
The New England Air Quality Forecasting Pilot Program:
Development of an Evaluation Protocol and Performance
Benchmark

Daiwen Kang and Brian K. Eder
Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and
Atmospheric Administration, Research Triangle Park, NC

Ariel F. Stein
Fundación Centro de Estudios Ambientales del Meditrráneo, Valencia, Spain
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ABSTRACT
The National Oceanic and Atmospheric Administration re-
cently sponsored the New England Forecasting Pilot Pro-
gram to serve as a “test bed” for chemical forecasting by
providing all of the elements of a National Air Quality Fore-
casting System, including the development and implemen-
tation of an evaluation protocol. This Pilot Program enlisted
three regional-scale air quality models, serving as proto-
types, to forecast ozone (O3) concentrations across the
northeastern United States during the summer of 2002. A
suite of statistical metrics was identified as part of the pro-
tocol that facilitated evaluation of both discrete forecasts
(observed versus modeled concentrations) and categorical
forecasts (observed versus modeled exceedances/nonex-
ceedances) for both the maximum 1-hr (125 ppb) and 8-hr
(85 ppb) forecasts produced by each of the models. Imple-
mentation of the evaluation protocol took place during a
25-day period (August 5–29), utilizing hourly O3 concentration
data obtained from over 450 monitors from the U.S. Environ-
ment Protection Agency’s Air Quality System network.

INTRODUCTION
Each year, over 100 million Americans are exposed to
levels of air pollution that exceed one or more health-
based ambient pollutant standards. For many of them,
especially those who suffer from respiratory problems, the
availability of air quality forecasts, analogous to weather
forecasts, could make a significant difference in how they
plan their daily activities and, in turn, improve the qual-
ity of their lives. Weather forecasting, or more generally,

IMPLICATIONS
Results revealed that no single metric is sufficient but rather a
suite of measures is required to fully characterize a model’s
performance. Additionally, these measures need to be exam-
ined spatially, temporally, and over varying concentration
ranges to adequately characterize a model’s performance.
For discrete-type evaluations, mean and normalized mea-
sures of bias and error were chosen. These revealed the
following: (1) two of the three models overpredicted ozone
(O3) concentrations (mean bias ranged from �1.41 to �9.51
ppb for maximum 1 hr and from �1.16 to �8.31 ppb for
maximum 8 hr), and (2) the root mean square errors produced
by the models ranged from 14.63 to 21.25 ppb for maximum
1 hr and from 13.04 to 18.18 ppb for maximum 8 hr. Metrics
associated with the categorical-type evaluation revealed that
each model was able to achieve an accuracy �90% for the
maximum 1-hr O3 forecast, a minimum goal for the initial
implementation of the new National Air Quality Forecast ca-
pability. However, this metric is heavily influenced by the very
large number of correctly forecast nonexceedances. To cir-
cumvent this influence, two more stringent measures of cat-
egorical performance, the critical success index and the hit
rate, were also calculated. These revealed that only a small
percentage (between 6 and 36% depending on model and
metric) of exceedances can be expected to be forecasted
correctly. There is also a large false alarm ratio associated with
each of the three models, which ranged from 64 to 87%.
Evaluation results of the three prototype models have shown
promise, but they have also shown that considerable work
needs to be done as National Oceanic and Atmospheric Ad-
ministration develops a National Air Quality Forecasting
System.
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environmental forecasting, has been one of the National
Oceanic and Atmospheric Administration’s (NOAA’s)
core missions since its inception. In response to Congres-
sional direction (H.R. 4 Energy Policy Act of 2002 [Senate
Amendment] S.517, SA 1383), which states: “The Secretary
of Commerce, through the Administrator of the NOAA,
shall, in order of priority as listed in section (c) establish a
program to provide operational air quality forecasts and
warnings for specific regions of the United States . . . ”
NOAA is preparing to deploy an operational National Air
Quality Forecasting System. This follows NOAA’s recently
sponsored New England Forecasting Pilot Program that
serves as a “test bed” for pollutant forecasting by providing
all of the elements of a forecast system, including emission,
meteorological and chemical models, and their evaluation.
This pilot program enlisted three regional-scale air quality
models, serving as prototypes, to forecast ozone (O3) con-
centrations across the northeastern United States during the
summer of 2002. The three models, which are discussed in
Section 2, include: a hybrid Lagrangian model based on
NOAA’s Hybrid Single-Particle Lagrangian Trajectory
(HYSPLIT) model,1 an Eulerian model with coupled chem-
istry and meteorology developed at NOAA’s Forecast System
Laboratory,2 and Multiscale Air Quality Simulation Platform
(MAQSIP), another Eulerian model developed by Environ-
mental Modeling Center of Micro-Computing Center of
North Carolina (MCNC).3

