
In the Model Evaluation Framework, we refer to four types of model 
evaluation: Operational, Diagnostic, Dynamic and Probabilistic 
evaluation

 

approaches.  Since these are not necessarily mutually 
exclusive, research studies often incorporate aspects from more 
than one category of evaluation.  

Operational evaluation is a fundamental first phase of any 
model evaluation study.  Operational evaluation, as defined here, is 
a comparison of model predicted and observed concentrations of 
the end-point pollutant(s) of interest in a general sense. The time 
and spatial scale(s) of the evaluation can vary to provide more 
insight into the results. For more examples of analysis approaches 
for operational evaluation of CMAQ O3 and PM2.5 predictions, see 
Figure 1, the text box (right column) on the Atmospheric Model 
Evaluation Tool, and Appel et al. (2007, 2008).  Operational 
evaluation is also an essential part of the National Air Quality
Forecasting System.  See Poster 2.2 for more details.

Recently, more advanced statistical methods have been developed 
to aid in evaluation by making the best use of the limited monitoring 
data available, accounting for the differences between point-based 
measurements (monitors) and grid cell averages (model output), 
and assessing the model output for grid cells in which no monitors 
are located (Swall

 

and Foley, in press; Irwin et al., 2008; Swall

 

and 
Davis, 2006; Davis and Swall, 2006) (e.g. Figure 2).

Diagnostic evaluation investigates the processes and input 
drivers that affect model performance (see Session 1 for many 
examples of diagnostic evaluation).  A unique type of diagnostic
evaluation discussed in this session is the use of instrumented 
models to track the contributions and sensitivities of emissions, 
boundary conditions, transport, etc., and inverse modeling for 
emission evaluation.  (See Posters 2.2 and 2.3). Diagnostic studies 
often rely on specialized datasets that include many chemical 
species that are not standard in large networks.

Atmospheric chemical transport models, such 
as the USEPA Community Multiscale Air 
Quality (CMAQ) model, are used for air quality 
management at the local, state, and federal 
levels.  CMAQ is used by the Regional 
Planning Organizations (RPOs), by the state 
agencies for designing their emission control 
policies as part of State Implementation Plans, 
and by the USEPA Office of Air Quality 
Planning and Standards (OAQPS) for federal 
rulemaking such as the recently vacated Clean 
Air Interstate Rule (CAIR).  

As the developers of the CMAQ model, the 
Division also has the primary responsibility to 
conduct comprehensive evaluation studies to 
rigorously assess model performance in 
simulating the spatio-temporal features 
embedded in the air quality observations.

Figure 6. A “soccer goal”

 

plot 
showing fractional bias vs

 

fractional 
error for CMAQ sulfate predictions 
versus observational networks.

The Model Evaluation Framework has been presented at an 
international conference (Gilliland et al., 2008) and in a review 
article currently being peer-reviewed (Dennis et al., 2008, in 
review) to provide leadership to the research community on 
conducting comprehensive evaluation programs.

The EPA Office of Air Quality Planning and Standards (OAQPS) 
has been using the AMET since 2006.  AMET was publicly 
released in February 2008, and more than 200 users have 
downloaded AMET to date.
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Impact

The evaluation program has strived for 
comprehensive assessment, considering the 
quality of the model inputs (e.g., emissions, 
meteorology) as well as various processes 
simulated within the CMAQ model. 

A fundamental goal of the CMAQ 
evaluation program has been to conduct 
evaluation studies that not only characterize 
model performance but also identify what 
model improvements (inputs or processes) are 
needed. 

Furthermore, evaluating an air quality 
model’s response to emission changes is 
central to how the model is used for air quality 
management.  

An additional goal to expanding model 
evaluation is to develop uncertainty estimates 
to assist the air quality management process.  
As the CMAQ evaluation program was 
developed over the past five years, the 
overarching objective was to incorporate all of 
these aspects into the program.  To describe 
and coordinate the team’s research efforts, a 
Model Evaluation Framework was 
developed, as discussed in the next section.  

Another objective of the CMAQ evaluation 
program has been to encourage more 
advanced model evaluations by the user 
community.  The Atmospheric Model 
Evaluation Tool (AMET) was developed over 
the past four years and the first public release 
was in February 2008. 

Environmental Issue

Research Objectives

Since operational model evaluation is a fundamental step for 
initiating comprehensive model evaluation, it is important to have 
the right analysis and graphical tools.  The Atmospheric Model 
Evaluation Tool (AMET) was developed by the Division and 
released as a Beta version in February 2008.  Framed around a 
relational database and the R (http://www.R-project.org

 

) statistical 
package, AMET provides graphical and statistical evaluation 
results for air quality and meteorological model output.  The 
intent is that additional R routines can be added by members of 
the Division and the research community as AMET development 
continues.  Below are a few examples of AMET graphs. 
(http://www.cmascenter.org

 

/conference/2008/slides/appel_amet_cmas08.ppt)

Figure 4. Time series of daily maximum 8-hour O3 concentrations 
(ppb) for July 2002 at a monitoring site located in the Birmingham, 
Alabama metropolitan area. Gray lines are results from individual 
members of a 200-member

 

CMAQ model ensemble; black 
line/symbols are observed data from the monitor. From Pinder et 
al. (in review).

Christian Hogrefe, NY Department of Environmental Conservation; 
Steve Porter, University of Idaho; Sharon Phillips, Office of Air Quality 
Planning and Standards; Jerry Davis, NC State University; John Irwin, 
Irwin and Associates

External Collaborators

Figure 7. Predicted mean model wind speed. 
Warmer colors represent faster wind speeds, 
and cooler colors slower wind speeds.  The 
points represent the wind profiler data.

Figure 5. Median and inner-quartile ranges of mean bias and RMSE for daily 
maximum 8-hr ozone for four geographic regions in the eastern United States.

Dynamic evaluation focuses on assessing the model’s air 
quality response to changes in emissions and meteorology 
(Gilliland et al., 2008; Godowitch et al., 2008), which is central to 
an air quality model’s application in air quality management (see 
Poster 2.5).  Figure 3 summarizes the type of information that is 
demonstrated from dynamic evaluation, where the model’s ozone 
response to the NOx State Implementation Plan (SIP) Call is 
evaluated.  

Probabilistic evaluation is challenging, given the deterministic 
nature of models like CMAQ, and the lack of data about the 
uncertainties in the emission inputs, meteorological inputs, and the 
compounding effect of numerous uncertainties.  To explore ways 
to estimate uncertainty, ensemble modeling studies are being 
conducted using CMAQ, instrumented CMAQ-Decoupled Direct 
Method (CMAQ-DDM), and Bayesian Model Averaging techniques 
(see Poster 2.6 and Figure 4).

Figure 1. An example comparison of PM2.5

 

species from a CMAQ simulation 
and the Speciated

 

Trends Network (STN) from Appel

 

et al. (2008).   

(a) (b)

Figure 3. Example of dynamic evaluation of an air quality 
model-predicted change in ozone concentrations from 
summer 2002 to 2005 from Gilliland et al. (2008). The results 
illustrate the relative change in ozone when comparing the 
≥95th percentile daily 8-hour maximum levels from the two 
summers.

Figure 2. (a) Mean CMAQ sulfate concentration (µg/m3) during 
July 17 –

 

August 13, 2001 and (b) predicted sulfate from a 
Bayesian statistical model based on observations from STN 
during the same time period (Swall

 

and Davis, 2006).


