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Abstract

Meteorological models in conjunction with air quality models are being used to simulate the transport and fate of

pollutants in the atmosphere. Hence, there is a need for an extensive evaluation of the entire modeling system. In this

study, several new techniques to assess the performance of mesoscale meteorological models are introduced with an

emphasis on evaluating the variables and processes that have the potential to influence the air quality predictions, since

errors in the meteorological fields are passed on to the air quality model.

Model performance was diagnosed by examining the inter-correlation of observable variables in the atmosphere on

distinct time scales: intraday, diurnal, and synoptic. It was found that the Mesoscale Model version 5 (MM5) model did

replicate the observed relationship between intraday wind speed and temperature, intraday surface pressure and

temperature, diurnal surface pressure and temperature as well as most of the correlations between variables on the synoptic

timescale. However, a negative correlation between temperature and precipitation was evident in the observations on the

intraday scale, but such relationship was not evident in the model output. Furthermore, the diurnal response of increasing

wind speed with temperature was strong in the observed time series, but it was much weaker in the model. The correlation

between diurnal changes in temperature and cloud fraction was consistently negative in the model whereas it was slightly

positive in the observations.

Wind profilers were used to examine the simulated boundary layer wind structure. Of the twelve sites examined, the

average distance error between the 24-h observed and modeled trajectory was approximately 150 km at height of 100m

above the surface. Errors in transport of this magnitude (100–200 km) can produce errors in air quality predictions. It is

not the intent of this study to establish quantitative links between the performance of the specific meteorological simulation

analyzed here and subsequent air quality simulations. Rather, the results presented here draw attention to errors and

inconsistencies in the meteorology that are passed on to the air quality model which, in turn, have the potential to cause

errors in air quality model predictions.
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1. Introduction

Air quality modeling has expanded in sophistica-
tion and application during the past few decades.
Meteorological and air quality modeling tools, such
as the mesoscale model version 5 (MM5) model
(Grell et al., 1994), the National Centers for
Environmental Prediction (NCEP) Eta model
(Janjic, 1994), and the community multiscale air
quality (CMAQ) model (Byun and Ching, 1999),
are being developed for air quality research
applications (Bullock and Brehme, 2002), air quality
forecasting (Otte et al., 2005; Vaughan et al., 2004),
assessing climate impacts on air quality (Hogrefe
et al., 2004), and for developing emission control
strategies (Sistla et al., 2001a). Results from air
quality simulations, which can have extensive
ramifications (Chang and Hanna, 2004), are closely
linked to the meteorological model that drives the
chemical transport, diffusion, and chemical reac-
tions in the air quality model (Pielke and Uliasz,
1998; Sistla et al., 2001b; Seaman, 2000). Thus,
meteorological models need to be evaluated thor-
oughly along with the air quality models (Hogrefe
et al., 2001a, b; Pielke, 1998).

The topic of meteorological model evaluation has
been the focus of many air quality-related studies. A
large majority of meteorological model evaluations
center around how the model performs with regard
to predicting surface-based measurements of tem-
perature, wind speed, moisture, and precipitation.
Typical evaluations take the point measurements
and match them with the volume-averaged model
results in space and time. Statistics such as mean
bias, root-mean-squared-error, mean absolute error,
and index of agreement are then calculated and used
as metrics to judge model performance (Gego et al.,
2005; Vaughan et al., 2004; Abraczinskas et al.,
2004; Mass et al., 2003; Tesche, 2002; Emery, 2001;
Saulo et al., 2001). While this is a straightforward
method to compare observations with model
results, and similar statistics are presented in this
study, there are many other aspects of meteorolo-
gical simulations that need to be closely examined
from the standpoint of subsequent performance of
air quality models.

In this study, several new approaches are
introduced to examine the performance of the
meteorological model with a focus on variables
and processes that have the potential to affect
subsequent air quality simulations that require these
meteorological fields. The application of these
techniques is illustrated by evaluating aspects of
an annual simulation performed with the MM5, and
brief discussions on how these evaluation results
may affect subsequent air quality modeling results
(e.g., CMAQ) are provided. First, traditional model
performance statistics are examined for distinct
subsets of data, i.e., grouping the data by season,
topography, region, land-use, and synoptic flow
patterns. Secondly, and the main focus of this study,
the inter-correlation among observed variables
(standard Pearson correlation between each vari-
able and all other variables) in the atmosphere are
compared with those of the simulated variables.
This approach may prove to be useful in diagnosing
how the meteorological model compares with the
real atmosphere as a system, where many measur-
able quantities have direct and indirect relationships
with one another. This method is taken a step
further by spectrally decomposing the meteorologi-
cal variable time series to provide further insight
into how well the model ‘‘as a system’’ is performing
in reproducing the features imbedded in various
time scales. Lastly, profiler measurements are
compared with simulated vertical wind profiles on
a diurnal basis over a period of several months. It is
expected that this examination can elucidate not
only how well the planetary boundary layer (PBL)
wind is representated by the model, but also the
representation of various boundary-layer processes.
The trajectories are caculated using observed and
simulated wind at multiple levels in the PBL, and
can provide a quantitative estimate of how errors
in the PBL wind can affect the transport of
pollutants in air quality models. The use of all of
these methods is illustrated with annual MM5
simulations at 36 and 12 km horizontal grid cell
dimensions.

