Fundamental Studies of Secondary Organic Aerosol (SOA) Formation

John H. Seinfeld

California Institute of Technology

EPA Atmospheric Science Progress Review Meeting June 22, 2007

Formation of secondary organic aerosol (SOA)

Secondary organic aerosol (SOA)

- Globally: ~10-40% of organic aerosol is secondary [Kanakidou et al., 2005]
- Urban areas: ~50-80% [Kanakidou et al., 2005]
- SOA precursors
 - Biogenic emissions (isoprene, monoterpenes, sesquiterpenes)
 - Anthropogenic emissions (aromatic hydrocarbons)

Hydrocarbon	Emission [Tg / y]	SOA Production [Tg / y]
aromatics	19	3.7
terpenes	153	12
alcohols	41	1.9
sesquiterpenes	15	2.3
isoprene	461	?
Total	689	19.9

Henze et al., 2007

Caltech environmental chambers

- 2 Teflon chambers, 28 m³ each
- Differential Mobility Analyzer (DMA): particle size distribution, volume
- Time-of-flight Aerodyne Aerosol Mass Spectrometer (AMS): particle mass, composition
- GC-FID: hydrocarbon
- Proton Transfer Reaction Mass Spectrometer (PTR-MS): hydrocarbon, reaction products
- Filter samples: off-line chemical analysis
- O₃, NO_x, RH, T

Oxidation of biogenic hydrocarbons

Ozonolysis:

- T=20°C. RH<10%
- OH Scavenger: cyclohexane
- (NH₄)₂SO₄ seed
- Reaction initiated upon addition of O₃

Photooxidation:

- T=20-22°C, RH~50%
- HONO as OH precursor: dropwise addition of 1% NaNO₂ into 10% H₂SO₄
- (NH₄)₂SO₄ seed
- Reaction initiated by irradiation with UV lights

α -pinene ozonolysis

- SOA is formed from the condensation of first-generation products and the first oxidation step is the rate-limiting step
- Organic acids have been identified as major particle-phase products: monocarboxylic acids (pinonic acid and norpinonic acid), dicarboxylic acids (pinic acid and norpinic acid), and hydroxy pinonic acid [e.g. Yu et al., 1999]
- Jenkin et al. [2000] proposed pinic and hydroxy pinonic acid are first-generation products, which is consistent with our study

Compounds with one double bond

Terpinolene ozonolysis

- Terpinolene has multiple double bonds, so its first-generation products formed are still unsaturated, and they will further react with the ozone in the chamber to produce additional condensable products
- Further oxidation of first-generation products contributes significantly to SOA and this oxidation step may also be rate-limiting

Time dependent growth vs. Final SOA growth α -pinene ozonolysis

- Time-dependent data overlap remarkably well with the final SOA growth curve
 - Odum equation (as well as the growth curve equation) is valid for the final growth as well as the time-dependent data

Time dependent growth vs. Final SOA growth terpinolene ozonolysis

- Time-dependent growth curves and final growth curve do not overlap; timedependent growth curves show clearly the contribution of the secondary reactions
- Cannot fit the time-dependent growth curves for terpinolene ozonolysis with Odum equation, confirming that this model is only valid when the data represent final SOA growth

Conclusions

- Growth stops when all hydrocarbon is consumed
 - First step is rate-limiting
 - SOA formed from nonvolatile firstgeneration products

- Growth continues after all hydrocarbon is consumed
- Aerosol formed from further oxidation of first-generation products and this second oxidation step may also be rate-limiting

Effect of NO_x level on SOA Formation from Photooxidation of Biogenic Hydrocarbons

Isoprene 🔪

- Global emissions of ~500 Tg/year [Henze et al., 2007]
- First-generation oxidation products: all are volatile, not expected to partition into the aerosol phase
- Pandis et al. [1991], Edney et al. [2005] observed no SOA formation from irradiation of isoprene/NO_x mixtures
- Possible contributions of isoprene to organic aerosol by heterogeneous chemistry [Limbeck et al., 2003], [Claeys et al., 2004], [Edney et al., 2005]

Experimental conditions

- Ammonium sulfate seed; T~25°C, RH<10%
- Low-NO_x experiments
 - Radical source: H₂O₂ + hv → OH + OH
 - Peroxy radicals react with HO₂
- High-NO_x experiments
 - Radical source: HONO + hv → OH + NO
 - NO_x is produced as side product
 - Peroxy radicals react with NO

Isoprene and SOA formation

Isoprene: NO_x dependence

40-45 ppb isoprene

Decrease in SOA yield at high NO_x [Pandis et al. 1991; Zhang et al., 1992;
Hurley et al., 2001; Johnson et al., 2004; Song et al., 2005; Presto et al., 2005]

Growth curve: α -pinene photooxidation

- Same NO_x dependence as isoprene: higher NO_x, lower SOA growth
- SOA formed from the condensation of first-generation products and the first oxidation step is rate-limiting
- H_2O_2 +NO: Multiple SOA formation steps; α -pinene only has one double bond, further SOA growth by
 - Particle-phase reaction
 - Further gas-phase reaction of reactive oxidation products (aldehydes, furans etc)

Peroxy radical chemistry

- Small alkoxy radical easily fragmented
- Organic nitrates relatively volatile [Presto et al., 2005]
- Peroxides: important SOA components [Bonn et al., 2004; Docherty et al., 2005]

