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ABSTRACT

Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known
to be highly variable in time and space. Current air-quality models that characterize atmospheric chemistry
effects, for example, the Community Multiscale Air Quality model (CMAQ), provide volume-averaged
concentration values for each grid cell in the modeling domain given the stated conditions. Given the
assumptions made and the limited set of processes included in any model’s implementation, there are many
sources of “unresolved” subgrid variability. This raises the question of the importance of the unresolved
subgrid variations on exposure assessment results if such models were to be used to assess air toxics
exposure. In this study, the Hazardous Air Pollutant Exposure Model (HAPEM) is applied to estimate
benzene and formaldehyde inhalation exposure using ambient annually averaged concentrations predicted
by CMAQ to investigate how within-grid variability can affect exposure estimates. An urban plume dis-
persion model was used to estimate the subgrid variability of annually averaged benzene concentration
values within CMAQ grid cells for a modeling domain centered on Philadelphia, Pennsylvania. Significant
(greater than a factor of 2) increases in maximum exposure impacts were seen in the exposure estimates in
comparison with exposure estimates generated using CMAQ grid-averaged concentration values. These
results consider only one source of subgrid variability, namely, the discrete location and distribution of
emissions, but they do suggest the importance and value of developing improved characterizations of
subgrid concentration variability for use in air toxics exposure assessments.

1. Introduction

Developing a strategy for mitigating undesirable
health consequences routinely includes an assessment
of the extent to which human exposure to airborne pol-
lutants will be mitigated. Human exposure assessment
involves tracking different individuals or targeted

groups who encounter different levels of exposure re-
sulting from differences in activity patterns (e.g., the
amount of time spent in leisure activities, at the office,
at home, or in an automobile), and physical character-
istics (e.g., breathing rates). Different activities may
bring individuals into very close proximity to the actual
sources of pollutants (e.g., emissions from automobiles
while driving, emissions from cleaning products in a
home or work environment). Thus, to a certain degree,
human exposure assessments can be strongly affected
by the level of detail provided in resolving the time and
spatial variation of airborne pollutant concentration
values (Jerrett et al. 2005; Spicer et al. 1996). We will be
using the Hazardous Air Pollutant Exposure Model
(HAPEM; U.S. Environmental Protection Agency
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2005) in this study. HAPEM uses annually averaged
distributions of ambient concentrations adjusted for a
diurnal temporal pattern by averaging the model results
over 3-h blocks (i.e., 0000–0300, 0300–0600, etc.) for the
entire year. The model accounts for behavior of demo-
graphic groups and provides estimates of “potential”
inhalation exposures for the population.

Although air-quality models are used to provide the
possible extent and severity of exposure of airborne
pollutants on humans, their true value resides in the
ability 1) to provide local-level details on the concen-
tration distribution that would be prohibitive to acquire
through monitoring, and 2) to provide quantitative es-
timates of the effectiveness of alternative strategies for
mitigating undesirable health consequences. The diffu-
sion of gases or particulate matter in the atmosphere is
the result of a “chaotic system” (turbulence) whose in-
dividual effects on a particular release by definition
cannot be simulated in a deterministic manner. Implicit
in current air-quality models is the assumption that the
hourly observed time and spatial variations in the con-
centration values can be envisioned as being partly de-
terministic and partly stochastic. For specified bound-
ary conditions, the deterministic part of the time and
spatial concentration variations are the ensemble-
averaged hourly concentrations to be seen at each lo-
cation in the modeling domain. Current models attempt
to simulate the ensemble averages, but uncertainties
arise because of limitations in our understanding of at-
mospheric processes and imperfect input data (meteo-
rological, emissions, terrain, buildings, etc.). Thus, the
observed scatter of observations about model predic-
tions is a combination of naturally occurring stochastic
variations that are impossible for any model to ever
explicitly simulate and variations (“uncertainties”) aris-
ing from limitations in our knowledge and imperfect
input data. Those processes not explicitly addressed
and the simplification assumptions made in a model’s
implementation provide many sources for “unresolved”
(subscale) variability. For instance, the Community
Multiscale Air Quality model (CMAQ; Byun and
Schere 2006) provides volume-averaged concentration
values for each cell in the modeling domain for a given
set of stated conditions. Emissions are assumed to be
instantaneously well mixed within the cell in which they
are emitted. These model implementation assumptions
were made to simplify the problem of simulating the
atmospheric chemistry and the fate of pollutant species
that are formed (secondarily from “primary” emissions
that are directly emitted to the atmosphere) through
photochemical reactions and aerosol processes. The
CMAQ is designed to provide gridded concentration

