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Formation of secondary organic aerosol (SOA)
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So what is secondary organic aerosol and how is it formed?�


Secondary organic aerosol (SOA)

* Globally: ~10-40% of organic aerosol is secondary [Kanakidou et al., 2005]
« Urban areas: ~50-80% [Kanakidou et al., 2005]

 SOA precursors
— Biogenic emissions (isoprene, monoterpenes, sesquiterpenes)
— Anthropogenic emissions (aromatic hydrocarbons)

Emission SOA Production

Hydrocarbon Tq/y] Tq/y]
aromatics 19 3.7
terpenes 153 12
alcohols 41 1.9

sesquiterpenes 15 2.3
isoprene 461 ?

Total 689 19.9 Henze et al., 2007




Caltech environmental chambers

» 2 Teflon chambers, 28 m3 each

« Differential Mobility Analyzer (DMA):
particle size distribution, volume

» Time-of-flight Aerodyne Aerosol Mass
Spectrometer (AMS): particle mass,
composition

e GC-FID: hydrocarbon

e Proton Transfer Reaction Mass
Spectrometer (PTR-MS): hydrocarbon,
reaction products

 Filter samples: off-line chemical analysis
* O;, NO,,RH, T




Oxidation of biogenic hydrocarbons

Ozonolysis: Photooxidation:

« T=20°C, RH<10% o« T=20-22°C, RH~50%

 OH Scavenger: cyclohexane e HONO as OH precursor: dropwise

« (NH,),SO, seed addition of 1% NaNO, into 10% H,SO,

- Reaction initiated upon addition of O, ¢ (NH4),SO,seed
* Reaction initiated by irradiation with

UV lights
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o-pinene ozonolysis
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« SOA is formed from the condensation of first-generation products and the first oxidation step
Is the rate-limiting step

* Organic acids have been identified as major particle-phase products: monocarboxylic acids
(pinonic acid and norpinonic acid), dicarboxylic acids (pinic acid and norpinic acid), and
hydroxy pinonic acid [e.g. Yu et al., 1999]

» Jenkin et al. [2000] proposed pinic and hydroxy pinonic acid are first-generation products,
which is consistent with our study




Compounds with one double bond
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Terpinolene ozonolysis
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» Terpinolene has multiple double bonds, so its first-generation products formed are still
unsaturated, and they will further react with the ozone in the chamber to produce additional

condensable products

*  Further oxidation of first-generation products contributes significantly to SOA and this oxidation
step may also be rate-limiting

&, ¢ &, Condensable
5 products




Time dependent growth vs. Final SOA growth
o-pinene ozonolysis
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* Time-dependent data overlap remarkably well with the final SOA growth curve

— Odum equation (as well as the growth curve equation) is valid for the final growth as well
as the time-dependent data




Time dependent growth vs. Final SOA growth
terpinolene ozonolysis
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* Time-dependent growth curves and final growth curve do not overlap; time-
dependent growth curves show clearly the contribution of the secondary reactions

« Cannot fit the time-dependent growth curves for terpinolene ozonolysis with Odum
equation, confirming that this model is only valid when the data represent final
SOA growth




Co

nclusions
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Growth stops when all hydrocarbon is
consumed
— First step is rate-limiting
— SOA formed from nonvolatile first-
generation products
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Growth continues after all hydrocarbon is
consumed

Aerosol formed from further oxidation of
first-generation products and this second
oxidation step may also be rate-limiting



Effect of NO, level on SOA Formation from
Photooxidation of Biogenic Hydrocarbons
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Now we move on to the second topic, which is on…�


Isoprene >—\\

* Global emissions of ~500 Tg/year [Henze et al., 2007]

» First-generation oxidation products: all are volatile, not expected to partition into the
aerosol phase

 Pandis et al. [1991], Edney et al. [2005] observed no SOA formation from irradiation
of isoprene/NO, mixtures

» Possible contributions of isoprene to organic aerosol by heterogeneous chemistry
[Limbeck et al., 2003], [Claeys et al., 2004], [Edney et al., 2005]




Experimental conditions

« Ammonium sulfate seed; T~25°C, RH<10%

* Low-NO, experiments
— Radical source: H,0, + hv - OH + OH

— Peroxy radicals react with HO,,

* High-NO, experiments
— Radical source: HONO + hv —- OH + NO
— NO, is produced as side product
— Peroxy radicals react with NO




Isoprene and SOA formation
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Isoprene: NO, dependence

40-45 ppb isoprene
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» Decrease in SOA yield at high NO, [Pandis et al. 1991; Zhang et al., 1992;
Hurley et al., 2001; Johnson et al., 2004; Song et al., 2005; Presto et al., 2005]




Growth curve: a-pinene photooxidation
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« Same NO, dependence as isoprene: higher NO,, lower SOA growth
 SOA formed from the condensation of first-generation products and the first oxidation step is rate-limiting

« H,O,+NO: Multiple SOA formation steps; a-pinene only has one double bond, further SOA growth by

— Particle-phase reaction
— Further gas-phase reaction of reactive oxidation products (aldehydes, furans etc)




Peroxy radical chemistry

Hydrocarbon

o

RO, HO, » ROOH + O,
Ny WAO
Fragments/
Carbonyls “ RO+NG, RONO,

« Small alkoxy radical easily fragmented
« Organic nitrates relatively volatile [Presto et al., 2005]

» Peroxides: important SOA components [Bonn et al., 2004; Docherty et al.,
2005]