Growth curve: longifolene photooxidation

- Reversed NO_x dependence: higher NO_x, higher SOA growth
- High-NO_x: maximum yield = 100-120%
- Low-NO_x: constant yield = 75%

Longifolene: NO_x dependence

- Low NO_x: SOA Yield = 75%
- With ~300 ppb NO: SOA Yield = 127%;

Longifolene: NO_x dependence

~5 ppb longifolene: increase in yield at high NO_x

Aromadendrene: NO_x dependence

~5 ppb aromadendrene: increase in yield at high NO_x

Isomerization of alkoxy radicals

Isomerization of alkoxy radicals

• SOA growth from large alkanes at ppm levels of NO [Lim et al., 2006]

Lim et al., 2006

Organic nitrates: UPLC/ESI-TOFMS

• Extracted ion chromatograms shows the presence of acidic nitrates in longifolene SOA

Conclusions

- Isoprene is an important SOA precursor (SOA: 14 Tg / year, *Henze et al.,* 2007)
 - Condensable products are second-generation
- Change in NO_x dependence going from isoprene to sesquiterpene
 - Isoprene (C_5H_8) and α -pinene ($C_{10}H_{16}$): SOA yield decreases at high NO_x
 - Longifolene and aromadendrene (C₁₅H₂₄): SOA yield increases at high NO_x
- Isomerization of alkoxy radicals and formation of nonvolatile organic nitrates could be an efficient channel of SOA formation (for large hydrocarbon precursors

SOA Formation from Photooxidation of Aromatic Hydrocarbons

Background

- Field studies suggest higher SOA formation than models predict [De Gouw et al., 2005; Volkamer et al., 2006]
 - SOA formed from anthropogenic sources is higher than currently thought
- SOA formation from aromatic hydrocarbons
 - Mechanisms poorly understood
 - Poor carbon balance, typically < 50% [Calvert et al., 2002]
 - SOA yields vary with different NO_x levels [Hurley et al., 2001; Johnson et al., 2005; Martin-Reviejo et al., 2005, Song et al., 2005]

Previous studies

- Irradiation of aromatics/NO_x mixture [Hurley et al., 2001; Johnson et al., 2005; Martin-Reviejo et al., 2005, Song et al., 2005]
 - Changing oxidation conditions over the course of the experiments
 - Aerosol growth does not begin until NO approaches zero

Problems

- Urban areas are high-NO_x, so this would suggest no aerosol formed from anthropogenic hydrocarbons
- Experiments with higher levels of NO, and CH₃ONO, aerosols observed before NO approaches zero [Stroud et al., 2004]

Goals of experiments

 Study systematically the effect of NO_x on SOA formation from selected aromatic hydrocarbons

- Obtain SOA yields at high- and low-NO_x conditions (the limiting cases), parameterize the NO_x dependence for modeling purposes
- Investigate the effect of particle phase acidity on aerosol growth

Experimental conditions

- Ammonium sulfate seed; T~25°C, RH<10%
- Low-NO_x experiments
 - Radical source: H₂O₂ + hν → OH + OH
 - Peroxy radicals react with HO₂
- High-NO_x experiments
 - Radical source: HONO + hv → OH + NO
 - NO_x is produced as side product
 - Peroxy radicals react with NO

Growth curves: m-xylene

- High-NO_x: Growth curves do not overlap, multiple rate-limiting steps in SOA formation (first step is the slowest)
- Further-generation oxidation products

- SOA yields much higher than high-NO_x experiments
- Constant SOA yield implies essentially nonvolatile oxidation products (36% yield)

Growth curves: toluene

Growth curves: benzene

- ~400 ppb benzene (slow reaction rate, <20% reacted)
- Same NO_x dependence as *m*-xylene and toluene: high NO_x, lower yields
- Low NO_x: constant yield of 37%

Peroxy radical chemistry

Effect of oxidation rate

Loss of semivolatiles — rate effect

Loss of semivolatiles

- Loss of semivolatiles (by photolysis, reactions in the gas phase to form volatile products, or deposition to chamber walls)
 - Lowers the concentration of the gas-phase semivolatile, thereby reducing the amount that partitions into the aerosol phase

Seed acidity: acid seed vs. non-acid seed

- No acid effect observed
- Same observations in *m*-xylene oxidation

Conclusions: Aromatic SOA

- SOA yields are highly dependent on NO_x levels (peroxy radical chemistry)
 - High NO_x: Usual Odum yield curve behavior (Yield ~ 5 -10%)
 - Low NO_x: Constant yield (Yield ~30%)
- Condensable compounds are second-generation products (further gasphase and/or particle-phase reactions)
- No effect of particle phase acidity observed

What do all these studies tell us?

- Growth curve (ΔM_o vs. ΔHC) as a powerful approach to infer the general mechanism of SOA growth
- Profound effect of NO_x level on SOA formation (isoprene, monoterpenes, aromatics, sesquiterpenes)
- Discrepancy between modeled vs. measured SOA:
 - Of compounds studied in the laboratory, biogenics are the largest contributor to ambient SOA, and isoprene is the most important single precursor
 - SOA formation from aromatics significantly higher than previously measured but not sufficiently large to rival that of biogenics on a continental scale
 - According to recent CMU study (Robinson et al., 2007), SVOCs from primary organic aerosol emissions may themselves constitute a major class of SOA precursors