2. Method of approach

2.1. Meteorological simulations

The primary meteorological model simulation
used in this study was an annual MM5 version 3.6.1
model run that covered the Continental United
States, with a horizontal grid spacing of 36 km. The
study utilizes a similar 12 km MM5 version 3.6.3
simulation that was executed for a full year, except
that this model domain covered only the eastern
part of the United States. The two model simula-
tions were executed using the same physics options:
the Pleim–Xiu land surface model (Pleim and Xiu,
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1995), the Pleim–Chang PBL model (Pleim and
Chang, 1992), the rapid radiative transfer model
(RRTM) long-wave radiation (Mlawer et al., 1997),
the Kain–Fritsch (Kain, 2004) cumulus parameter-
ization, and the Reisner 2 microphysics (Reisner
et al., 1998) scheme. One exception is that the
Pleim–Xiu soil moisture and temperature initializa-
tion was modified slightly so as not to recycle the
soil temperature (reinitialized using Eta analysis)
between 5.5-day run segments; the moisture was the
only recycled soil property. This was done in an
attempt to lessen a previously recorded cold bias
of the 36 km simulation. The convective scheme
was updated to a newer version (Kain–Fritsch,
version 2) for the 12 km simulation. Additionally,
both simulations used the four-dimensional data
assimilation (FDDA) analysis nudging option
available in MM5, which forces the model to
remain in close agreement with analysis fields. It
should be noted that the main reason for developing
these annual simulations is for regulatory applica-
tions conducted by the US EPA. Therefore, the
model setup has been carefully constructed to
optimize overall performance through many sensi-
tivity tests and represents a standard meteorological
configuration for the US EPA’s air quality applica-
tions. A more detailed description of the MM5
configuration is given by McNally (2003).

2.2. Observations

Several observational data sets were used for
comparison with the model simulations. The TDL
observational data set, provided by the Data
Support Section at the National Center for Atmo-
spheric Research (NCAR-DSS), was used for the
hourly surface meteorology. All surface observa-
tions have undergone a quality control process to
remove anomalous records. The wind profiler
observations used in the trajectory analysis were
obtained from the NOAA Forecast Systems Lab’s
Meteorological Assimilation Data Ingestion System
(MADIS). These profiler observations were
matched (space and time) with the MM5 output
and are used for the trajectory analysis.

2.3. Data extraction, sub-setting and conversion

Model performance statistics were calculated
using a recently developed model evaluation toolkit
that utilizes database technology to store observa-
tion and corresponding model values, as well as
other characteristics: station location, elevation,
land-use, observation network, and date/time. This
metadata can be used as criteria to extract specific
data subsets from the model evaluation database. In
Section 3.1, this database method was used to
calculate model performance statistics by season,
geography, region, MM5 land-use category, and
synoptic pattern. Geographical separation of the
statistics was done according to the elevation of the
site: coastal (elevationo25m), inland (25moeleva-
tiono350m), and mountains (elevation4350m).
The synoptic patterns were determined by a map
typing procedure (McKendry et al., 1995). Cluster 1
represents patterns where a Canadian high pressure
was anchored over the northeast US Cluster 4
represents a synoptic pattern where a cold front
passes off the east coast of the US, and high-
pressure builds into the central US Cluster 7
corresponds to weak large-scale flow over the entire
eastern US, which typically occurs during the
summer. For these data subsets, many statistical
measures were calculated, but only the mean bias,
mean absolute error, and index of agreement are
discussed in detail. See Fox (1981) and Willmott
(1982) for details on the mean bias, mean absolute
error, and index of agreement, which is also known
as anomaly correlation (Wilks, 1995).

In Section 3.2, observation time series were
extracted from the database. The time series
included are temperature, dewpoint temperature,
wind speed, u–v wind components, surface pressure,
precipitation, and cloud fraction. All variables were
extracted directly from the observation record with
the exception of cloud fraction. Cloud fraction
observations are recorded at multiple levels from
laser beam ceilometers. In order to derive a single
value of cloud fraction for the entire column, the
maximum cloud fraction at all levels was used. The
MM5 model does not output all of these specific
variables, so a few had to be derived. Temperature
and wind speed as well as wind components were
directly extracted from the model output (May-
September 2001, 36 km run). The dewpoint tem-
perature was calculated using standard formulas
that are dependent on dry bulb temperature and
relative humidity. For precipitation, the rainwater
mixing-ratio at the lowest model level was used. For
surface pressure, the pressure perturbation at the
lowest model grid level was used since this is the
time varying pressure variable in the raw model
output. Since cloud fraction was not a raw model
output variable, the total amount of cloud water in
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Table 1