information on hourly bases; their outputs are grid size
dependent. Of course, the finer the grid size, as deter-
mined by using nesting approaches (Odman and Rus-
sell 1991), the finer the spatial features that are re-
solved. CMAQ and other such models can be used to
augment ambient monitors for the purpose of conduct-
ing air pollution exposure assessments (Georgopoulos
and Lioy 2006). It is important to recognize that while
grid models can provide refined information for expo-
sure assessments, there are limitations. Typically, the
smallest grid sizes applied in such models is on the or-
der of 1 km or greater. For many pollutants, there is
evidence of significant spatial variability at scales
smaller than 1 km (Weijers et al. 2004). Even modeling
assumptions regarding subgrid processes can affect the
model outcomes (Miao et al. 2006).

While grid models are the model platform of choice
for the simulation of atmospheric chemistry and fate of
airborne pollutants, there are various transport and dif-
fusion models (often called dispersion models) that
have been developed to simulate the fate of those air-
borne pollutants that are relatively chemically inert.
Not having to treat the atmospheric chemistry of mix-
tures, dispersion models can provide detailed resolu-
tion of the spatial variations in hourly averaged con-
centrations of airborne pollutants. Examples of such
dispersion models include the American Meteorologi-
cal Society (AMS)–Environmental Protection Agency
(EPA) Regulatory Model Improvement Committee
(AERMIC) modeling system (AERMOD; Cimorelli et
al. 2005), the Assessment System for Population Expo-
sure Nationwide (ASPEN; U.S. Environmental Protec-
tion Agency 2000), and the Industrial Source Complex
Short Term (ISCST) model (U.S. Environmental Pro-
tection Agency 1995). To date, local-scale dispersion
models have been relied upon to provide the desired
detailed description of the concentration pattern. How-
ever, local-scale dispersion models cannot properly
treat photochemical effects. Most of the air toxic pol-
lutants listed in the National Toxics Assessment (U.S.
Environmental Protection Agency 2000) are identified
as having a photochemical origin or being strongly af-
fected by photochemical processes. Also, an estimate of
the background concentration levels must be provided
to local-scale models, whereas such levels are provided
directly by CMAQ. It would be desirable to combine
the capabilities of chemical grid and dispersion models
into one model, but this is a yet-evolving area of re-
search and development.

We might well expect that a more explicit treatment
of the dispersion of the emissions, plus a more discrete
characterization of the concentration values within
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each cell, would provide a more variable concentration
distribution than what a standard run of CMAQ would
provide. This raises the question of how large the un-
resolved subgrid variability might be and how this un-
resolved variability might be of consequence in human
exposure assessments that thrive on detailed resolution
of the temporal and spatial variations to be seen in
concentration values.

In this study, we are attempting to provide an explicit
characterization of the variations to be seen in the en-
semble-averaged concentration values within each grid,
resulting from the lack of treatment by the grid model
for the subgrid variations in the average emissions.
Various subgrid “adjustments” to the CMAQ results
were used as input to HAPEM. The objective of this
study is to evaluate the sensitivity of human exposure
modeling results to subgrid variations in concentration
values arising from the level of detail used to charac-
terize pollutant emissions and the level of detail used to
characterize the transport and diffusion of the pollut-
ants. If we could develop a means to confidently char-
acterize the subgrid variations to be seen in the en-
semble-averaged concentration values, we provide ex-
posure assessments as a means for assessing whether
these subgrid variations in the ensemble-averaged con-
centration values are of any significance (i.e., Do we

need this greater detail in model output and its conse-
quent requirement for more inputs and simulation
time?).

2. Philadelphia study

a. Study description

To evaluate the sensitivity of human exposure mod-
eling results to subgrid variations in the modeled con-
centrations, we focus on a 100 km � 100 km area that
included Philadelphia County and several surrounding
counties (Fig. 1). The figure displays a roadway net-
work and locations of 380 census-tract centroids in
Philadelphia County.

