
Structural Ensemble:  Change the structural form of the air 
quality model system.  Differences in the six distinct model 
simulations included the chemical mechanism used in the air 
quality model and the land-surface model and planetary 
boundary layer model options in the meteorological model runs.

Parametric Ensemble:  Change inputs to the model.   
CMAQ-DDM-3D (Cohan et al., 2005) was used to estimate a 
reduced form model of ozone concentration to calculate the 
change in ozone as a result of changes in NOx emissions, VOC 
emissions, and ozone boundary conditions.  Previous work has 
shown these to be among the inputs that have the most impact 
on ozone concentration.  These inputs were varied over a range 
based on previous studies and available data for this domain. 

Post-processing Ensemble Simulations: Weight each 
ensemble member based on observed ozone concentrations.
The BMA predictive probability distribution function (PDF) model
for the ozone concentration at one location, s, and time, t, y(s,t), 
is expressed as a weighted average of normal distributions with 
means equal to the K different ensemble member predictions at 
that site and time, {mk(s,t), k=1,…,K}:                

Observed ozone concentrations were used to find the maximum 
likelihood estimates for σ2

 

and the weight parameters for each 
ensemble member to reflect the “best”

 

performing model runs.  
These parameter estimates can then be used to estimate a 
probability distribution function for any unmonitored location or 
time (e.g. Fig. 1).20
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Future Directions

Future Impact

Model simulations are used to fill in the 
gaps when observations are not available.  
This includes providing information for future 
or hypothetical scenarios such as for risk 
assessment of different air quality control 
programs, or for modeling climate change 
impacts on air pollutants such as ozone and 
fine particulate matter.

When weighing the societal benefits of 
different air quality management options, 
policy-makers need quantitative information 
about the relative risks and likelihood of 
success of different options to guide their 
decisions.  A key component in such a 
decision support system is an air quality 
model that can estimate both a single “best-
estimate’” of pollutant levels and a credible 
probabilistic range of concentrations. 

An ensemble of deterministic 
simulations is frequently used to create 
probabilistic estimates that account for 
uncertainty in the modeling system.  A 
challenge with applying these approaches 
for simulations of air pollutant concentrations 
is that chemistry-transport models require 
significant amounts of input data and 
computational resources to complete a 
single simulation. 

Develop a computationally efficient 
approach to create an ensemble using 
multiple configurations of the CMAQ air 
quality model and quantitative estimates of 
the uncertainty in the model inputs. 

Apply and test a statistical method, 
known as Bayesian Model Averaging (BMA) 
(Raftery et al., 2005), for post-processing the 
ensemble of model runs based on observed 
pollutant levels.

Use the range of predicted values 
provided by the ensemble of simulations to 
quantify the uncertainty in the model 
simulations (e.g. provide 90% confidence 
intervals for pollutant levels, rather than a 
single point estimate).

Demonstrate the utility of such 
approaches for informing air quality 
management decisions.  Use the ensemble 
of simulations to estimate the probability of 
exceeding a given threshold of pollutant 
concentration under current and future 
emission scenarios.

Environmental Issue

Research Objectives

In the absence of quantitative estimates of 
the uncertainty in the inputs, Bayesian Model 
Averaging and observed concentrations can be 
used to significantly reduce bias and improve 
model skill in predicting the probability of 
exceeding a threshold concentration. 

Likewise, in the absence of observed values, 
CMAQ-DDM-3D can be used to efficiently 
generate ensemble members and improve the 
model’s skill.  

These probabilistic methods allow air quality 
managers to quantitatively compare the relative 
risks and benefits of air quality control options 
and to select the emissions control strategy that 
has the largest probability of success.

COLLABORATORS:

H. Christopher Frey, North Carolina State University

Haluk

 

Özkaynak, USEPA/ORD/NERL/HEASD

Statistical 
Post-

processing

CMAQ 
DDM-3D

Parametric 
Ensemble

Structural 
Ensemble

Statistical
Post-

processing

Range of
Input

Parameters

Predictive PDF 
for New Site/Time

Predictive PDF
for New Site/Time

40 60 80 100 120 140

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

pr
ed

ic
tiv

e 
pr

ob
ab

ilit
y

observation
component PDFs
predictive PDF
90% prediction interval

Use emissions data by sector to create a 
more realistic range of input parameters. 

Use observed NO22 data (in addition to ozone 
data) to help weight ensemble members.

Extend the methodology to PM2.5.

Use to assess uncertainty in regional 
downscaling runs and provide insight when 
designing simulations for climate impact 
studies.
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Figure 1.  Predictive PDF and its components based on the 6 
member structural ensemble for the average daily ozone 
concentrations at a site outside of Atlanta, GA on July 2nd, 2002.  

Estimating the Probability of  
Exceeding a Threshold 

Figure 3 below is an example of the 
ensemble performance in predicting the 
probability of the ozone concentration 
exceeding a threshold value of 60ppb.  
The best results were from the post-

 

processed parametric ensemble; this 
approach showed a large improvement 
over the original structural ensemble.

Evaluating the Performance of an 
Ensemble of Simulations

This analysis is based on daily average 
ozone (9am-5pm) at 38 AQS stations in 
the SE US during July 2002.  

Reducing bias:  The structural 
ensemble predictions tended to be biased 
high for this study period.  The ensemble 
generated using CMAQ-DDM-3D and the 
post-processing technique both reduced 
the mean absolute bias. Applying BMA to 
the parametric ensemble produced the 
best results in terms of lower absolute bias 
and higher correlation with observations.

Ensemble calibration: Statistical post-
processing provides ensembles that are 
very well calibrated.  For example, when 
the predictive PDF based on the 
parametric ensemble was used to estimate 
90% prediction intervals for a set of cross 
validation sites not used in the statistical 
estimation, the relative frequency of the 
observed concentrations falling within 
these bounds was 91%, i.e. near the 
nominal value. In contrast, using the 
min/max values predicted by the 6 
member structural ensemble only captured 
the observations 24% of the time.  By 
creating well-calibrated ensembles, we can 
calculate the probability of exceeding a 
threshold concentration under different 
emissions control strategies (e.g. Fig. 2). 
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Reliability Diagram for a Threshold of 60 ppb
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Figure 3.  Reliability diagram for a threshold 
of 60 ppb.  The grey shaded area represents 
ensemble estimates that have overall skill 
greater than a climatological estimate, 
denoted by the dotted lines as the observed 
relative frequency of exceeding the threshold 
across all sites/days in the study (0.31).

Figure 2.  Spatial plots of ozone and probability of exceeding the threshold concentration, for 
current conditions (top) and with a 50% reduction in NOx

 

emissions (bottom).  These plots are
for July 8, 2002 at 5pm EDT.  Observations are shown in white circles.

Model evaluation:  Use the information to 
uncover cases and locations that cannot be 
explained using the known range of model 
inputs.

Risk management tool: Provide 
probabilistic information for epidemiological 
studies and exposure models to estimate air 
quality impacts on sensitive sub-groups and 
individuals with lifestyles or work environments 
in high concentration areas. 

Risk Mitigation tool: Use credible 
estimates of uncertainty to assess the risks and 
benefits of control strategies (e.g. Do some 
emission control strategies deliver larger air 
quality benefits with lower uncertainty?)  Include 
analysis as part of the “weight of evidence”
involved in the SIPs process.

ozone (ppb)

Predictive PDF Based on Structural Ensemble