Model performance statistics calculated for 2m temperature for

various subsets of data

2-m temperature

Data subsets 36-km MM5 12-km MM5

BIAS MAE IOA BIAS MAE IOA

Seasonal

Winter �1.36 2.36 0.94 �0.91 2.38 0.95

Spring �0.37 1.81 0.93 0.69 2.02 0.93

Summer �0.24 1.67 0.93 0.41 1.99 0.92

Fall �0.35 1.76 0.97 �0.06 2.28 0.93

Geographicala

Coastal �0.35 1.74 0.93 0.33 1.88 0.92

Inland �0.29 1.66 0.94 0.56 1.95 0.93

Mountain �0.26 1.93 0.93 0.43 2.23 0.93

Regionala

Northeast �0.65 2.24 0.92 0.67 2.43 0.93

Midwest �1.06 2.22 0.90 0.52 1.88 0.91

Deep South �0.41 1.65 0.90 0.41 1.91 0.89

Southeast �0.49 1.78 0.92 0.40 2.17 0.91

Land-usea

Agriculture �0.20 1.67 0.94 0.51 1.94 0.93

Plains �0.82 2.03 0.92 �0.32 2.40 0.93

Forested �0.25 1.71 0.93 0.73 2.03 0.92

Desert �0.29 1.67 0.93 0.66 1.93 0.92

Urban �0.21 1.70 0.91 0.22 1.61 0.94

Water �0.29 1.83 0.93 0.28 1.98 0.67

Synoptic clustera

Cluster-1 �0.46 1.82 0.95 0.36 2.03 0.95

Cluster-4 �0.35 1.85 0.98 0.23 2.28 0.98

Cluster-7 �0.55 1.96 0.97 �0.17 2.13 0.97

The annual 36 and 12-km MM5 simulation for 2001 was used for

the calculations.
aModel performance metrics were calculated for dates covering

the May 2001–September 2001 period.

R.C. Gilliam et al. / Atmospheric Environment 40 (2006) 5073–50865076
the atmospheric column was used. Even though
some of these simulated variables (cloud water and
precipitation rate) do not exactly match the
observed variables (cloud fraction and hourly
precipitation), in terms of units; the variables have
a direct correlation. That is to say, changes in the
rainfall rate correlate directly with changes in total
hourly rainfall, and that changes in cloud fraction
are directly correlated with changes in cloud water
at a model grid point.

All observation and model time series were
spectrally decomposed using the Kolmogorov–Zur-
benko (K–Z) filter described by Rao et al. (1997) and
Hogrefe et al. (2000). The filter was applied to
decompose the time series into intraday (variations
with period of 12h or less), diurnal (1–2 days), and
synoptic (2–21 days) components. A standard Pear-
son correlation (Wilks, 1995) between each observed
variable and all other observed variables was
calculated for the warm season (May–September).
This was repeated for each filtered set of variables
with exception of the seasonal component since only
the warm season was considered. In addition, the
same procedure was performed for the time series of
simulated variables. To avoid confusion in the
coming discussions, Pearson correlations will be often
referred to as ‘‘correlation between variables’’, ‘‘inter-
correlations among variables’’, or ‘‘relationship be-
tween variables’’.

3. Results

3.1. Statistical measures

Domain-wide statistics provide a general perfor-
mance measure on how well the model simulation
replicates the observed meteorology in the eastern
United States. Table 1 is a compilation of several
commonly used model performance statistics for 2m
temperature, for both the annual 36 and 12km MM5
simulations. Although the 36km model domain
covered the Continental United States, only observa-
tion-model pairs that were within the 12km domain
were used for the 36km domain statistics. The first
categorization is seasonal. For all seasons, the 36km
simulation is biased cold (�0.24 to �1.36K), while
the 12km simulation is biased cold during the winter
(�0.91K), but biased warm (0.41–0.69K) in the
spring and summer. The cold bias is, at least in part, a
result of the deep soil temperature reaction to changes
in air temperature on the synoptic time scale. For
example, during an extended cold period (several
weeks), the deep soil temperature cools in the model.
When the synoptic pattern then shifts to a warm
period of several days to a week, the deep soil
temperature is too slow to respond (warm). This
increases the temperature gradient between soil levels,
especially during daytime heating period, and hence,
the associated heat flux from the upper to the lower
layer of the two-layer soil model increases. Because of
the surface energy-budget constraints, the simulated
heat flux from the surface soil layer to lower
atmosphere is lessened, resulting in overall lower
simulated 2m temperatures.

The mean absolute error decreases in both the 36
and 12 km simulations from the winter (2.36 and
2.38K) to spring (1.81 and 2.02K), and from the
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spring to summer (1.67 and 1.99K). The 12 km
simulated temperature has a larger mean absolute
error (MAE) than the corresponding 36 km simula-
tion each season, indicating that there is a lack of
improvement in the near surface temperature field
from the finer scale simulation. It should be stressed
again that the two simulations were not only
different in grid cell size, but the soil temperature
re-initialization was done by the Eta model every 5.5
days, and an updated convective scheme was used.
The index of agreement (IOA), which is a measure
of how well the model represents the pattern of
perturbations about a mean value (Wilks, 1995),
indicates little difference in the 2m temperature
patterns of the 36 and 12 km simulations. Gego
et al. (2005) examined the improvement in the
simulated 2m temperature by decreasing the grid
size from 12 to 4 km. They found an overall
improvement for the afternoon and early evening
hours, but a slight degradation in the early to late
morning. Mass et al. (2002) also found only slight
improvements as grid spacing was decreased from
36 to 12 km, but little improvement from 12 to 4 km.