An air toxics version of CMAQ was used to simulate
ambient concentrations of various pollutants (Luecken
et al. 2006). The CMAQ modeling system was run for
an annual period in a nested mode at 36-, 12-, and 4-km
horizontal grid dimensions using the 1999 National
Emission Inventory (U.S. Environmental Protection
Agency 2004) and meteorological outputs from 2001
simulations with the fifth-generation Pennsylvania
State University–National Center for Atmospheric Re-
search Mesoscale Model (MM5; Grell et al. 1995). The
36-km grid mesh encompasses the continental United
States, the 12-km grid mesh covers Pennsylvania, Mary-

FIG. 1. Philadelphia study area.
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land, New Jersey, Massachusetts, most of New York,
and Virginia, and the 4-km grid mesh encompass Phila-
delphia, Pennsylvania, and Delaware. Luecken et al.
(2006) compared CMAQ results at 36-km resolution
with observed concentrations from 35 monitors in eight
cities. Although detailed field observations for the
Philadelphia modeling domain are limited, air toxics
concentration measurements are available from two
monitors in Philadelphia County. The locations of
monitoring sites are indicated in Fig. 1. Details of the
model runs and preliminary results have been reported
in Ching et al. (2004). In that study, the temporal vari-
ability over the year for 3-hourly diurnal time blocks

was introduced into HAPEM, version 5 (HAPEM5). In
general, the modeled mean values compared reason-
ably well to the observed values. While this limited
comparison is encouraging, to properly assess and
evaluate model performance will require observational
data from more than two monitor locations. To evalu-
ate the model’s ability to reproduce the seasonal trend
of pollutant concentrations, time series of monthly av-
eraged modeled and observed concentrations for ben-
zene and formaldehyde are shown in Figs. 2 and 3,
respectively. As we can see from the figures, the model
reasonably simulates seasonal patterns for both pollut-
ants.

FIG. 2. Time series of observed and modeled benzene concentrations in Philadelphia at two
monitor locations: (a) 40.0°N, 75.09°W and (b) 39.93°N, 75.21°W. Vertical lines indicate one
standard deviation range of variability in monthly averaged concentrations.
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Exposure to air pollutants is defined as contact over
time and space between persons and pollutant species;
exposure assessments attempt to define, characterize,
and quantify that exposure in human populations; these
assessments are typically performed on a census-tract
level because this is the most detailed information
available on population distribution. CMAQ provides
average concentrations for grid volumes, which do not

provide the finescale details in the concentration pat-
tern that might occur within a grid volume. Locations of
census-tract centroids in the 4-km CMAQ grid are
shown in Fig. 4. As can be seen from the figure, the
number of census tracts in a 4 km � 4 km CMAQ grid
cell ranges from a few tracts in suburban areas to up to
30 tracts in the downtown area. This suggests that both
population density and concentration values will likely

FIG. 4. Philadelphia modeling domain: CMAQ grid and census-tract centroids.

FIG. 3. Time series of observed and modeled formaldehyde concentrations in Philadelphia at
monitor 1 (40.0°N, 75.09°W). Vertical lines indicate one standard deviation range of variability in
monthly averaged concentrations.
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vary within a typical CMAQ grid cell, such that if the
variations in concentration are not adequately ad-
dressed, an exposure assessment may be compromised.

To examine the effects of the subgrid concentration
variability, we analyzed benzene emission from mobile
sources in Philadelphia. Benzene is primarily a mobile
source emission, and thus road location and traffic data
can be used as a basis for investigating subgrid variabil-
ity of roadway emissions. The roadway network is in-
dicated in Fig. 5. The distribution of the roadways var-
ies greatly in density and pattern across the county.
Benzene emissions from mobile sources were allocated
to individual road links (road segments) to provide the
finescale details on mobile source emissions. The
ISCST, version 3, (ISCST3) model was used to simulate
annually averaged benzene concentrations at 200-m re-
ceptor resolution, and this output provided the statisti-
cal properties of concentration distributions for indi-
vidual CMAQ 4-km grid cells.

