. Metallic emissions arise from both
fuel combustion and aerosol suspension driven by fires.

Besides the problems in the meteorological and emissions
inputs, the CCTM has a shortcoming because it does not include
an aerosol mode that represents ultrafine particles (diameters
b50 to 100 nm). The aerosol mode is emitted by combustion and
industrial sources such as diesel engines, boilers,metal foundries
and plating or is produced by gas to particle conversion near
emission sources. Ultrafine particles have faster dispersion rates
than the fine and coarsemodes (Ketzel and Berkowicz, 2004) and
possible unique microphysical processes (Gramotnev and Gra-
motnev, 2005). The shortcoming introduces larger prediction
errors at urban and some suburban locations where sources of
ultrafine particles are more numerous and coagulation is too
slow to grow ultrafine particles into fine particles. This short-
coming of the CCTM involves not only the aerosolmicrophysics
but also the relatively large horizontal dimensions of grid cells
because the ultrafine aerosol processes would occur as sub-
scales process (Gramotnev and Gramotnev, 2005) within grid
cells between which transport and deposition dominate. How
much can ultrafine particles contribute to the observed PM2.5

concentrations of trace metals? The ultrafine contributions for
lead, manganese and cadmium were measured less than 5% if
any nearby roadways were used by less than 15,000 vehicles
while nickel had anultrafine contribution between15%and 20%
(Pakkanen et al., 2001). For roadways with ten times more
vehicle traffic, ultrafine contributions were measured around
50% for lead, manganese, and nickel (Ntziachristos et al., 2007).

Someof the errors discussed suggestwhy specificmetals are
better predicted. Predicted concentrations of lead best match
observations where the emissions are evenly distributed over
space and time. Locations best predicted include residential,
commercial and perhaps agricultural areas that are located in
the eastern United States and not adjacent to international
borders. Aerial suspension and biomass burning that were
excluded from simulations less likely determine observed
concentrations over these areas. Neglecting these natural
sources causes large errors over rural areas in the central to
western United States during July. Lead predictions have
problems matching the time dependence of observed concen-
trations when the grid cells do not resolve variations in local
emissions and meteorology. Manganese predictions rank sec-
ond in the comparison to observationbecause aerial suspension
and biomass burning are more important sources for manga-
nese than lead. Emission errors also affect chromium predic-
tions but the cause is difficult to identify. Despite conclusions in



Fig. 10 –The time series show the predicted and observed concentrations over forested sites located in the central and western
portions of the United States. TheArkansas site is located in clearing near the town of Dear, AR. TheUtah site is located between
the Zion National Park and a mixture of housing development and farm land.

177S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 6 ( 2 0 0 8 ) 1 6 4 – 1 7 9
Nriagu (1989), comparison to observations does not identify
aerial suspension as a major source because chromium biases
donot show the samedependences asmanganese and lead.We
conclude that anthropogenic emissions cause errors in chro-
mium predictions. Resolution of meteorology and emissions
explain errors in chromium predictions where the sources are
more confinedsuchasurbanareas. Basedon their lowernatural
abundances, nickel and cadmium error predictions are more
dependent on errors in anthropogenic emissions. Cadmium
emissions appear to have especially large errors in these
emissions.
6. Summary

Weapplied theCMAQmodel forHAPs topredict concentrationsof
several trace metals in particulate matter. Comparison to
observations showed that lead andmanganese predictions have
the most skill. They have lower errors over residential and
commercial areas over the eastern United States. Nickel and
chromium predictions also improve over these land use cate-
gories. Rural areas show larger errors because simulations didnot
include emissions from aerial suspension and biomass burning.
Cadmium predictions show the highest amount of error. The
exact cause isuncertainbecause theobservedconcentrationshad
the lowest number of values and locations. Errors appear to come
fromtheNEIbasedon thesizeof error relative toothermetalsand
similar treatment of cadmiumwithin the model.
Our study recommends future research that may improve
trace metals predicted by the CMAQ model. Recommendations
would include emissions for aerial suspension and biomass
burning. Including the sources requires models of aerial suspen-
sion and combustion as well as data about soil composition over
location and composition of the fuel. Predicted concentrations of
lead and manganese will benefit the most by including these
emissions. Recommended research includes better quantifying
the anthropogenic emissions of chromium, nickel and cadmium
in the NEI. Cadmium predictions will benefit themost from such
work. A large improvement will be gained by including anthro-
pogenic emissions from Canada and Mexico. Improving nickel
along with chromium predictions likely requires better resolving
meteorology and emissions within grid cells by decreasing the
size of the grid cells. This step will never capture all emission
processes and local meteorology but model predictions should
improve over coastal areas and in urban locations. To further
resolve these sub-grid processes, research has to develop model
algorithms that better represent them.
Disclaimer

The research presented here was performed under the
Memorandum of Understanding between the U.S. Environ-
mental Protection Agency (EPA) and the U.S. Department of
Commerce's National Oceanic and Atmospheric Administra-
tion (NOAA) and under agreement number DW13921548. This
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work constitutes a contribution to the NOAA Air Quality
Program. Although it has been reviewed by EPA andNOAA and
approved for publication, it does not necessarily reflect their
policies or views.
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