The next group of statistics (geographical, regional,
land-use, and synoptic clusters) in Table 1 was
calculated from data subsets over the US for the
warm season (from May to September). Mean bias
(MB) calculations indicate the 36 and 12km simula-
tions are biased about the same magnitude, but
opposite in sign for most of the subsets. The 36km
simulation has a general MB between �0.25 and
�0.50K, while the 12km simulation has a MB
between 0.25 and 0.50K. It is apparent that the
temperature bias in the 36km simulation is not a
result of geographical considerations, or synoptic
patterns, but does reflect a regional/land-use influence.
This is identified by the fact that all MB are similar
(�0.25 to �0.50K) with the exception of the MB in
the Midwest (�1.06K). Additionally, the temperature
bias as a function of land-use is virtually the same
(approx. �0.25K) except for locations classified as
plains/rangeland (�0.82K), which is the predominant
land-use pattern in the Midwest and central United
States. This connection implies that the MM5 had
difficulties in simulating the 2m temperature because
of a mischaracterization of the ‘‘plains’’ land-use,
since the agriculture land-use, which is also extensive
across the Midwest and central United States, has a
more typical MB of �0.20K.

To bring the preceding temperature statistics into
perspective, a set of benchmarks were proposed by
Emery (2001), and MB, MAE and IOA values fall
within the guidelines (MAEo2K; �0.5KoM-
Bo0.5K; IOA40.80). Additionally, the tempera-
ture statistics compare well with Abraczinskas et al.
(2004) who presented similar statistics for an annual
2002 MM5 simulation. Baker (2004) found daily
variability in the statistics over an entire year ranged
from 1.50K (�2.00K) to 3.00K (0.50K) for the
MAE (MB). Mass et al. (2003) presented similar
statistics for a forecast version of the MM5 over the
northwest US, which is a difficult region to simulate
because of the topography. The MAE was consis-
tently near 2.25K, and the MB ranged from 1.00K
at night to �1.00K during the day.

Errors in the 2m temperature are of interest
because they can effect the concentration of certain
types of pollutants estimated by air quality models.
Gas-phase chemistry, biogenic and mobile source
emissions, gas/particle partitioning of semi-volatile
organic compounds, and ammonium nitrate are
affected by temperature. In fact, observed aerosol
nitrate increases significantly at night during the
winter, when relative humidity rises above 80%
(Nenes et al., 1998). The cold bias results in an
overprediction of the relative humidity if the mixing
ratio is well simulated. This relative humidity
overprediction, could contribute to the overpredic-
tion of aerosol nitrate in the winter.

Table 2 presents the same statistic subsets as
Table 1 except for the 10m wind speed. The overall
performance of the 2001 MM5 in terms of simulated
seasonal 10m wind speed is almost identical to the
36 km 2002 annual simulation evaluated by Abrac-
zinskas et al. (2004). The 36 km simulation has
slightly weaker 10m winds than the observations
indicate: winter (�0.15m s�1), spring (�0.10m s�1),
and summer (�0.19m s�1). The mean absolute
errors (approx. 1.3m s�1) are well below the limit
of 2m s�1 proposed by Emery (2001), as are the
biases (within 70.5m s�1). The IOA is slightly
lower than the benchmark of 0.60 (Emery, 2001),
especially in the summertime. This can be attributed
to the difficulty in simulating light and variable
winds near the surface when the synoptic forcing is
weak during the warm season. Similar to the 2m
temperature, the wind speed statistics calculated
from the 12 km simulation indicate little improve-
ment over the 36 km simulation. The wind speed
bias for both 36 and 12 km simulation are similar to
the annual 2002 MM5 simulation evaluated by
Abraczinskas et al. (2004).

It is difficult to quantify how errors in the wind
speed would affect air quality simulations, but
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Table 2