b. A method to account for local details

Figure 5 compares the spatial distribution of benzene
concentrations modeled by a CMAQ, regional photo-
chemical model at 4-km resolution (Fig. 5, left panel),
and modeled at a finer scale using ISCST (Fig. 5, right
panel). In this color-coded figure, a darker shade indi-
cates higher concentrations, and a lighter shade indi-
cates lower concentrations. As expected, the dispersion
modeling results, conducted at a finer scale, reveal high

gradients near the sources, which are not predicted by
CMAQ. These local features can be resolved by disper-
sion models (such as AERMOD, ASPEN, and ISCST),
but these models cannot handle chemical transforma-
tions. Chemical transport models (such as CMAQ) can
resolve temporal variations resulting from photochem-
istry, but not spatial details on this finescale. Therefore,
we seek a method that allows CMAQ to provide re-
gional background concentration values and contribu-
tions from chemically reactive pollutants, and local de-
tails in relatively inert pollutants concentrations to be
provided by a dispersion model.

We propose the following approach for combining
CMAQ results with local-scale dispersion modeling re-
sults: for each modeled pollutant, total concentration
CTotal (�g m�3) can be represented as a combination of
its primary and its secondary contribution,

CTotal � CPrimary
Total � CSecondary

Total , �1�

where CTotal
Primary (�g m�3) is CMAQ concentration re-

sulting from the contributions of primary emission
sources and CTotal

Secondary (�g m�3) is CMAQ concentra-
tion resulting from the contribution of secondary pro-
duction.

Furthermore, concentrations can be represented as a
combination of the volume-averaged concentration C
and subgrid variations �C,

C � �CPrimary � �CPrimary�

� �CSecondary � �CSecondary�. �2�

FIG. 5. An example of benzene concentrations in Philadelphia County (a) modeled at 4 km � 4 km resolution using CMAQ and (b)
modeled at finer scale using ISCST3. A darker shade indicates higher concentrations, and a lighter shade indicates lower concentrations.
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The subgrid variations �C arise from the contribution
of subgrid emission sources (Ching et al. 2006a), and
spatial and temporal variability arise from chemical and
turbulent interactions (Herwehe 2000). Subgrid varia-
tions for primary contributions can be estimated by re-
solving the local scale using dispersion models (Ching
et al. 2006b; Isakov and Venkatram 2006; Touma et al.
2006), but for secondary contributions, methods are yet
to be developed [although employing large-eddy simu-
lation (LES) of coupled pollutant photochemistry–
dynamics techniques is a promising approach for situ-
ations when chemical reaction time scales are on the
order of the turbulent eddy time scales (Herwehe
2000)]. In this study, we are using a dispersion model to
estimate �CPrimary,

�CPrimary � �CLocal � CLocal�, �3�

where CLocal is the concentration at any location within
the grid obtained from the dispersion model and CLocal

is the average of all of the CLocal concentrations in the
grid cell. Therefore, in order to adjust CMAQ results
for local-scale variability, for each grid cell we simply
combine CMAQ concentrations (CCMAQ � CPrimary �
CSecondary), and differences between an average value
from a dispersion model for all receptors within a grid
cell and actual modeled concentrations at every recep-
tor in a grid cell,

CAdjusted � CCMAQ � �CLocal � CLocal�, �4�

where CAdjusted is the new CMAQ concentration (�g
m�3) adjusted for local-scale variability.

Figure 6 illustrates the approach. In this figure, CMAQ
at 4 km � 4 km resolution provides a general pattern of
benzene concentrations in Philadelphia County, and
local subgrid details are obtained from a dispersion
model such as AERMOD, ASPEN, or ISCST.

This approach was applied to Philadelphia using
CMAQ as the chemical grid model and ASPEN as the
dispersion model. Two pollutants were treated—ben-
zene and formaldehyde. The CMAQ concentrations,
enhanced with local details from ASPEN for benzene
and formaldehyde, are shown in Fig. 7. Benzene is con-
sidered an inert pollutant, while formaldehyde is
chemically reactive. For chemically reactive species, the
adjustments provided by the dispersion model (ASPEN
in this case) reflect the effects of direct emissions (of
formaldehyde in this example). It was found in this
example that the formaldehyde concentrations are
dominated by secondary formed contributions from
CMAQ. For both chemicals, local details are impor-
tant, and the approach provides a “texture” on top of
CMAQ results. Table 1 show a comparison between
modeled annually averaged concentrations from
CMAQ adjusted for local details from ASPEN and ob-
servations.