A major component of the New England Pilot Pro-
gram, and the subject of the work presented here, has
been the development and implementation of an evalu-
ation protocol, the purpose of which is three-fold. First, it
is to determine which statistical metrics offer the most
insight concerning model performance. Second, it is to
provide feedback to the individual modelers concerning
model performance, although not necessarily to deter-
mine which model performs best overall. The third and
most important objective is to establish a “performance
benchmark,” for predictions of ground-level O3.

This evaluation, which took place during a 25-day
period (August 5–29, 2002), compared the modeling re-
sults with O3 observations obtained from the U.S. Envi-
ronmental Protection Agency’s (EPA’s) Air Quality System
(AQS) network as discussed in Section 3. A suite of statis-
tical metrics, of which the origins can be traced back to
weather forecast verification,4,5,6 were identified through
the evaluation protocol development and are presented
in Section 4. These metrics facilitated evaluation of both
discrete-type forecasts (observed versus modeled O3 con-
centrations) and categorical-type forecasts (observed ver-
sus modeled events [or exceedances]/nonevents [nonex-
ceedances]) for hourly, maximum 1-hr, and maximum
8-hr O3 forecasts produced by each of the models as
discussed in Section 5. However, model intercomparisons

are complex and difficult. Many factors, such as domain
size, grid resolution, physical parameterizations, model
complexity, development stage, and so forth, affect
model performance and are handled very differently in
the three prototype modeling systems. In addition, sensi-
tivity to emissions data as well as other input fields may
be as large as sensitivity to different models. Statistics
should, therefore, be interpreted with care when compar-
ing a model against other models, and small differences in
performance should not receive undue emphasis.

Description of the Modeling Systems
Brief summaries of the key attributes (meteorological model,
chemical mechanism, emission, and horizontal and vertical
resolution) of each of the three models are provided below.
For spatial comparability, similar (although not identical)
subdomains were extracted from the original modeling do-
mains of each model (Figure 1). Similarly, for temporal com-
parability, the evaluation focused on a 25-day period (Au-
gust 5–29, 2002), although longer simulation, though
dissimilar, periods were available, depending on the model.
For complete model descriptions, including information on
transport, diffusion, and deposition schemes, refer to the
citations provided in each model section.

MAQSIP
MAQSIP-real time (RT) is a highly optimized version of
MAQSIP, a comprehensive Eulerian grid model developed
by MCNC-North Carolina Supercomputing Center (now
Baron Advanced Meteorological Systems).3 MAQSIP-RT
uses a modified version of the Carbon Bond IV chemical
mechanism.7 Emissions used in the model were from
EPA’s National Emissions Trend 1996 Emission Inventory,
which were then processed through Sparse Matrix Oper-
ator Kernel Emissions, a highly efficient emission process-
ing system.8 The meteorology is provided by MM5 (the
Fifth Generation Penn State/NCAR Mesoscale Model).9

The model domain covered the eastern United States us-
ing a 45-km horizontal grid spacing and 31 �-coordinate
vertical layers. Results from the surface layer, which is
38-m thick, are used for this evaluation.