Model performance statistics calculated for 10m wind speed for

various subsets of data

10-m wind speed

Data subsets 36-km MM5 12-km MM5

BIAS MAE IOA BIAS MAE IOA

Seasonal

Winter �0.15 1.34 0.55 �0.08 1.29 0.59

Spring �0.10 1.34 0.58 0.05 1.26 0.61

Summer �0.19 1.22 0.47 �0.10 1.15 0.49

Fall �0.24 1.31 0.56 �0.00 1.27 0.59

Geographicala

Coastal �0.12 1.38 0.48 0.06 1.31 0.51

Inland �0.04 1.17 0.55 0.06 1.11 0.57

Mountain �0.40 1.42 0.55 �0.25 1.34 0.58

Regionala

Northeast 0.06 1.31 0.43 �0.12 1.21 0.46

Midwest �0.01 1.53 0.70 0.15 1.41 0.72

Deep South �0.45 1.34 0.53 �0.39 1.20 0.57

Southeast �0.04 1.34 0.51 �0.17 1.24 0.58

Land-usea

Agriculture �0.06 1.23 0.61 0.06 1.16 0.63

Plains �0.76 1.54 0.51 �0.67 1.45 0.54

Forested �0.17 1.18 0.45 0.00 1.10 0.48

Desert �0.17 1.14 0.57 �0.02 1.08 0.61

Urban �0.34 1.18 0.50 �0.41 1.16 0.52

Water 0.49 1.55 0.46 �0.66 1.62 0.48

Synoptic clustera

Cluster-1 �0.18 1.30 0.55 0.07 1.22 0.58

Cluster-4 �0.06 1.23 0.53 0.06 1.20 0.55

Cluster-7 �0.10 1.27 0.52 �0.02 1.23 0.55

The annual 36 and 12-km MM5 simulation for 2001 was used for

the calculations.
aModel performance metrics were calculated for dates covering

the May 2001–September 2001 period.
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indirect effects can be inferred. For example, near-
surface wind passed on to the air quality model is
used in combination with micrometeorological
variables to calculate eddy diffusion that dictates
mixing of pollutants. Furthermore, an error in the
model’s wind speed and direction can cause material
to be advected to locations that might be much
different from reality. For example, a wind speed
bias of only 0.50m s�1 can cause transport of
pollutants to be off by 43 km over the course
of the day, which is greater than the grid spacing of
most air quality models. This subject is examined in
more detail in Section 3.3 where observed and
simulated vertical wind profilers are compared.
3.2. Inter-relationships among simulated and

observed variables

Numerical weather models are constructed to
simulate many observable quantities in the atmo-
sphere. These variables, which describe the behavior
of the atmosphere as a system, are related either
directly or indirectly to many physical processes.
Thus, it stands to reason that if a model is
simulating atmospheric processes accurately, the
inter-correlation among the simulated variables will
be identical to that found in the observations. In
this section, we compare the correlation among a set
of observed variables spectrally decomposed into
intraday, diurnal, and synoptic time scales with that
of the same simulated variables. As an illustration,
Table 3 presents the observed (left side of Table 3)
and simulated (right side of Table 3) correlation
matrices for each of these time scales at a single site
in central North Carolina (Raleigh-Durham inter-
national airport, referred to in text as KRDU).
Because of the large number of inter-correlations,
only the more important relationships (i.e., those
that relate to air-quality modeling) will be discussed.

Intraday variations in temperature and wind are
induced by small-scale processes, so it is not
surprising that studies such as Hogrefe et al.
(2001a) found that these signals are more difficult
for MM5 to simulate. The correlation matrix for the
intraday variation (Table 3, Panel IN) indicates that
the positive correlation between wind speed and
temperature is similar in both the model (0.19) and
observations (0.25). This implies that the response
of near-surface wind to temperature, or vice versa,
on a temporal scale of a few hours is well modeled.
An example of an underlying physical process that
drives this correlation is the momentum transport
from aloft to the surface as the temperature warms.
Alternatively, if the surface layer experiences shear
induced mixing due to a mesoscale feature at
night, the wind increases, as does the temperature.
In Fig. 1(A), the modeled and the observed
correlations for 131 sites in the eastern US are
compared. Overall, the model has a stronger
correlation (bias of 0.17 over all stations) between
these variables than that in the observations and the
standard deviation of the difference between all
modeled and observed correlations is 0.10.

The intraday correlation between surface pressure
and temperature is also consistent between observa-
tions (�0.14) and the model (�0.16) at the KRDU
site (Table 3). This negative relationship is intuitive
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Table 3

Observation (left column) and 36 km MM5 (right column) inter-correlation (Pearson correlation) among temperature (tmp), dewpoint

temperature (dew), wind speed (ws), u– v wind components (u/v), surface pressure (sp), hourly precipitation (pcp1), and cloud fraction (cf)

for intraday (IN), diurnal (DI), synoptic (SY)

IN tmp dew ws u v sp pcp1 cf tmp dew ws u v sp pcp1 cf

tmp 1.00 tmp 1.00

dew 0.06 1.00 dew �0.11 1.00

ws 0.19 �0.03 1.00 ws 0.25 �0.36 1.00

u 0.03 0.03 0.03 1.00 u 0.03 �0.12 0.12 1.00

v 0.14 0.05 0.25 0.11 1.00 v 0.06 0.09 0.03 0.16 1.00

sp �0.14 0.01 �0.02 0.09 �0.08 1.00 sp �0.16 �0.01 �0.05 �0.06 �0.06 1.00

pcp1 �0.22 �0.02 �0.07 �0.08 �0.06 0.10 1.00 pcp1 0.00 0.00 0.01 0.01 0.01 �0.01 1.00

cf �0.02 0.01 0.04 0.02 0.01 0.01 0.00 1.00 cf �0.02 �0.04 0.00 0.07 0.01 0.01 0.13 1.00

DI tmp dew ws u v sp pcp1 cf tmp dew ws u v sp pcp1 cf

tmp 1.00 tmp 1.00

dew 0.04 1.00 dew �0.16 1.00

ws 0.62 �0.09 1.00 ws 0.30 �0.17 1.00

u 0.07 0.19 0.10 1.00 u �0.21 �0.06 �0.10 1.00

v 0.10 0.20 0.08 0.33 1.00 v 0.09 0.21 0.06 �0.05 1.00

sp �0.27 �0.13 0.00 0.01 �0.17 1.00 sp �0.38 �0.24 �0.08 0.13 �0.29 1.00

pcp1 �0.05 0.06 �0.02 �0.01 �0.03 �0.06 1.00 pcp1 �0.02 0.02 �0.02 �0.05 �0.03 �0.04 1.00

cf 0.20 �0.05 0.10 �0.03 �0.04 0.04 �0.06 1.00 cf �0.10 �0.03 �0.08 0.03 �0.15 0.03 0.42 1.00