To investigate how reasonable the assumption about
grid-averaged concentrations is, we compared grid-
averaged concentrations from CMAQ and ASPEN.
The results of this comparison are shown in Fig. 8 for
benzene (Fig. 8a) and formaldehyde (Fig. 8b). As can
be seen from the figure, grid-averaged values from two
models are similar (within a factor of 2), except for
three outliers. In these cases, ASPEN receptors were at
the edge of the county boundary and were few in num-
ber. Thus, using this method might introduce an error
resulting from the limited sample size. In addition, spe-
cial attention is needed to check the emissions prior to
applying the method based on Eqs. (1)–(3).

c. Linkage between air-quality and exposure
modeling

While ambient concentrations for a given time period
at a given location can be estimated by various means,
people move from location to location (e.g., from home
to work, or from home to school), and they spend por-
tions of their time in nonambient settings, such as at
home, in the workplace, in school, or in a vehicle. Be-
cause air-quality concentrations in these various mi-
croenvironments can be very different than those in the
outdoor (ambient) environment, human exposure mod-
els generally consider microenvironmental factors in
predicting the “potential” inhalation exposure.

In this study, we used HAPEM5, a screening-level
exposure model designed to predict the potential inha-
lation exposure for the general population, or specific
subpopulations, over spatial scales ranging from urban
environments to nationwide. HAPEM5 tracks repre-
sentatives of specified demographic groups as they
move among indoor and outdoor microenvironments

FIG. 6. Combined local-scale and regional modeling results.
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and among geographic locations. Four major inputs are
used in HAPEM: population data from the U.S. Cen-
sus, population activity data from human diary data,
microenvironmental data, and air-quality data. In this
study, air-quality data are provided by hourly CMAQ
concentrations enhanced with local details from ASPEN
to build a diurnal temporal pattern of the concentration
values by averaging the model results over 3-h blocks
for the entire year.

A series of HAPEM5 simulations were made using
the CMAQ results that were enhanced by using ASPEN
results for benzene and formaldehyde. An example of
simulated exposure for benzene is shown in Fig. 9. While
the exposures are different from ambient concentrations,
both maps reveal similar patterns, depicting the road net-

work in Philadelphia County. This is not surprising, be-
cause most of the benzene emissions in Philadelphia
County come from mobile sources. We also found that for
benzene, both concentrations and exposures are not cor-
related with population density, as illustrated in Fig. 9.

d. Sensitivity tests to investigate the importance of
local details for exposure assessments

In this study, we use various subgrid adjustments to
the CMAQ results as input to HAPEM. We also evalu-
ate the sensitivity of human exposure modeling results
to subgrid variations in concentration values. It is a
property of the CMAQ model that its quantitative out-
come is dependent on the selection of the grid cell size.
Regardless of the finest grid size chosen, model output

TABLE 1. Comparison of annually averaged benzene and formaldehyde concentrations with observations.

Benzene (�g m�3) Formaldehyde (�g m�3)