Growth curve: longifolene photooxidation
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» Reversed NO, dependence: higher NO,, higher SOA growth
* High-NO,: maximum yield = 100-120%
* Low-NO,: constant yield = 75%




Longifolene: NO, dependence
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* Low NO,: SOA Yield = 75%
« With ~300 ppb NO: SOA Yield = 127%:




Longifolene: NO, dependence

~5 ppb longifolene: increase in yield at high NO,
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Aromadendrene: NO, dependence

~5 ppb aromadendrene: increase in yield at high NO,
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Isomerization of alkoxy radicals

Hydrocarbon

o
Fragments/

RO,
Carbonyls
\ Y
Less volatile products «—— NO,

Isomerization

19, | RrooH+o0,




Isomerization of alkoxy radicals

SOA growth from large alkanes at ppm levels of NO [Lim et al., 2006]
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Organic nitrates: UPLC/ESI-TOFMS

» Extracted ion chromatograms shows the presence of acidic nitrates in longifolene SOA
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Conclusions

* Isoprene is an important SOA precursor (SOA: 14 Tg / year, Henze et al., 2007)
— Condensable products are second-generation

« Change in NO, dependence going from isoprene to sesquiterpene
— Isoprene (C,Hg) and a-pinene (C, H,,): SOA yield decreases at high NO,
— Longifolene and aromadendrene (C,.H,,): SOA yield increases at high NO,

* Isomerization of alkoxy radicals and formation of nonvolatile organic nitrates could be
an efficient channel of SOA formation (for large hydrocarbon precursors




SOA Formation from Photooxidation of
Aromatic Hydrocarbons



Background

* Field studies suggest higher SOA formation than models predict [De Gouw
et al., 2005; Volkamer et al., 2006]
— SOA formed from anthropogenic sources is higher than currently thought

« SOA formation from aromatic hydrocarbons
— Mechanisms poorly understood
— Poor carbon balance, typically < 50% [Calvert et al., 2002]

— SOA yields vary with different NO, levels [Hurley et al., 2001; Johnson et al.,
2005; Martin-Reviejo et al., 2005, Song et al., 2005]




Previous studies

« Irradiation of aromatics/NO, mixture [Hurley et al., 2001; Johnson et al., 2005; Martin-
Reviejo et al., 2005, Song et al., 2005]

— Changing oxidation conditions over the course of the experiments
— Aerosol growth does not begin until NO approaches zero
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e Problems

— Urban areas are high-NO,, so this would suggest no aerosol formed from anthropogenic
hydrocarbons

— Experiments with higher levels of NO, and CH,ONO, aerosols observed before NO
approaches zero [Stroud et al., 2004]




Goals of experiments

« Study systematically the effect of NO, on SOA formation from selected
aromatic hydrocarbons

o &6 O

Benzene Toluene m-xylene

e Obtain SOA yields at high- and low-NO, conditions (the limiting cases),
parameterize the NO, dependence for modeling purposes

* Investigate the effect of particle phase acidity on aerosol growth




Experimental conditions

« Ammonium sulfate seed; T~25°C, RH<10%

* Low-NO, experiments
— Radical source: H,0, + hv - OH + OH

— Peroxy radicals react with HO,,

* High-NO, experiments
— Radical source: HONO + hv —- OH + NO
— NO, is produced as side product
— Peroxy radicals react with NO




Growth curves: m-xylene
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* High-NO,: Growth curves do not overlap,
multiple rate-limiting steps in SOA formation
(first step is the slowest)

» Further-generation oxidation products
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» SOA yields much higher than high-NO,
experiments

» Constant SOA yield implies essentially
nonvolatile oxidation products (36% yield)



Growth curves: toluene
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Growth curves: benzene @
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» ~400 ppb benzene (slow reaction rate, <20% reacted)

« Same NO, dependence as m-xylene and toluene: high NO,, lower yields

* Low NO,: constant yield of 37%




Peroxy radical chemistry
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Effect of oxidation rate
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e Loss of semivolatiles — rate effect
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Loss of semivolatiles
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» Loss of semivolatiles (by photolysis, reactions in the gas phase to form
volatile products, or deposition to chamber walls)

— Lowers the concentration of the gas-phase semivolatile, thereby reducing
the amount that partitions into the aerosol phase




Seed acidity: acid seed vs. non-acid seed
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* No acid effect observed

e Same observations in m-xylene oxidation




Conclusions: Aromatic SOA

« SOA yields are highly dependent on NO, levels (peroxy radical chemistry)
— High NO,: Usual Odum yield curve behavior (Yield ~ 5 -10%)
— Low NO,: Constant yield (Yield ~30%)

« Condensable compounds are second-generation products (further gas-
phase and/or particle-phase reactions)

* No effect of particle phase acidity observed




What do all these studies tell us?

« Growth curve (AM, vs. AHC) as a powerful approach to infer the general
mechanism of SOA growth

» Profound effect of NO, level on SOA formation (isoprene, monoterpenes,
aromatics, sesqwterpenes)

» Discrepancy between modeled vs. measured SOA:

— Of compounds studied in the laboratory, biogenics are the largest contributor to
ambient SOA, and isoprene is the most important single precursor

— SOA formation from aromatics significantly higher than previously measured but
not sufficiently large to rival that of biogenics on a continental scale

— According to recent CMU study (Robinson et al., 2007), SVOCs from primary
organic aerosol emissions may themselves constitute a major class of SOA
precursors
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