SY tmp dew ws u v sp pcp1 cf tmp dew ws u v sp pcp1 cf

tmp 1.00 tmp 1.00

dew 0.76 1.00 dew 0.67 1.00

ws 0.11 0.16 1.00 ws �0.25 �0.23 1.00

u 0.42 0.41 0.22 1.00 u 0.29 0.22 �0.06 1.00

v 0.49 0.47 0.30 0.72 1.00 v 0.42 0.51 �0.25 0.28 1.00

sp �0.21 �0.32 �0.16 �0.36 �0.16 1.00 sp �0.26 �0.39 �0.02 �0.41 �0.13 1.00

pcp1 �0.04 0.25 0.19 0.06 0.04 �0.20 1.00 pcp1 �0.23 0.13 �0.07 �0.07 0.02 �0.19 1.00

cf �0.12 0.28 0.14 �0.01 0.04 �0.15 0.30 1.00 cf �0.29 0.18 �0.13 �0.10 0.01 �0.17 0.83 1.00

These correlations were calculated for the warm season period from May 2001 to September 2001.

R.C. Gilliam et al. / Atmospheric Environment 40 (2006) 5073–5086 5079
and consistent with physical constraints; warming
air near the surface rises and results in lower surface
pressure (or vice-versa). This relationship is similar
across all sites in the eastern US (not shown here);
the standard deviation of all correlation differences
is 0.10.

The intraday relationship between observed
temperature and precipitation is inconsistent be-
tween observations (�0.22) and model (0.00) at the
KRDU site (Table 3). As expected, the observations
reveal that rapid decreases in temperature are
incident to rainfall events. However, the model
shows no correlation between these two variables.
The non-filtered time series were inspected during a
few periods of precipitation (not shown), and the
observations show a distinct decrease in tempera-
ture when precipitation was measured, while the
model does not. In Fig. 1(B) is the correlation
comparison that includes the 131 sites, all of which
show a similar difference between the observed and
simulated precipitation-temperature correlation.

The inter-correlations on the diurnal time scale
between the meteorological variables are presented
in Table 3, (Panel DI). The relationship between
temperature and wind speed on the diurnal time-
scale is well understood; along with a daytime
increase in temperature is an increase in near-
surface wind that results from boundary-layer
growth and turbulent mixing. Similarly, the de-
crease in wind speed at night is a result of cooling
and stabilization of the boundary layer. Observa-
tions show a relatively strong correlation (0.62)
between temperature and wind speed, while it is
much weaker in the model (0.30). An examination
of the diurnal filtered time series indicates that the
observed temperature and wind speed signals are in
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Fig. 1. Scatter plots of observed and simulated correlations between: (A) intraday 2m temperature and 10m wind speed, (B) intraday 2m

temperature and precipitation, (C) diurnal 2m temperature and 10m wind speed, and (D) diurnal cloud cover and temperature.
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phase while the modeled signals are slightly out of
phase by a few hours in many instances, thereby
affecting the correlations among the simulated
variables. Additionally, the correlation between
simulated wind speed and observed wind speed is
only around 0.33 for the diurnal component. These
inconsistencies are attributable to errors in the
model representation of the boundary-layer mixing
processes, and the resulting PBL growth and
collapse. A study by Dennis et al. (2004) found
persistent errors in the air quality simulation during
PBL transition periods, which may be in part
attributed to this inconsistency. In addition, a
comprehensive examination of the diurnal 2m
temperature and 10m wind speed simulated by five
MM5 PBL parameterizations was conducted by
Zhang and Zheng (2004). While the Pleim–Xiu PBL
scheme was not evaluated, this study found that the
temperature and wind were out of phase in many of
the other MM5 PBL schemes, and hypothesized
that the rapid downward momentum-transport is
not correctly modeled. In Fig. 1(C), indicates that
the majority of sites (approx. 75%) have a similar
error (much stronger correlation in observations
than in the model).

Another correlation that should be consistent
between the model results and observations on a
diurnal time scale is temperature and cloud fraction.
It is typical in the southeast US for cloud cover to
increase as daytime temperatures rise. The observa-
tions show a positive correlation (0.20), while the
model has a slight negative correlation (�0.10). In
fact, Fig. 1(D) indicates that the model has nearly
the same correlation for all sites in the eastern US,
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while the observations substantial variability. This
difference may be related to the 36 km simulations
inability to resolve the smaller-scale fair-weather
cumulus cloud 9 structures well and when the model
simulates clouds, they are sizable enough to affect
the radiation to the extent that the near-surface
temperature cools.

On the other hand, the model results (�0.38) are
similar to the observations (�0.27) in replicating
the temperature and surface pressure correlation on
the diurnal timescale; a negative relationship exists,
as expected since there is a pronounced diurnal
surface pressure change associated with daytime
heating. A scatterplot (not shown) that compares
observed and simulated correlation of temperature
and pressure for the 131 sites in the eastern US
similarly indicate very good agreement for a
majority of sites (approx. 75%). However, observa-
tions from the 25% of remaining sites indicate little
correlation between temperature and pressure (be-
tween �0.10 and 0.10), while the model generally
has a stronger negative correlation (between �0.50
and �0.10).