Monitor 1 Monitor 2 Monitor 1 Monitor 2

40.0°N, 75.09°W 39.93°N, 75.21°W 40.0°N, 75.09°W 39.93°N, 75.21°W

CMAQ 1.54 1.74 2.80 2.97
ASPEN � CMAQ 1.45 1.36 3.80 3.89
Obs 1.29 1.54 3.61 —

FIG. 7. Annually averaged concentrations (�g m�3) of (left) ASPEN, (middle) CMAQ, and (right) combined—ASPEN �
CMAQ—local- and regional-scale model results for two pollutants: (top) benzene and (bottom) formaldehyde.
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is a single value for each grid cell for the hour of simu-
lation. In this sensitivity, we investigate how important
is it to enhance CMAQ with local details from a dis-
persion model and how important spatial resolution in
CMAQ (i.e., 4, 12, or 36 km) is for exposure modeling.
A series of HAPEM5 simulations were made using the
different inputs from CMAQ: standard CMAQ output
and that enhanced with local details from ASPEN, us-
ing various spatial resolutions (4, 12, and 36 km). Re-
sults of HAPEM5 simulations for benzene and formal-
dehyde are shown in Fig. 10. The figure compares ex-
posure from HAPEM using CMAQ only and CMAQ
enhanced with local details from ASPEN. As can be
seen from the figure, exposure has a significantly wider
range when using CMAQ enhanced with local details as
compared with a standard CMAQ output, even with an
increased spatial resolution. This is more significant for
benzene than for formaldehyde, because the largest
fraction of the formaldehyde concentration values
formed through chemical reactions and is provided by
CMAQ, which at best is providing a 4-km average
value in these simulations.

3. Analysis of subgrid variability

Results shown above indicate current operational
feasibility for running CMAQ on an annual basis at grid
sizes of 4 km or so for potential use in performing ex-
posure model assessments.

We have noted that exposure models are designed to

assess exposure at census-tract levels. We have further
seen that the more highly populated sections of urban
areas generally contain multiple census-tract centroid
locations within even this relatively fine grid (4-km
resolution) CMAQ. By treating emissions with local-
scale modeling, we have seen resulting concentrations
at the census-tract level to exhibit added spatial vari-
ability to that using CMAQ alone. Indeed, potential
additional variability exists even within census tracts
because of subgrid or even sub-census-tract emission
patterns and complex photochemistry. To illustrate
this, we compare results of a) subgrid variability (SGV)
estimated using data from finescale modeling at 380
tract centroids (ASPEN) and b) SGV estimated using
data from finescale modeling at 16 000 receptors
(ISCST3; 200-m resolution), as shown in Fig. 11.

This example demonstrates that assessments based
on CMAQ modeling at 4 km, and perhaps even at finer
grid sizes of the order of 1 km, cannot accurately char-
acterize “hot spots” and will typically underestimate
maximum potential exposure levels. We now review
features and characteristics of SGV in air-quality grid
models and outline a strategy for their incorporation
for operational exposure modeling implementation.

In general, air-quality grid models like CMAQ pre-
dict concentration fields from pollutant emission
sources into an evolving dispersive and chemically re-
active atmospheric environment. By decreasing the grid
size, or by using adaptable grid meshes or “nested”
subdomains with decreasing grid sizes, the concentra-

FIG. 8. Comparison of average concentrations (�g m�3) from ASPEN and CMAQ for all grid cells for (a) benzene and (b)
formaldehyde. Dashed diagonal lines indicate a factor-of-2 difference, and the gray dots indicate three outliers.
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tion fields can be enhanced. However, while grid size
can be user specified to be smaller than 1 km, require-
ments satisfying turbulence closure assumptions for
scales less that 1 km are unsatisfied for typical bound-
ary layers (Lumley and Panofsky 1964), thus imposing
1 km as representing a lower limit to such models.
There are further limitations to finescale modeling in
that not only must the physical processes be appropri-
ately characterized, but also the requisite model inputs
(e.g., emissions, surface conditions, roughness, moisture
availability, deposition properties). In principle, each
grid cell will have a unique characteristic subgrid con-
centration distribution. This distribution arises from a
multitude of contributing processes at smaller grid sizes

not explicitly treated, including the coupling of turbu-
lent motions with chemical mixtures of pollutant con-
stituents that have varying photoreactivity, in grids with
differing source configurations, chemical composition,
and spatial distributions. The magnitude of such varia-
tions can extend over a wide range. For achieving op-
erational capability, it would be desirable to derive and
parameterize such distributions.

A variety of approaches have been investigated to
describe and parameterize SGV characteristics in
CMAQ: 1) running CMAQ at sub-4-km grid sizes (or-
der of 1 km; Ching et al. 2004), 2) modeling large buoy-
ant stack plumes with plume-in-grid (PinG) formula-
tions (Karamchandani et al. 2002), 3) refined local-scale

FIG. 9. Spatial maps of (a) annually averaged benzene concentrations (�g m�3), (b) inhalation exposure (�g m�3), (c) population
density [color scale indicates normalized population density from low (blue) to high (red)], and (d) road locations in Philadelphia
County.
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dispersion modeling with fine spatially resolved emis-
sion data (Isakov and Venkatram 2006), and 4) appli-
cation of coupled turbulence and photochemistry
model such as LES with chemistry (LESChem; Her-
wehe et al. 2004) to determine the contributions from
subgrid turbulence and chemistry fields.