MM5-Chem
NOAA’s Forecast Systems Laboratory MM5-Chem model-
ing system2 is a multiscale Eulerian air pollution predic-
tion system based on MM5, which is coupled with the
Regional Acid Deposition Model chemical mechanism.1

In this system the chemical kinetic mechanism is embed-
ded within the meteorological model structure. As a re-
sult, emissions, deposition, photolysis, and chemical-
transport-transformation calculations are performed
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“online” as part of the MM5 simulation. Emissions used
in the model were from the EPA’s National Emissions
Trend 1996 Emission Inventory data set. The model do-
main contains 27-km horizontal grid cells and 30 verti-
cally stretched layers. Results from the surface layer (16
m) are used in this study.

HYSPLIT-CheM
NOAA’s Air Resources Laboratory’s HYSPLIT-Chemistry
Model (CheM) is a hybrid Lagrangian-meteorological/Eu-
lerian-chemical modeling system.1 As with the other two
models, HYSPLIT-CheM utilizes meteorological input
from MM5. Like MAQSIP, emissions are from the EPA’s
National Emissions Trend 1996 Emission Inventory and
are processed through Sparse Matrix Operator Kernel
Emissions. HYSPLIT-CheM assumes that the entire pollut-
ant mass at each emission source is uniformly distributed
among a number of “particles,” each of which may be
thought of as a capsule containing the various chemical
species. These particles are advected, dispersed, and de-
posited throughout the simulation domain. The Carbon

Bond IV mechanism is used for
chemical transformations, which
are solved for the entire concen-
tration field between each advec-
tion/dispersion time step. The
model domain covers the eastern
United States using 50-km hori-
zontal grid spacing and 10 vertical
layers. Results from the surface
layer (75 m) are used in this study.

O3 Data
The O3 data used in this evalua-
tion were obtained from the
EPA’s AQS (formerly the Aero-
metric Information Retrieval
System). This database contains
a multitude of hourly aerometric
data, including O3 concentra-
tions (measured in ppb), col-
lected by state and local agencies
at thousands of locations nation-
wide. Depending on model do-
main, between 464 and 472 AQS
monitors were used. The moni-
tor locations are shown in Figure
1. For those model grid cells con-
taining more than one monitor,
the average concentration com-
puted from all of the monitors
was used.

STATISTICAL TECHNIQUES

As discussed in the introduction, one of the main ob-
jectives of this work was to determine which statistical
metrics offer the most insight concerning model per-
formance. A review of germane literature revealed an
overabundance of potential metrics (many inter-
changeable), with varying advantages and disadvantag-
es.4,5,6,10 Ultimately, a suite of metrics, of which the
origins can be traced back to weather forecasting, were
selected and calculated that facilitate evaluation of
both discrete-type O3 forecasts and categorical-type O3

forecasts. Additionally, skill scores, which provide a
measure of the relative accuracy of the O3 forecasts
(with respect to persistence), were calculated.

Discrete Statistics
For the discrete forecast evaluation, basic summary sta-
tistics along with two standard and widely used mea-
sures of bias, the mean bias (MB) and the normalized
mean bias (NMB), and error, the root mean square error
(RMSE) and normalized mean error (NME), were se-
lected and are defined below:

Figure 1. Maps of the modeling subdomains used in the evaluation for (a) MAQSIPRT, (b)
MM5-Chem, and (c) HYSPLIT-CheM. Cells with observations are denoted.
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N
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Where Cm and Co are modeled and observed concentra-
tions, respectively.

Categorical Statistics
For the categorical forecast evaluation, the models’ accu-
racy (A), bias (B), hit rate (H), false alarm rates (F), false
alarm ratio (FAR), and critical success index (CSI) were
calculated, based on observed exceedances and nonex-
ceedances versus forecast exceedance and nonex-
ceedances for both the 1- and 8-hr O3 standard. A graph-
ical representation of the variables (a, b, c, and d) used to
formulate the categorical metrics is presented in Figure 2,
where a would represent a forecast 1-hr exceedance (�125
ppb) that did not occur; b, a forecast 1-hr exceedance that

did occur; c, a forecast 1-hr nonexceedance that did not
occur; and d, a nonforecast 1-hr exceedance that did occur.