It has been shown in another study, which
examined model performance on different time
scales (Hogrefe et al., 2005), that the annual MM5
simulation can reproduce the synoptic-scale varia-
tions of variables like the near-surface temperature
and wind quite well. The model examined in this
study used analysis nudging by the NCEP Eta data
analysis system (EDAS), which further ensures that
the simulation accurately propagates weather sys-
tems into and out of the model domain. It is
expected that observed and model inter-correlations
among variables will be similar, especially those
most influenced by the synoptic-scale forcing. The
inter-correlations for both the observations and
model are presented in Table 3. Unlike previous
correlation matrices, dewpoint temperature and dry
bulb temperature are highly correlated in the
observations and the simulation results, 0.76 and
0.67, respectively. This is a fundamental response to
synoptic-scale air mass changes; cooler air masses
are inherently dry and warmer air masses are moist.

Another process well represented by the model
(mod) when compared to observations (obs) is the
positive correlation between the wind components
and temperature (0.49 obs, 0.43 mod). A positive v-
wind component (southerly wind) is associated with
warm advection while a negative v-wind component
is associated with cold advection. The correlation
between pressure and temperature is also similar
between the observations and model (approx.
�0.25), a case where decreasing pressure is asso-
ciated with southerly wind, and warmer tempera-
tures. Similar is the correlation between pressure
and the v-wind component (�0.16 obs, �0.13 mod).
A southerly wind is climatologically associated with
falling pressure while a northerly wind is associated
with high pressure rising. Precipitation and pressure
correlations on the synoptic timescale are consis-
tent; (�0.20 observation versus �0.19 model); low
(high) pressure systems are mostly associated with
precipitation (no precipitation).

Notable correlations not consistent between the
observations and model results on the synoptic time
scale are wind speed and temperature (0.11 ob-
servation versus �0.25 model), cloud fraction and
precipitation (0.30 observation versus 0.83 model),
and the wind speed and v-wind component (0.30
observation versus �0.25 model). The reasons for
these differences are not apparent; thus further
analysis and sensitivity studies will be required,
which is out of the scope of this study.

3.3. Evaluation of the simulated planetary boundary

layer wind

One aspect of meteorological simulations that is
especially important to consider in air-quality
applications is the representation of the wind
throughout the depth of the PBL. These winds are
the primary transport mechanisms for the pollu-
tants released in the PBL. In this section, wind
profile observations are compared to the model
simulation at twelve sites in the eastern US;
however, only a subset of these sites is specifically
discussed. The average diurnal wind, calculated
from a 2-month dataset (13 July 2004–15 September
2004) at several heights, is used to examine potential
errors in simulated air pollution transport. The
method generates conceptual trajectory using the
mean observed and simulated wind starting at
00UTC and ending at 23UTC at each model level.
There are a few assumptions in generating the
trajectories: (1) the flow is horizontally homoge-
nous, but changes hourly according to the diurnal
mean wind calculated over the specified period (13
July 2004–15 September 2004), (2) turbulent pro-
cesses and day-to-day variability are not considered,
as the trajectory is calculated from the mean
wind, and (3) the trajectory represents the flow
at a constant height above the surface. These
assumptions are rather restrictive, thus, the term
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‘‘conceptual trajectories’’; however, the analysis can
provide an easy to apply method to estimate
potential errors in air pollution transport from
simulated wind errors over limited areas. Addition-
ally, the conceptual trajectory plots at the very least,
can aid in assessing the ability of the model to
simulate certain diurnal-dependent mesoscale pro-
cess in the PBL.

Fig. 2 displays the observed and simulated
trajectories at 100 (red), 350 (blue) and 1000 (green)
meters for a number of profiler sites. Fig. 2(A) is for
a site near the coast in southern Maine. The
observed trajectory indicates an initial southerly
wind at 00UTC that veers more westerly in the
morning (12UTC) through early afternoon, at
which point the wind sharply becomes south once
again through the afternoon into the evening. This
cycle clearly represents the New England summer-
time land-sea breeze evolution. By comparing the
general shape of the simulated and observed
trajectory, much insight is gained in how well the
model represents the diurnal wind variation above
the surface. The overall change from southerly to
westerly, then back to a southerly wind direction is
well represented by the model, as is the timing of the
shift from a westerly to southerly wind that occurs
at 1600UTC. The main error that will affect the
transport at 100m near this site is negative wind
speed bias in the model, which can lead to pollutant
transport uncertainty on the order of 100 km. The
observed and modeled trajectories at 350 and
1000m are in closer agreement indicating an
improved wind simulation above the surface layer.