To illustrate the development process of parameter-

izing SGV, we examine benzene, a relatively slow re-
acting species, and for which the major contribution to
SGV is from mobile sources. In this instance, local road
details and traffic activity are important. Figure 12
shows benzene concentrations for Philadelphia County
simulated with ISCLT3 using annually averaged ben-
zene emissions allocated at individual road links. Two
4 km � 4 km grid cells, one for downtown and one for
a suburban section of Philadelphia County, are high-
lighted. Clearly, the characteristic of the road distribu-
tions differ between the two grids. The normalized dis-
tributions of emission and concentrations for each of
these two cells are shown in Fig. 13. Despite the great
differences between the cells’ road patterns, both cells
shared a characteristically and qualitatively similar
shape for their emission distributions, and also for the
corresponding concentration distributions. For this
case, it would appear possible to derive parametric for-
mulations of SGV concentration distribution based on
emissions distribution.

Further, given that spatial concentration distribution
is dependent on distance from sources, which is cer-
tainly true in the case of roadways, we would expect to
find parameterizations to describe the relationships be-
tween annually averaged concentrations C (�g m�3)
and two major parameters: emissions Q (kg) and
source–receptor distances r (km). For example, the fol-
lowing empirical expression relates C and Q/r2,

C � f 	
�Q�r2��. �5�

An analysis of model outputs for concentration at re-
ceptors has been performed at two different resolutions
for this set of simulations yielding the following results:

1) For census-tract resolution, with parameterization
based on the ASPEN model,

C � a1x1 � b1, �6�

where x1 � Q/(r2Rt) or x1 � Q/Rt for very small
distances (i.e., r  100 m). In this equation, C is the
annually averaged benzene concentration (�g m�3)
at census-tract centroids, Q represents annual total
benzene emissions for each source in tons (103 kg),
r is the source–receptor distance in kilometers, Rt is
an effective radius of a census tract in kilometers, a1

is a nondimensional coefficient � 0.0753, and b1 is a
constant parameter � 0.271 (�g m�3). These em-
pirical coefficients need to be determined by the
user for specific applications.

2) For finer resolution (200-m spacing), with param-
eterization based on ISCLT3 model results,

C � a2x2 � b2, �7�

FIG. 10. Comparison of exposure concentrations (�g m�3) in
Philadelphia County from HAPEM using only CMAQ (12- and
36-km resolution) as an input and CMAQ (4-km resolution) en-
hanced with local details from ASPEN: (a) benzene and (b) form-
aldehyde.
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FIG. 11. Variability of benzene concentrations at 4 km � 4 km grid cells derived from CMAQ
alone plus (a) ASPEN and (b) ISCST3.
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where x2 � Q/r2 for distances larger than 50 m, or
r is set to a default value of 50 m if r  50 m. In this
equation, C is the annually averaged benzene con-
centration (�g m�3) at each receptor, Q represents
annual total benzene emissions for each source in
tons (103 kg), r is the source–receptor distance in
kilometers, a2 is a coefficient � 0.0204 with dimen-
sions of length�1, and b2 is another parameter �
0.0204 with dimensions of micrograms per cubic
meter.

The comparison of concentrations computed using
the modeled versus the parameterized form given
above is shown in Fig. 14 for ASPEN and Fig. 15 for
ISCLT3. It is clear that both sets of parameterizations
compare favorably to each of the different models, and
for each of the two levels of resolution in receptor den-
sity.

Although further study is needed to support the de-
velopment of parametric formulations, it seems, at least
for benzene, that the possibility of deriving relatively
simple parameterizations for the SGV component to
augment background values from grid models such as
CMAQ is encouraging. However, we are aware that the
desired parameterizations for more reactive pollutant

species or for more complex source contributions may
be more complex than shown above. Exploratory in-
vestigations have shown that the SGV distributions for
more reactive species may be relatively complex, and
the parametric formulations that describe the SGV for
such chemical species remains a goal (Herwehe et al.
2004).