Accuracy (A) measures the percentage of forecasts
that correctly predict an exceedance or nonexceedance
and is given by:

A � � b � c
a � b � c � d� � 100% (5)

As will be discussed in Section 5.2, A is strongly influ-
enced by the number of correctly forecast nonex-
ceedances (c), which is invariably very large; hence, care
must be taken in its interpretation. The bias (B) indicates,
on average, if the forecasts are underpredicted (false neg-
ative) or overpredicted (false positives).

B � �a � b
b � d� (6)

A value of 1 would indicate no bias, values �1 indicate
underprediction, and �1 indicates overprediction. The
false alarm rate (F) is the proportion of nonexceedances
that were incorrectly forecast.

F � � a
a � c� � 100% (7)

Similar to A, F is also strongly influenced by the number
of correctly forecast nonexceedances (c), which is invari-
ably very small. To avoid the influence of large numbers
of nonexceedances, the false alarm ratio (FAR) measures
the percentage of times an exceedance was forecast when
none occurred.

FAR � � a
a � b� � 100% (8)

Smaller numbers are of course desirable, with a FAR � 0
indicating no false alarms, and a FAR of 50% indicating
that half of the forecast exceedances did not actually
occur. The CSI indicates how well both forecast ex-
ceedances and actual exceedances were predicted.

CSI � � b
a � b � d� � 100% (9)

Unlike the A, the CSI is not affected by a large number of
correctly forecast nonexceedances. A CSI of 50% would
indicate that half of the forecasted and actual exceedances
were correct. Finally, the hit rate (H), which is similar to
the CSI, indicates the percentage of actual exceedancesFigure 2. Example plot for categorical evaluation.
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that were forecasted. It is sometimes also called probabil-
ity of detection (POD).

H � � b
b � d� � 100% (10)

Skill Scores

Skill scores (SS) were also calculated as part of this evalu-
ation. This metric refers to the relative accuracy of a forecast
(with respect to a reference forecast),
which can be interpreted as a percent-
age of improvement over the reference
forecast.6 In terms of O3 forecasts, the
most convenient reference is the per-
sistence forecast. Atmospheric vari-
ables often exhibit statistical depen-
dence with their own past or future
values. This dependence through
time is usually known as persistence.
Persistence forecast for O3 is basically
using today’s values (observed maxi-
mum 1-hr and/or 8-hr concentra-
tions) to make tomorrow’s forecast.

In addition to presenting persis-
tence over time, O3 also displays
persistence over space.11 To distin-
guish the two kinds of persistence,
the former is called temporal persis-
tence and the latter spatial persis-
tence. Considering the current den-
sity of the AQS monitoring stations,
we can make a spatial persistence
forecast using Location A’s observed
values as Location B’s forecast, if A
is the nearest location to B among
all of the available AQS stations
within the model domain.

Statistically, the persistence fore-
cast and model forecast can be ex-
pressed as:

P � 	 � EP (11)

M � 	 � EM (12)

where P is the forecast value by per-
sistence forecast, M is the value fore-
cast by a model, 	 is the true value,
and EP and EM are the errors associ-
ated with persistence forecast and
model forecast, respectively.

If the model forecast outperforms the persistence
forecast, then EM must be smaller than EP. Based on (10)
and (11), the SS can be defined as:

SS �
EP � EM

EP
� 100% (13)

where EP and EM can be any valid error metrics, such as
RMSE and NME (in this study, RMSE is used to calculate the
SS). This definition of SS is the same as the generic form:

Figure 3. Scatter plots of the model versus AQS for both maximum 1-hr (left panels) and
maximum 8-hr (right panels) O3 concentrations (ppb) with exceedance thresholds, least-squares
regression lines, and coefficients provided.
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�SSref �
E � Eref

Eperf � Eref
� 100%�

(14)

where a perfect forecast would
have a zero error (Eperf � 0)

RESULTS

Discrete Evaluations

Overall Performance and Summary
Statistics. Scatter plots of the model forecasts versus AQS
observations (for both the maximum 1- and 8-hr O3 con-
centrations) are provided in Figure 3. In addition to illustrat-
ing the exceedance threshold areas (which were used in
calculation of the categorical statistics), the plots also pro-
vide least-squares regression lines (and coeffi-
cients) associated with each evaluation. As evi-
dent from the regression lines (all have
intercepts �20 ppb), most of the overprediction
common to each model occurs at the lower con-
centrations. (Note: HYSPLIT does not forecast
concentrations �30 ppb). All of the models un-
derpredict the higher O3 concentrations.