Figs. 2(C), (F), (G), (J) display the trajectories for
a network of profiler sites around Cape Canaveral,
FL. The spacing of these sites is 10–30 km or, from a
model perspective, 1–3 grid points. All of the
observed trajectories at these sites have a daily sea
breeze signature, albeit quite different from site to
site. Previous studies have examined sea breeze
characteristics in this particular region in detail
(Rao et al., 1999; Atkins and Wakimoto, 1994;
Zhong and Takle, 1993). Many of the local
variations can be seen in the observed trajectories.
The simulated trajectories at False Cape (FCPFL in
Fig. 2(C)) are very different from what was
observed, likely because this site lies on a very
complex maze of lagoons and small islands that are
not resolved well by the 12-km scale model
simulation. However, the model does compare
well with the abrupt shifts in wind direction at the
other sites. For example, at Merritt Island (MIDFL,
Fig. 2(F)) and south cape (SCPFL, Fig. 2(J)) the
sharp easterly wind shift in the early afternoon
(�1600UTC) exists in both the model and observa-
tion trajectory at 100m. At Mosquito Lagoon
(MLNFL, Fig. 2(G)) the model simulates the wind
shift from southerly to northerly as the trajectories
shows a looping pattern. This indicates that the
model is simulating the northerly wind component
of the sea breeze, which is a characteristic around
coastal capes (Gilliam et al. 2004). The site south of
Cape Canaveral (SCPFL, Fig. 2(J)) has a southerly
sea breeze component; hence, it seems that relatively
fine details are captured by the 12 km scale model.
Nonetheless, the model has persistently weaker
winds than indicated by the wind profilers. These
weak simulated winds would cause the transport of
pollutants in an air quality model to be offset by
hundreds of kilometers, as the distance between
100m model-observed trajectory endpoints for the
Cape Canaveral sites is: 98 (MIDFL), 150
(MLNFL), 180 (SCPFL), and 220 km (FCPFL).
In fact, the average displacement for all 12 sites in
the eastern US at 100m is 150 km, at 350m it is
about 100 km, and at 1000m it is approximately
140 km. These displacement errors are consistent
with Haagenson et al. (1987) and Kahl (1996) who
found simulated trajectory errors to be in the range
of 150–200 km per 24 h. When the grid spacing is
considered, this analysis suggests that the transport
of a pollutant is potentially displaced 10–15 grid
cells for this 12-km simulation. Thus, pollutant
transport uncertainty because of errors in the
simulated wind field near the surface should be
considered when this simulated meteorology is used
in air quality simulations.

4. Summary

In this study, several approaches were introduced
to examine meteorological model’s performance
with an emphasis on variables and processes that
would affect subsequent air quality simulations. The
application of these approaches was illustrated by
evaluating an annual simulation from the MM5
modeling system. First, standard statistical mea-
sures of model performance were calculated for
seasonal subsets of data. The statistics reveal a
universal cold bias in the winter, which in turn,
could influence the air quality model (e.g., over-
estimation of aerosol nitrate because of an over-
estimation of relative humidity). In general, the
meteorological models performed better in terms of
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Fig. 2. Profiler-based observation and model trajectories at 12 sites in the Eastern US. The trajectories are calculated using two months of

diurnally averaged wind speed and direction profiles. Starting point of trajectories is at 00UTC. Three levels are plotted in different color

with observation trajectories are the solid lines, and model trajectories are the dotted lines.
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temperature during the warmer months. When the
12 km is compared with the 36 km simulation, the
statistics indicate no improvement was achieved
with the high-resolution modeling in simulating the
2m temperature. The statistics calculated for the
various subsets were valuable in diagnosing model
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problems in that they help determine that the 2m
temperature simulation was similar across all
subsets with the exception of the Midwest US and
land-use that is categorized as plains or rangeland.
Since the majority of the Midwest is classified as
plains, this implies an error in the land-use
characterization.

A new method was tested to diagnose model
performance by examining the inter-correlation of
observable variables in the atmosphere. Time series
of the dry-bulb temperature, dewpoint temperature,
wind speed, u–v wind components, pressure, pre-
cipitation, and cloud cover were first separated into
intraday, diurnal, synoptic, and baseline compo-
nents and then the correlation between each
variable on each time scale was calculated. The
inter-correlations were similar between the observa-
tions and model for many variable combinations,
but several were dramatically different. In particu-
lar, the intraday response of temperature to
precipitation was evident in the observations, but
no such response was evident in the model output.
The diurnal response of increasing wind with
temperature was strong in the observed time series,
but it is much weaker in the model. An examination
of the modeled time series showed that temperature
and wind speed was out of phase whereas it was in
phase in the observed time series. These differences
may cause errors in the air quality simulation of
concentrations during boundary-layer transition
periods. The diurnal response of temperature to
cloud fraction was evident in the observations, but
the model showed a negative correlation. This
discrepancy could adversely effect the radiation at
the surface and the air quality model’s photoche-
mical calculations.

Wind profilers were used to examine the simu-
lated boundary-layer wind structure. A diurnal
2-month average vertical wind profile calculated
for several sites across the eastern US were used to
show mean-diurnal modeled and observed trajec-
tories. Although the model captured many of the
complex boundary layer variations throughout the
day, the overall wind speed estimation by the model
was less than those observed at most levels in the
PBL. Of the 12 sites examined, the average
deviation between the 24 h observed and modeled
trajectory was about 150 km at 100m above the
surface. This trajectory deviation decreased at 350
and 1000m above the surface, which indicates better
model performance at levels away from the surface
layer. Errors in transport of this magnitude
(100–200 km) will have significant effects on the
accuracy of the simulated concentration of ozone
and fine particulates. A study is underway to relate
the errors in the meteorological model presented
here with errors in the concentrations simulated by
the CMAQ air quality model.
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