Given the ability to model (or parameterize) the
SGV distribution, there is the subsequent and final step
needed to appropriately incorporate SGV information
with the gridded fields. A preliminary methodology has
been proposed by Ching et al. (2006b). The approach
takes the product of the modeled concentration by
some weighting function of the SGV for each individual
grid cell, yielding outputs that represent both lower and
upper bounds to the gridded concentration fields. It is
anticipated that the weighting function to be applied
will be application dependent. In the case of exposure
modeling, the weighting function might be a 95th per-
centile of the SGV distribution for population exposure
if the purpose is for the determination of the risk to the
most susceptible portions of the population. The choice
of such a metric has cost–benefit consequences, and we
suggest that it will need the input and consideration of
the health sciences and impacted communities.

FIG. 12. Philadelphia (left) benzene concentrations [color scale indicates normalized concentrations from low (light blue) to high
(dark blue)] and (right) aerial photos for (bottom) downtown and (top) suburbs.
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4. Summary

We used HAPEM to estimate benzene and formal-
dehyde inhalation exposures using ambient annually
averaged concentrations predicted by CMAQ to inves-
tigate how within-grid variability due to emissions char-

acterizations affects exposure estimates. It is a CMAQ
property that its quantitative outcome is dependent on
the selection of the grid cell size. Regardless of the
finest grid size chosen, model output is a single value
for each grid cell for the hour of simulation. There are
additional but unresolved subgrid variability details.

FIG. 13. Normalized distributions of benzene (a) concentrations and (b) emissions for two
different grid cells: (top) suburbs and (bottom) downtown.
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FIG. 14. Annually averaged benzene concentrations (a) from ASPEN and (b) using parametric
formulations.
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FIG. 15. Annually averaged benzene concentrations from ISCST3 using (a) link-based
inventory and (b) parametric formulations. The scale indicates normalized concentrations
from low (light gray) to high (dark gray).
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Obtaining this information requires introducing other
techniques, such as modeling large buoyant stack
plumes with plume-in-grid formulations (Karamchan-
dani et al. 2002) or combining a regional grid model
with local plume/puff models (Touma et al. 2006).

In this study, we used local-scale plume dispersion
models to estimate the subgrid variability of annually
averaged benzene and formaldehyde concentration val-
ues within CMAQ grid cells for a modeling domain
centered on Philadelphia, Pennsylvania. In this ap-
proach, local details can be provided by dispersion
models such as AERMOD, ASPEN, or ISCST, and
regional background and contributions from chemically
reactive pollutants can be obtained from chemical
transport models (e.g., CMAQ).

Significant increases (more than a factor of 2) in
maximum exposure impacts were seen in the exposure
estimates in comparison with exposure estimates based
on grid-averaged concentration values. Although re-
sults examine only one source of subgrid variability,
namely, the discrete location and distribution of emis-
sions, they do suggest the importance and value of de-
veloping improved characterizations of subgrid concen-
tration variability for use in air toxics exposure assess-
ments.

Given the significant impact of SGV on estimating
maximum exposures, we proposed a two-step process
to incorporate SGV into the grid model simulations.
Because SGV can be described in terms of concentra-
tion distributions (e.g., Herwehe et al. 2004; Ching et al.
2006a), the first step involved the derivation and ulti-
mately the development of parametric forms of the dis-
tribution for each individual pollutant species. Subse-
quently, a method for incorporating the distribution or
parameterizations with CMAQ must be introduced.
Preliminary results for a special case of benzene prima-
rily from mobile sources were presented, and the out-
comes were encouraging. Further investigations and
additional developments along these lines are necessary
to handle the more general situations, for example,
SGVs from the complex distribution of a variety of
source sectors as well as for the more reactive pollutant
species. With this capability, operational links to other
exposure models, including the Stochastic Human Ex-
posure to Dose Simulation (SHEDS; Graham and
Burke 2003) model, are readily possible. SHEDS re-
quires complementary information on the variability of
the input concentration fields as stochastic inputs. The
parametric form of the SGV distributions can easily be
formatted for that purpose.
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