As seen in Table 1, which provides re-
sults for the discrete forecasts, the three
models varied in their ability to accurately
predict the 1-hr and 8-hr maximum O3 con-
centrations. Both MAQSIP and MM5-Chem
overpredict the maximum 1-hr and 8-hr
concentrations as indicated by their positive
MBs and NMBs. HYSPLIT overpredicts the
maximum 1-hr concentrations but under-
predicts maximum 8-hr forecast. For the
8-hr predictions, HYSPLIT provided the best
performance with an MB of only �1.16 ppb
(NMB �2.13%); whereas for the 1-hr predic-
tion, MAQSIP performed slightly better (MB
1.41 ppb, NMB 2.24%) than HYSPLIT (MB
3.2 ppb, NMB 5.13%), and both were much
better than MM5-CHEM (MB 9.51 ppb, NMB
15.01%). In terms of error, MAQSIP outper-
formed the other models for both the 1- and
8-hr maximum forecasts, producing the lowest
RMSEs (14.63, 13.04 ppb) and NMEs (17.96,
18.55%), respectively. MAQSIP also provided
better correlation coefficients for both the 8-hr
(0.76) and 1-hr (0.74) as compared with MM5-
Chem (0.68, 0.64) and HYSPLIT (0.60, 0.57).
Note that for each model, the correlation coef-
ficient associated with the 8-hr maximum was
slightly greater than the 1-hr maximum.

Evaluations over Different Concentration Ranges. In addi-

tion to performing the evaluation over the entire data set,

the same error and bias metrics are also calculated over

different concentration ranges that correspond with EPA’s

Air Quality Index based on the 8-hr O3 concentrations. As

seen in Figure 4, the concentrations are grouped “good”

Figure 4. Errors and biases over concentration ranges corresponding to EPA’s Air
Quality Index for maximum 8-hr forecast.

Table 1. Discrete evaluation results.

MAQSIP-RT MM5-Chem HYSPLIT-CHeM

Max 1-hr Max 8-hr Max 1-hr Max 8-hr Max 1-hr Max 8-hr

MB (ppb) 1.41 2.75 9.51 8.31 3.2 �1.16

NMB (%) 2.24 5.02 15.01 15.1 5.13 �2.13

NME (%) 17.96 18.55 25.81 25.38 23.42 22.46

RMSE (ppb) 14.63 13.04 21.25 18.18 19.05 15.84

r 0.74 0.76 0.64 0.68 0.57 0.60
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(�65 ppb), “moderate” (65–84
ppb), “unhealthy for sensitive
groups” (85–103 ppb), and “un-
healthy” (�104 ppb). For reference,
the error and bias metrics for the
entire dataset are also presented.
The advantage of performing such
an evaluation is best illustrated
when examining the bias associ-
ated with HYSPLIT (Figure 4, bot-
tom panel). Overall, HYSPLIT’s MB
(�1.16 ppb) and NMB (�2.13%)
are very small (smallest of the three
models), yet segregated biases re-
veal a different pattern. The small
overall bias results from an overes-
timation of low concentrations (of
which there are a great number)
and a very large underestimation of
the high concentrations (of which
there are a small number). This pat-
tern, whereas most evident with
HYSPLIT, is not unique to
HYSPLIT, as all three of the models
underpredict the highest concen-
trations while overpredicting the
lowest concentrations.

The dependence of model er-
ror on concentration range is gen-
erally not as strong as that of model
bias on concentration range as de-
noted by the tighter grouping de-
picted by the RMSEs and NMEs.
The one exception being that
HYSPLIT RMSEs are considerably
larger for higher concentrations
(�85 ppb) when compared with
lower concentrations.

Evaluations over Time
Evaluation of model performance over time is shown in
Figure 5, where boxplots (denoting 75th, 50th, 25th per-
centiles, maximum, minimum, and mean) of simple bias
(Model-AQS) are provided for each of the 25 days. Of the
three models, MAQSIP generally exhibits the smallest bias
variability across time and HYSPLIT the largest. It is inter-
esting to note that the timing of the fluctuations of the
bias above and below the zero bias line is generally “in-
phase.” This may be attributable to the fact that all three
of the models used the same meteorological model (MM5)
and that errors attributable to the meteorology may be
perturbating through the forecasts; however, additional
study is needed.

Examination of the diurnal performances of each

model forecast (Figure 6) revealed subtle yet intriguing

differences. Boxplots of the diurnal bias (model–ob-

served) reveal that both MAQSIP and MM5-Chem per-

sistently overpredict throughout the diurnal cycle with

the smallest positive bias (best performance) occurring

between 12 and 21 GMT (mainly daylight hours) for

MAQSIP and 2 and 12 GMT (mainly nighttime hours)

for MM5-Chem. HYSPLIT produces the largest bias dif-

ferences over the diurnal cycle with overpredictions

during the night and especially during the early morn-

ing hours. During the period from 15 to 22 GMT, the

biases become smaller and even negative for the 16–20

GMT period.

Figure 5. Boxplots of the variation across time of the (Model–AQS) for both 1- and 8-hr maximum
O3 concentrations (ppb).
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Evaluations over Space
To investigate the performance of the forecast models
over space, correlation coefficients (R), MBs, and RMSEs
for both maximum 1-hr and maximum 8-hr forecast were
plotted across each model domain (Figures 7-12 ). Relative
frequency distributions (histograms) of the different pa-
rameters are also provided. All three of the models gener-
ally have better correlation coefficients (Figures 7 and 8)
in the northeastern part of the model domains and
smaller correlation coefficients across the Appalachian
mountain ranges (possibly related to the high elevation)
stretching from Georgia to western Virginia and West
Virginia. Among the three models, MAQSIP presents the

best correlation with observation (the first quantiles of
correlation coefficients are 0.63 for maximum 1-hr and
0.68 for maximum 8-hr forecast, meaning that �75%
monitoring locations have correlation coefficients �0.63
and 0.68 for maximum 1-hr and 8-hr forecast, respec-
tively), HYSPLIT the least (first quantiles are 0.38 for max-
imum 1-hr and 0.43 for maximum 8-hr), and MM5-Chem
in between (first quantiles are 0.48 for maximum 1-hr and
0.56 for maximum 8-hr).

The distribution of MB for the maximum 1-hr fore-
cast in Figure 9 indicates that there are more overpredic-
tions than underpredictions for all three of the models,
but there are more underpredictions by MAQSIP than
MM5-Chem and HYSPLIT. However, for the maximum
8-hr forecast (Figure 10), HYSPLIT displays balanced un-
derpredictions and overpredictions across the domain,
whereas MAQSIP shifts to overprediction, and MM5-
Chem is similar to its maximum 1-hr forecast. Each of the
models tends to overpredict across the western edge of their
domains, especially MM5-Chem. This may be related to the
boundary conditions established for the models.

The RMSEs for each of the models are provided in
Figures 11 and 12. RMSEs associated with HYSPLIT CheM
are generally higher in eastern sections, stretching from
New England down into North Carolina (especially for
the maximum 1-hr forecast). A different RMSE pattern is
seen with MM5-Chem, where the largest errors are gen-
erally found around metropolitan areas. MAQSIP’s errors
are more evenly distributed over space, with a slight ten-
dency for lower RMSEs to be found in northern sections of
the domain.

Categorical Evaluations
As shown in Table 2, the accuracy (A) for each model
prediction, which indicates the percentage of forecasts
that correctly predict an exceedance or nonexceedance, is
�90% for maximum 1-hr forecast and 76–90% for max-
imum 8-hr forecast. The accuracy of each model’s 1-hr
exceedance/nonexceedance prediction is considerably
better than its 8-hr prediction, and in fact approaches
100% (perfection); however, care must be taken in inter-
pretation of this metric, as it is greatly influenced by the
overwhelming number of correctly forecast nonex-
ceedances (area c in Figure 2). To circumvent this inflation
(which is common when evaluating the prediction of rare
events like O3 exceedances), the CSI is often a better
metric of model performance. The CSI provides a measure
of how well the exceedances were predicted, without re-
gard to the large occurrence of correctly predicted nonex-
ceedances. For our evaluation, the CSIs for the 8-hr ex-
ceedance ranged from 18.1% for MAQSIP and 17.6 for
MM5-Chem to 5.8% for HYSPLIT. This indicates that
MAQSIP and MM5-Chem were approximately three times

Figure 6. Boxplots of the diurnal variation (Model–AQS).
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better than HYSPLIT at accurately predicting 8-hr ex-
ceedances. The ability of the models to predict 1-hr ex-
ceedances was more similar, though considerably lower,
ranging from 9.7% for MAQSIP to 8.3% for HYSPLIT.

The hit rate (H) metric is similar to the CSI, in that it
measures the number of times a model predicted an ex-
ceedance when one actually occurred. In our evaluation,

MM5-Chem had the largest Hs (36.4% for 8-hr, 29.8% for
1-hr), followed by MAQSIP (26.7%, 14%) and HYSPLIT
(7.1%, 18.2%). Note that only HYSPLIT has a smaller H for
the 8-hr forecast than its 1-hr forecast.

Measures of bias (B), which for a categorical forecast
indicates if forecast exceedances (1-hr and 8-hr), are un-
derpredicted (B �1) or overpredicted (B �1) and vary

Figure 7. Maximum 1-hr correlation coefficient over space.
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across models and even within models (i.e., HYSPLIT).
MAQSIP underpredicts both 1-hr and 8-hr exceedances (B:
0.58 and 0.74, respectively), whereas MM5-Chem over-
predicts both, especially the 1-hr (2.34 and 1.43, respec-
tively). HYSPLIT greatly underpredicts the 8-hr (0.30), yet
overpredicts the 1-hr (1.36).

A fifth categorical metric, the false alarm rate (F) is the
proportion of nonexceedances that were incorrectly fore-
cast. As expected, the Fs are low (ranging from 0.14% to
2.06%) for all three of the models, except that MM5-Chem
presents an F value of 8.13% for the maximum 8-hr
forecast. Again, to circumvent the influence of large

Figure 8. Maximum 8-hr correlation coefficient over space.
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number of nonexceedances involved in the metric of F,

the last categorical metric, the FAR, indicates the num-

ber of times that the model predicted an exceedance

that did not occur. The FARs are high for the 1-hr

forecast (ranging from 76% for MAQSIP to 87.2% for

MM5-Chem) and slightly lower for the 8-hr forecast

(from 64% for MAQSIP to 76.3% for HYSPLIT).

SS Results
Temporal and spatial SS for each model and for both the

maximum 1-hr and maximum 8-hr O3 forecast are found in

Table 3. Of the three models, only MAQSIP outperformed

forecasts based solely on persistence. Against temporal persis-

tence, MAQSIP performed 9.57% and 10.93% better for the

maximum 1-hr and 8-hr forecasts, respectively. It performed

Figure 9. Maximum 1-hr MB distribution over space.
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almost as well against spatial persistence, with spatial SS of
9.75% and 6.05% for maximum 1-hr and 8-hr forecast, respec-
tively.

Neither MM5-Chem nor HYSPLIT-CheM performed
better than persistence, as both produced negative SS
for temporal and spatial persistence. Against temporal
persistence, HYSPLIT-CheM posted a SS of �15.5% and

�7.9% for maximum 1-hr and 8-hr forecasts, respec-
tively. Against spatial persistence the SS values were
�15.5% and �12.4%. MM5-Chem produced even larger
negative SS (�22% against temporal persistence for
both maximum 1-hr and 8-hr; �32.4% and �32.8%
against spatial persistence for max. 1-hr and 8-hr, re-
spectively.)

Figure 10. Maximum 8-hr MB distribution over space.
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SUMMARY
The purpose of this research has been to develop and
implement an operational evaluation protocol that will
do the following: (1) determine which statistical metrics
offer the most insight concerning model performance, (2)
provide feedback to the individual modelers concerning
their model’s performance, and (3) establish a “perfor-
mance benchmark” from which realistic expectations can

be derived concerning the future predictions of ground-
level O3.

This research has revealed that no single evaluative
measure is sufficient, but rather a suite of measures exam-
ined spatially, temporally, and over varying concentration
ranges is required to fully characterize a model’s perfor-
mance. For discrete type evaluations, mean and normalized
measures of bias and error provided insight into the models’

Figure 11. Maximum 1-hr RMSE distribution over space.
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overall performances, as well as their performances over
space and time. This type of evaluation revealed that overall,
each model generally overpredicted O3 concentrations as
model biases were positive (the one exception was HYSPLIT-
CheM’s maximum 8-hr forecast). Measures of error were
also revealing in that each model performed slightly better
at forecasting the maximum 8-hr O3 when compared with
the maximum 1-hr, but that in each case, the error was

substantial. The levels of bias and error varied both spatially
and temporally.

Metrics associated with the categorical-type forecast eval-
uation were also revealing. For the maximum 1-hr forecast,
each model was able to achieve an accuracy (A) level of
�90%, a min for the initial implementation of the Na-
tional Air Quality Forecasting Capability.12 The false
alarm rate (F) values are low for all three of the models.

Figure 12. Maximum 8-hr RMSE distribution over space.
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As discussed earlier, however, these metrics are heavily
influenced by the number of correctly forecast nonex-
ceedances and, therefore, are comparatively weak mea-
sures of model performance. Three additional, although
more stringent, measures of categorical performance are
the CSI, H, and FAR. Examination of these measures,
which again circumvent the influence of correctly fore-
cast nonexceedances, reveals that even with these “state-
of-the-science” models, only a small percentage (between
6 and 36% depending on model and metric) of ex-
ceedances can be expected to be forecast correctly. There
is also a large FAR associated with each of the three mod-
els, which range from 64 to 87%. Finally, examination of
skill scores revealed that presently, only one of the three
models, MAQSIP-RT, is better than persistence (either spa-
tial or temporal) at forecasting maximum 1-hr and 8-hr
O3 exceedances.

The New England Forecasting Pilot Program was
sponsored by NOAA to serve as a test bed for a future
National Air Quality Forecasting System by providing
all of the elements of a forecast “system,” including the
evaluation presented here. This evaluation has allowed
establishment of a performance benchmark, from
which realistic expectations can now be derived con-
cerning the potential level of performance of air quality
forecasting models. Although the results of the three
prototype models have shown promise, they have also
shown that much work lies ahead as NOAA develops a
National Air Quality Forecasting System.

DISCLAIMERS
This document has been reviewed and approved by the
EPA and the NOAA for publication. Mention of trade
names or commercial products does not constitute en-
dorsement or recommendation for use.
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Table 2. Categorical evaluation results.

MAQSIP-RT MM5-Chem HYSPLIT-CHeM

Max 1-hr Max 8-hr Max 1-hr Max 8-hr Max 1-hr Max 8-hr

A (%) 99.16 85.82 96.96 76.17 98.98 89.53

B 0.58 0.74 2.34 1.43 1.36 0.30

CSI (%) 9.68 18.10 9.81 17.60 8.33 5.79

H (%) 13.95 26.72 29.81 36.38 18.18 7.12

F (%) 0.14 2.06 1.42 8.13 0.45 1.30

FAR (%) 76.0 64.04 87.24 74.58 86.67 76.27

Table 3. SS for maximum 1-hr and 8-hr O3 forecast.

Temporal SS (%) Spatial SS (%)

MAQSIP MM5-Chem HYSPLIT MAQSIP MM5-Chem HYSPLIT

Max1-h 9.6 �22.0 �15.8 9.8 �31.4 �15.5

Max 8-h 10.9 �22.0 �7.9 6.0 �32.1 �12.4
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